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We study the evolution of submanifolds moving by mean curvature and an
external force field. We prove flow has a long-time smooth solution for all
time under almost optimal conditions. Those conditions are that the second
fundamental form on the initial submanifolds is not too large, the external
force field and all of it derivatives are bounded, and the field is convex with
its eigenvalues satisfying a pinch inequality.

1. Introduction

We study the flow

(1-1)
d Ft

dt
= − (Hα − ωα)eα ≡ − fαeα

where Ft := F(·, t) : Mn
→ Rn+k is a family of smooth immersions, Mt = Ft(M),

M is a compact oriented submanifold in Rn+k , H is the mean curvature vector
of Mt with respect to the unit normal field eα for α = n + 1, . . . , n + k, ω is a
given smooth function in Rn+k , ∇ω is the standard gradient field of ω in Rn+k , and
ωα ≡ 〈∇ω, eα〉.

This flow generalizes the well-known mean curvature flow, that is, the case
ω ≡ const, and it comes directly from the study of the Ginzburg–Landau vortex.
As was shown in [Jian and Xu 2003; Jian and Liu 2006], there are two models that
both reduce to the Ginzburg–Landau system of parabolic equations

(1-2)
∂Vε

∂t
= 1Vε + ∇ω∇Vε + AVε +

BVε

ε2 (1 − |Vε|
2)

in Rm
× (0, ∞), where ε is a small positive parameter and ω, A, and B are known

functions. One is a simple equation simulating inhomogeneous type 5 supercon-
ducting materials [Chapman and Richardson 1997], and the other simulates three-
dimensional superconducting thin films having variable thickness [Chapman et al.
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1996]. An important problem in Ginzburg–Landau superconductors is to study the
vortex dynamics, that is, the convergence of Vε and of their zero points (which,
roughly, are called vortexes) as ε → 0.

When m = 2 and the initial vortex consists of finite isolated points, it was proved
in [Jian and Xu 2003; Jian and Song 2001; Lin 1996] that the vortex dynamics of
the Dirichlet problem for (1-2) is described by the ODE system

∂x
∂t

= − ∇ω(x).

When m ≥ 2 and the initial vortex consists of a filament or even a codimension
k submanifold, Jian and Liu [2006] proved that as ε → 0, the vortex of Cauchy
problem for (1-2) is approximated by the evolution of the initial vortex according
to flow (1-1) on the time internal in which the flow is smooth. Similar results were
obtained for Neumann problem in [Lin 1998] and for case of ∇ω = 0 in [Jerrard
and Soner 1999; Lin 1998]. Therefore, it is important in physics to consider the
long-time existence of the flow (1-1).

On the other hand, mean curvature flow has been strongly studied in recent
decades. It is well known that the flow must blow up in finite time unless the initial
submanifolds are graphic; see [Chen and Li 2001; 2004; Huisken 1984; 1990; Jian
2006; Jian et al. 2005; Smoczyk and Wang 2002; Wang 2002] for details. Hence
it is natural to ask, for what kind of functions does ω have long-time existence?

Higher codimension mean curvature flow, that is, (1-1) without an external force
field, has been studied in [Chen and Li 2001; 2004; Jian 2006; Smoczyk and Wang
2002; Wang 2002]. There have also been many studies of mean curvature flow for
hypersurfaces; see [Huisken 1984; 1990; Jian et al. 2005] for example. All those
papers show that mean curvature flow must blow up so that a singularity occurs in
finite time, unless the initial surfaces are entire graphs or graphic submanifolds.

We concentrate on the long-time existence of (1-1). Here is our main result:

Theorem 1.1. If there exist positive constants C , C3, λ, λ with λ < 2λ such that

(i) λ|ξ |
2
≤ ∇

2
i jω(x)ξiξ j ≤ λ|ξ |

2 and |∇
3ω(x)| ≤ C3 for all ξ ∈ Rn+k and for all

x ∈ Rn+k ;

(ii) |A|
2 < C on M0;

(iii) the constants C , C3, λ, and λ satisfy 5C3/2
+ C3 + (λ − 2λ)C1/2 < 0; and

(iv) |∇
iω(x)| is uniformly bounded for all x ∈ Rn+k and i = 1, 2, . . .,

then the flow (1-1) has a smooth solution for all time t ∈ [0, ∞).

