Pacific

Journal of

 Mathematics
OPTIMAL OSCILLATION CRITERIA FOR FIRST ORDER DIFFERENCE EQUATIONS WITH DELAY ARGUMENT

George E. Chatzarakis, Roman Koplatadze
and Ioannis P. Stavroulakis

OPTIMAL OSCILLATION CRITERIA FOR FIRST ORDER DIFFERENCE EQUATIONS WITH DELAY ARGUMENT

George E. Chatzarakis, Roman Koplatadze
and Ioannis P. Stavroulakis

Consider the first order linear difference equation

$$
\Delta u(k)+p(k) u(\tau(k))=0, \quad k \in N
$$

where $\Delta u(k)=u(k+1)-u(k), p: N \rightarrow \mathbb{R}_{+}, \tau: N \rightarrow N, \tau(k) \leq k-2$ and $\lim _{k \rightarrow+\infty} \tau(k)=+\infty$. Optimal conditions for the oscillation of all proper solutions of this equation are established. The results lead to a sharp oscillation condition, when $k-\tau(k) \rightarrow+\infty$ as $k \rightarrow+\infty$. Examples illustrating the results are given.

1. Introduction

The first systematic study for the oscillation of all solutions to the first order delay differential equation

$$
\begin{equation*}
u^{\prime}(t)+p(t) u(\tau(t))=0 \tag{1-1}
\end{equation*}
$$

where

$$
p \in L_{\mathrm{loc}}\left(\mathbb{R}_{+} ; \mathbb{R}_{+}\right), \tau \in C\left(\mathbb{R}_{+} ; \mathbb{R}_{+}\right), \tau(t) \leq t \text { for } t \in \mathbb{R}_{+} \text {and } \lim _{t \rightarrow+\infty} \tau(t)=+\infty
$$

in the case of constant coefficients and constant delays was made by Myshkis [1972]. For the differential equation (1-1) the problem of oscillation is investigated by many authors. See, for example, [Elbert and Stavroulakis 1995; Koplatadze and Chanturiya 1982; Koplatadze and Kvinikadze 1994; Ladas et al. 1984; Sficas and Stavroulakis 2003] and the references cited therein.

Theorem 1.1 [Koplatadze and Chanturiya 1982]. Assume that

$$
\begin{equation*}
\liminf _{t \rightarrow+\infty} \int_{\tau(t)}^{t} p(s) d s>\frac{1}{e} \tag{1-2}
\end{equation*}
$$

Then all solutions of Equation (1-1) oscillate.

[^0]It is to be emphasized that condition (1-2) is optimal in the sense that it cannot be replaced by the condition

$$
\begin{equation*}
\liminf _{t \rightarrow+\infty} \int_{\tau(t)}^{t} p(s) d s \geq \frac{1}{e} \tag{1-3}
\end{equation*}
$$

For example, if $\tau(t)=t-\delta$ or $\tau(t)=\alpha t$ or $\tau(t)=t^{\alpha}$, where $\delta>0, \alpha \in(0,1)$, examples can be given such that condition (1-3) is satisfied, but (1-1) has a nonoscillatory solution.

The discrete analogue of the first order delay differential equation (1-1) is the first order difference equation

$$
\begin{equation*}
\Delta u(k)+p(k) u(\tau(k))=0, \tag{1-4}
\end{equation*}
$$

where

$$
\begin{gather*}
\Delta u(k)=u(k+1)-u(k), \quad p: N \rightarrow \mathbb{R}_{+}, \\
\tau: N \rightarrow N, \quad \tau(k) \leq k-1, \quad \lim _{k \rightarrow+\infty} \tau(k)=+\infty . \tag{1-5}
\end{gather*}
$$

By a proper solution of (1-4) we mean a function $u: N_{n_{0}} \rightarrow \mathbb{R}$ with $n_{0}=$ $\min \left\{\tau(k): k \in N_{n}\right\}$ and $N_{n}=\{n, n+1, \ldots\}$, which satisfies (1-4) on N_{n} and $\sup \{|u(i)|: i \geq k\}>0$ for $k \in N_{n_{0}}$.

A proper solution $u: N_{n_{0}} \rightarrow \mathbb{R}$ of (1-4) is said to be oscillatory (around zero) if for any positive integer $n \in N_{n_{0}}$ there exist $n_{1}, n_{2} \in N_{n}$ such that $u\left(n_{1}\right) u\left(n_{2}\right) \leq 0$. Otherwise, the proper solution is said to be nonoscillatory. In other words, a proper solution u is oscillatory if it is neither eventually positive nor eventually negative.

Oscillatory properties of the solutions of (1-4), in the case of a general delay argument $\tau(k)$, have been recently investigated in [Chatzarakis et al. 2008a; 2008b], while the special case when $\tau(k)=k-n, n \geq 1$, has been studied rather extensively. See, for example, [Agarwal et al. 2005; Baštinec and Diblik 2005; Chatzarakis and Stavroulakis 2006; Domshlak 1999; Elaydi 1999; Ladas et al. 1989] and the references cited therein. In this particular case, (1-4) becomes

$$
\begin{equation*}
\Delta u(k)+p(k) u(k-n)=0, \quad k \in N . \tag{1-6}
\end{equation*}
$$

For this equation Ladas, Philos and Sficas established the following theorem.
Theorem 1.2 [Ladas et al. 1989]. Assume that

$$
\begin{equation*}
\liminf _{k \rightarrow+\infty} \sum_{i=k-n}^{k-1} p(i)>\left(\frac{n}{n+1}\right)^{n+1} \tag{1-7}
\end{equation*}
$$

Then all proper solutions of (1-6) oscillate.

This result is sharp in the sense that the inequality (1-7) cannot be replaced by the nonstrong one for any $n \in N$. Hence, Theorem 1.2 is the discrete analogue of Theorem 1.1 when $\tau(t)=t-\delta$.

An interesting question then arises whether there exists the discrete analogue of Theorem 1.1 for (1-4) in the case of a general delay argument $\tau(k)$ when $\lim _{k \rightarrow+\infty}(k-\tau(k))=+\infty$.

In the present paper optimal conditions for the oscillation of all proper solutions of (1-4) are established and a positive answer to the above question is given.

2. Some auxiliary lemmas

Let $k_{0} \in N$. Denote by $\mathbf{U}_{k_{0}}$ the set of all proper solutions of (1-4) satisfying the condition $u(k)>0$ for $k \geq k_{0}$.

Remark 2.1. We will suppose that $\mathbf{U}_{k_{0}}=\varnothing$, if (1-4) has no solution satisfying the condition $u(k)>0$ for $k \geq k_{0}$.

