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In the curve complex for a surface, a handlebody set is the set of loops that
bound properly embedded disks in a given handlebody bounded by the sur-
face. A boundary set is the set of nonseparating loops in the curve complex
that bound two-sided, properly embedded surfaces. For a Heegaard split-
ting, the distance between the boundary sets of the handlebodies is zero
if and only if the ambient manifold contains a nonseparating, two sided
incompressible surface. We show that every vertex in the curve complex is
within two edges of a point in the boundary set.

1. Introduction

The curve complex C(6) for a compact, connected, closed, orientable surface 6

is the simplicial complex whose vertices are loops (isotopy classes of essential,
simple closed curves) in 6 and whose simplices correspond to sets of pairwise
disjoint loops in 6. Given a handlebody H and a homeomorphism φ : 6 → ∂ H ,
we can define the following subsets of C(6).

The handlebody set H is the set of loops that bound properly embedded (essen-
tial) disks in H . The genus g boundary set Hg is the set of nonseparating loops
such that each bounds a properly embedded, two-sided, incompressible, genus-g
surface in H . Note that H0 is a proper subset of H, specifically the set of all the
nonseparating loops in H. Define the boundary set to be the union

H∞
=

⋃
g≥0

Hg.

We will say that a set A of vertices in C(6) is k-dense if every vertex in C(6) is
within k edges of a point in A.

Theorem 1. If 6 has genus 3 or greater, then H∞ is 2-dense in C(6).
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The proof presented here does not work for genus two surfaces. However,
Schleimer has shown in [2005] that the orbit of a vertex of C(6) under the action
of the Torelli group is 5-dense. This implies that for a genus two handlebody, H∞

is n-dense for some n ≤ 5.
In contrast to H∞, a fixed genus boundary set Hg has a geometric structure much

closer to H, which is not k-dense for any k. This is demonstrated by the following
two Lemmas, the first of which is a corollary of Conclusion III.15 in [Jaco 1980]
and the second of which follows from a Theorem of Scharlemann [2006].

Lemma 2. If 6 has genus three or greater and v ∈ H then

d(v, Hg) = 1

for every g > 0. If 6 has genus two then

d(v, Hg) > 1

for every g.

Lemma 3. For g ≥ 1, the set Hg is disjoint from H and contained in a 2g neigh-
borhood of H.

For this paper, every 3-manifold will be compact, connected, closed and ori-
entable. A Heegaard splitting for such a 3-manifold M is a triple (6, H1, H2)

where 6 ⊂ M is a compact, connected, closed, orientable surface and H1, H2 ⊂ M
are handlebodies such that

∂ H1 = 6 = ∂ H2 and M = H1 ∪ H2.

The inclusion maps from ∂ H1 and ∂ H2 onto 6 determine handlebody sets H1 and
H2, respectively. The distance of the Heegaard splitting, as defined by Hempel in
[2001] is the distance d(6) = d(H1, H2) between the two handlebody sets.

The inclusion maps also determine boundary sets Hg
1 , Hh

2 , H∞

1 , H∞

2 , allowing
us to generalize this distance to the (g, h)-distance

dg,h(6) = d(Hg
1, Hh

2)

and the boundary distance

d∞(6) = d(H∞

1 , H∞

2 ).

The set H∞ is precisely the set of vertices representing simple closed curves
whose homology class is nontrivial in 6, but trivial in H . For a Heegaard splitting,
it encodes homology information about the ambient manifold. In particular, the
boundary distance determines precisely when a manifold has infinite homology
(and therefore a nonseparating, incompressible surface).
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Lemma 4. The following are equivalent:
(1) the first homology group of M is infinite;
(2) M contains a nonseparating, two sided, closed incompressible surface;
(3) d∞(6) = 0 and
(4) d 0,∞(6) = 0.

The proof is given in Section 2. The equivalence of (1) and (2) is well known,
but we give a very simple, geometric proof via the boundary set. Theorem 1 is
proved in Section 3.

For any Heegaard splitting (6, H1, H2) of a non-Haken 3-manifold, Lemma 4
implies that the boundary set in C(6) determined by H2 must be completely dis-
joint from the boundary set for H1. Hempel showed that there are handlebody sets
that are arbitrarily far apart in the curve complex. The same is not true for boundary
sets. In particular, Theorem 1 implies that for any Heegaard splitting (6, H1, H2)

of genus 3 or greater, d∞(6) is equal to either 0, 1 or 2. For non-Haken manifolds,
we have the following.