Throughout this paper, flow (1-1) is denoted by (1-1)′ in the case k = 1, that is, the
case of hypersurfaces.
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Theorem 1.2. Suppose that the assumptions of Theorem 1.1 are satisfied except
that (1-1) is replaced by (1-1)′ and (iii) is replaced by

(iii)′ the constants C, C3, λ, and λ satisfy C3/2
+ C3 + (λ − 2λ)C1/2 < 0.

Then the flow (1-1)′ has a smooth solution for all time t ∈ [0, ∞).

Remark 1.3. From the proof of Theorems 1.1 and 1.2, we realize this: Instead
of “for all x ∈ Rn+k”, it is sufficient to suppose that assumptions (i) and (iv) hold
for “for all x ∈ Mt , where Mt is any solution of (1-1) on any finite time interval
[0, T ]”.

The following theorem generalizes the convexity preservation of mean curvature
flow in [Huisken 1984].

Theorem 1.4. Let T > 0, and let Mt be a smooth solution of flow (1-1)′ on the time
interval [0, T ]. If ∇

3ω ≡ 0 and M0 is convex, then Mt is convex for all t ∈ [0, T ].

Physically, ω is a density function and actually has the form

ω =
1
2(c1x2

1 + . . . + cn+1x2
n+1)

for ci > 0, (see [Chapman and Richardson 1997] for example), but Theorems 1.1
and 1.2 cannot be applied directly to this special case, because |∇ω| is not yet
known to be bounded uniformly. However, we can give the long-time existence
for this ω in the case of hypersurfaces.

Corollary 1.5. Suppose ω =
1
2(c1x2

1 + . . .+ cn+1x2
n+1), where ci are positive con-

stants, and let M = max ci and m = min ci . If M < 2m and |A|
2 < 2m − M on M0,

then for any T > 0 the flow (1-1)′ has a smooth solution for all t ∈ [0, T ].

We point out that Corollary 1.5 generalizes [Liu and Jian 2007, Theorem 1.3],
which studies (1-1)′ for the special case ω =

1
2 c|x |

2. That theorem also shows that
flow (1-1)′ must blow up in finite time either if c < 0 or if c > 0 and |A|

2 > c
on M0, which means that the both convexity of ω, as in assumption (i), and the
smallness of the initial |A|

2, as in assumptions (ii) and (iii)′, are necessary. Also
see Remark 3.4.

In Section 2, we will give notations and preliminaries. In Section 3, we give the
proofs of Theorems 1.2 and 1.4 and Corollary 1.5. Finally, in Section 4, we prove
Theorem 1.1.

2. Preliminaries

We use the following notations throughout. 〈 · , · 〉 denotes the usual inner product
in Rn+k . If M is given as in Section 1 and F denotes its parametrization in Rn+k ,
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the components of the metric {gi j } are given by

gi j (x) =

〈
∂ F(x)

∂xi
,
∂ F(x)

∂x j

〉
for x ∈ M .

Let ∇ denote the Levi-Civita connection on M, and let ∇ denote the standard
gradient in Rn+k . We use Latin letters i, j, k, · · · for tangent indices and use Greek
letters α, β, γ, · · · for normal ones. Repeated Latin indices are to be summed from
1 to n, and repeated Greek indices sum from 1 to k. Indices are raised and lowered
by gi j and gi j , respectively. We identify V ∈ Tx M with DF(V ) ∈ TF(x)R

n+k . We
also use 〈 · , · 〉 to denote the scalar product on M when there is no risk of confusion.

The second fundamental form in the direction eα, the norm of the second fun-
damental form, and the mean curvature on M in the direction eα are respectively

hαi j (x) = − 〈eα, ∇i∇ j F〉, |A|
2
= gi j gklhαikhαl j , and Hα = gi j hαi j .

Let Ri jkl denote the curvature tensor, let R⊥

βα jk denote the normal curvature ten-
sor, and recall Ricci’s equation and Gauss’s equation giving these curvatures on a
submanifold of Euclidean space:

(2-1) R⊥

αβi j = hαikhβ jk − hα jkhβik and Ri jkl = hαikhα jl − hα jkhαil .

Of course, R⊥ is zero for a hypersurface. Also, we can write the Weingarten
equation and the Codazzi equation respectively as

∇i eβ = hl
βi∇l F + Cγ

iβeγ ,(2-2)

hαik, j = hαi j,k,(2-3)

where Cγ

iβ is the connection coefficient of the normal connection and Cγ

iβ = −Cβ

iγ .
We will also use the following basic facts.