Lemma 2.2. Assume that $k_{0} \in N, \mathbf{U}_{k_{0}} \neq \varnothing, u \in \mathbf{U}_{k_{0}}, \tau(k) \leq k-1, \tau$ is a nondecreasing function and

$$
\begin{equation*}
\liminf _{k \rightarrow+\infty} \sum_{i=\tau(k)}^{k-1} p(i)=c>0 \tag{2-1}
\end{equation*}
$$

Then

$$
\begin{equation*}
\limsup _{k \rightarrow+\infty} \frac{u(\tau(k))}{u(k+1)} \leq \frac{4}{c^{2}} \tag{2-2}
\end{equation*}
$$

Proof. By (2-1), for any $\varepsilon \in(0, c)$, it is clear that

$$
\begin{equation*}
\sum_{i=\tau(k)}^{k-1} p(i) \geq c-\varepsilon \quad \text { for } \quad k \in N_{k_{0}} \tag{2-3}
\end{equation*}
$$

Since u is a positive proper solution of (1-4), then there exists $k_{1} \in N_{k_{0}}$ such that

$$
u(\tau(k))>0 \quad \text { for } \quad k \in N_{k_{1}}
$$

Thus, from (1-4) we have

$$
u(k+1)-u(k)=-p(k) u(\tau(k)) \leq 0
$$

and so u is an eventually nonincreasing function of positive numbers.
Now from inequality (2-3) it is clear that, there exists $k^{*} \geq k$ such that

$$
\begin{equation*}
\sum_{i=k}^{k^{*}-1} p(i)<\frac{c-\varepsilon}{2} \quad \text { and } \quad \sum_{i=k}^{k^{*}} p(i) \geq \frac{c-\varepsilon}{2} \tag{2-4}
\end{equation*}
$$

This is because in the case where $p(k)<\frac{c-\varepsilon}{2}$, it is clear that there exists $k^{*}>k$ such that $(2-4)$ is satisfied, while in the case where $p(k) \geq \frac{c-\varepsilon}{2}$, then $k^{*}=k$, and therefore

$$
\sum_{i=k}^{k^{*}-1} p(i)=\sum_{i=k}^{k-1} p(i)(\text { by which we mean })=0<\frac{c-\varepsilon}{2}
$$

and

$$
\sum_{i=k}^{k^{*}} p(i)=\sum_{i=k}^{k} p(i)=p(k) \geq \frac{c-\varepsilon}{2}
$$

That is, in both cases (2-4) is satisfied.
Now, we will show that $\tau\left(k^{*}\right) \leq k-1$. Indeed, in the case where $p(k) \geq \frac{c-\varepsilon}{2}$, since $k^{*}=k$, it is obvious that $\tau\left(k^{*}\right) \leq k-1$. In the case where $p(k)<\frac{c-\varepsilon}{2}$, then $k^{*}>k$. Assume, for the sake of contradiction, that $\tau\left(k^{*}\right)>k-1$. Hence, $k \leq \tau\left(k^{*}\right) \leq k^{*}-1$ and then

$$
\sum_{i=\tau\left(k^{*}\right)}^{k^{*}-1} p(i) \leq \sum_{i=k}^{k^{*}-1} p(i)<\frac{c-\varepsilon}{2}
$$

This, in view of (2-3), leads to a contradiction. Thus, in both cases, we have $\tau\left(k^{*}\right) \leq k-1$.

Therefore, it is clear that

$$
\begin{equation*}
\sum_{i=\tau\left(k^{*}\right)}^{k-1} p(i)=\sum_{i=\tau\left(k^{*}\right)}^{k^{*}-1} p(i)-\sum_{i=k}^{k^{*}-1} p(i) \geq(c-\varepsilon)-\frac{c-\varepsilon}{2}=\frac{c-\varepsilon}{2} \tag{2-5}
\end{equation*}
$$

Now, summing up (1-4) first from k to k^{*} and then from $\tau\left(k^{*}\right)$ to $k-1$, and using that the function u is nonincreasing and the function τ is nondecreasing, we have

$$
u(k)-u\left(k^{*}+1\right)=\sum_{i=k}^{k^{*}} p(i) u(\tau(i)) \geq\left(\sum_{i=k}^{k^{*}} p(i)\right) u\left(\tau\left(k^{*}\right)\right) \geq \frac{c-\varepsilon}{2} u\left(\tau\left(k^{*}\right)\right)
$$

or

$$
\begin{equation*}
u(k) \geq \frac{c-\varepsilon}{2} u\left(\tau\left(k^{*}\right)\right) \tag{2-6}
\end{equation*}
$$

and then
$u\left(\tau\left(k^{*}\right)\right)-u(k)=\sum_{i=\tau\left(k^{*}\right)}^{k-1} p(i) u(\tau(i)) \geq\left(\sum_{i=\tau\left(k^{*}\right)}^{k-1} p(i)\right) u(\tau(k-1)) \geq \frac{c-\varepsilon}{2} u(\tau(k-1))$,
or

$$
\begin{equation*}
u\left(\tau\left(k^{*}\right)\right) \geq \frac{c-\varepsilon}{2} u(\tau(k-1)) \tag{2-7}
\end{equation*}
$$

Combining inequalities (2-6) and (2-7), we obtain

$$
\frac{u(\tau(k-1))}{u(k)} \leq \frac{4}{(c-\varepsilon)^{2}}
$$

and, for large k, we have

$$
\frac{u(\tau(k))}{u(k+1)} \leq \frac{4}{(c-\varepsilon)^{2}} .
$$

Hence,

$$
\limsup _{k \rightarrow+\infty} \frac{u(\tau(k))}{u(k+1)} \leq \frac{4}{(c-\varepsilon)^{2}},
$$

which, for arbitrarily small values of ε, implies (2-2).
Lemma 2.3. Assume that $k_{0} \in N, \mathbf{U}_{k_{0}} \neq \varnothing, u \in \mathbf{U}_{k_{0}}, \tau(k) \leq k-1, \tau$ is a nondecreasing function and condition (2-1) is satisfied. Then

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} u(k) \exp \left(\lambda \sum_{i=1}^{k-1} p(i)\right)=+\infty \quad \text { for any } \quad \lambda>\frac{4}{c^{2}} . \tag{2-8}
\end{equation*}
$$

Proof. Since all the conditions of Lemma 2.2 are satisfied, for any $\gamma>4 / c^{2}$, there exists $k_{1} \in N_{k_{0}}$ such that

$$
\begin{equation*}
\frac{u(\tau(k))}{u(k+1)} \leq \gamma \quad \text { for } \quad k \in N_{k_{1}} \tag{2-9}
\end{equation*}
$$

Also, for any $n \in N_{k_{1}}$

$$
\begin{aligned}
& \sum_{k=k_{1}}^{n} \frac{\Delta u(k)}{u(k+1)}=\sum_{k=k_{1}}^{n}\left(1-\frac{u(k)}{u(k+1)}\right)=\left(n-k_{1}\right)-\sum_{k=k_{1}}^{n} \exp \left(\ln \frac{u(k)}{u(k+1)}\right) \\
& \leq\left(n-k_{1}\right)-\sum_{k=k_{1}}^{n}\left(1+\ln \frac{u(k)}{u(k+1)}\right)=-\sum_{k=k_{1}}^{n} \ln \frac{u(k)}{u(k+1)}=\ln \frac{u(n+1)}{u\left(k_{1}\right)},
\end{aligned}
$$

or

$$
\sum_{k=k_{1}}^{n} \frac{\Delta u(k)}{u(k+1)} \leq \ln \frac{u(n+1)}{u\left(k_{1}\right)} .
$$

Moreover, from (1-4), we have

$$
\sum_{k=k_{1}}^{n} \frac{\Delta u(k)}{u(k+1)}=-\sum_{k=k_{1}}^{n} p(k) \frac{u(\tau(k))}{u(k+1)} .
$$

