SMOOTHNESS OF ALGEBRAIC SUPERVARIETIES
AND SUPERGROUPS

RITA FIORESI

Volume 234 No. 2 February 2008



PACIFIC JOURNAL OF MATHEMATICS
Vol. 234, No. 2, 2008

SMOOTHNESS OF ALGEBRAIC SUPERVARIETIES
AND SUPERGROUPS

RITA FIORESI

We discuss the notion of smoothness in complex algebraic supergeometry
and prove that all affine complex algebraic supergroups are smooth. We
then prove the stabilizer theorem in the algebraic context, providing some
useful applications.

1. Introduction

The category of differentiable supermanifolds was introduced and discussed in sev-
eral works —among which [Batchelor 1984; 1985; Berezin 1987; Kostant 1977;
Leites 1980; Manin 1988] — from different point of views, especially in connection
with important physical applications stemming from string theory and ultimately
related to the problem of classification of elementary particles.

In this paper we are interested in algebraic supergeometry and its relation with its
differential counterpart. In his foundational work on supermanifolds, Manin [1988]
defined the notion of a superscheme and discussed some important examples.

Along the same lines we want to understand the concept of smoothness in com-
plex algebraic supergeometry. Given the algebraic nature of the problems in the
theory of supermanifolds, we believe that a deep analysis of the superalgebraic
category can shed light also on the differential one. Moreover this is the correct
category to work with when one wants to discuss quantum deformations of the
geometric objects.

In ordinary algebraic geometry smoothness is a local notion, strongly linked to
the dimension of the local ring of the variety at the point. Unfortunately, due to the
presence of the odd nilpotents, it is not easy to generalize the idea of dimension of
aring to the supergeometric context. To overcome this problem, we define smooth-
ness as a property of the completion of the local superring of the supervariety at
a given point: a point is smooth if the local superring is isomorphic to a power
series superring. We are then able to show that any supervariety admits a unique
supermanifold structure in a neighborhood of a smooth point, as in the classical
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case, through the application of the implicit function theorem, after reduction to
local complete intersection.

Using Cartier’s Theorem adapted to supergeometry we can then prove that all
algebraic supergroups are smooth; in other words, all affine algebraic supergroups
are also Lie supergroups. We apply this to the stabilizer supergroup functor of an
action of an affine supergroup on an affine supervariety. After showing that the
stabilizer is representable, hence a supergroup, we show that classical supergroups
are smooth.! This fact is generally known; it is treated in a different context in
[Gruson 1994] and [Varadarajan 2004, p. 289], for example. However, we provide
an independent proof using algebraic techniques, which we believe can be of help
to other questions on differentiable supermanifold and may yield other examples
of algebraic Lie supergroups.

This paper is organized as follows:

In Section 2, we review basic facts of algebraic and differential supergeometry,
such as the definition of supermanifolds, supervarieties and their functor of points.

In Section 3 we define smooth points of a supervariety. We then prove the super
version of the classical result that a smooth point of a complex algebraic variety
admits a supermanifold structure in a suitable neighborhood.

In Section 4 we prove that all (closed) points of complex algebraic groups are
smooth.

In Section 5 we prove the Stabilizer Theorem, which states that the stabilizer
functor for the action of an affine algebraic supergroup on an affine supervariety is
representable by a supergroup, so it is a smooth variety, hence a supermanifold.

As an application, in Section 6, we show that the classical supergroup functors as
described in [Deligne and Morgan 1999, p. 70] are representable, and consequently
they are Lie supergroups.

2. Basic definitions of supergeometry

In this section we recall some basic definitions and facts in supergeometry. For
more details see [ Varadarajan 2004; Caston and Fioresi 2007; Deligne and Morgan
1999; Manin 1988].

