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We introduce two-colored maps of n-manifolds into m-manifolds, develop
the theory of their singular fibers, and study these fibers for the case m = 4
and n = 3, 5.

1. Introduction

Following the pioneering work of Thom [1954] on the cobordisms for embeddings
of manifolds, Koschorke [1981] and Rimányi and Szűcs [1998] introduced the no-
tion of cobordisms of singular maps with positive codimension. The codimension
of a map f : M → N between manifolds is dim N −dim M . In particular, “univer-
sal singular maps” were constructed by using the Pontrjagin–Thom construction
in [Rimányi and Szűcs 1998]. (Each singular map can be pulled back from the
universal singular maps.) For the negative codimension case, Ikegami and Saeki
[2003] defined and studied the cobordism group of Morse functions on surfaces.
Then Kalmar [2007] generalized this result for fold maps of oriented 3-manifolds
into the plane.

Saeki [2004] developed the theory of the fibers of smooth maps with negative
codimension. For a smooth map f : M → N , the fiber over q ∈ N is a map germ
along the inverse image

f : (M, f −1(q)) → (N , q).

When q ∈ N is a regular value of f , we call f : (M, f −1(q)) → (N , q) a regular
fiber; otherwise, we call it a singular fiber. In the negative codimension case, the
inverse image is not a discrete set but a complex of positive dimension, and Saeki’s
book shows the topology of the fibers plays an essential role. He constructed the
cochain complex of the fibers, and showed that the cohomology classes of this
complex induce cobordism invariants of smooth maps. As an important example,
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he showed this: For each stable map of an orientable closed 4-manifold into a con-
nected 3-manifold, the number of singular fibers of ĨII12 type (as depicted in Figure
1) and the Euler number of the 4-manifold have the same parity. Saeki uses the
symbol “III8” instead of “ĨII12”. Note that the modulo two Euler number is one
of the unoriented cobordism invariants of 4-manifolds; see [Milnor and Stasheff
1974] for details.

Saeki’s Euler number formula was generalized for nonorientable 4-manifolds
in [Yamamoto 2006a]. As an “integral lift” of the formula, Saeki and Yamamoto
[2006] obtained the signature formula of oriented closed 4-manifolds.

Here, we consider the fibers of smooth maps from a global point of view. More
precisely, we study the fibers of two-colored maps. Roughly speaking, a two-
colored map is a map equipped with a two-color painting for the complements of
the discriminant in the target; see Section 2 for details. We introduce an equiva-
lence relation among the fibers of two-colored maps and the notion of two-colored
cobordism between two-colored maps. We also develop the theory of fibers of
two-colored maps, in which we construct the cochain complex of the fibers of two-
colored maps by using the adjacencies of the fibers. We prove that cohomology
classes of the cochain complex induce two-colored cobordism invariants of two-
colored maps.

This paper is organized as follows. In Section 2, we give some fundamental
definitions concerning two-colored maps. In Section 3, we construct the theory
of fibers of two-colored maps. In Section 4, we study two-colored stable maps of
n-manifolds into 4-manifolds for n = 3 and n = 5. As an application of our theory,
we prove two theorems:

Theorem 1.1 [Yamamoto 2006a]. Let N be a connected 3-manifold satisfying
H 1(N ; Z2) = 0, and let f : M → N be a stable map of a closed 4-manifold. Then

χ(M) ≡ |ĨII2,2,2( f )| + |ĨII2,7( f )| + |ĨII12( f )| + |ĨII13
o,A( f )|

+ |ĨII13
e,B( f )| + |ĨII25( f )| + |ĨII26( f )| (mod 2),

where χ(M) is the Euler number of M and |F( f )| is the number of singular fibers
of type F for f , as depicted in Figure 1.

Theorem 1.2 [Szűcs 1986]. Let N be a connected 3-manifold with H 1(N ; Z2)=0,
and let g : S → N be a stable map of a closed surface. Then

χ(S) ≡ T (g) +

∑
Whitney umbrella

points q

ind(q; g) (mod 2),

where T (g) is the number of triple points of g and ind(q; g) ∈ Z2 is the index of
the Whitney umbrella point q ∈ N of g; see Section 4.1 for details.
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Figure 1. The singular fibers in the formula of Theorem 1.1.

Throughout this paper, assume that all manifolds are connected and that all
manifolds and maps are of the class C∞. Call p ∈ M a critical point of f : M → N
if the rank of the Jacobi matrix of f at p is less than the dimension of the target;
otherwise call it a regular point. (In this sense, there are no regular points if the
dimension of the source is less than that of the target.) Denote the set of critical
points of f by S( f ). For a finite set P , let |P| denote the number of elements in
P . For a topological space X , the symbols idX , χ(X), and X respectively denote
the identity map on X , the Euler number of X , and the topological closure of X .
The symbol “∼=” denotes an appropriate isomorphism between algebraic objects.

The paper is based on the author’s doctoral thesis [Yamamoto 2006b]. Omitted
proofs may be found there or in [Saeki 2004].

2. Preparation

Let f : M → N be a smooth map with dim M + 1 ≥ dim N .

Definition 2.1. The map f is two-colorable if there exists a pair of disjoint non-
empty open subsets R and B in N \ f (S( f )) such that

N \ f (S( f )) = R ∪ B and R ∩ B = ∂ R = ∂ B = f (S( f )).(2-1)

If f has no critical values, it is also two-colorable. Call the pair (R, B) satisfying
the condition (2-1) a two-color decomposition or a coloring of f .

Figure 2 shows examples of two-colored maps, where the shadowed regions
indicate R.

Proposition 2.2. f : M → N is two-colorable if and only if f∗[S( f )] = 0 ∈

H c
p−1(N ; Z2) ∼= H 1(N ; Z2), where [S( f )] denotes the homology class represented

by S( f ).

Proof. Fix q0 ∈ N \ f (S( f )). For each q ∈ N \ f (S( f )), choose a regular curve
γ connecting q0 with q and intersecting f (S( f )) transversely at finitely many
points. We prove that the parity of the intersection number of γ and f (S( f )) does
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Figure 2. Examples of two-colored maps.

not depend on the choice of γ . For another curve γ ′ connecting q0 with q and
intersecting f (S( f )) transversely at finitely many points, we see

#(γ ∩ f (S( f ))) + #(γ ′) ∩ f (S( f )) ≡ [γ ∪ γ ′
] · [ f (S( f ))] ≡ 0 (mod 2),

where [γ ∪γ ′
] · [ f (S( f ))] is the modulo two intersection number of the homology

classes represented by a circle γ ∪ γ ′ and by f (S( f )). Put

R = {q ∈ N \ f (S( f )) : #(γ ∩ f (S( f ))) is even}

B = {q ∈ N \ f (S( f )) : #(γ ∩ f (S( f ))) is odd}.

It is obvious that R and B are disjoint nonempty open subsets. Conversely, by
the assumption that f is two-colorable for each circle intersecting f (S( f )) trans-
versely at finite points, the intersection number of the circle and f (S( f )) is always
even. Now Poincaré duality implies that f∗[S( f )] = 0. �

Note that f : M → N is two-colorable if N = Rn or M is orientable.
Call the pair ( f, (R, B)) of a two-colorable map f and a coloring (R, B) of f a

two-colored map or a colored map. For a two-colored map ( f, (R, B)), there exists
another two-colored map ( f, (R̃, B̃)) where R̃ = B and B̃ = R. We regard these
to be distinct two-colored maps. Call the latter two-colored map the two-colored
conjugate of ( f, (R, B)).