Combining (2-9) with the last two relations, we obtain

$$
u(n+1) \geq u\left(k_{1}\right) \exp \left(-\gamma \sum_{k=k_{1}}^{n} p(k)\right) .
$$

Now, by (2-1), it is obvious that $\sum^{+\infty} p(i)=+\infty$. Therefore, for $\lambda>4 / c^{2}$, the last inequality yields

$$
\lim _{n \rightarrow+\infty} u(n+1) \exp \left(\lambda \sum_{k=k_{1}}^{n} p(k)\right)=+\infty
$$

or

$$
\lim _{k \rightarrow+\infty} u(k) \exp \left(\lambda \sum_{i=k_{1}}^{k-1} p(i)\right)=+\infty
$$

which implies (2-8), since

$$
\sum_{i=1}^{k-1} p(i) \geq \sum_{i=k_{1}}^{k-1} p(i)
$$

Next, consider the difference inequality

$$
\begin{equation*}
\Delta u(k)+q(k) u(\sigma(k)) \leq 0 \tag{2-10}
\end{equation*}
$$

where

$$
q: N \rightarrow \mathbb{R}_{+}, \quad \sigma: N \rightarrow N \quad \text { and } \quad \lim _{k \rightarrow+\infty} \sigma(k)=+\infty
$$

In the sequel the following lemma will be used, which has recently been established in [Chatzarakis et al. 2008a].

Lemma 2.4. Assume that (2-1) is satisfied, and for sufficiently large k

$$
\sigma(k) \leq \tau(k) \leq k-1, \quad p(k) \leq q(k)
$$

and $u: N_{k_{0}} \rightarrow(0,+\infty)$ is a positive proper solution of $(2-10)$. Then, there exists $k_{1} \in N_{k_{0}}$ such that $\mathbf{U}_{k_{1}} \neq \varnothing$ and $u_{*} \in \mathbf{U}_{k_{1}}$ is the solution of (1-4), which satisfies the condition

$$
0<u_{*}(k) \leq u(k) \text { for } k \in N_{k_{1}}
$$

By virtue of Lemma 2.4, we can formulate Lemma 2.3 in the following more general form, where the function τ is not required to be nondecreasing.

Lemma 2.5. Assume that $k_{0} \in N, \mathbf{U}_{k_{0}} \neq \varnothing, u \in \mathbf{U}_{k_{0}}, \tau(k) \leq k-1$ and condition (2-1) is satisfied. Then, for any $\lambda>4 / c^{2}$, condition (2-8) holds.

Proof. Since $u: N_{k_{0}} \rightarrow(0,+\infty)$ is a solution of (1-4), it is clear that u is a solution of the inequality

$$
\Delta u(k)+p(k) u(\sigma(k)) \leq 0 \quad \text { for } \quad k \in N_{k_{1}}
$$

where $\sigma(k)=\max \{\tau(i): 1 \leq s \leq k, s \in N\}$ and $k_{1}>k_{0}$ is a sufficiently large number.

First we will show that

$$
\begin{equation*}
\liminf _{k \rightarrow+\infty} \sum_{i=\sigma(k)}^{k-1} p(i)=c . \tag{2-11}
\end{equation*}
$$

Assume that (2-11) is not satisfied. Then there exists a sequence $\left\{k_{i}\right\}_{i=1}^{+\infty}$ of natural numbers such that $\sigma\left(k_{i}\right) \neq \tau\left(k_{i}\right)(i=1,2, \ldots)$ and

$$
\begin{equation*}
\liminf _{j \rightarrow+\infty} \sum_{i=\sigma\left(k_{j}\right)}^{k_{j}-1} p(i)=c_{1}<c . \tag{2-12}
\end{equation*}
$$

Also, from the definition of the function σ, and in view of $\sigma\left(k_{i}\right) \neq \tau\left(k_{i}\right)$, for any k_{i}, there exists $k_{i}^{\prime}<k_{i}$ such that $\sigma(k)=\sigma\left(k_{i}\right)$ for $k_{i}^{\prime} \leq k \leq k_{i}, \lim _{i \rightarrow+\infty} k_{i}^{\prime}=+\infty$ and $\sigma\left(k_{i}^{\prime}\right)=\tau\left(k_{i}^{\prime}\right)$. Thus

$$
\sum_{j=\tau\left(k_{i}^{\prime}\right)}^{k_{i}^{\prime}-1} p(j)=\sum_{j=\sigma\left(k_{i}^{\prime}\right)}^{k_{i}^{\prime}-1} p(j)=\sum_{j=\sigma\left(k_{i}\right)}^{k_{i}^{\prime}-1} p(j) \leq \sum_{j=\sigma\left(k_{i}\right)}^{k_{i}-1} p(j) \quad(i=1,2, \ldots),
$$

and, by the virtue of (2-12), we have

$$
\operatorname{liminin}_{i \rightarrow+\infty} \sum_{j=\tau\left(k_{i}^{\prime}\right)}^{k_{i}^{\prime}-1} p(j) \leq \liminf _{i \rightarrow+\infty} \sum_{j=\sigma\left(k_{i}\right)}^{k_{i}-1} p(j)=c_{1}<c .
$$

In view of (2-1), the last inequality leads to a contradiction. Therefore (2-11) holds.
Now, by Lemma 2.4, we conclude that the equation

$$
\Delta u(k)+p(k) u(\sigma(k))=0
$$

has a solution u_{*} which satisfies the condition

$$
\begin{equation*}
0<u_{*}(k) \leq u(k) \quad \text { for } \quad k \in N_{k_{1}}, \tag{2-13}
\end{equation*}
$$

where $k_{1}>k_{0}$ is a sufficiently large number. Hence, taking into account that the function σ is nondecreasing, in view of Lemma 2.3, we have

$$
\lim _{k \rightarrow+\infty} u_{*}(k) \exp \left(\lambda \sum_{i=1}^{k-1} p(i)\right)=+\infty
$$

where $\lambda>4 / c^{2}$. Therefore, by (2-13), we get

$$
\lim _{k \rightarrow+\infty} u(k) \exp \left(\lambda \sum_{i=1}^{k-1} p(i)\right)=+\infty \quad \text { for any } \quad \lambda>\frac{4}{c^{2}} .
$$

Lemma 2.6 (Abel transformation). Let $\left\{a_{i}\right\}_{i=1}^{+\infty}$ and $\left\{b_{i}\right\}_{i=1}^{+\infty}$ be sequences of nonnegative numbers and

$$
\begin{equation*}
\sum_{i=1}^{+\infty} a_{i}<+\infty \tag{2-14}
\end{equation*}
$$

Then

$$
\sum_{i=1}^{k} a_{i} b_{i}=A_{1} b_{1}-A_{k+1} b_{k+1}-\sum_{i=1}^{k} A_{i+1}\left(b_{i}-b_{i+1}\right),
$$

where $A_{i}=\sum_{j=i}^{+\infty} a_{j}$.
Proof. Since (2-14) is satisfied, we have

$$
\begin{aligned}
\sum_{i=1}^{k} A_{i+1}\left(b_{i}-b_{i+1}\right) & =\sum_{i=1}^{k} A_{i+1} b_{i}-\sum_{i=2}^{k+1} A_{i} b_{i} \\
& =A_{2} b_{1}-A_{k+1} b_{k+1}+\sum_{i=2}^{k}\left(A_{i+1}-A_{i}\right) b_{i} \\
& =A_{2} b_{1}-A_{k+1} b_{k+1}-\sum_{i=2}^{k} a_{i} b_{i} \\
& =A_{1} b_{1}-A_{k+1} b_{k+1}-\sum_{i=1}^{k} a_{i} b_{i}
\end{aligned}
$$

or

$$
\sum_{i=1}^{k} a_{i} b_{i}=A_{1} b_{1}-A_{k+1} b_{k+1}-\sum_{i=1}^{k} A_{i+1}\left(b_{i}-b_{i+1}\right)
$$