Proposition 2.1 [Huisken 1984; Schnürer and Smoczyk 2002]. For any hypersur-
face M in Rn+1, we have

∇i∇ j F = − hi jν,(2-4)

∇iν = hl
i∇l F,(2-5)

∇khi j = ∇ j hik,(2-6)

∇i∇ j H = 4hi j − Hhl
i hl j + |A|

2hi j ,(2-7)

2hi j
∇i∇ j H = 4|A|

2
− 2|∇ A|

2
− 2Z ,(2-8)

where ν is the outer normal vector of M ,

Z = HC0 − |A|
4, and C0 = gi j gkl gst hikhs j hlt = tr(A3).
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Proposition 2.2 [Schnürer and Smoczyk 2002; Wang 2002]. Suppose flow (1-1)
holds for t ∈ [0, T ) with T ≤ ∞. Then

(2-9)
dgi j

dt
= − 2 fαhαi j and

dgi j

dt
= 2 fαhαkl gik g jl

hold on Mt for all t ∈ [0, T ). In particular, for the flow (1-1)′, we have

(2-10)
dhi j

dt
= ∇i∇ j f − f hl

i hl j and
d|A|

2

dt
= 2hi j

∇i∇ j f + 2 f C0.

Here and below, we let f ≡ fα = f1 for a hypersurface.
The following theorem for short time existence of (1-1) is well known from the

theory of PDE and the technique of De Turk [Hamilton 1996].

Theorem 2.3 [Hamilton 1996]. The flow (1-1) is a system of qusilinear parabolic
equations, and there exists a maximal time 0 < T ≤ ∞ such that (1-1) admits a
smooth solution on [0, T ).

3. The case of hypersurfaces

Here we prove Theorems 1.2 and 1.4 and Corollary 1.5. The key step is to calculate
the evolution equations of |A|

2.

Proposition 3.1. Suppose flow (1-1)′ holds for t ∈ [0, T ) with T ≤ ∞, then this
equation is satisfied on Mt for all t ∈ [0, T ):

(3-1) d|A|
2

dt
= 4|A|

2
− 2|∇ A|

2
+ 2|A|

4
− 2hi j (∇i∇

2ω)(∇ j F, ν)

+ 2|A|
2
∇

2ω(ν, ν)− 4hi j hl
j∇

2ω(∇i F, ∇l F) − 〈∇ω, ∇|A|
2
〉.

Proof. By the second of (2-10), we have d|A|
2/dt = 2hi j

∇i∇ j f + 2 f C0. By the
notation f ≡ fα = f1 and using (2-8), we have

(3-2)

2hi j
∇i∇ j f = 2hi j

∇i∇ j H − 2hi j
∇i∇ j 〈∇ω, ν〉

= 4|A|
2
− 2|∇ A|

2
− 2Z − 2hi j

∇i∇ j 〈∇ω, ν〉.

It follows from (2-5) that

∇i∇ j 〈∇ω, ν〉 = ∇i (〈∇ j∇ω, ν〉 + 〈∇ω, ∇ jν〉)

= ∇i (〈∇ j∇ω, ν〉 + hl
j 〈∇ω, ∇l F〉)

= 〈∇i∇ j∇ω, ν〉 + hl
i 〈∇ j∇ω, ∇l F〉

+ hl
i 〈∇ j∇ω, ∇l F〉 + hl

j 〈∇ω, ∇i∇l F〉 +∇i hl
j 〈∇ω, ∇l F〉.
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Using (2-4) and (2-6), we obtain

(3-3) ∇i∇ j 〈∇ω, ν〉 = 〈∇i∇ j∇ω, ν〉 + hl
i 〈∇ j∇ω, ∇l F〉

+ hl
i 〈∇ j∇ω, ∇l F〉 + 〈∇ω, ∇hi j 〉 − hl

j hil〈∇ω, ν〉,

which implies

2hi j
∇i∇ j 〈∇ω, ν〉 = 2hi j

〈∇i∇ j∇ω, ν〉 + 4hi j hl
j 〈∇i∇ω, ∇l F〉

+ 〈∇ω, ∇|A|
2
〉 − 2hi j hl

j hil〈∇ω, ν〉.

This, together with (3-2), the second of (2-10), and the definitions of f , C0, and
Z , gives

(3-4)
d|A|

2

dt
= 4|A|

2
− 2|∇ A|

2
+ 2|A|

4
− 2hi j

〈∇i∇ j∇ω, ν〉

− 4hi j hl
j 〈∇i∇ω, ∇l F〉 − 〈∇ω, ∇|A|

2
〉.