Let k be the ground field. A superalgebra A is a Z,-graded algebra, A= Ao A;.
We denote by p(x) the parity of an homogeneous element x € A. We say that A
is commutative if

xy = (_I)P(X)p(y)yx_

Definition 2.1. A superspace S = (|S], Os) is a topological space |S| endowed
with a sheaf of superalgebras Og such that the stalk Og , is a local superalgebra

IFor a list of classical supergroups see [Deligne and Morgan 1999, p. 70], for instance.
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for all x € |S|. A morphism ¢ : S — T of superspaces is given by ¢ = (|¢|, ¢*),
where ¢ : |S| — |T| is a map of topological spaces and ¢* : Oy — ¢*Oy is a sheaf
morphism such that ¢} (m¢|(r)) = m, where m,g|(r) and m, are the maximal ideals
in the stalks O7 |4|x) and O , respectively.

The most important examples of superspaces are given by supermanifolds and
superschemes.

Definition 2.2. Consider the superspace CP9 = (C?, #cpis), where
Heralu = Herly @ Cléy, ..., &4, U open in C?

where C[&, ..., &,] is the exterior algebra generated by &, ..., &, and ¥cr de-
notes the sheaf of holomorphic functions on C”.

A complex supermanifold of dimension p|q is a superspace M = (|M|, # )
which is locally isomorphic to C?!9; that is, for all x € | M| there exist open sets
Ve C |M|, U C C? such that

Omly, = Heralu

Definition 2.3. A superscheme S is a superspace (|S|, Og) such that (|S], Os.o)
is a quasicoherent sheaf of Og ;-modules. A morphism of supermanifolds or of
superschemes is a morphisms of the corresponding superspaces.

Superschemes can be characterized by a local model:

Definition 2.4 (Spec A). Let A be a superalgebra and let O 4, be the structural sheaf
of the ordinary scheme Spec(Ag) = (spec Ag, O4,) (spec Ag denotes the prime
spectrum of the commutative ring Ag). The stalk of the sheaf at the prime p €
spec Ao is the localization of Ag at p. As for any superalgebra, A is a module over
Ap. We have indeed a sheaf 04 of 04,-modules over spec Ao with stalk A, the
localization of the Ap-module A over the prime p € spec Ap:

Ap,=1{f/g| feA, geAy—p}

A, contains a unique two-sided maximal ideal generated by the maximal ideal in
the local ring (A )0 and the generators of (A,); as Ap-module.

0 4 is a sheaf of superalgebras and (spec Ag, O4) is a superscheme that we denote
with Spec A.

The next proposition shows that Spec A is the local model for superschemes.

Proposition 2.5. A superspace S is a superscheme if and only if it is locally iso-
morphic to Spec A for some superalgebra A; that is, for all x € |S|, there exists
U, C |S| open such that (U, Og|y,) = Spec A. (Clearly A depends on U,.)

Proof. See [Caston and Fioresi 2007, §3]. O
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Definition 2.6. We say that a superscheme X is affine if it is isomorphic to Spec A
for some algebra A and we call k[ X] := A the coordinate ring of the affine super-
scheme X. Let 7°% be the ideal generated by the odd nilpotents of A. If k[X]/1°%
is the coordinate ring of an ordinary affine algebraic variety (called the reduced
variety associated to X) and (| X|, Ox o) is a coherent sheaf of Oy ;-modules, we
say that X is an affine algebraic variety.

Remark 2.7. There is an equivalence of categories between superalgebras and
affine superschemes. This equivalence is treated in detail in [Caston and Fioresi
2007, §3].

Definition 2.8. Let X be a supervariety. The functor of points of X is given by
hyx : (salg) — (sets), hx(A) =Hom(Spec A, X),

where (salg) is the category of commutative superalgebras. If X is an affine super-
variety hx(A) = Hom(k[X], A). If hx is group-valued we say that X is an affine
supergroup. This is equivalent to the fact that k[ X] is a Hopf superalgebra. This is
also the same as giving a multiplication m : X X X — X and an inverse i : X — X
satisfying the usual commutative diagrams.

More generally, we say that G : (salg) — (sets) is a supergroup functor if it is
group-valued. Clearly, a representable supergroup functor is an affine supergroup.

3. Smoothness of complex algebraic supervarieties

Let k =C.
Let X = (| X|, Ox) be a supervariety and let P € | X| be a closed point; that is,
P corresponds to a maximal ideal. Let mp be the maximal ideal in Oy p.