Koplatadze, Kvinikadze and Stavroulakis established the following lemma. For completeness, we present the proof here.
Lemma 2.7 [Koplatadze et al. 2002]. Let $\varphi, \psi: N \rightarrow(0,+\infty), \psi$ be nonincreasing and suppose

$$
\begin{gather*}
\lim _{k \rightarrow+\infty} \varphi(k)=+\infty \tag{2-15}\\
\liminf _{k \rightarrow+\infty} \psi(k) \widetilde{\varphi}(k)=0, \tag{2-16}
\end{gather*}
$$

where $\widetilde{\varphi}(k)=\inf \{\varphi(s): s \geq k, s \in N\}$. Then there exists an increasing sequence of natural numbers $\left\{k_{i}\right\}_{i=1}^{+\infty}$ such that

$$
\begin{gathered}
\lim _{i \rightarrow+\infty} k_{i}=+\infty, \quad \widetilde{\varphi}\left(k_{i}\right)=\varphi\left(k_{i}\right), \quad \psi(k) \widetilde{\varphi}(k) \geq \psi\left(k_{i}\right) \widetilde{\varphi}\left(k_{i}\right) \\
\left(k=1,2, \ldots, k_{i} ; i=1,2, \ldots\right) .
\end{gathered}
$$

Proof. Define the sets E_{1} and E_{2} by

$$
\begin{aligned}
& k \in E_{1} \Longleftrightarrow \widetilde{\varphi}(k)=\varphi(k) \\
& k \in E_{2} \Longleftrightarrow \widetilde{\varphi}(s) \psi(s) \geq \widetilde{\varphi}(k) \psi(k) \text { for } s \in\{1, \ldots, k\} .
\end{aligned}
$$

According to (2-15) and (2-16), it is obvious that

$$
\begin{equation*}
\sup E_{i}=+\infty \quad(i=1,2) \tag{2-17}
\end{equation*}
$$

Show that

$$
\begin{equation*}
\sup E_{1} \cap E_{2}=+\infty \tag{2-18}
\end{equation*}
$$

Let $k_{0} \in E_{2}$ be such that $k_{0} \notin E_{1}$. By (2-16) there is $k_{1}>k_{0}$ such that $\widetilde{\varphi}(k)=\widetilde{\varphi}\left(k_{1}\right)$ for $k=k_{0}, k_{0}+1, \ldots, k_{1}$ and $\widetilde{\varphi}\left(k_{1}\right)=\varphi\left(k_{1}\right)$. Since ψ is nonincreasing, we have

$$
\widetilde{\varphi}(k) \psi(k) \geq \widetilde{\varphi}\left(k_{1}\right) \psi\left(k_{1}\right) \quad \text { for } \quad k=1, \ldots, k_{1} .
$$

Therefore $k_{1} \in E_{1} \cap E_{2}$. The above argument together with (2-17) imply that (2-18) holds.

Remark 2.8. The analogue of this lemma for continuous functions φ and ψ was proved first in [Koplatadze 1994].

3. Necessary conditions of the existence of positive solutions

The results of this section play an important role in establishing sufficient conditions for all proper solutions of (1-4) to be oscillatory.

Theorem 3.1. Assume that $k_{0} \in N, \mathbf{U}_{k_{0}} \neq \varnothing$, (1-5) is satisfied,

$$
\begin{equation*}
\liminf _{k \rightarrow+\infty} \sum_{i=\tau(k)}^{k-1} p(i)=c>0 \tag{3-1}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{k \rightarrow+\infty} \sum_{i=\tau(k)}^{k-1} p(i)<+\infty \tag{3-2}
\end{equation*}
$$

Then there exists $\lambda \in\left[1,4 / c^{2}\right]$ such that

$$
\begin{equation*}
\limsup _{\varepsilon \rightarrow 0+}\left(\liminf _{k \rightarrow+\infty} \exp \left((\lambda+\varepsilon) \sum_{i=1}^{k-1} p(i)\right) \sum_{i=k}^{+\infty} p(i) \exp \left(-(\lambda+\varepsilon) \sum_{l=1}^{\tau(i)-1} p(l)\right)\right) \leq 1 . \tag{3-3}
\end{equation*}
$$

Proof. Since $U_{k_{0}} \neq \varnothing$, Equation (1-4) has a positive solution $u: N_{k_{0}} \rightarrow(0,+\infty)$. First we show that

$$
\begin{equation*}
\limsup _{k \rightarrow+\infty} u(k) \exp \left(\sum_{i=1}^{k-1} p(i)\right)<+\infty . \tag{3-4}
\end{equation*}
$$

Indeed, if $k_{1} \in N_{k_{0}}$, we have

$$
\begin{aligned}
\sum_{i=k_{1}}^{k} \frac{\Delta u(i)}{u(i)} & =\sum_{i=k_{1}}^{k} \frac{u(i+1)}{u(i)}-\left(k-k_{1}\right)=\sum_{i=k_{1}}^{k} \exp \left(\ln \frac{u(i+1)}{u(i)}\right)-\left(k-k_{1}\right) \\
& \geq \sum_{i=k_{1}}^{k}\left(1+\ln \frac{u(i+1)}{u(i)}\right)-\left(k-k_{1}\right)=\ln \frac{u(k+1)}{u\left(k_{1}\right)}
\end{aligned}
$$

or

$$
\sum_{i=k_{1}}^{k} \frac{\Delta u(i)}{u(i)} \geq \ln \frac{u(k+1)}{u\left(k_{1}\right)} .
$$

By (1-4), and taking into account that the function u is nonincreasing, we have

$$
\sum_{i=k_{1}}^{k} \frac{\Delta u(i)}{u(i)}=-\sum_{i=k_{1}}^{k} p(i) \frac{u(\tau(i))}{u(i)} \leq-\sum_{i=k_{1}}^{k} p(i) .
$$

Combining the last two inequalities, we obtain

$$
u(k+1) \exp \left(\sum_{i=k_{1}}^{k} p(i)\right) \leq u\left(k_{1}\right),
$$

that is, (3-4) is fulfilled. On the other hand, since all the conditions of Lemma 2.5 are satisfied, we conclude that condition (2-8) holds for any $\lambda>4 / c^{2}$. Denote by Λ the set of all λ for which

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} u(\tau(k)) \exp \left(\lambda \sum_{i=1}^{\tau(k)-1} p(i)\right)=+\infty \tag{3-5}
\end{equation*}
$$

and $\lambda_{0}=\inf \Lambda$. In view of (1-5), (2-8) and (3-4), it is obvious that $\lambda_{0} \in\left[1,4 / c^{2}\right]$. Thus, it suffices to show, that for $\lambda=\lambda_{0}$ the inequality (3-3) holds. First, we will show that for any $\varepsilon>0$

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} u(\tau(k)) \exp \left(\left(\lambda_{0}+\varepsilon\right) \sum_{i=1}^{\tau(k)-1} p(i)\right)=+\infty . \tag{3-6}
\end{equation*}
$$

Indeed, if $\lambda_{0} \in \Lambda$, it is obvious from (3-5) that condition (3-6) is fulfilled. If $\lambda_{0} \notin \Lambda$, according to the definition of λ_{0}, there exists $\lambda_{k}>\lambda_{0}$ such that $\lambda_{k} \rightarrow \lambda_{0}$ when $k \rightarrow+\infty$ and $\lambda_{k} \in \Lambda, k=1,2, \ldots$. Thus, condition (3-5) holds for any $\lambda=\lambda_{k}$. However, for any $\varepsilon>0$, there exists $\lambda_{k}=\lambda_{k}(\varepsilon)$ such that $\lambda_{0}<\lambda_{k} \leq \lambda_{0}+\varepsilon$. This insures the validity of (3-5) and (3-6) for any $\varepsilon>0$.