Definition 2.3. Let ( fi , (Ri , Bi )) : Mi → Ni be two-colored maps and qi ∈ Ni for
i = 0, 1. Say the fibers over q0 and q1 are C∞ equivalent (or C0 equivalent) if
there exist open neighborhoods Ui of qi ∈ Ni for i = 0, 1 and diffeomorphism
(or homeomorphism) germs 8 : ( f −1(U0), f −1(q0)) → ( f −1(U1), f −1(q1)) and
ϕ : (U0, q0) → (U1, q1) such that the following diagram is commutative:

(2-2)

( f0
−1(U0), f0

−1(q0))
8

−−−→ ( f1
−1(U1), f1

−1(q1))

f0

y y f1

(U0, q0)
ϕ

−−−→ (U1, q1).
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Denote the C∞ equivalence (or C0 equivalence) relation by ρ∞ (or ρ0).
Also, say the fibers over q0 and q1 are two-colored C∞ equivalent (or two-

colored C0 equivalent) if they are C∞ equivalent (or C0 equivalent) and the dif-
feomorphism (or homeomorphism) germ ϕ : (U0, q0) → (U1, q1) in diagram (2-2)

satisfies ϕ(U0 ∩ R0) = U1 ∩ R1. Denote the two-colored C∞ equivalence (or two-
colored C0 equivalence) relation by cρ∞ (or cρ0).

For a two-colored map ( f, (R, B)) : M → N , there exists a point q ∈ N such
that the fiber of ( f, (R, B)) over q is not two-colored C∞ equivalent to the fiber
of the two-colored conjugate of ( f, (R, B)) over q; see Figure 5 and 6. Call the
latter fiber the two-colored conjugate of the original fiber.

For a two-colored Thom map1 ( f, (R, B)) : M → N and a two-colored C0 class
F, denote the set of points whose fibers are of type F in N by F( f, (R, B)).

Lemma 2.4. F( f, (R, B)) is a C0 submanifold of N of constant codimension un-
less it is empty. This codimension does not depend on the choice of ( f, (R, B)).

3. Cochain complex of the singular fibers of two-colored maps

We construct the theory of the fibers of proper2 two-colored Thom maps.
To construct the universal complex of the singular fibers of two-colored maps,

fix an integer ` ∈ Z. For `, introduce

(1) the set cτ of the fibers of two-colored Thom maps of codimension `, and

(2) an equivalence relation cρ among fibers in cτ .

The set cτ and the equivalence cρ must each satisfy certain conditions.
The set cτ must be closed under adjacency relations and the two-colored con-

jugation. That is, if a fiber is in cτ , so are all nearby fibers and its conjugate.
The equivalence cρ is weaker than the two-colored C0 equivalence. Namely,

each cρ class is a union of two-colored C0 classes. This implies that for each
proper two-colored Thom map ( f, (R, B)) and each cρ class F, F( f, (R, B)) is
a C0 submanifold of constant codimension unless it is empty. The codimension of
F is defined to be the codimension of F( f, (R, B)). Denote it by κ(F).

Also, cρ must satisfy the following condition.

Condition 3.1. Suppose ( fi , (Ri , Bi )) : Mi → Ni are proper two-colored Thom
maps and qi ∈ Ni for i = 0, 1. Suppose the fibers over q0 and q1 are in cτ and
are equivalent with respect to cρ. There exist open neighborhoods Ui of qi in

1 A Thom map f : M → N is a map stratified with respect to the Whitney regular stratification
of M and N so that it is a submersion on each stratum and satisfies certain regularity conditions,
see [Gibson et al. 1976] for details. A two-colored Thom map is a Thom map equipped with a
coloring.

2 A continuous map is proper if for each compact subset, the inverse image is also compact.
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Ni for i = 0, 1 and a homeomorphism ϕ : U0 → U1 satisfying ϕ(q0) = q1 and
ϕ(U0 ∩ F( f0, (R0, B0))) = U1 ∩ F( f1, (R1, B1)) for each cρ class F.

Call a proper two-colored Thom map ( f, (R, B)) : M → N a cτ -map if all of
its fibers are in cτ .

For each κ ∈ Z, let Cκ(cτ, cρ) be the formal Z2-vector space spanned by cρ
classes of codimension κ in cτ . Note that Cκ(cτ, cρ) may possibly contain infin-
itely many terms. If there are no such fibers, put Cκ(cτ, cρ) = 0.

Define a Z2-linear map δκ : Cκ(cτ, cρ) → Cκ+1(cτ, cρ) by

δκ(F) =

∑
κ(G)=κ+1

nF(G)G.

Here nF(G)∈Z2 is the number modulo two of components of F( f, (R, B)) that are
locally adjacent to the component G( f, (R, B)) for a cτ -map ( f, (R, B)) satisfying
G( f, (R, B)) 6= ∅. The coefficient nF(G) ∈ Z2 is well defined by Condition 3.1.

Since δκ+1 ◦ δκ = 0, we obtain a cochain complex

C(cτ, cρ) = (Cκ(cτ, cρ), δκ)κ .

Call the resulting cochain complex the universal complex of the singular fibers for
proper cτ -maps of codimension ` with respect to the equivalence relation cρ, and
denote by H κ(cτ, cρ) its cohomology group in dimension κ .

Remark 3.2. Define a homomorphism

γκ : Cκ(cτ, cρ) → Cκ(cτ, cρ), F 7→ F̃,

where F̃ denotes the cρ class represented by the fiber of the two-colored conjugate
of F. Note that γκ is an involution, that is, γκ ◦ γκ = idCκ (cτ,cρ), and γ = {γκ}κ

is a cochain map. The quotient of this involution induces a certain universal com-
plex of the singular fibers for proper τ -maps of codimension ` with respect to the
equivalence relation ρ constructed in [Saeki 2004], where τ denotes the set of the
fibers of Thom maps and ρ is an equivalence relation among elements in τ .

Definition 3.3. Let

c =

∑
κ(F)=κ

nFF

be a κ-dimensional cochain of C(cτ, cρ). For a cτ -map ( f, (R, B)) : M → N ,
denote by c( f, (R, B)) the set of points q ∈ N such that the fiber over q is in F

with nF 6= 0. If c is a cocycle, c( f, (R, B)) is a Z2-cycle of closed support of
codimension κ in N . In addition, if M is closed and κ > 0, then c( f, (R, B)) is a
Z2-cycle in the usual sense.
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Lemma 3.4. Let c and c′ be κ-dimensional cocycles of C(cτ, cρ). If they are
cohomologous, the Z2-cycles c( f, (R, B)) and c′( f, (R, B)) are homologous in N
for each cτ -map ( f, (R, B)) : M → N.