But

(3-5)

〈∇i∇ j∇ω, ν〉 = ∇i (〈∇ j∇ω, ν〉) − 〈∇ j∇ω, ∇iν〉

= ∇i (∇
2ω(∇ j F, ν))− 〈∇ j∇ω, ∇iν〉

= (∇i∇
2ω)(∇ j F, ν)

+ ∇
2ω(∇i∇i F, ν)+ 〈∇ j∇ω, ∇iν〉 − 〈∇ j∇ω, ∇iν〉

= (∇i∇
2ω)(∇ j F, ν)− hi j∇

2ω(ν, ν),

where we have used (2-4) for the last equality. Inserting this equality to (3-4), we
get the desired equality (3-1). �

Proposition 3.2. With the same assumptions as in Proposition 3.1, the second fun-
damental form satisfies this tensorial evolution equation on Mt for all t ∈ [0, T ):

(3-6)
dhi j

dt
= 4hi j − 2Hhl

i hl j + |A|
2hi j − (∇i∇

2ω)(∇ j F, ν)

+ hi j∇
2ω(ν, ν)− hl

i∇
2ω(∇ j F, ∇l F) − hl

i∇
2ω(∇ j F, ∇l F)

− 〈∇ω, ∇hi j 〉 + 2hl
j hil〈∇ω, ν〉.

Proof. It is a combination of (2-7), the first of (2-10), (3-3), and (3-5). �

Proof of Theorem 1.4. Applying the maximum principle for tensors [Hamilton
1982] to Equation (3-6), we see that the positivity of {hi j } is preserved by the flow
(1-1)′ if the term ∇i∇

2ω ≡ 0. This means that the surface Mt is always convex
along the flow if ∇

3ω ≡ 0 and M0 is convex. �
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Lemma 3.3. Suppose that Mt is the solution of (1-1)′ on [0, T ) and the assump-
tions (i), (ii), and (iii)′ in Theorem 1.2 are satisfied. Then |A|

2 < C on Mt for all
t ∈ [0, T ).

Proof. Taking a local orthonormal basis ei for i = 1 . . . n on Mt , Equation (3-1)
gives

d|A|
2

dt
≤ 4|A|

2
+ 2|A|

4
− 2hi j (∇i∇

2ω)(e j , ν)+ 2|A|
2
∇

2ω(ν, ν)

− 4hi j h jl∇
2ω(ei , el) − 〈∇ω, ∇|A|

2
〉.

This, together with assumption (i), implies

(3-7) d|A|
2

dt
≤ 4|A|

2
+ 2|A|

4
+ 2|A|C3 + 2|A|

2λ

− 4hi j h jl∇
2ω(ei , el) − 〈∇ω, ∇|A|

2
〉.

Next, we estimate − 4hi j h jl∇
2ω(ei , el). Since

− 4hi j h jl∇
2ω(ei , el) = − 4hi j h jl(λE(ei , el) + ∇

2ω(ei , el) − λE(ei , el))

= − 4|A|
2λ − 4hi j h jl(∇

2ω − λE)(ei , el),

where E is the unit matrix, we have

− 4hi j h jl∇
2ω(ei , el) ≤ − 4|A|

2λ + 4|hi j h jl | |(∇
2ω − λE)(ei , el)|

≤ − 4|A|
2λ + 4(λ − λ)|A|

2

= − 4λ|A|
2.

Therefore (3-7) becomes

(3-8) d|A|
2

dt
≤ 4|A|

2
+ 2|A|

4
+ 2|A|C3 + 2(λ − 2λ)|A|

2
− 〈∇ω, ∇|A|

2
〉.