Similarly, we show that for any $\varepsilon>0$,

$$
\begin{equation*}
\liminf _{k \rightarrow+\infty} u(\tau(k)) \exp \left(\left(\lambda_{0}-\varepsilon\right) \sum_{i=1}^{\tau(k)-1} p(i)\right)=0 . \tag{3-7}
\end{equation*}
$$

Hence, by virtue of (1-5), (3-6) and (3-7), it is clear that for any $\varepsilon>0$, the functions

$$
\begin{equation*}
\varphi(k)=u(\tau(k)) \exp \left(\left(\lambda_{0}+\varepsilon\right) \sum_{i=1}^{\tau(k)-1} p(i)\right) \tag{3-8}
\end{equation*}
$$

and

$$
\psi(k)=\exp \left(-2 \varepsilon \sum_{i=1}^{k-1} p(i)\right)
$$

satisfy the conditions of Lemma 2.7 for sufficiently large k. Hence, there exists an increasing sequence $\left\{k_{i}\right\}_{i=1}^{+\infty}$ of natural numbers satisfying $\lim _{i \rightarrow+\infty} k_{i}=+\infty$,

$$
\begin{equation*}
\psi\left(k_{i}\right) \widetilde{\varphi}\left(k_{i}\right) \leq \psi(k) \widetilde{\varphi}(k) \quad \text { for } \quad k^{*} \leq k \leq k_{i}, \tag{3-9}
\end{equation*}
$$

where k^{*} is a sufficiently large number, and

$$
\begin{equation*}
\widetilde{\varphi}\left(k_{i}\right)=\varphi\left(k_{i}\right) \quad(i=1,2, \ldots), \tag{3-10}
\end{equation*}
$$

Now, given that

$$
\begin{aligned}
u(\tau(i)) \exp \left(\left(\lambda_{0}+\varepsilon\right) \sum_{l=1}^{\tau(i)-1} p(l)\right) & \geq \inf \left\{u(\tau(s)) \exp \left(\lambda_{0}+\varepsilon\right) \sum_{l=1}^{\tau(s)-1} p(l): s \geq i, s \in N\right\} \\
& =\widetilde{\varphi}(i)
\end{aligned}
$$

Equation (1-4) implies

$$
u\left(\tau\left(k_{j}\right)\right) \geq \sum_{i=\tau\left(k_{j}\right)}^{+\infty} p(i) u(\tau(i)) \geq \sum_{i=\tau(k)}^{+\infty} p(i) \widetilde{\varphi}(i) \exp \left(-\left(\lambda_{0}+\varepsilon\right) \sum_{l=1}^{\tau(i)-1} p(l)\right)
$$

that is,

$$
\begin{array}{r}
u\left(\tau\left(k_{j}\right)\right) \geq \sum_{i=\tau\left(k_{j}\right)}^{k_{j}-1} p(i) \widetilde{\varphi}(i) \exp \left(-2 \varepsilon \sum_{l=1}^{i-1} p(l)\right) \exp \left(2 \varepsilon \sum_{l=1}^{i-1} p(l)\right) \\
\times \exp \left(-\left(\lambda_{0}+\varepsilon\right) \sum_{l=1}^{\tau(i)-1} p(l)\right) \\
\\
+\sum_{i=k_{j}}^{+\infty} p(i) \widetilde{\varphi}(i) \exp \left(-\left(\lambda_{0}+\varepsilon\right) \sum_{l=1}^{\tau(i)-1} p(l)\right)
\end{array}
$$

for $j=1,2, \ldots$ Thus, by (3-9), and using the fact that the function $\widetilde{\varphi}$ is nondecreasing, the last inequality yields
$(3-11) u\left(\tau\left(k_{j}\right)\right) \geq \widetilde{\varphi}\left(k_{j}\right) \exp \left(-2 \varepsilon \sum_{l=1}^{k_{j}-1} p(l)\right)$

$$
\begin{aligned}
& \times \sum_{i=\tau\left(k_{j}\right)}^{k_{j}-1} p(i) \exp \left(2 \varepsilon \sum_{l=1}^{i-1} p(l)\right) \exp \left(-\left(\lambda_{0}+\varepsilon\right) \sum_{l=1}^{\tau(i)-1} p(l)\right) \\
+ & \widetilde{\varphi}\left(k_{j}\right) \sum_{i=k_{j}}^{+\infty} p(i) \exp \left(-\left(\lambda_{0}+\varepsilon\right) \sum_{l=1}^{\tau(i)-1} p(l)\right) \quad(j=1,2, \ldots)
\end{aligned}
$$

Also, in view of Lemma 2.6, we have

$$
\begin{aligned}
\text { (3-12) } I\left(k_{j}, \varepsilon\right)= & \sum_{i=\tau\left(k_{j}\right)}^{k_{j}-1} p(i) \exp \left(2 \varepsilon \sum_{l=1}^{i-1} p(l)\right) \exp \left(-\left(\lambda_{0}+\varepsilon\right) \sum_{l=1}^{\tau(i)-1} p(l)\right) \\
= & \exp \left(2 \varepsilon \sum_{i=1}^{\tau\left(k_{j}\right)-1} p(i)\right) \sum_{i=\tau\left(k_{j}\right)}^{+\infty} p(i) \exp \left(-\left(\lambda_{0}+\varepsilon\right) \sum_{l=1}^{\tau(i)-1} p(l)\right) \\
& -\exp \left(2 \varepsilon \sum_{i=1}^{k_{j}-1} p(i)\right) \sum_{i=k_{j}}^{+\infty} p(i) \exp \left(-\left(\lambda_{0}+\varepsilon\right) \sum_{l=1}^{\tau(i)-1} p(l)\right) \\
& +\sum_{i=k_{j}}^{k_{j}-1}\left(\exp \left(2 \varepsilon \sum_{l=1}^{i} p(l)\right)-\exp \left(2 \varepsilon \sum_{l=1}^{i-1} p(l)\right)\right) \\
& \times \sum_{i=1}^{+\infty} p(i) \exp \left(-\left(\lambda_{0}+\varepsilon\right) \sum_{l=1}^{\tau(i)-1} p(l)\right) \quad(j=1,2, \ldots) .
\end{aligned}
$$