Proof. There exists a (κ−1)-dimensional cochain d of C(cτ, cρ) such that c−c′
=

δκ−1d . Since c( f ) − c′( f ) = ∂d( f ), the result follows. �

Definition 3.5. Let [c] be a κ-dimensional cohomology class of C(cτ, cρ). For a
proper cτ -map ( f, (R, B)) : M → N , define [c( f, (R, B))] ∈ H c

p−κ(N , Z2) to be
the homology class represented by the cycle c( f, (R, B)) of closed support. When
M is closed and κ > 0, regard [c( f, (R, B))] as an element of Hp−κ(N , Z2).

Define
ϕ( f,(R,B)) : H κ(cτ, cρ) → H κ(N , Z2)

by ϕ( f,(R,B))([c]) = [c( f, (R, B))]∗, where [c( f, (R, B))]∗ ∈ H κ(N , Z2) is the
Poincaré dual of [c( f, (R, B))] ∈ H c

p−κ(N , Z2). When M is closed and κ > 0,
regard ϕ( f,(R,B)) as a homomorphism into the cohomology group H κ

c (N , Z2) of
compact support.

We now introduce the suspension of two-colored Thom maps.

Definition 3.6. For a proper two-colored Thom map ( f, (R, B)) : M → N , con-
sider

f × idR : M × R → N × R.

Note that S( f × idR) = S( f ) × R and f × idR(S( f ) × R) = f (S( f )) × R. We
obtain a two-colored map ( f × idR, (R × R, B × R)) : M × R → N × R. Call
( f × idR, (R × R, B × R)) the suspension of ( f, (R, B)). Similarly, call the fiber
of ( f × idR, (R × R, B × R)) over (q, 0) ∈ N × R the suspension of the fiber of
( f, (R, B)) over q ∈ N .

In what follows, assume that cτ consists of certain fibers of proper two-colored
Thom maps of n-manifolds into p-manifolds for a fixed dimension pair p −n = `.
In this case, write cτ = cτ(n, p). We consider cτ(n, p) and cτ(n + 1, p + 1) and
their associated equivalence relations cρn,p and cρn+1,p+1, respectively. In addition
to Condition 3.1, impose

(1) the suspension of each fiber in cτ(n, p) is also in cτ(n + 1, p + 1), and

(2) if two fibers are equivalent with respect to cρn,p, their suspensions are also
equivalent with respect to cρn+1,p+1.

For each κ ∈ Z, the suspension induces

sκ : Cκ(cτ(n + 1, p + 1), cρn+1,p+1) → Cκ(cτ(n, p), cρn,p),

where sκ(F) is the (possibly infinite) sum of all cρn,p classes whose suspensions
are in F of codimension κ . Note that sκ is a well-defined Z2-linear map.
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Lemma 3.7. The system of Z2-linear maps {sκ} defines the cochain map

{sκ} : C(cτ(n + 1, p + 1), cρn+1,p+1) → C(cτ(n, p), cρn,p).

Let us introduce an equivalence relation between cτ -maps.

Definition 3.8. Two cτ -maps ( fi , (Ri , Bi )) : Mi → N for i = 0, 1 of closed mani-
folds into N are cτ -cobordant if there exist a compact manifold W whose boundary
is the disjoint union of M0 and M1 and a cτ -map (F, (R, B)) : W → N × [0, 1]

such that ( fi , (Ri , Bi ))= (F, (R, B))|Mi : Mi → N ×{i}. Call the map (F, (R, B))

a cτ -cobordism between ( f0, (R0, B0)) and ( f1, (R1, B1)).

Note that cτ -cobordance is an equivalence relation among cτ -maps into N . For
a manifold N , denote by Cobcτ (N ) the set of cτ -cobordant equivalence classes
among cτ -maps of closed manifolds into N . We remark that Cobcτ (N ) has no
natural group structure.

Proposition 3.9. If two cτ -maps ( fi , (Ri , Bi )) : Mi → N of closed manifolds into
N for i = 0, 1 are cτ -cobordant, then for each κ

ϕ( f0,(R0,B0))|Im sκ∗
= ϕ( f1,(R1,B1))|Im sκ∗

: Im sκ∗
→ H κ(N ; Z2),

where sκ∗
: H κ(cτ(n + 1, p + 1), cρn+1,p+1) → H κ(cτ(n, p), cρn,p) denotes the

homomorphism induced by the suspension.

Proof. Let (F, (R, B)) : W → N ×[0, 1] be a cτ -cobordism between ( f0, (R0, B0))

and ( f1, (R1, B1)). Take from C(cτ(n + 1, p + 1), cρn+1,p+1) any κ-dimensional
cocycle c, and put c = sκ(c)∈ Cκ(cτ(n, p), cρn,p). Then 0 = (δκc)((F, (R, B)))=

∂c((F, (R, B))) = c(( f1, (R1, B1))) × {1} − c(( f0, (R0, B0))) × {0}, since c is a
cocycle. �

Thus, for each [c] ∈ H κ(cτ(n + 1, p + 1), cρn+1,p+1), we obtain a map

[c] : Cobcτ (N ) → H κ(N ; Z2), ( f, (R, B)) 7→ ϕ( f,(R,B))([sκ∗c]).

Each element in H κ(cτ(n+1, p+1), cρn+1,p+1) induces a cτ(κ+n− p+1, κ+1)-
cobordism invariant among cτ(κ + n − p, κ)-maps ( f, (R, B)) : Mκ+n−p

→ N κ ,
where κ = 1, 2, . . . , p.

Remark 3.10. Assume cτ is big enough. Then, for each smooth map f : M →

Rn of a closed manifold, define ϕ f by ϕ( f̃ ,(R̃,B̃)), where ( f̃ , (R̃, B̃)) is a cτ -map
approximating f whose coloring for unbounded regions in Rn

\ f̃ (S( f̃ )) is in R̃.
We can show that this is well defined, and it defines a bordism3 invariant of smooth
maps into Rn . Also, it induces a cobordism invariant of the source manifold.

3 Two smooth maps fi : Mi → N for i = 0, 1 of closed manifolds are bordant if there exist
a compact manifold W whose boundary is the disjoint union of M0 and M1 and a smooth map
F : W → N ×[0, 1] such that fi = F |Mi : Mi → N ×{i} for i = 0, 1; see [Conner and Floyd 1964]
for details.
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4. Stable maps of n-manifolds into 4-manifolds for n = 3 and n = 5

Let us study the universal complex of the singular fibers of two-colored C0 stable
maps4 of n-manifolds into 4-manifolds for n = 3 and n = 5.

4.1. Stable maps of 3-manifolds into 4-manifolds. By using the transversality
theorem of Mather [1970], the following is proved.

Proposition 4.1. A proper smooth map f : M → N of a 3-manifold into a 4-
manifold is C∞ stable if and only if f satisfies these conditions:

(i) (Local condition). For each p ∈ M , there exist local coordinates (a, b, x)

about p and (X, Y, Z , W ) about f (p) ∈ N such that

(X ◦ f, Y ◦ f, Z ◦ f, W ◦ f ) =

{
(a, b, x, 0) if p is a regular point,

(a, b, ax, x2) if p is a Whitney umbrella point.