Now assumption (iii)′ means that C satisfies

2C2
+ 2C1/2C3 + 2(λ − 2λ)C < 0,

which, by the continuity of the limit, implies

(3-9) 2a2
+ 2

√
aC3 + 2(λ − 2λ)a ≤ 0

for all a ∈ (C−δ, C) and for some δ∈ (0, C). Using (3-9) and Hamilton’s maximum
principle one easily obtains that |A|

2 < C on Mt for all t ∈ [0, T ). Otherwise,
by assumption (ii), we can choose the first time t0 such that a(t0) = C , where
a(t) ≡ maxMt |A|

2. Then there exists a time t1 < t0 such that C − δ < a(t) < C for
t ∈ [t1, t0), and so a(t1) < C . Hence (3-9) yields

2a2(t) + 2
√

a(t)C3 + 2(λ − 2λ)a(t) ≤ 0 for all t ∈ [t1, t0).
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Therefore, applying Hamilton’s maximum principle [1982] to Equation (3-8) on
the time interval [t1, t0], we have a(t)≤a(t1)<C for all t ∈[t1, t0). This contradicts
a(t0) = C . �

Remark 3.4. The convexity condition on ω, as in assumption (i), and the condition
of initially small |A|

2, as in assumptions (ii) and (iii)′, are necessary. In fact, if
∇ω ≡ cx with either c < 0, or c > 0 and |A|

2 > c on M0, we have proved in [Liu
and Jian 2007] that |A|

2 must blow up in finite time, and the flow exists only for
a finite time. For this special example, assumption (i) is equivalent to c > 0 and
assumptions (ii) and (iii)′ are equivalent to |A|

2 < c. This shows the assumptions
for Theorem 1.2 are almost optimal.

Proof of Theorem 1.2. From Lemma 3.3 we see that |A|
2 is bounded uniformly if

assumptions (i), (ii), and (iii)′ are satisfied. Thus, if we can prove that |∇m A|
2
≤Cm

is bounded when t → T , then by a well-known theorem of partial differential
equations, the flow (1-1)′ can be extended to [0, T + ε) for some small ε > 0,
where T < ∞ is the maximal time interval for which (1-1)′ has a smooth solution.
This shows that the maximum time interval must be [0, ∞).

To estimate |∇ A|
2, the boundedness of |∇

4ω| is necessary but is not enough,
because we want to calculate the time derivative of 0k

i j . Because the connection is
not a tensor, but the difference of two connections is, d0k

i j/dt is a tensor. Adopting
normal coordinates and using the first of (2-9), we have

d0k
i j

dt
=

1
2

d
dt

(
glk

(
∂gil
∂x j

+
∂g jl

∂xi
−

∂gi j

∂xl

))
=

1
2

(
glk

(
∂

∂xi

( d
dt

g jl
)
+

∂

∂x j

( d
dt

gil
)
−

∂

∂xl

( d
dt

gi j
)))

= − glk
(

∂

∂xi
( f h jl) +

∂

∂x j
( f hil) −

∂

∂xl
( f hi j )

)
.

Noting that ∂i f = ∂i H −∇
2ω(∂i , ν)−hil〈∇ω, ∂l〉 and repeating the arguments of

Huisken [1984], we obtain the following result.

Lemma 3.5. Suppose that Mt is the solution of (1-1)′ on [0, T ) for T < ∞. If
assumptions (i), (ii), and (iii)′ of Theorem 1.2 are satisfied and |∇

iω| is uniformly
bounded on Mt for i = 1, . . . , m, then |∇

m−3 A|
2 is uniformly bounded on Mt .

Using Lemma 3.5, we complete the proof of Theorem 1.2. �

Proof of Corollary 1.5. For the special case ω =
1
2 c1x2

1 + . . .+ 1
2 cn+1x2

n+1, we have

∇ω = (c1x1, . . . , cn+1xn+1), ∇
2ω = (ciδi j ), ∇

3ω = 0.

Let M = max ci , and m = min ci . Applying Lemma 3.3 we find, if M < 2m and
|A|

2 < 2m − M on M0, that |A|
2 < 2m − M as long as flow (1-1)′ exists. To get the
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long-time existence we must estimate the higher derivatives of |A|
2. But Lemma

3.5 can not be applied directly, because |∇ω| may turn to be infinite if the surface
expands to infinity. However, we can prove that the surface will not expand to
infinity in finite time. First we need a theorem.

Lemma 3.6 [Schnürer and Smoczyk 2002]. Let F be a smooth immersed solution
of (1-1)′, and let F̃ be an immersed solution of this evolution equation. If F̃ is con-
tained in a connected component of Rn+1

\ F or in the closure of such a component
at the beginning of the evolution, then this remains true during the evolution.

Since |A|
2
≤ 2m − M on M0, we will prove that if the initial surface is a center

sphere, the sphere will expand to infinity as t → ∞.