Corollary 5. For any Heegaard splitting (6, H1, H2) of a non-Haken 3-manifold
M , d∞(6) is equal to 1 or 2.

2. Nonseparating surfaces

The following Lemma will not be used until Section 3, but the method of proof
gives a good introduction to the proof of Lemma 7. Recall that an element α of
a Z module G is called primitive if there is no β ∈ G such that α = kβ for some
k 6= ±1.

Lemma 6. Let `1, . . . , `k be pairwise disjoint, essential loops in the boundary of
a genus-g handlebody H with g > k. Then there is a properly embedded, nonsepa-
rating surface F ⊂ H such that ∂ F is disjoint from each ` j and the homology class
defined by ∂ F in H(6) is primitive.

Proof. Let D1, . . . , Dg be a system of disks for H , that is, a collection of properly
embedded, essential disks whose complement in H is a single ball. Orient the
boundaries of the disks and the loops `1, . . . , `k , then form the matrix A = (ai j )

such that ai j is the algebraic intersection number of Di and ` j .
If we replace one of the disks in the system by a disk slide, the matrix for the

new system of disks can be constructed from A by adding or subtracting one row
from the other. Thus we can perform elementary row operations on A by choosing
new systems of disks for H . In particular, we can make A upper triangular.

Because A has more rows than columns, if A is upper triangular then the bottom
row consists of all zeros. In other words, the disk Dg has algebraic intersection 0
with each loop ` j .
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If Dg intersects the loop `1, there must be a pair of adjacent intersections in
`1 with opposite orientations. By attaching a band from ∂ Dg to itself, along the
arc of the loop `1, we can form a new surface F1 whose boundary (consisting of
two loops) has algebraic intersection zero with each loop ` j , but whose geometric
intersection number with the collection of curves `1, . . . , `k is strictly lower than
that of Dg. The surface F1 is two sided because the intersections have opposite
orientations and nonseparating because Dg is nonseparating.

If ∂ F1 intersects `1, we can form a new surface F2 by attaching a band, and so
on. Continuing in this manner for each ` j , we form a surface F which is properly
embedded, two-sided, nonseparating and such that ∂ F is disjoint from each ` j .

Attaching a band to the boundary of Fi does not change the homology class of
the boundary, so the homology class of ∂ F is equal to the class of ∂ Dg. Because
∂ Dg is represented by a connected loop, its homology class is primitive, as is the
homology class of ∂ F . �

We will now use the idea of attaching bands to eliminate intersections to prove
the implication (1) ⇒ (4) of Lemma 4.

Lemma 7. If the first homology of M is infinite then d 0,∞(6) = 0.

Proof. Let D1, . . . , Dg be a system of disks for H1 and D′

1, . . . , D′
g be a system of

disk for H2. Orient the boundaries of both systems of disks. Let A be the matrix
of algebraic intersection numbers of the boundaries. Because the first homology is
infinite, the determinant of A must equal zero.

As in the last proof, we can perform row operations on A by taking disk slides
of the disks D1, . . . , Dg. Because the determinant of A is zero, some sequence of
disk slides will leave A with all zeros in the bottom row. Thus after a sequence of
disk slides, we can assume Dg has algebraic intersection 0 with each D′

j .
By attaching bands to the boundary of Dg as in the proof of Lemma 6, we can

form a properly embedded, two sided, nonseparating surface F whose boundary is
disjoint from D′

1, . . . , D′
g. Thus each boundary component of F bounds a disk in

H2. The union of F and these disks is a properly embedded, two sided, nonsepa-
rating closed surface in M .

Recall that F was constructed from Dg by attaching bands to its boundary.
The last band defines a boundary compression for F corresponding to an isotopy
pushing this last band into H2. After this isotopy, the second to last band defines
a second isotopy, and so on. The final result is a surface isotopic to F which
intersects H1 in a disk isotopic to Dg.