Definition 3.1. We say that P is smooth if
Ox.p ZClx1 ook &1 &1l Oxp =1limOx,p/mjp

where the x; and &; are respectively even and odd variables. In this case we say
that the dimension of the supervariety X at P is r|s. Notice that the dimension is
well defined, thatis if C[[x1, ..., x,, &1, ..., &N =ECllxy, ..., Xm, &1, ..., &, ] then
r=m,n=s.

Smoothness of a point of a supervariety cannot be checked at the classical level
as the next examples show.

Example 3.2. Consider the supervariety X with coordinate ring
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Its reduced variety is the affine plane, where all the closed points are smooth in
the classical sense. It is immediate to check that this supervariety has no smooth
points according to Definition 3.1.

Example 3.3. Take the supervariety with coordinate ring C[x, y, &, n]/(Ex + ny).
Again its reduced variety is the affine plane. One can check that all (closed) points
are smooth except the origin.

Since the notion of smoothness is local we can assume that X is an affine su-
pervariety, with coordinate ring C[X] = C[xy, ..., xm, &1, ..., & 1/1, where I =
(ft,--s fps &1, ..., ¢y). Inthis case Oy p is the localization of C[X] at the point
P (see Definition 2.4).

Definition 3.4. As in the classical setting, we define the jacobian of fi, ..., fp,
1, ..., 94 €Clx1, ..., xpn, 61,...,&,] ata point P as

Spy o ipy Shpy - Sl
Jac(f. )Py = | ; s z
Rl a9 Rl I
SRy e GPpy ) e PP

(for the definition of df/dx see for example [Varadarajan 2004]). The rank of the
jacobian is given by a|b where a and b are the ranks of the m x p, n x g diagonal
blocks.

Lemma 3.5. Let the notation be as above. Let P € |X| be a closed point, i.e., a
maximal ideal mp in C[X]. Then

rk(Jac(f, ¢)(P)) =m|n — dim(mp/m}z,).

Proof. The proof is the same as in ordinary case (see for example [Hartshorne
1977, p. 32]). We sketch it. We have a natural identification

0 a
F:Mp/Mj=C""  fisdfp:= (—f(P), o f (P)),
0x1 &,
where Mp denotes the maximal ideal corresponding to the point P in C[xy, .. ., X,
&1, ..., &,]. Viewing the rows of Jac(f, ¢) as vectors in C™I" the above identifica-

tion tells us immediately that
rk(Jac(f, ¢)(P)) =dim(] + MI%)/MI%

where I = (f1,..., fp, &1, ..., ¢4). Since localizations commute with quotients,
we have

mp/mp = (Mp/1)/(Mj+1)/1) = Mp /(M +1).
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Hence
rk(Jac(f, ¢)(P)) = dim(I + M)/ M3 = dim Mp/M}? — dim Mp /(M} +1). O
If A is a local superring with maximal ideal m, let Gr(A) = @ m'/m'*!.

Proposition 3.6. Let P be a smooth point of an affine supervariety X with dimen-
sionr|sin P.

(D) mp/mlz, has dimension r|s.
(2) Gr(Ox,p) =Clx1, ..., Xr, &1, ..., &, where Gr(Ox, p) = @;mb/m}"".
3) rk(Jac(f, ¢)(P)) =m|n —r|s.

Proof. Statements (1) and (2) follow from Lemma A.5 in the Appendix, and (3) is
a consequence of Lemma 3.5. O

Remark 3.7. The proof of this result resembles the one for the commutative set-
ting. One difference that may cause confusion is this: When we localize C[X]
to obtain Ox p we are using a maximal ideal of the even part C[X]o, that is, the
ideal generated by x; — a; and &;&;, for all i and j < i, where the a; € C are the
coordinates of the closed point P. On the other hand, when we are completing the
local superalgebra Ox p we are taking the inverse limit of the system Ox p/mjp,
where mp is the maximal ideal of this superalgebra, hence it is a graded object and
it will necessarily contain all the odd generators.