Lemma 3.7. Suppose that M0 = Sn(R) is the initial surface of the flow (1-1)′ and
ω, m, and M are as above. Let s(t) :=

1
2 |Ft |

2 whereFt is the position vector of Mt .
If |A|

2 < 2m − M on M0, then C̃ ≡ (2ms(0)−n) > 0 and s ≥ ((n + C̃)/(2m))e2mt

for all t > 0.

Proof. Note that

ds
dt

=

〈d F
dt

, F
〉
= − (H − 〈∇ω, ν〉)〈F, ν〉 = − n + 〈∇ω, ν〉〈F, ν〉.

Since ν = F/|F | holds on the spheres, we have

〈∇ω, ν〉 =
1

|F |
〈∇ω, F〉 =

1
|F |

(c1 F2
1 + . . . + cn+1 F2

n+1) ≥
1

|F |
m|F |

2
= m|F |.

Hence ds/dt ≥−n+2ms. Therefore s ≥ ((n+C̃)/(2m))e2mt for all t > 0 if C̃ > 0.
Now by the initial condition, we have

2m − M > |A|
2
=

1
n

H 2
=

1
n

n2

|F |2
=

n
2s(0)

,

which implies 2s > n/(2m − M) and C̃ > 0. This proves Lemma 3.7. �

So for initial hypersurface Mn , we can find a large enough center sphere to
contain it, while |A|

2 < 2m − M is satisfied on the sphere. As a consequence
Lemma 3.6 and Lemma 3.7, imply that Mt will not expand to infinity in finite
time. This with the above discussion finishes the proof of Corollary 1.5. �

4. Higher codimension case

Here we will prove Theorem 1.1. As the hypersurface case, the key step is to
derive the evolution equation of |A|

2. For this purpose, we want to calculate the
evolution equation of the second fundamental form tensor. In the following, for
x ∈ Mn we take an orthonormal basis e1, · · · , en, en+1, · · · , en+k of Rn+k such
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that {e1, · · · , en} is a basis of Tx Mn and {en+1, · · · , en+k} (denoted by {eα}) is the
unit normal vector.

Proposition 4.1. Suppose flow (1-1) holds for t ∈ [0, T ) with T ≤ ∞. Then we
have these equations on Mt for all t ∈ [0, T ):

(4-1)
dhαi j

dt
− 4hαi j = − Hβhβilhα jl − (∇ j∇

2ω)(ei , eα) + hβi j∇
2ω(eβ, eα)

− hαk j∇
2ω(ei , ek) − hαik∇

2ω(e j , ek) + hβi j
〈
eβ,

deα

dt
〉

+ 〈∇ω, eβ〉(hβikhα jk + hβ jkhαik) − 〈∇ω, ∇hαi j 〉

− hαim(hγ mj hγ kk − hγ mkhγ k j ) − hαmk(hγ mj hγ ik − hγ mkhγ i j )

− hβik(−hβkmhα jm + hβ jmhαkm).

Proof. Because both sides are tensorial, we may calculate in normal coordinates.
Since ∇ j∇i F = −hαi j eα, then by flow (1-1) we have

(4-2)

dhαi j

dt
= −

d
dt

〈∇ j∇i F, eα〉

= − 〈∇ j∇i (−Hβeβ + ωβeβ), eα〉 −
〈
∇ j∇i F,

deα

dt

〉
= 〈∇ j∇i (Hβeβ), eα〉 − 〈∇ j∇i (ωβeβ), eα〉 + hβi j

〈
eβ,

deα

dt
〉
.

By Weingarten Equation (2-2), we have

(4-3)

∇ j∇i eβ = (∇ j hβil)el − hβilhγ jleγ + (∇ j C
γ

iβ)eγ + Cγ

iβ∇ j eγ

= (∇ j hβil)el − hβilhγ jleγ + (∇ j C
γ

iβ)eγ + Cγ

iβhγ jlel + Cγ

iβCη

jγ eη

= hβil, j el − hβilhγ jleγ + (∇ j C
γ

iβ)eγ + Cγ

iβCη

jγ eη.

This, together with (2-2), implies

(4-4)

∇ j∇i (Hβeβ) = (∇ j∇i Hβ)eβ + (∇ j Hβ)∇i eβ + (∇i Hβ)∇ j eβ + Hβ∇ j∇i eβ

= (∇ j∇i Hβ)eβ + (∇ j Hβ)hβilel + (∇ j Hβ)Cγ

iβeγ

+ (∇i Hβ)hβ jlel + (∇i HβCγ

jβ)eγ + Hβ∇ j∇i eβ .