(ii) (Global condition). For each q ∈ f (M), the preimage f −1(q) consists of at
most four points, and the germ ( f, f −1(q)) is right-left equivalent to one of
these seven germs:
(a) f −1(q) = ∅, whose fiber we call ∅;
(b) a single immersion, whose fiber we call I ;
(c) the normal crossing of two immersion germs, whose fiber we call 2I ;
(d) the normal crossing of three immersion germs, whose fiber we call 3I ;
(e) the map germ corresponding to a Whitney umbrella point, whose fiber we

call WU ;
(f) the normal crossing of four immersion germs, whose fiber we call 4I ;
(g) the transverse crossing of a Whitney umbrella germ and an immersion

germ, whose fiber we call WU t I .

Remark 4.2. Since (3, 4) is in the nice range in the sense of Mather [1971], the
characterization of C∞ stable maps of 3-manifolds into 4-manifolds gives the char-
acterization of C0 stable maps.

Consider the set CS0
pr(3, 4) of all fibers of proper two-colored stable maps of

3-manifolds into 4-manifolds. The set of all C∞ stable maps is open and dense in
C∞(M, N ) with respect to the Whitney C∞ topology if dim M = 3, dim N = 4,

4 A map f : M → N is C∞ stable (or C0 stable) if the C∞ A-orbit (or C0 A-orbit) of f is
open in C∞(M, N ) with respect to the Whitney C∞ topology, where C∞(M, N ) denotes the set
of smooth maps M → N . The C∞ A-orbit (or C0 A-orbit) of f is as follows: Let Diff(N ) (or
Homeo(N )) denote the group of self-diffeomorphisms (or self-homeomorphisms) of N . The group
Diff(M) × Diff(N ) (or Homeo(M) × Homeo(N )) acts on C∞(M, N ) by (8, 9)g = 9 ◦ g ◦ 8−1,
where (8, 9) ∈ Diff(M) × Diff(N ) (or (8, 9) ∈ Homeo(M) × Homeo(N )) and g ∈ C∞(M, N ).
The C∞ A-orbit (or C0 A-orbit) of f is the orbit through f with respect to this action. Note that a
proper C∞ stable map is also a Thom map.
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f(M)f(M)

WUA
WUB

Figure 3. Two-colored C0 equivalence classes of a Whitney um-
brella point.

and M is compact. Furthermore, if N satisfies H 1(N ; Z2) = 0, each smooth map
is approximated by a two-colored stable map. CS0

pr(3, 4) is big enough.
Classify the elements of CS0

pr(3, 4) by the equivalence relation cρ0
3,4. Now let

( f, (R, B)) : M → N be a two-colored map whose fiber over q0 ∈ N is C0 equiv-
alent to ∅. Define the cρ0

3,4 class of the fiber over q0 to be of type A if q0 is in
R; if q0 is in B, call it of type B. Let the fiber of ( f, (R, B)) over q1 ∈ N be C0

equivalent to WU . Then the cρ0
3,4 class of the fiber over q1 is type A if the inside

the umbrella is in R and is type B if the outside of the umbrella is in R; see Figure
3. The C0 classes of ∅ and WU have two types A and B with respect to cρ0

3,4,
whereas the other classes do not have such two types. We denote the two-colored
C0 equivalence class of ∅ and WU of type A by ∅A and WUA, respectively, and
adopt analogous notation for B replacing A.

We obtain the universal complex (Cκ(CS0
pr(3, 4), cρ0

3,4), δκ)κ , where the Cκ are
defined as

C0
= 〈∅A, ∅B〉,

C1
= 〈I 〉,

C2
= 〈2I 〉,

C3
= 〈3I, WUA, WUB〉,

C4
= 〈4I, WU t I 〉,

Cκ
= 0 otherwise.

The coboundary operations of the cochain complex are in Table 1.

Proposition 4.3. The cohomology groups of (Cκ(CS0
pr(3, 4), cρ0

3,4), δκ)κ are as
follows:

• H 0 ∼= Z2 generated by [∅A + ∅B];

• H 1
= {0};

• H 2
= {0};

• H 3 ∼= Z2 generated by [WUA + 3I ] ≡ [WUB + 3I ].

Here [∗] denotes the cohomology class represented by the cycle ∗.

The third cohomology class of Proposition 4.3 implies Theorem 1.2.
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κ generator(s) κ generator(s)

0 δ0(∅A) = 0, 3 δ3(3I ) = WU t I ,
δ0(∅B) = 0, δ3(WUA) = WU t I ,

1 δ1(I ) = 0, δ3(WUB) = WU t I ,
2 δ2(2I ) = WUA + WUB ,

Table 1. Generators for the coboundary groups of C(S0
pr(3, 4), ρ0

3,4).

Proof of Theorem 1.2. Denote the set of bordism classes of p-manifolds into a
connected 3-manifold N by n p(N ). Note that we can choose the representative of
the bordism class to be a two-colored stable map. On the other hand, we have

(4-1) n2(N ) ∼= n2 ∼= Z2 = 〈w2〉Z2,

where n2 denotes unoriented cobordism group of 2-manifolds and wi denotes the
i-th Stiefel–Whitney class. See [Conner and Floyd 1964] and [Milnor and Stasheff
1974] for details of the first and second isomorphisms in (4-1), respectively. The
representative of n2(N ) can be chosen to be a two-colored map of a surface into a
small neighborhood of a point in N ; hence it can be considered as a map into R3.
For [c] ∈ H 3(CS0

pr(3, 4), ρ0
3,4), we have the map [c] : n2(R

3) → H 3(R3, Z2) ∼= Z2;
see Remark 3.10. The immersion boy : RP2

→ R3, constructed by Boy, represents
the generator of n2(R

3); the immersion has a triple point and no Whitney umbrella
points, and so [c](boy) = 1; see [Francis 1987] for details. Therefore the map [c]
is a projection. �

4.2. Stable maps of 5-manifolds into 4-manifolds. The characterization of proper
C∞ stable maps of 5-manifolds into 4-manifolds is well known; see [Saeki and
Yamamoto 2006] or [Yamamoto 2007, Proposition 3.3] for details.

Remark 4.4. The characterization of C∞ stable maps of 5-manifolds into 4-mani-
folds also gives a characterization of C0 stable maps of this kind, since (5, 4) is in
the nice range in the sense of Mather; see [du Plessis and Wall 1995] for details.

In [Yamamoto 2007, Theorem 3.2], we obtained the list of C∞ classes of fibers
of proper stable maps of 5-manifolds into 4-manifolds. For proper stable maps of
closed 5-manifolds into 4-manifolds, the classification of the fibers with respect to
the C∞ equivalence and that with respect to the C0 equivalence coincide; see [Ya-
mamoto 2007] for details.

Let us classify the fibers of proper two-colored stable maps of 5-manifolds into
4-manifolds with respect to the two-colored C0 equivalence cρ0

5,4. (It is more sen-
sitive than ρ0

5,4.) Such equivalence splits some C0 classes into two types A and B.
For the C0 class F, denote the cρ0

5,4 class of type x by Fx for x = A, B.
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Figure 4. The fibers nearby Ĩi for i = 0, 1, 2.

For each proper map f : M → N of an n-manifold into an (n−1)-manifold,
each regular fiber is a disjoint union of trivial S1 bundles, and the number of circle
components in the inverse image is constant on each region in N \ f (S( f )). Assign
each region the number of circles in the inverse image of a point in the region.