Remark 3.8. If P is smooth and X has dimension r|s at P, mp/ m%, is generated
by r|s elements. Hence, by Theorem A.6, mp is generated by r|s elements.

Remark 3.9. The affine supervariety X is embedded in C"!" via the chosen explicit
presentation of its coordinate ring C[X]. Hence we can give to the set of closed
points of X a complex topology inherited from this embedding. However this
topology is independent from the embedding; this is a classical fact, still valid in
this setting since it is a topological question. We want to show that the closed
points of the supervariety X equipped with this complex topology, admit a unique
supermanifold structure in a suitable complex neighbourhood U of the smooth
point P. In other words, we want to show that

() Hemn /Iy = (Hen /KNy @ ClE, . . ., &,

where ¥ is the ideal sheaf whose global sections are generated in Hcmin by the
ideal I of the supervariety X. The whole question in the supergeometry setting is
to show the existence of a local splitting («). To settle this problem our strategy is
to use the implicit functions theorem, which is still valid in this setting. We recall
the statement from [Leites 1980, p. 52]:
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Theorem 3.10. Let M be a complex supermanifold, P € |U|, where U C M,
is isomorphic to an open in C'S. Let K be the ideal in ¥y (U) generated by
8ly--s8p> Vs -, Vg vanishing % at P and with linearly independent differentials
at P. Then there exists a unique subsupermanifold

N = (|N|, ¥y), Hy =Hmly/H

where X is the sheaf of ideals with global sections K and |N| is the topological
space whose existence is granted by the classical result.

Remark 3.11. The key for the proof of this result is the fact that any set of func-
tions gi,...,&p, Y1, ..., ¥y With linearly independent differentials at P can be
completed to obtain a set of local coordinates in a neighborhood of P. More details
on this can be found in [Varadarajan 2004, p. 148].

This theorem allows us, in a special case, to obtain immediately the result we
are after.

Corollary 3.12. Let P € |X| be a smooth point, and let X have dimensionr|s at P.
Let the ideal I of the supervariety X be of the form (f1, ..., fo—r, @1, -+, On—s)
(in this case we say that X is a complete intersection). Then in a neighborhood of
P, X admits a complex supermanifold structure (in the sense of Observation 3.9).

Proof. This is a direct application of the Theorem 3.10. X is defined in C™" by
the polynomials fi, ..., fu—r, @1, ..., ¢p—s withtk(Jac(f;, ¢;)(P)) =mln—r|s.
Consider the ideal K generated in %(C™") by the f; and ¢ ;. Then there exists a
unique subsupermanifold N of C"™" such that #y = (Hcmn /H)|y for a suitable
neighborhood U of P, ¥ is the ideal sheaf whose global sections are K. (|

In general the ideal I of the supervariety X is given by (f1, ..., fp, 1, ..., @y)
where p|q >m|n—r|s. We want to show that, as it happens for the classical setting,
X is locally a complete intersection, so that we can conclude our discussion with
the same reasoning as in Corollary 3.12. Let P € X be a smooth point and assume

Siseees fiers @1, ..., ¢u_s are such that
rk(Jac(f1, ...\ f—r @15 - s Gn—s)(P)) =m|n —r|s.
Let X’ be the variety corresponding to the ring
CIXT=Clxt, s Xy &1, o &l /(f1s ooy fnmrs @15 s Pus)

and let Ox’ p denote its local ring at the closed point P. We are going to show the
following:

2we say that f € ¥ 7 (U) vanishes at P if f is annihilated by the morphism %, (U) — %y p —
¥y, p/mp, p = C, where my, p is the maximal ideal in ¥y p.
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1. P is a smooth point of X', and X’ has the same dimension as X, thatis, Oy’ p =
Cllx1, ..., xr, &1, ..., &]. This implies that X’ is a complete intersection.

2. X and X' are locally isomorphic: Ox_p =0Ox- p. Since this holds for every point
in a neighbourhood of P, we have Ox (U) =0x/(U). Hence we can apply Theorem
3.10 to X’ to conclude that X admits a supermanifold structure near P.