Hence,

(4-5) 〈∇ j∇i (Hβeβ), eα〉 = ∇ j∇i Hα + ∇ j HβCα
iβ + ∇i HβCα

jβ

− Hβhα jlhβil + Hβ∇ j Cα
iβ + HβCγ

iβCα
jγ .

Note that∑
k

hαkk,i j = ∇ j∇i Hα + ∇ j HβCα
iβ + ∇i HβCα

jβ

+ Hβ∇ j Cα
iβ + HβCγ

iβCα
jγ − 2hαkl

∂0l
ik

∂x j
,
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the last term of which is zero because 0l
ik = − 0k

il . Then we use this equation to
rewrite (4-5) as

(4-6) 〈∇ j∇i (Hβeβ), eα〉 =
∑
k

hαkk,i j − Hβhα jlhβil .

Simon’s identity gives

(4-7)
∑
k

hαkk,i j = 4hαi j − (hβik R⊥

βα jk + hαmk Rmi jk + hαim Rmkjk).

Putting (4-7) in (4-6) and using (2-1), we obtain

(4-8) 〈∇ j∇i (Hβeβ), eα〉 = 4hαi j − Hβhα jlhβil − hαim(hγ mj hγ kk − hγ mkhγ k j )

− hαmk(hγ mj hγ ik − hγ mkhγ i j ) − hβik(−hβkmhα jm + hβ jmhαkm).

Next, we use (2-2) to calculate the term ∇ j∇i (ωβeβ) in (4-2). Since

∇ j∇i (ωβeβ) = ∇ j∇i (∇ω − 〈∇ω, ek〉ek)

= ∇ j∇i∇ω − ∇ j (∇
2ω(ei , ek)ek

− hβik〈∇ω, eβ〉ek − hβik〈∇ω, ek〉eβ)

= ∇ j∇i∇ω − ∇ j (∇
2ω(ei , ek))ek + hβ jk∇

2ω(ei , ek)eβ

+ ∇ j (hβik〈∇ω, eβ〉)ek − hβikhγ jk〈∇ω, eβ〉eγ

+ ∇ j (hβik)〈∇ω, ek〉eβ + hβik∇
2ω(e j , ek)eβ

− hβikhγ jk〈∇ω, eγ 〉eβ + hβik〈∇ω, ek〉∇ j eβ,

we have

〈∇ j∇i (ωβeβ), eα〉 = 〈∇ j∇i∇ω, eα〉 + hα jk∇
2ω(ei , ek) + hαik∇

2ω(e j , ek)

− 〈∇ω, eβ〉(hβikhα jk + hαikhβ jk)

+ (∇ j hαik + Cα
jβhβik)〈∇ω, ek〉

= 〈∇ j∇i∇ω, eα〉 + hα jk∇
2ω(ei , ek) + hαik∇

2ω(e j , ek)

− 〈∇ω, eβ〉(hβikhα jk + hαikhβ jk) + hαik, j 〈∇ω, ek〉.

Due to the Codazzi equation (2-3), we have

(4-9)

〈∇ j∇i (ωβeβ), eα〉 = 〈∇ j∇i∇ω, eα〉 + hα jk∇
2ω(ei , ek) + hαik∇

2ω(e j , ek)

− 〈∇ω, eβ〉(hβikhα jk + hαikhβ jk) + 〈∇ω, ∇hαi j 〉

= (∇ j∇ω2)(ei , eα) − hβi j∇
2ω(eα, eβ)

+ hα jk∇
2ω(ei , ek) + hαik∇

2ω(e j , ek)

− 〈∇ω, eβ〉(hβikhα jk + hαikhβ jk) + 〈∇ω, ∇hαi j 〉.
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Now (4-1) follows from (4-2), (4-8), and (4-9). �

Proposition 4.2. Suppose flow (1-1) holds for t ∈ [0, T ) with T ≤ ∞. Then we
have this equation on Mt for all t ∈ [0, T ):

(4-10)
d|A|

2

dt
= 4|A|

2
− 2|∇ A|

2
− 2hαi j (∇ j∇

2ω)(ei , eα)

+ 2hαi j hβi j∇
2ω(eα, eβ) − 4hαikhαi j∇

2ω(e j , ek) − 〈∇ω, ∇|A|
2
〉

+ 2
∑

α,γ,i,m

(
∑
k

hαikhγ mk − hαmkhγ ik)
2
+ 2

∑
i, j,k,m

(
∑
α

hαi j hαmk)
2.