Let ( f, (R, B)) : M → N be a proper two-colored stable map of a 5-manifold
into a 4-manifold.

Let O be a C0 class of codimension zero, and let the fiber over q0 ∈ N be C0

equivalent to O. Say the cρ0
5,4 class of the fiber over q is type A if q0 is in R, and

say it is of type B if q0 is in B.
Let E be a C0 class of codimension one, and let the fiber over q1 ∈ N be C0

equivalent to E. Locally, E( f ) is adjacent to two regions in N \ f (S( f )); see Figure
4. If E is Ĩ0 or Ĩ1, the difference between the associated numbers of such regions
is one. Then say the cρ0

5,4 class of the fiber over q1 is type A if the region having
larger associated number is in R, and adopt like language for B replacing both A
and R. If E = Ĩ2, the difference between the associated numbers of such regions
is zero; see Figure 4. The C0 class of Ĩ2 does not have two types with respect to
cρ0

5,4.
Let F be a C0 class of codimension two, and let the fiber over q2 ∈ N be C0

equivalent to F. Locally, F( f ) is adjacent to four regions in N \ f (S( f )) unless
F is ĨIa . Let F = ĨI0,0, ĨI0,1, ĨI1,1, ĨI3, or ĨI5. Define the cρ0

5,4 class of the fiber
over q2 to be of type A if the two of such regions in R have the same associated
number, and define the class to be of type B otherwise; see Figure 5. In Figures 5,
6, and 7, the numbers attached to the regions are the associated numbers when the
number of circle components in the inverse image of the center is zero. plus 5pt

Let F = ĨI4. Define the cρ0
5,4 class of the fiber over q2 is type A (or B) if two

of such regions having the larger associated number are in R (or B); see Figure
6. By a similar argument to the cases of Ĩ0 and Ĩ1, the ĨIa have two types. In this
way, the C0 classes ĨI0,0, ĨI0,1, ĨI1,1, ĨI3, ĨI4, and ĨIa have two types with respect to
cρ0

5,4. However, the other C0 classes of codimension two do not have two types;
see Figure 7 for example.



SINGULAR FIBERS OF TWO-COLORED MAPS AND COBORDISM INVARIANTS 391

ĨI
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Figure 7. Codimension 2 strata that cannot be divided into two types.
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[Yamamoto 2006b] shows that, in the case κ = 3, the C0 classes

ĨII0,0,0, ĨII0,0,1, ĨII0,1,1, ĨII1,1,1,

ĨII0,3, ĨII0,4, ĨII0,5, ĨII1,3, ĨII1,4, ĨII1,5,

ĨII8, ĨII9, ĨII10, ĨII11, ĨII12, ĨII13, ĨII15, ĨII17, ĨII21,

ĨII0,a, ĨII1,a, ĨIIb, ĨIId , ĨIIe, ĨII f , ĨIIg

have two types with respect to cρ0
5,4; in the case κ = 4, the classes with two types

are

ĨV0,0,0,0, ĨV0,0,0,1, ĨV0,0,1,1, ĨV0,1,1,1, ĨV1,1,1,1,

ĨV0,0,3, ĨV0,0,4, ĨV0,0,5, ĨV0,1,3, ĨV0,1,4, ĨV0,1,5, ĨV1,1,3, ĨV1,1,4, ĨV1,1,5,

ĨV0,0,a, ĨV0,1,a, ĨV1,1,a,

ĨV3,3, ĨV3,4, ĨV3,5, ĨV4,4, ĨV4,5, ĨV5,5, ĨV3,a, ĨV4,a, ĨV5,a,

ĨV0,8, ĨV0,9, ĨV0,10, ĨV0,11, ĨV0,12, ĨV0,13, ĨV0,15, ĨV0,17, ĨV0,21,

ĨV1,8, ĨV1,9, ĨV1,10, ĨV1,11, ĨV1,12, ĨV1,13, ĨV1,15, ĨV1,17, ĨV1,21,

ĨV0,b, ĨV1,b, ĨV0,d , ĨV1,d , ĨV0,e, ĨV1,e, ĨV0, f , ĨV1, f , ĨV0,g, ĨV1,g, ĨVa,a,

ĨV∗ for ∗ = 27, . . . , 40,

ĨV43, ĨV45, ĨV46, ĨV47, ĨV49, ĨV50, ĨV54, ĨV55, ĨV56, ĨV58, ĨV59, ĨV60,

ĨV62, ĨV66, ĨV67, ĨV68, ĨV70, ĨV71, ĨV72, ĨV74, ĨV76, ĨV77, ĨV86, ĨV90,

ĨVh, ĨVi , ĨV j , ĨVk, ĨVq , ĨVr , ĨVs, ĨVt , ĨVu, ĨVv, ĨVz,

ĨVα, ĨVβ, ĨVγ , ĨVδ, ĨVε, ĨVζ , ĨVη.

The other C0 classes of codimension three and four do not have two types.
Consider the set CS0

pr(5, 4) consisting of all fibers of proper two-colored stable
maps of 5-manifolds into 4-manifolds. CS0

pr(5, 4) is big enough as well as the set
CS0

pr(3, 4).

Definition 4.5. Two fibers of proper Thom maps of n-manifolds into (n−1)-mani-
folds (for n ≥ 2) are two-colored C0 equivalent modulo m circle components if one
of them is two-colored C0 equivalent to a disjoint union of the other one and lm
copies of the fiber of the trivial S1 bundle for some nonnegative integer l. Denote
this equivalence relation by cρ0

n,n−1(m).

We obtain the cochain complex

C(CS0
pr(5, 4), cρ0

5,4(2)) = (Cκ(CS0
pr(5, 4), cρ0

5,4(2)), δκ)κ .

Cκ(CS0
pr(5, 4), cρ0

5,4(2)) consists of all the cρ0
5,4(2) classes of the fibers of codi-

mension κ in the list of [Yamamoto 2006a, Theorem 3.2]. The coboundaries are
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given in the following lists of equations. In these, the symbol Fo (or Fe) denotes
the cρ0

5,4(2) class of F such that the number of circle components of F is odd (or
even). Denote Fo + Fe by F. The item δκ(Fe) can be obtained by interchanging
Go with Ge in the item δκ(Fe): if δκ(Fo) = Go + · · · , then δκ(Fe) = Ge + · · · . We
remark that δκ(γκ(F)) = γκ(δκ(F)). We begin with the case κ = 0, where

δ0(0A,o) = Ĩ0
B,e + Ĩ1

A,e + Ĩ1
B,o + Ĩ2

e .

Next, the generators for κ = 1 are

δ1(Ĩ0
A,o) = ĨI0,1

A,o + ĨI0,1
B,o + ĨI0,2

e + ĨIa
A,e,

δ1(Ĩ1
A,o) = ĨI0,1

A,o + ĨI0,1
B,e + ĨI1,2

e + ĨIa
A,o,

δ1(Ĩ2
o) = ĨI0,2

+ ĨI1,2
+ ĨI6.