Lemma 3.13. There is a commutative diagram
OX’,P — OX,P

L

—

Ox p —> Ox.p
where the orizontal arrows are surjections, while the vertical ones injections.

Proof. Observe that since there is a surjection C[X'] — C[X] we also have a
surjective morphism

Ox,p— Ox,p
mapping the maximal ideal onto the maximal ideal (this is a property of localiza-

tions). This will give raise to a surjective system

@X/,p/m;o" — @X,p/m;’,.

—

where mp and m}, denote the maximal ideals in Ox p and Ox/ p. Hence Oy’ p —
Ox.p is a surjective map. The vertical arrows are injections since Nmb, =Nmji = (0).
This happens since this is true in the ordinary case and since the odd variables
disappear for large i. (|

Remark 3.14. From Lemma 3.5 we see directly that dim(mp / m,z,) =dim(mp/ m},z)
and, since the point P is smooth,

dim(mp/m}) = dim(mp/mp) = r|s.
Hence, by Theorem A.6, both mp and m), are generated by r|s elements.

Lemma 3.15.
@X’,P ; (]:[[xlv o 7~xr7 Slv AR | SS]]/I
for a suitable ideal I.

Proof. By the Theorem A.2, there exists a unique map

Clixt, ... xp, &1, &1 = Oxr p

sending the x; and &; into r|s generators of the maximal ideal m,. So the map is
surjective and we obtain our result. U

Proposition 3.16. Oy p = Oy p = Cllx1, ..., X, &1, ..., &1l
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Proof. By Lemma 3.13,

Ox.p/J Z0x p=Cllxi, ..., %, &1, ..., &1
By the Theorem A.4 in the Appendix, we get the result. O

We have proved the local isomorphism in the completions, now we turn our
attention to the local rings.

Lemma 3.17. Ox' p =0y p.
Proof. By Proposition 3.16 and Lemma 3.13. (|
This concludes the proof of the following:

Theorem 3.18. Let X be a complex algebraic supervariety, P a smooth point of X.
Then, there exist a neighbourhood of P where we can give to X a unique structure
of a complex supermanifold.

Proof. Assume without loss of generality that X is affine and has dimension r|s at
P. Let

C[X]:C[xla~~-vxma§17"'vén]/(flv"'?fp’q&l»'-'a¢q)

be the coordinate ring of X. Let X’ be the algebraic supervariety defined by the
coordinate ring

(C[X/]:C[xl’---,xm’%‘lv---»Sn]/(flv~~-vfm—r9¢1,-~~’¢n—s)

where rk(Jac(f1, ..., fin—r, @1, - -+ du—s)(P)) = m|n — r|s. Then by Corollary
3.12 the result holds for X’ and by Lemma 3.17 X and X’ are locally isomorphic.
g

The next lemma will be crucial in the discussion of smoothness of algebraic
supergroups in Section 4.

Lemma 3.19. Let mp be generated by r|s elements. Then P is smooth if
Gr(Ox p) =Clx1, ..., x, &1, ..., &
Proof. By Theorem A.2, there exists a surjective map
C[[xl,...,xr,él,...,és]]a(m

sending xi, ..., x,, &1, ..., & into the generators of the maximal ideal of O\’X;.
Hence Ox p = Cl[xy, ..., x,, &1, ..., &]l/J for some ideal J. Since Gr(Ox p) =
Gr(Ox, p) by Lemma A.5 the result follows by Lemma A.3. O
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4. Smoothness of supergroups

In this section we want to show that affine algebraic supergroups are smooth, that
is all closed points are smooth. In other words we show that the set of closed points
of an affine supergroup has a supermanifold structure in the sense of Observation
3.9, hence it is a Lie supergroup. We will do this by using an argument appearing
in the classical Cartier’s theorem which states that Hopf algebras over a field of
characteristic zero are reduced.

It is enough to prove that the identity is a smooth point, since, because of the
multiplication law, all closed points have the same local structure.