Proof. We calculate in normal coordinates. Because |A|
2
= gi j gklhαikhαl j ,

(4-11) d|A|
2

dt
= 2

dgik

dt
hαi j hαk j + 2

dhαi j

dt
hαi j .

Hence by the second of (2-9), (4-1), and (4-11), we have

d|A|
2

dt
= 2hαi j4hαi j + 4(Hβ − ωβ)hβikhαi j hαk j − 2Hβhαi j hβilhα jl

− 2hαi j (∇ j∇
2ω)(ei , eα) + 2hαi j hβi j∇

2ω(eβ, eα)

− 4hαi j hαk j∇
2ω(ei , ek) + 2hαi j hβi j

〈
eβ,

deα

dt
〉
+ 4hαi jωβhβikhα jk

− 〈∇ω, ∇|A|
2
〉 − 2hαi j hαimhγ mj Hγ + 2hαi j hαimhγ mkhγ k j

− 2hαi j hαmk(hγ mj hγ ik − hγ mkhγ i j ) − 2hαi j hβik(hβl j hαlk − hβlkhαl j ).

Observing that 2hαi j hβi j 〈eβ, deα/dt〉 is zero by symmetry and that 2hαi j4hαi j =

4|A|
2
− 2|∇ A|

2, we have

d|A|
2

dt
= 4|A|

2
− 2|∇ A|

2
− 2hαi j (∇ j∇

2ω)(ei , eα) + 2hαi j hβi j∇
2ω(eβ, eα)

− 4hαi j hαk j∇
2ω(ei , ek) − 〈∇ω, ∇|A|

2
〉 + 2hαi j hαimhγ mkhγ k j

− 2hαi j hαmk(hγ mj hγ ik − hγ mkhγ i j ) − 2hαi j hβik(hβl j hαlk − hβlkhαl j ).

But the last three terms can be calculated as follows:

2hαi j hαimhγ mkhγ k j − 2hαi j hαmkhγ mj hγ ik

+ 2hαi j hαmkhγ mkhγ i j − 2hαi j hβik(hβl j hαlk − hβlkhαl j )

= 4hαi j hαimhγ mkhγ k j − 4hαi j hαmkhγ mj hγ ik + 2hαi j hγ mkhαmkhγ i j .

Since

2hαi j hαimhγ mkhγ k j − 2hαi j hαmkhγ mj hγ ik

= 2hαi j hαikhγ mkhγ mj − 2hαi j hαmkhγ mj hγ ik
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= 2hαi j hγ mj (hαikhγ mk − hαmkhγ ik)

= hαi j hγ mj (hαikhγ mk − hαmkhγ ik) + hαmj hγ i j (hαmkhγ ik − hαmkhαik)

=

∑
α,γ,i,m

(
∑
k

hαikhγ mk − hαmkhγ ik)
2

and 2hαi j hγ mkhαmkhγ i j = 2
∑

i, j,k,m(
∑
α

hαi j hαmk)
2, we are done. �

Lemma 4.3. Suppose that Mt is the solution of (1-1) on [0, T ) and that assump-
tions (i), (ii) and (iii) of Theorem 1.1 hold. Then |A|

2 < C on Mt for all t ∈ [0, T ).

Proof. The proof is almost the same as that of Lemma 3.3 in the case of hypersur-
faces. It follows from Schwarz inequality that

2
∑

i, j,k,m

(
∑
α

hαi j hαmk)
2
≤ 2

∑
i, j,k,m

(
∑
α

h2
αi j )(

∑
α

h2
αmk) = 2|A|

4,

∑
α,γ,i,m

(
∑
k

hαikhγ mk − hαmkhγ ik)
2
≤ 4

∑
α,γ,i,m

(
∑
k

hαikhγ mk)
2
≤ 4|A|

4.

Consequently, using the same technique as from (3-7) to (3-8), we obtain

(4-12) d|A|
2

dt
≤ 4|A|

2
− 〈∇ω, ∇|A|

2
〉 + 10|A|

4
+ 2|A|C3 + 2(λ − 2λ)|A|

2.

The result follows by the arguments below (3-8) of Lemma 3.3. �

Proof of Theorem 1.1. Using Lemma 4.3 and repeating the proof of Theorem 1.2,
one easily proves Theorem 1.1. �
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