Given that

$$
\exp \left(2 \varepsilon \sum_{l=1}^{i} p(l)\right)-\exp \left(2 \varepsilon \sum_{l=1}^{i-1} p(l)\right) \geq 0
$$

inequality (3-12) becomes

$$
\begin{aligned}
& I\left(k_{j}, \varepsilon\right) \geq \exp \left(2 \varepsilon \sum_{i=1}^{\tau\left(k_{j}\right)-1} p(i)\right) \sum_{i=\tau\left(k_{j}\right)}^{+\infty} p(i) \exp \left(-\left(\lambda_{0}+\varepsilon\right) \sum_{l=1}^{\tau(i)-1} p(l)\right) \\
& \quad-\exp \left(2 \varepsilon \sum_{i=1}^{k_{j}-1} p(i)\right) \sum_{i=k_{j}}^{+\infty} p(i) \exp \left(-\left(\lambda_{0}+\varepsilon\right) \sum_{l=1}^{\tau(i)-1} p(l)\right)
\end{aligned}
$$

Therefore, by (3-11), we take

$$
\begin{aligned}
u\left(\tau\left(k_{j}\right)\right) \geq \widetilde{\varphi}\left(k_{j}\right) \exp \left(-2 \varepsilon \sum_{l=1}^{k_{j}-1} p(l)\right) & \exp \left(2 \varepsilon \sum_{l=1}^{\tau\left(k_{j}\right)-1} p(l)\right) \\
& \times \sum_{i=\tau\left(k_{j}\right)}^{+\infty} p(i) \exp \left(-\left(\lambda_{0}+\varepsilon\right) \sum_{l=1}^{\tau(i)-1} p(l)\right)
\end{aligned}
$$

Thus, (3-8) and (3-10) imply

$$
\begin{aligned}
& \exp \left(\left(\lambda_{0}+\varepsilon\right) \sum_{i=1}^{\tau\left(k_{j}\right)-1} p(i)\right) \sum_{i=\tau\left(k_{j}\right)}^{+\infty} p(i) \exp \left(-\left(\lambda_{0}+\varepsilon\right) \sum_{l=1}^{\tau(i)-1} p(l)\right) \\
& \quad \leq \exp \left(2 \varepsilon \sum_{i=\tau\left(k_{j}\right)}^{k_{j}-1} p(i)\right)
\end{aligned}
$$

From the last inequality, and taking into account that (3-2) is satisfied, we have
(3-13) $\limsup _{j \rightarrow+\infty} \exp \left(\left(\lambda_{0}+\varepsilon\right) \sum_{i=1}^{\tau\left(k_{j}\right)-1} p(i)\right) \sum_{i=\tau\left(k_{j}\right)}^{+\infty} p(i) \exp \left(-\left(\lambda_{0}+\varepsilon\right) \sum_{l=1}^{\tau(i)-1} p(l)\right)$ $\leq \exp (2 \varepsilon M)$,
where

$$
M=\limsup _{k \rightarrow+\infty} \sum_{i=\tau(k)}^{k-1} p(i)
$$

Hence, for any $\varepsilon>0$, (3-13) gives
$\liminf _{k \rightarrow+\infty} \exp \left(\left(\lambda_{0}+\varepsilon\right) \sum_{i=1}^{k-1} p(i)\right) \sum_{i=k}^{+\infty} p(i) \exp \left(-\left(\lambda_{0}+\varepsilon\right) \sum_{l=1}^{\tau(i)-1} p(l)\right) \leq \exp (2 \varepsilon M)$,
which implies
$\limsup _{\varepsilon \rightarrow 0+}\left(\liminf _{k \rightarrow+\infty} \exp \left(\left(\lambda_{0}+\varepsilon\right) \sum_{i=1}^{k-1} p(i)\right) \sum_{i=k}^{+\infty} p(i) \exp \left(-\left(\lambda_{0}+\varepsilon\right) \sum_{l=1}^{\tau(i)-1} p(l)\right)\right) \leq 1$.

Remark 3.2. Condition (3-2) is not a limitation since, as proved in [Chatzarakis et al. 2008a], if τ is a nondecreasing function and

$$
\limsup _{k \rightarrow+\infty} \sum_{i=\tau(k)}^{k} p(i)>1
$$

then $\mathbf{U}_{k_{0}}=\varnothing$, for any $k_{0} \in N$.
Remark 3.3. In (3-1), without loss of generality, we may assume that $c \leq 1$. Otherwise, for any $k_{0} \in N$, we have $\mathbf{U}_{k_{0}}=\varnothing$ [Chatzarakis et al. 2008a].

Theorem 3.4. Assume that all the conditions of Theorem 3.1 are satisfied. Then

$$
\begin{equation*}
\liminf _{k \rightarrow+\infty} \sum_{i=\tau(k)}^{k-1} p(i) \leq \frac{1}{e} \tag{3-14}
\end{equation*}
$$

Proof. Since all the conditions of Theorem 3.1 are satisfied, there exists $\lambda=\lambda_{0} \in$ [$\left.1,4 / c^{2}\right]$ such that the inequality (3-3) holds.

Assume that the condition (3-14) does not hold. Then, there exists $k_{1} \in N$ and $\varepsilon_{0}>0$ such that

$$
\sum_{i=\tau(k)}^{k-1} p(i) \geq \frac{1+\varepsilon_{0}}{e} \quad \text { for } \quad k \in N_{k_{1}}
$$

Therefore, for any $\varepsilon>0$,

$$
\begin{align*}
& I(k, \varepsilon)=\exp \left(\left(\lambda_{0}+\varepsilon\right) \sum_{i=1}^{k-1} p(i)\right) \sum_{i=k}^{+\infty} p(i) \exp \left(-\left(\lambda_{0}+\varepsilon\right) \sum_{l=1}^{\tau(i)-1} p(l)\right) \tag{3-15}\\
& \geq \exp \left(\frac{\left(\lambda_{0}+\varepsilon\right)\left(1+\varepsilon_{0}\right)}{e}\right) \exp \left(\left(\lambda_{0}+\varepsilon\right) \sum_{i=1}^{k-1} p(i)\right) \\
& \quad \times \sum_{i=k}^{+\infty} p(i) \exp \left(-\left(\lambda_{0}+\varepsilon\right) \sum_{l=1}^{i-1} p(l)\right) \quad \text { for } k \in N_{k_{1}}
\end{align*}
$$

Defining $\sum_{l=1}^{i-1} p(l)=a_{i-1}$, we will show that

$$
\liminf _{k \rightarrow+\infty} \exp \left(\left(\lambda_{0}+\varepsilon\right) a_{k-1}\right) \sum_{i=k}^{+\infty} p(i) \exp \left(-\left(\lambda_{0}+\varepsilon\right) a_{i-1}\right) \geq \frac{1}{\lambda_{0}+\varepsilon}
$$