Let G be an affine algebraic supergroup, C[G] its Hopf superalgebra with co-
multiplication A, counit € and antipode S. Let m| = ker € be the maximal ideal of
the identity element and let

2
my/my =spanc{ti, ..., trys}
where t1,...,t are even and t,41, ..., t,4s are odd.
By an abuse of notation, let ¢, .. ., s, denote also the image of these elements
modulo mllv .
Lemma 4.1. The monomials t}" ...t with Y/ X3 n; = N form a basis for the

superspace mllv/miv'H. (Clearly nj = 0,1 if i is the index of an odd element,
i=r+1,...,s).

Proof. The proof is the same as in the classical case, we include it here for com-

pleteness; for more details see [Waterhouse 1979, p. 86]. Let ¢, ..., ¢ +c be the
dual basis of #1, ..., t,4s. Define the map

d:CIG1=C®m; — m/m}— C
asdj=t-p,I=1,...,r+s, where p: C[G] — ml/m% is the natural projection.

Each d; gives rise to a derivation D; : C[G] — C[G] in the following way:
Dy(a) =Y _aVd(a?), where A(@) =) a® ®a®
Observe that
e(Dia) =Y e@Mdi@®)=d Y e@)a® =da).

Hence D;(t;) = §;; modulo m (since kere = my). Let P(T,...,T,4) be a
homogeneous polynomial of degree n over C; then

Di(P)(t1, ... tr+5) = ) Dit; ) <z1, e lrs),
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Since AP /0Tj(ty, ..., trys) € m'll_l, we have D;(P) = 0P /dt; modulo mf. Since

the congruence x = y modulo m implies D;(x) = D;(y) modulo m’f‘l, we get

n n
D . DY =) ey mod m

while on all other monomials the composition of the D; will give zero. Hence,
given a relation P in m'1’+1, one can single out the coefficient of any monomial by

applying the correct sequence of D;’s. O
Corollary 4.2. The identity 1 € |G| is a smooth point.
Proof. By Lemma 4.1 and Lemma A.5, the graded associated ring to Og ; is

Gr(01,6) =Clt1, .., 1y, 61, - ., 6],

This implies by Lemma 3.19 that the identity point is smooth. U

Corollary 4.3. If G is an affine supergroup, then G is smooth, that is all its closed
points are smooth.

Proof. Let hg denote the functor of points of G and i : hg X hg — h¢ the natural
transformation corresponding to the group law. Let g € |G| be a closed point. g can
be identified with an element of 45 (C) C hg(A). Hence we can define a natural
transformation

lgIhG—>hc;, lg,A(x)zmA(g,x),Vxehg(A)

This natural transformation corresponds to an isomorphism of G into itself, hence
0g,1 = 0g,4, so g is smooth. (For more details on the correspondence between
natural transformations between functor of points and morphisms of the superva-
rieties see [Caston and Fioresi 2007] Chapter 3). O

5. The Stabilizer Theorem

In this section we use the same letter X to denote both a supervariety X and its
functor of points ~x. Let G be an affine algebraic supergroup acting on an affine
supervariety X, in other words we have a morphism

p:GxX— X, (g, x)—~ g-x, Vg e G(A), x € X(A)

satisfying the usual properties, viewed in the category of supervarieties. Let u be a
topological point of X, that is u € | X| or equivalently # € X (C) = Hom(C[X], C).
Let m, be the maximal ideal corresponding to u. Notice that u can be viewed
naturally as an A-point u4 for all superalgebras A since C C A. So we have a
morphism

7:G— X, gH> g Uy

or, equivalently,
7 :C[X] — C[G].
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Definition 5.1. We define the stabilizer supergroup functor of a point u € | X| with
respect to the action p as the group-valued functor Stab,, : (salg) — (sets) given by

Stab,(A) ={g € G(A) | 7a(g) =g ua=ua},
where 74 : G(A) — X (A) or, equivalently,
Stab,(A) ={g € G(A) =Hom(C[G], A) | g T =ua}

We now prove that this functor is representable by an affine supergroup; in the
next section we describe some important applications of this result.

Theorem 5.2. Let G be an affine supergroup acting on an affine supervariety X
and let u be a topological point of X. Then Stab,, is an affine supergroup.