For κ = 2, the generators are

δ2(ĨI
0,0
A,o) = ĨII0,0,0

A,e + ĨII0,0,0
B,o + ĨII0,0,1

A,o + ĨII0,0,1
B,e + ĨII0,0,2

e + ĨII0,a
A,e + ĨIId

B,o,

δ2(ĨI
0,1
A,o) = ĨII0,1,1

A,o + ĨII0,1,1
B,e + ĨII0,1,2

e + ĨII0,6
o + ĨII0,a

A,o + ĨII1,a
A,e + ĨIIb

A,o,

δ2(ĨI
1,1
A,o) = ĨII0,1,1

A,e + ĨII0,1,1
B,o + ĨII1,1,1

A,o + ĨII1,1,1
B,e + ĨII1,1,2

e + ĨII1,6
o + ĨII1,a

A,o + ĨII8
A,o,

δ2(ĨI0,2
o ) = ĨII0,1,2

+ ĨII0,6
+ ĨII2,a

e ,

δ2(ĨI1,2
o ) = ĨII0,1,2

+ ĨII1,6
+ ĨII14

o + ĨII2,a
o ,

δ2(ĨI2,2
o ) = ĨII0,2,2

+ ĨII1,2,2
+ ĨII2,6

+ ĨII20
o ,

δ2(ĨI3
A,o) = ĨII0,3

A,e + ĨII0,3
B,o + ĨII1,3

A,o + ĨII1,3
B,e + ĨII2,3

e + ĨII8
B,o + ĨII9

A,e + ĨII9
B,o + ĨII11

A,o

+ ĨII14
o + ĨII17

B,o + ĨII23
o + ĨII24

o + ĨIIb
A,o + ĨII f

B,o,

δ2(ĨI4
A,o) = ĨII0,4

A,e + ĨII0,4
B,o + ĨII1,4

A,o + ĨII1,4
B,e + ĨII2,4

e + ĨII10
A,o + ĨII10

B,e + ĨII11
A,o + ĨII13

B,o

+ ĨII21
A,o + ĨIIe

A,o,

δ2(ĨI5
A,o) = ĨII0,5

A,o + ĨII0,5
B,e + ĨII1,5

A,e + ĨII1,5
B,o + ĨII15

A,e + ĨII17
A,o + ĨII21

A,o + ĨIIg
B,o,

δ2(ĨI6
o) = ĨII0,6

+ ĨII1,6
+ ĨII14

e + ĨIIc
o,

δ2(ĨI7
o) = ĨII0,7

+ ĨII1,7
+ ĨII13

o + ĨII18
+ ĨII19

+ ĨII20
o

δ2(ĨIa
A,o) = ĨII0,a

A,o + ĨII0,a
B,e + ĨII1,a

A,e + ĨII1,a
B,o + ĨIIb

A,o + ĨIIb
A,e.

For κ = 3, the generators are

δ3(ĨII
0,0,0
A,o ) = ĨV0,0,0,1

B,o + ĨV0,0,0,1
A,e + ĨV0,0,0,2

e + ĨV0,0,a
A,e + ĨV0,d

A,o,

δ3(ĨII
0,0,1
A,o ) = ĨV0,0,0,1

A,o + ĨV0,0,0,1
B,e + ĨV0,0,1,2

e + ĨV0,0,6
o + ĨV0,0,a

A,o + ĨV0,1,a
A,e

+ ĨV0,b
A,o + ĨV1,d

A,o,
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δ3(ĨII
0,1,1
A,o ) = ĨV0,1,1,1