Indeed, since

$$
\liminf _{k \rightarrow+\infty} \sum_{i=\tau(k)}^{k-1} p(i)=c>0
$$

it is obvious that $\sum_{i=1}^{+\infty} p(i)=+\infty$, that is, $\lim _{i \rightarrow+\infty} a_{i}=+\infty$. Therefore

$$
\begin{aligned}
\exp \left(\left(\lambda_{0}+\varepsilon\right) a_{k-1}\right) \sum_{i=k}^{+\infty} p & (i) \exp \left(-\left(\lambda_{0}+\varepsilon\right) a_{i-1}\right) \\
& =\exp \left(\left(\lambda_{0}+\varepsilon\right) a_{k-1}\right) \sum_{i=k}^{+\infty}\left(a_{i}-a_{i-1}\right) \exp \left(-\left(\lambda_{0}+\varepsilon\right) a_{i-1}\right) \\
& =\exp \left(\left(\lambda_{0}+\varepsilon\right) a_{k-1}\right) \sum_{i=k}^{+\infty} \exp \left(-\left(\lambda_{0}+\varepsilon\right) a_{i-1}\right) \int_{a_{i-1}}^{a_{i}} d s \\
& \geq \exp \left(\left(\lambda_{0}+\varepsilon\right) a_{i-1}\right) \sum_{i=k}^{+\infty} \int_{a_{i-1}}^{a_{i}} \exp \left(-\left(\lambda_{0}+\varepsilon\right) s\right) d s \\
& =\exp \left(\left(\lambda_{0}+\varepsilon\right) a_{i-1}\right) \int_{a_{i-1}}^{+\infty} \exp \left(-\left(\lambda_{0}+\varepsilon\right) s\right) d s=\frac{1}{\lambda_{0}+\varepsilon}
\end{aligned}
$$

Hence, by (3-15), we obtain

$$
\limsup _{\varepsilon \rightarrow 0+}\left(\liminf _{k \rightarrow+\infty} I(k, \varepsilon)\right) \geq \frac{1}{\lambda_{0}} \cdot \exp \left(\frac{\lambda_{0}\left(1+\varepsilon_{0}\right)}{e}\right) \geq 1+\varepsilon_{0}
$$

This contradicts (3-3) for $\lambda=\lambda_{0}$.

4. Sufficient conditions of the proper solutions to be oscillatory

Theorem 4.1. Assume that conditions (1-5), (3-1), (3-2) are satisfied and that, for any $\lambda \in\left[1,4 / c^{2}\right]$,
$\limsup _{\varepsilon \rightarrow 0+}\left(\liminf _{k \rightarrow+\infty}\left(\exp \left((\lambda+\varepsilon) \sum_{i=1}^{k-1} p(i)\right) \sum_{i=k}^{+\infty} p(i) \exp \left(-(\lambda+\varepsilon) \sum_{l=1}^{\tau(i)-1} p(l) i\right)\right)\right)>1$.
Then all proper solutions of Equation (1-4) oscillate.
Proof. Assume that $u: N_{k_{0}} \rightarrow(0,+\infty)$ is a positive proper solution of (1-4). Then $\mathbf{U}_{k_{0}} \neq \varnothing$. Thus, in view of Theorem 3.1, there exists $\lambda_{0} \in\left[1,4 / c^{2}\right]$ such that the condition (3-3) is satisfied for $\lambda=\lambda_{0}$. But this contradicts (4-1).

Using Theorem 3.4, we can similarly prove:

Theorem 4.2. Assume that conditions (1-5) and (3-2) are satisfied and

$$
\begin{equation*}
\liminf _{k \rightarrow+\infty} \sum_{i=\tau(k)}^{k-1} p(i)>\frac{1}{e} \tag{4-2}
\end{equation*}
$$

Then all proper solutions of Equation (1-4) oscillate.
Remark 4.3. It is to be pointed out that Theorem 4.2 is the discrete analogue of Theorem 1.1 for the first order difference equation (1-4) in the case of a general delay argument $\tau(k)$.

Remark 4.4. The condition (4-2) is optimal for (1-4) under the assumption that

$$
\lim _{k \rightarrow+\infty}(k-\tau(k))=+\infty
$$

since in this case the set of natural numbers increases infinitely in the interval [$\tau(k), k-1]$ for $k \rightarrow+\infty$.

Now, we are going to present two examples to show that the condition (4-2) is optimal, in the sense that it cannot be replaced by the nonstrong inequality.

Example 4.5. Consider (1-4), where

$$
\begin{align*}
\tau(k)=[\alpha k], & p(k)=\left(k^{-\lambda}-(k+1)^{-\lambda}\right)[\alpha k]^{\lambda} \\
\alpha \in(0,1), & \lambda=-\ln ^{-1} \alpha \tag{4-3}
\end{align*}
$$

with $[\alpha k]$ the integer part of αk.
It is obvious that

$$
k^{1+\lambda}\left(k^{-\lambda}-(k+1)^{-\lambda}\right) \rightarrow \lambda \quad \text { for } \quad k \rightarrow+\infty
$$

Therefore

$$
\begin{equation*}
k\left(k^{-\lambda}-(k+1)^{-\lambda}\right)[\alpha k]^{\lambda} \rightarrow \frac{\lambda}{e} \quad \text { for } \quad k \rightarrow+\infty \tag{4-4}
\end{equation*}
$$

Hence, in view of (4-3) and (4-4), we have

$$
\begin{aligned}
\liminf _{k \rightarrow+\infty} \sum_{i=\tau(k)}^{k-1} p(i) & =\frac{\lambda}{e} \liminf _{k \rightarrow+\infty} \sum_{i=[\alpha k]}^{k-1} \frac{e}{\lambda} i\left(i^{-\lambda}-(i+1)^{-\lambda}\right)[\alpha i]^{\lambda} \frac{1}{i} \\
& =\frac{\lambda}{e} \liminf _{k \rightarrow+\infty} \sum_{i=[\alpha k]}^{k-1} \frac{1}{i}=\frac{\lambda}{e} \ln \frac{1}{\alpha}=\frac{1}{e}
\end{aligned}
$$

or

$$
\liminf _{k \rightarrow+\infty} \sum_{i=\tau(k)}^{k-1} p(i)=\frac{1}{e}
$$

Observe that all the conditions of Theorem 4.2 are satisfied except the condition (4-2). In this case, it is not guaranteed that all solutions of (1-4) oscillate. Indeed, it is easy to see that the function $u=k^{-\lambda}$ is a positive solution of (1-4).

Example 4.6. Consider (1-4), where

$$
\begin{align*}
\tau(k)=\left[k^{\alpha}\right], & p(k)=\left(\ln ^{-\lambda} k-\ln ^{-\lambda}(k+1)\right) \ln ^{\lambda}\left[k^{\alpha}\right], \\
\alpha \in(0,1), & \lambda=-\ln ^{-1} \alpha, \tag{4-5}
\end{align*}
$$

with $\left[k^{\alpha}\right]$ the integer part of k^{α}.
It is obvious that

$$
k \ln ^{1+\lambda} k\left(\ln ^{-\lambda} k-\ln ^{-\lambda}(k+1)\right) \rightarrow \lambda \quad \text { for } k \rightarrow+\infty .
$$

Therefore

$$
\begin{equation*}
k \ln k \ln ^{\lambda}\left[k^{\alpha}\right]\left(\ln ^{-\lambda} k-\ln ^{-\lambda}(k+1)\right) \rightarrow \frac{\lambda}{e} \quad \text { for } k \rightarrow+\infty \tag{4-6}
\end{equation*}
$$