Proof. The stabilizer can be described in an equivalent way as
Stab, (A) ={g € G(A) | (& - D)|m, =0}

where m, C C[X] is the ideal of u. Let I be the ideal in C[G] generated by 7 (x)
for all x € m,. One can immediately check that g € G(A) = Hom(C[G], A) is in
Stab, (A) if and only if g factors via C[G]/], that is, g : C[G] — C[G]/I — A.
Thus Stab, (A) = Hom(C[G]/I, A). O

6. The classical series of Lie supergroups

In [Kac 1977] Kac proved a classification theorem for simple Lie superalgebras.
The description of the supergroup functors, corresponding to the classical super-
series of Lie superalgebras introduced by Kac, appeared in [Deligne and Morgan
1999, p. 70]; however no representation statement was proved there.

In this section we describe the supergroup functors corresponding to the classi-
cal superseries and show they are representable (that is, they are algebraic super-
groups), and hence are Lie supergroups by the results of Section 4. For the series
A(m,n), B(m, n), C(n) and D(m, n) this result was proved in [Varadarajan 2004,
p. 289] with differential techniques.

One should also prove that the Lie superalgebras® of these Lie supergroups co-
incide with the classical series mentioned above; however this goes beyond the
scope of this paper.

The A(n) series. Define GL,,|,(A) as the set of all invertible morphisms g : Amin
A" This is equivalent to asking that the Berezinian or superdeterminant

Ber(g) = Ber(f z> =det(p — qs_lr) dets™!

3For the definition of Lie superalgebra of an algebraic supergroup, see [Caston and Fioresi 2007,
Chapter 5].
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(see [Berezin 1987]) be invertible in A, where p and s are m X m, n X n matrices
of even elements in A, while g and r are m x n, n X m matrices of odd elements in
A. A necessary and sufficient condition for g € GL,,,(A) to be invertible is that
p and s are invertible. The group-valued functor

GL,,, : (salg) — (sets), A — GL,;,(A)

is an affine supergroup called the general linear supergroup and is represented
by the algebra C[GLyy] := Clxij, Yag, &ip Yaj> 2> wl/((wdetx — 1, zdety — 1),
where i, j=1,...mand o, B=1,...n.

Consider the morphism

p : GLy, X c'o - o, (g,c) — Ber(g)c.

The stabilizer of the point 1 € C!1° coincides with SL,,» (A), the special linear su-
pergroup, defined as the matrices in GL,, |, (A) with Berezinian 1. By Theorem 5.2,
SL,u|» is representable, and by Section 4 it is a complex supermanifold. Moreover
one can check that A(m, n) = Lie(SL,,},).

The B(in, n), C(n) and D(m, n) series. Consider the morphism

pZGLm|2nX%—>% &vi,)—>vg-.g-),

where % is the vector superspace of all the symmetric bilinear forms on C"I2",
The stabilizer of the point ® the standard bilinear form on C™/?" is the supergroup
functor Osp,,,,. Again this is an algebraic supergroup by Theorem 5.2 and it is
also a complex supermanifold. One can check that B(m, n) = Lie(Osp,,,41p2,)>
C(n) = Lie(Ospy)p,_,) and D(m, n) = Lie(Osp,,,2)-

The P (n) series. Define the algebraic supergroup 7Sp,, as we did for Osp,,
by taking antisymmetric bilinear forms instead of symmetric ones. Consider the
action

7Spy, x €17 — €10, (g.¢) > Ber(g)c.
By Theorem 5.2, Stab; is an affine algebraic supergroup, hence a Lie supergroup.
It is corresponding to the P (n) series.

The Q(n) series. Let D =C[n]/(n*+1). This is a noncommutative superalgebra.
Define the supergroup functor GL,(D) : (salg) — (sets), with GL,(D)(A) the
group of automorphisms of the left supermodule A ® D. In [Deligne and Morgan
1999] is proven the existence of a morphism called the odd determinant

odet : GL, (D) — C'.
Reasoning as before, define

GL,(D) x col' — oIt g, c — odet(g)c.
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Then G = Stab; is an affine algebraic supergroup and for n > 2 we define Qg(n)
as the quotient of G and the diagonal subgroup GL|o. This is an algebraic and Lie
supergroup and its Lie superalgebra is Q(n).