B,o + ĨV0,1,1,1
A,e + ĨV0,1,1,2

e + ĨV0,1,6
o

+ ĨV0,1,a
A,o + ĨV1,1,a

A,e + ĨV0,8
B,o + ĨV1,b

A,o,

δ3(ĨII
1,1,1
A,o ) = ĨV0,1,1,1

A,o + ĨV0,1,1,1
B,e + ĨV1,1,1,2

e + ĨV1,1,6
o + ĨV1,1,a

A,o + ĨV1,8
B,o,

δ3(ĨII
0,3
A,o) = ĨV0,1,3

B,o + ĨV0,1,3
A,e + ĨV0,2,3

e + ĨV0,8
A,o + ĨV0,9

A,o + ĨV0,9
B,e + ĨV0,11

A,o + ĨV0,14
o

+ ĨV0,17
B,o + ĨV0,23

o + ĨV0,24
o + ĨV3,a

A,e + ĨV0,b
A,o + ĨV0, f

A,o + ĨVh
A,o + ĨVi

A,o,

δ3(ĨII
1,3
A,o) = ĨV0,1,3

A,o + ĨV0,1,3
B,e + ĨV1,2,3

e + ĨV1,8
A,o + ĨV1,9

A,o + ĨV1,9
B,e + ĨV1,11

A,o + ĨV1,14
o

+ ĨV1,17
A,o + ĨV1,23

o + ĨV1,24
o + ĨV3,6

o + ĨV3,a
A,o + ĨV1,b

A,o + ĨV1, f
A,o + ĨV29

B,o,

δ3(ĨII
0,4
A,o) = ĨV0,1,4

B,o + ĨV0,1,4
A,e + ĨV0,2,4

e + ĨV0,10
A,o + ĨV0,10

B,e + ĨV0,11
A,o + ĨV0,13

A,o

+ ĨV0,21
B,o + ĨV0,22

o + ĨV4,a
A,e + ĨV0,e

A,o + ĨV j
A,o,

δ3(ĨII
1,4
A,o) = ĨV0,1,4

A,o + ĨV0,1,4
B,e + ĨV1,2,4

e + ĨV1,10
A,o + ĨV1,10

B,e + ĨV1,11
A,o + ĨV1,13

A,o

+ ĨV1,21
B,o + ĨV1,22

o + ĨV4,6
o + ĨV4,a

A,o + ĨV1,e
A,o + ĨV28

B,o,

δ3(ĨII8
A,o) = ĨV0,8

A,o + ĨV0,8
B,e + ĨV1,8

B,o + ĨV1,8
A,e + ĨV2,8

e + ĨV41
o + ĨV42

o + ĨV44
o

+ ĨVh
A,o + ĨVs

A,o,

δ3(ĨII9
A,o) = ĨV0,9

A,o + ĨV0,9
B,e + ĨV1,9

B,o + ĨV1,9
A,e + ĨV2,9

e + ĨV29
B,e + ĨV31

A,o

+ ĨV46
B,o + ĨV48

o + ĨV51
o + ĨV52

o + ĨVi
A,o + ĨVγ

B,o,

δ3(ĨII10
A,o)= ĨV0,10

B,o + ĨV0,10
A,e + ĨV1,10

A,o + ĨV1,10
B,e + ĨV2,10

e + ĨV28
A,e+ ĨV31

B,o+ ĨV53
o + ĨV54

B,o

+ ĨV55
A,o + ĨV57

o + ĨV58
A,o + ĨV59

B,o + ĨV61
o + ĨV63

o + ĨV64
o + ĨV j

B,o + ĨVr
B,o,

δ3(ĨII11
A,o) = ĨV0,11

B,o + ĨV0,11
A,e + ĨV1,11

A,o + ĨV1,11
B,e + ĨV2,11

e + ĨV31
B,o + ĨV31

A,e

+ ĨV65
o + ĨV66

A,o + ĨV67
B,o + ĨV68

B,o + ĨVt
B,o + ĨVγ

A,o,

δ3(ĨII12
A,o) = ĨV0,12

B,o + ĨV0,12
A,e + ĨV1,12

A,o + ĨV1,12
B,e + ĨV2,12

e + ĨV36
B,o + ĨV36

A,e

+ ĨV69
o + ĨV70

B,o + ĨV71
A,o,

δ3(ĨII
0,a
A,o) = ĨV0,1,a

A,o + ĨV0,1,a
B,e + ĨV0,2,a

e + ĨV0,b
A,o + ĨV0,b

B,e + ĨV0,c
o + ĨVα

B,o,

δ3(ĨII
1,a
A,o)= ĨV0,1,a

B,o +ĨV0,1,a
A,e +ĨV1,2,a

e +ĨV6,a
o +ĨV1,b

B,o+ĨV1,b
A,e+ĨV1,c

o +ĨVh
A,o+ĨVs

A,o,

δ3(ĨIIb
A,o) = ĨV0,b

B,o + ĨV0,b
A,e + ĨV1,b

B,o + ĨV1,b
A,e + ĨV2,b

e + ĨVh
B,e + ĨVl

o + ĨVm
o + ĨVn

o

+ ĨVα
A,o + ĨVs

B,e,

δ3(ĨIId
A,o) = ĨV0,d

A,o + ĨV0,d
B,e + ĨV1,d

B,o + ĨV1,d
A,e + ĨV2,d

e + ĨVα
A,e,

δ3(ĨIIe
A,o) = ĨV0,e

B,o + ĨV0,e
A,e + ĨV1,e

A,o + ĨV1,e
B,e + ĨV2,e

e + ĨVr
B,o + ĨVr

A,e

+ ĨVt
A,o + ĨVv

A,o + ĨVy
o + ĨVγ

A,o + ĨVζ
A,o,
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δ3(ĨII
f
A,o) = ĨV0, f