On the other hand,

$$
\sum_{i=\left[k^{\alpha}\right]}^{k-1} \frac{1}{i \ln i} \geq \sum_{i=\left[k^{\alpha}\right]}^{k-1} \int_{i}^{i+1} \frac{d s}{s \ln s}=\int_{\left[k^{\alpha}\right]}^{k} \frac{d s}{s \ln s}=\ln \frac{\ln k}{\ln \left[k^{\alpha}\right]}
$$

which tends to $\ln (1 / \alpha)$ as $k \rightarrow+\infty$, and

$$
\sum_{i=\left[k^{\alpha}\right]}^{k-1} \frac{1}{i \ln i} \leq \sum_{i=\left[k^{\alpha}\right]}^{k-1} \int_{i-1}^{i} \frac{d s}{s \ln s}=\int_{\left[k^{\alpha}\right]-1}^{k-1} \frac{d s}{s \ln s}=\ln \frac{\ln (k-1)}{\ln \left[k^{\alpha}\right]-1}
$$

which also tends to $\ln (1 / \alpha)$ as $k \rightarrow+\infty$. Together these two bounds imply

$$
\lim _{k \rightarrow+\infty} \sum_{i=\left[k^{\alpha}\right]}^{k-1} \frac{1}{i \ln i}=\ln \frac{1}{\alpha}
$$

Hence, in view of (4-5) and (4-6), we obtain

$$
\begin{aligned}
\liminf _{k \rightarrow+\infty} \sum_{i=\left[k^{\alpha}\right]}^{k-1} p(i) & =\liminf _{k \rightarrow+\infty} \sum_{i=\left[k^{\alpha}\right]}^{k-1} \ln ^{\lambda}\left[i^{\alpha}\right]\left(\ln ^{-\lambda} i-\ln ^{-\lambda}(i+1)\right) \\
& =\frac{\lambda}{e} \liminf _{k \rightarrow+\infty} \sum_{i=\left[k^{\alpha}\right]}^{k-1} \frac{e}{\lambda} i \ln i \ln ^{\lambda}\left[i^{\alpha}\right]\left(\ln ^{-\lambda} i-\ln ^{-\lambda}(i+1)\right) \frac{1}{i \ln i} \\
& =\frac{\lambda}{e} \liminf _{k \rightarrow+\infty} \sum_{i=\left[k^{\alpha}\right]}^{k-1} \frac{1}{i \ln i}=\frac{\lambda}{e} \ln \frac{1}{\alpha}=\frac{1}{e}
\end{aligned}
$$

We again observe that all the conditions of Theorem 4.2 are satisfied except (4-2). In this case, it is not guaranteed that all solutions of (1-4) oscillate. Indeed, it is easy to see that the function $u=\ln ^{-\lambda} k$ is a positive solution of (1-4).

References

[Agarwal et al. 2005] R. P. Agarwal, M. Bohner, S. R. Grace, and D. O’Regan, Discrete oscillation theory, Hindawi, New York, 2005. MR 2006e:39001 Zbl 1084.39001
[Baštinec and Diblik 2005] J. Baštinec and J. Diblik, "Remark on positive solutions of discrete equation $\Delta u(k+n)=-p(k) u(k) "$, Nonlinear Anal. 63 (2005), e2145-e2151.
[Chatzarakis and Stavroulakis 2006] G. E. Chatzarakis and I. P. Stavroulakis, "Oscillations of first order linear delay difference equations", Aust. J. Math. Anal. Appl. 3:1 (2006), Art. 14, 11 pp. (electronic). MR 2007a:39010 Zbl 1096.39003
[Chatzarakis et al. 2008a] G. E. Chatzarakis, R. Koplatadze, and I. P. Stavroulakis, "Oscillation criteria of first order linear difference equation with delay argument", Nonlinear Anal. 68 (2008), 994-1005.
[Chatzarakis et al. 2008b] G. E. Chatzarakis, Ch. G. Philos, and I. P. Stavroulakis, "On the oscillation of the solutions to linear difference equations with variable delay", 2008. To appear.
[Domshlak 1999] Y. Domshlak, "What should be a discrete version of the Chanturia-Koplatadze lemma?", Funct. Differ. Equ. 6:3-4 (1999), 299-304. MR 2002f:39032 Zbl 1033.39019
[Elaydi 1999] S. N. Elaydi, An introduction to difference equations, 2nd ed., Undergraduate Texts in Mathematics, Springer, New York, 1999. MR 2001g:39001 Zbl 0930.39001
[Elbert and Stavroulakis 1995] Á. Elbert and I. P. Stavroulakis, "Oscillation and nonoscillation criteria for delay differential equations", Proc. Amer. Math. Soc. 123:5 (1995), 1503-1510. MR 95f: 34099 Zbl 0828.34057
[Koplatadze 1994] R. Koplatadze, "On oscillatory properties of solutions of functional-differential equations", Mem. Differential Equations Math. Phys. 3 (1994), 179 pp. MR 97g:34090 Zbl 0843. 34070
[Koplatadze and Chanturiya 1982] R. G. Koplatadze and T. A. Chanturiya, "Oscillating and monotone solutions of first-order differential equations with deviating argument", Differentsial'nye Uravneniya 18:8 (1982), 1463-1465, 1472. MR 83k:34069 Zbl 0496.34044
[Koplatadze and Kvinikadze 1994] R. Koplatadze and G. Kvinikadze, "On the oscillation of solutions of first-order delay differential inequalities and equations", Georgian Math. J. 1:6 (1994), 675-685. MR 95j:34103 Zbl 0810.34068
[Koplatadze et al. 2002] R. Koplatadze, G. Kvinikadze, and I. P. Stavroulakis, "Oscillation of secondorder linear difference equations with deviating arguments", Adv. Math. Sci. Appl. 12:1 (2002), 217-226. MR 2003f:39039 Zbl 1033.39011
[Ladas et al. 1984] G. Ladas, Y. G. Sficas, and I. P. Stavroulakis, "Nonoscillatory functional-differential equations", Pacific J. Math. 115:2 (1984), 391-398. MR 86g:34099 Zbl 0528.34071
[Ladas et al. 1989] G. Ladas, Ch. G. Philos, and Y. G. Sficas, "Sharp conditions for the oscillation of delay difference equations", J. Appl. Math. Simulation 2:2 (1989), 101-111. MR 90g:39004 Zbl 0685.39004
[Myshkis 1972] A. D. Myshkis, Линеиные дифференциалные уравнения с запаздывающим аргументом, 2nd ed., Nauka, Moscow, 1972. MR 50 \#5135 Zbl 0261.34040
[Sficas and Stavroulakis 2003] Y. G. Sficas and I. P. Stavroulakis, "Oscillation criteria for first-order delay equations", Bull. London Math. Soc. 35:2 (2003), 239-246. MR 2003m:34160 Zbl 1035. 34075

Received May 30, 2007. Revised July 10, 2007.
George E. Chatzarakis
Department of Mathematics
University of Ioannina
45110 Ioannina
Greece
geaxatz@otenet.gr

Roman Koplatadze
Department of Mathematics
University of Tbilisi
University Street 2
Tbilisi 0143
Georgia
roman@rmi.acnet.ge
Ioannis P. Stavroulakis
Department of Mathematics
University of Ioannina
45110 Ioannina
Greece
ipstav@cc.uoi.gr

[^0]: MSC2000: primary 39A11; secondary 39A12.
 Keywords: difference equation, proper solution, positive solution, oscillatory.