Appendix: Commutative superalgebra

Let k be the ground field. We assume all superalgebras to be commutative. As
before, we denote with latin letters the even elements and with greek letters the
odd elements of a superalgebra.

Theorem A.1. Let A be a finitely generated superalgebra. There exists a unique
superalgebra morphism

d):k[x1,...,xm,fl,...,én]—>A,

(where k[xy, ..., xm, &1, ..., &,] denotes the polynomial superalgebra with even
indeterminates x; and odd indeterminates ;) sending the x; and the §; to chosen
elements in A of the correct parity.

This comes from the universality of the construction of the polynomial superalge-
bra as it is done for example in [Deligne and Morgan 1999, p. 49].

Theorem A.2. Let A be a finitely generated superalgebra and let A=lim.__ A /nt,
be its completion with respect an ideal n. Let i be the ideal in A corresponding to
n. There exists a unique superalgebra morphism ¢ : k[[x1, ..., Xm, &1, ..., &1 —
A sending the x; and the &; to chosen elements in n of the correct parity.

Proof. This is the same as [Eisenbud 1995, p. 200, Theorem 7.16]. Let’s briefly
recall it. By Theorem A.1, there is a unique map k[x1, ..., Xp, &1, ..., &1 — A/ﬁ’~
sending the x; and the &; to chosen elements in n. Clearly this maps factors as

K[X1, -y Xons E1v vy Ea] —
KIXT, oo X &Ly e En/ (K1 o X E1, - E0)D — AJA

One can check that
k[x], -~'7xm9517"'=§n] ~ k[[-x19~"9xn17$19~~-7§n]]

(xlv---’xm,él’---»é:n)i B (xlv-‘~’xm7§1’---’§n)i

hence by the universal property of the inverse limit we have obtained the required
map and its uniqueness. 0

Lemma A.3. I = (0) if

Gr(kllx1, ..., xr, &1, ..., &I/ = Gr(kllx1, ..., xr, &1, ..., &D.



SMOOTHNESS OF ALGEBRAIC SUPERVARIETIES AND SUPERGROUPS 309

Proof. Let m be the maximal ideal in k[[x1, ..., x,, &1, ..., &]l. There exist i such
that I C m’ but I ¢ m'*! otherwise we are done since I C Nm' = (0). Then

(mi/l)/(mi+] + I/I) — mi/(mi+] + I) 75 mi/mi+1 ,
which gives a contradiction. U

Theorem A4. I = (0) if
kllxi,...,xr, &1, o EN/T Zkllxt, ..., x, &1, ..., &L

Proof. This is a consequence of Lemma A.3. O

Lemma A.S. Let A be a commutative superalgebra and m a maximal ideal. Let
Ay be the localization of A into the even part mg of the maximal ideal m and A,,
the completion of A, with respect to the maximal ideal m in A,,. Then

mi/mi-H o~ ’,;;li/n*;li-i-l o~ ﬁi/n’,zi-i-l.

Proof. This is the same as in the commutative case, because localization and com-
pletion commute with quotients. U

Theorem A.6 (Super-Nakayama’s Lemma). Let A be a local commutative super-
ring with maximal (homogeneous) ideal m. Let E be a finitely generated module
for the ungraded ring A.

(1) If mE = E, then E = 0; more generally, if H is a submodule of E such that
E=mE+H,then E=H.

(i1) Let (vi)1<i<p be a basis for the k-vector space E /mE where k = A/m. Let
e; € E be above v;. Then the e; generate E. If E is a supermodule for
the superring A, and v; are homogeneous elements of the vector superspace
E/mE, we can choose the e; to be homogeneous too (and hence of the same
parity as the v;).

(iii) Suppose E is projective, that is, there is a A-module F such that E® F = AN
where AV is the free module for the ungraded ring A of rank N. Then E (and
hence F) is free, and the e; above form a basis for E.

Proof. See [Caston and Fioresi 2007, Appendix]. 0
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