A,o + ĨV0, f
B,e + ĨV1, f

B,o + ĨV1, f
A,e + ĨV2, f

e + ĨVs
A,o + ĨVs

B,e

+ ĨVt
B,o + ĨVu

A,o + ĨVx
o + ĨVα

A,o + ĨVγ

B,o,

δ3(ĨII0,0,2
o ) = ĨV0,0,0,2

+ ĨV0,0,1,2
+ ĨV0,0,6

+ ĨV0,2,a
e + ĨV0,c

o + ĨV2,d
o ,

δ3(ĨII0,2,2
o ) = ĨV0,1,2,2

+ ĨV0,2,6
+ ĨV2,2,a

e + ĨV0,20
o + ĨV2,c

o ,

δ3(ĨII1,1,2
o ) = ĨV1,1,1,2

+ ĨV0,1,1,2
+ ĨV1,1,6

+ ĨV1,2,a
o + ĨV1,14

o + ĨV1,20
o + ĨV2,8

o ,

δ3(ĨII1,2,2
o ) = ĨV0,1,2,2

+ ĨV1,2,6
+ ĨV2,2,a

o + ĨV2,14
o + ĨV1,20

o ,

δ3(ĨII0,1,2
o ) = ĨV0,1,6

+ ĨV0,2,a
o + ĨV1,2,a

e + ĨV0,14
o + ĨV2,b

o + ĨV1,c
o ,

δ3(ĨII2,2,2
o ) = ĨV0,2,2,2

+ ĨV1,2,2,2
+ ĨV2,2,6

+ ĨV2,20
o ,

δ3(ĨII
0,5
A,o) = ĨV0,1,5

B,o + ĨV0,1,5
A,e + ĨV0,2,5

o + ĨV0,15
A,o + ĨV0,15

B,e + ĨV0,16
o + ĨV0,17

B,o

+ ĨV0,21
A,o + ĨV5,a

A,e + ĨV0,g
A,o + ĨVk

A,o,

δ3(ĨII0,6
o ) = ĨV0,1,6

+ ĨV0,14
e + ĨV6,a

e + ĨV0,c
o + ĨVl

o + ĨVm
o + ĨVn

o,

δ3(ĨII0,7
o ) = ĨV0,1,7

+ ĨV0,13
A,o + ĨV0,13

B,o + ĨV0,18
+ ĨV0,19

+ ĨV0,20
o + ĨV7,a

e + ĨVo
o + ĨVp

o ,

δ3(ĨII
1,5
A,o) = ĨV0,1,5

A,o + ĨV0,1,5
B,e + ĨV1,2,5

e + ĨV1,15
A,o + ĨV1,15

B,e + ĨV1,16
o + ĨV1,17

A,o

+ ĨV1,21
A,o + ĨV5,6

o + ĨV1,g
A,o + ĨV43

B,o,

δ3(ĨII1,6
o ) = ĨV0,1,6

+ ĨV1,14
e + ĨV6,a

o + ĨV1,c
o + ĨV41

o + ĨV42
e + ĨV44

o ,

δ3(ĨII1,7
o )= ĨV0,1,7

+ ĨV1,13
A,o + ĨV1,13

B,o + ĨV1,18
+ ĨV1,19

+ ĨV1,20
o + ĨV7,a

o + ĨV84
o + ĨV85

o ,

δ3(ĨII2,3
o ) = ĨV0,2,3

+ ĨV1,2,3
+ ĨV2,8

o + ĨV2,9
+ ĨV2,11

o + ĨV2,17
o + ĨV3,6

+ ĨV2,b
e + ĨV2, f

o + ĨV41
o + ĨV48

o ,

δ3(ĨII2,4
o )= ĨV0,2,4

+ĨV1,2,4
+ĨV2,10

+ĨV2,11
o +ĨV2,13

o +ĨV2,21
o +ĨV4,6

+ĨV2,e
o +ĨV63

o ,

δ3(ĨII2,5
o ) = ĨV0,2,5

+ ĨV1,2,5
+ ĨV2,15

+ ĨV2,17
o + ĨV2,21

o + ĨV5,6
+ ĨV2,g

o + ĨV82
o ,

δ3(ĨII2,6
o ) = ĨV0,2,6

+ ĨV1,2,6
+ ĨV2,14

e + ĨV2,c
o + ĨV80

o + ĨV81
o ,

δ3(ĨII2,7
o )= ĨV0,2,7

+ĨV1,2,7
+ĨV2,13

o +ĨV2,18
+ĨV2,19

+ĨV2,20
o +ĨV6,7

+ĨV104
o +ĨV109

o ,

δ3(ĨII13
A,o) = ĨV0,13

A,o + ĨV0,13
B,e + ĨV1,13

B,o + ĨV1,13
A,e + ĨV2,13

e + ĨV54
A,o + ĨV54

B,e

+ ĨV59
A,o + ĨV59

B,e + ĨV70
A,o + ĨV70

B,e + ĨV73
o + ĨV75

o ,

δ3(ĨII14
o ) = ĨV0,14

+ ĨV1,14
+ ĨV41

+ ĨV42
+ ĨV44

+ ĨVl
o + ĨVx

o,

δ3(ĨII15
A,o) = ĨV0,15

B,o + ĨV0,15
A,e + ĨV1,15

A,o + ĨV1,15
B,e + ĨV2,15

e + ĨV43
A,e + ĨV46

A,o + ĨV58
B,o

+ ĨV78
o + ĨV82

o + ĨV87
o + ĨV88

o + ĨV89
o + ĨVk

B,o + ĨVz
B,o + ĨVζ

B,o + ĨV55
B,o,

δ3(ĨII16
o ) = ĨV0,16

+ ĨV1,16
+ ĨV6,7

o + ĨV78
+ ĨV79

o + ĨV82
o + ĨV87

+ ĨV88

+ ĨV89
+ ĨV91

o + ĨV94
o + ĨVw

o ,
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δ3(ĨII17
A,o) = ĨV0,17

A,o + ĨV0,17
B,e + ĨV1,17

B,o + ĨV1,17
A,e + ĨV2,17

e + ĨV4,6
B,o + ĨV4,6

A,e

+ ĨV66
A,o + ĨV67

A,o + ĨV68
A,o + ĨV79

o + ĨVu
A,o,

δ3(ĨII18
o )= ĨV0,18

+ĨV1,18
+ĨV59

A,o+ĨV59
B,o+ĨV78

o +ĨV81
o +ĨV84

e +ĨV91
o +ĨV101

+ĨVo
o,

δ3(ĨII19
o )= ĨV0,19

+ĨV1,19
+ĨV54

A,o+ĨV54
B,o+ĨV78

o +ĨV80
o +ĨV85

e +ĨV91
o +ĨV101

+ĨVp
o ,

δ3(ĨII20
o ) = ĨV0,20

+ ĨV1,20
+ ĨV80

+ ĨV81,

δ3(ĨII21
o ) = ĨV0,21

A,o + ĨV0,21
B,e + ĨV1,21

B,o + ĨV1,21
A,e + ĨV2,21

e + ĨV55
A,o + ĨV55

B,e + ĨV58
A,o

+ ĨV58
B,e + ĨV66

A,o + ĨV68
A,o + ĨV91

o + ĨV94
o + ĨVv

A,o + ĨVζ
A,o + ĨV67

B,o,

δ3(ĨII22
o ) = ĨV0,22

+ ĨV1,22
+ ĨV53

+ ĨV57
+ ĨV61

+ ĨV63
o + ĨV64

+ ĨV65
o + ĨV68

A,o

+ ĨV68
B,o + ĨV70

A,o + ĨV70
B,o + ĨV73

o + ĨV75
o + ĨV91

o + ĨV94
o + ĨVy

o,

δ3(ĨII23
o ) = ĨV0,23

+ ĨV1,23
+ ĨV42

e + ĨV45
A,o + ĨV45

B,o + ĨV55
A,o + ĨV55

B,o

+ ĨV66
A,o + ĨV66

B,o + ĨVn
o,

δ3(ĨII24
o ) = ĨV0,24

+ ĨV1,24
+ ĨV44

e + ĨV45
A,o + ĨV45

B,o + ĨV48
o + ĨV51

+ ĨV52

+ ĨV55
A,o + ĨV55

B,o + ĨV65
o + ĨV79

o + ĨVm
o ,

δ3(ĨII25
o ) = ĨV0,25

+ ĨV1,25
+ ĨV71

A,o + ĨV71
B,o + ĨV75

o + ĨV93
o + ĨV99

+ ĨV100
+ ĨV104

o ,

δ3(ĨII26
o ) = ĨV0,26

+ ĨV1,26
+ ĨV73

o + ĨV93
o + ĨV102

+ ĨV105
+ ĨV109

o ,

δ3(ĨII2,a
o ) = ĨV0,2,a

+ ĨV1,2,a
+ ĨV6,a

+ ĨV2,b
+ ĨVl

o + ĨVx
o,

δ3(ĨIIc
o) = ĨV0,c

+ ĨV1,c
+ ĨVl

o + ĨVm
+ ĨVn

+ ĨVx
e ,

δ3(ĨIIg
o) = ĨV0,g

B,o + ĨV0,g
A,e + ĨV1,g

A,o + ĨV1,g
B,e + ĨV2,g

e + ĨVu
B,o + ĨVv

B,o + ĨVz
B,o

+ ĨVz
A,e + ĨVw

o + ĨVζ
A,e.

Proposition 4.6. The cohomology groups of (Cκ(CS0
pr(5, 4), cρ0

5,4(2)), δκ)κ are as
follows:

• H 0 ∼= Z2 generated by [0A + 0B];

• H 1 ∼= Z2⊕Z2 generated by [Ĩ0
A,o+ Ĩ0

B,o+ Ĩ1
A,e+ Ĩ1

B,e]≡ [Ĩ0
A,e+ Ĩ0

B,e+ Ĩ1
A,o+ Ĩ1

B,o]

and [Ĩ0
A + Ĩ1

A + Ĩ2
o] ≡ [Ĩ0

A + Ĩ1
A + Ĩ2

e] ≡ [Ĩ0
B + Ĩ1

B + Ĩ2
o] ≡ [Ĩ0

B + Ĩ1
B + Ĩ2

e];

• H 2
= {0};

• H 3 ∼= Z2 generated by [ĨII2,2,2
+ ĨII2,7

+ ĨII12
A + ĨII12

B + ĨII13
A,o + ĨII13

B,e + ĨII25
+

ĨII26
] ≡ [ĨII2,2,2

+ ĨII2,7
+ ĨII12

A + ĨII12
B + ĨII13

A,e + ĨII13
B,o + ĨII25

+ ĨII26
].

where [∗] denotes the cohomology class represented by the cocycle ∗.

The third cohomology class of Proposition 4.6 implies Theorem 1.1.
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Proof of Theorem 1.1. By using arguments similar to those in the proof of Theorem
1.2, the set of bordism classes of 4-manifolds into N is

(4-2) n4(N ) ∼= n4 ∼= Z2 ⊕ Z2 = 〈w4〉Z2 ⊕ 〈w4
1〉Z2 .

We can choose the representative of the bordism class by two-colored stable map
into R3 as well. For [c] ∈ H 3(CS0

pr(5, 4), cρ0
5,4(2)), we get the map [c] : n4(R

3)→

H 3(R3, Z2) ∼= Z2; see Remark 3.10. One generator of n4(R
3) is represented by

the stable map Sa : RP2
×̃RP2

→ R3 constructed by Saeki [1992, Example 3.7].
Sa|S(Sa) has 27 triple points. One is ĨII2,2,2, and the others are not any of ĨII2,7,
ĨII12, ĨII13, ĨII25, or ĨII26, and so [c](Sa) = 1. The other generator is represented by
the stable map Ko : CP2

→ R3 constructed by Kobayashi [1997]. Ko|S(Ko) has two
triple points. One is ĨII12 and the other is ĨII0,0,0, and so [c](Ko) = 1. Therefore,
the map [c] is the projection onto the first component. �

Remark 4.7. The quotient cochain complex C(CS0
pr(5, 4), cρ0

5,4(2))/γ is isomor-
phic to the cochain complex C(S0

pr(5, 4), ρ0
5,4(2)), where S0

pr(5, 4) is the set of all
singular fibers of proper stable maps of 5-manifolds into 4-manifolds and ρ0

5,4(2)

is the C0 equivalence modulo two regular fiber components. C(S0
pr(5, 4), ρ0

5,4(2))

also contains an interesting application; see [Yamamoto 2007] for details.
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