The intersection of this surface with H2 is orientable, two-sided and nonsepa-
rating because F has these properties. Thus ∂ Dg is in both H0

1 and H∞

2 so

d 0,∞(6) = d(H0
1, H∞

2 ) = 0. �
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Proof of Lemma 4. Lemma 7 implies that for any Heegaard splitting (6, H1, H2),

d(H0
1, H∞

2 ) = 0

so (1) ⇒ (4). Because H0
1 is contained in H∞

1 , (4) ⇒ (3) is immediate.
Let (6, H1, H2) be a Heegaard splitting for M . If d∞(6) = 0 then there is a

simple closed curve ` ⊂ 6 such that ` bounds two-sided, nonseparating properly
embedded surfaces F ⊂ H1 and F ′

⊂ H2. The union F ∪F ′ is a two-sided, nonsep-
arating closed surface embedded in M . Compressing F∪F ′ to either side produces
at least one new two-sided, nonseparating surface. By compressing repeatedly, we
eventually find a closed, nonseparating, two-sided incompressible surface in M .
Thus (3) ⇒ (2).

The final step, (2) ⇒ (1), is a classical result. If M contains a two-sided, non-
separating, closed surface S ⊂ M , let p be a point in S. There is a path

α : [0, 1] → M

from p to itself that does not cross S. The homology class of α has infinite order
so the first homology of M is infinite. �

3. Density

Proof of Theorem 1. We will prove the following: Let ` be a loop in ∂ H and
assume the genus of H is at least 3. Then there is an essential loop `′ disjoint from
` and a properly embedded, two-sided, nonseparating surface F such that ∂ F is a
single, nonseparating loop disjoint from `′.

By Lemma 6, there is a properly embedded surface F ′′
⊂ H such that ∂ F ′′ is

disjoint from ` and defines a primitive element of the homology. Of all the properly
embedded surfaces with boundary disjoint from ` and homologous to ∂ F ′′, let F ′

be one with minimal number of boundary components. Each component of ∂ F ′

has an orientation induced by F ′ and thus defines an element of the first homology
of 6.

For each component C of 6 \ (`∪∂ F ′), an orientation for a loop in ∂C induces
an orientation of C . Assume two components of ∂C come from loops of ∂ F ′ and
induce the same orientation of C . Because the induced orientations agree, adding
a band between them produces a new orientable surface with fewer boundary com-
ponents, but homologous boundary. Thus the minimality assumption implies that
each component C of 6 \ (` ∪ ∂ F ′) has at most one boundary loop coming from
∂ F ′ inducing each possible orientation. Thus it has at most two boundary loops
coming from ∂ F ′ and these induce opposite orientations on C .

Assume for contradiction each component of 6 \ (` ∪ ∂ F ′) is planar. Each
component that is disjoint from ` has exactly two boundary components. A planar
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surface with two boundary loops is an annulus so each component disjoint from `

must be an annulus. There are either two components of 6 \ (` ∪ ∂ F ′) with one
boundary loop each on `, or one component with two boundary loops on `. In the
first case, the two components are pairs of pants or annuli, while in the second,
the component is a four punctured sphere or a pair of pants. The union of such
components and a collection of annuli is a genus-one or genus-two surface. This
contradicts the assumption that 6 has genus at least three, so we conclude that
some component must be nonplanar.

Let C be a nonplanar component. There is a simple closed curve `′
⊂ C such

that `′ separates a once-punctured torus from C . In 6, the loop `′ separates a once-
punctured torus that contains no components of ∂ F ′. Let F be a surface whose
boundary is homologous to F ′, disjoint from the once-punctured torus bounded
by `′ and such that the number of boundary components of F ′ is minimal over all
such surfaces.

Once again, each component of 6 \ (`′
∪ ∂ F) has at most two boundary com-

ponents on loops in ∂ F , with opposite induced orientations. Because `′ bounds a
surface disjoint from ∂ F , each component of 6 \ ∂ F must also have at most two
boundary loops on ∂ F .

If a component C of 6 \ ∂ F has a single boundary component, this loop is
homology trivial in 6. Attaching a boundary parallel surface to F removes this
loop so minimality of ∂ F implies that each component has two boundary loops.

If C has two boundary loops (with opposite induced orientations) then these
loops determine the same element of the homology of 6. Because 6 is connected,
this implies that any two loops of ∂ F (with their induced orientations) determine
the same element of the homology. Thus the element of the homology determined
by ∂ F is of the form kβ where k is the number of boundary components of F .

By Lemma 6, ∂ F determines a primitive element of the homology of 6, so k
must be 1. In other words, the boundary of F is connected and ∂ F determines an
element of H∞. By construction, ∂ F is disjoint from a loop `′ that is disjoint from
`. Thus the vertex v ∈ C(6) determined by ` is distance at most 2 from H∞. �
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