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In the curve complex for a surface, a handlebody set is the set of loops that
bound properly embedded disks in a given handlebody bounded by the sur-
face. A boundary set is the set of nonseparating loops in the curve complex
that bound two-sided, properly embedded surfaces. For a Heegaard split-
ting, the distance between the boundary sets of the handlebodies is zero
if and only if the ambient manifold contains a nonseparating, two sided
incompressible surface. We show that every vertex in the curve complex is
within two edges of a point in the boundary set.

1. Introduction

The curve complex C(X) for a compact, connected, closed, orientable surface X
is the simplicial complex whose vertices are loops (isotopy classes of essential,
simple closed curves) in ¥ and whose simplices correspond to sets of pairwise
disjoint loops in X. Given a handlebody H and a homeomorphism ¢ : ¥ — 0H,
we can define the following subsets of C(X).

The handlebody set H is the set of loops that bound properly embedded (essen-
tial) disks in H. The genus g boundary set H8 is the set of nonseparating loops
such that each bounds a properly embedded, two-sided, incompressible, genus-g
surface in H. Note that H” is a proper subset of H, specifically the set of all the
nonseparating loops in H. Define the boundary set to be the union

H> = H?.
8=0
We will say that a set A of vertices in C(X) is k-dense if every vertex in C(X) is
within k edges of a point in A.

Theorem 1. If ¥ has genus 3 or greater, then H* is 2-dense in C(Z).
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The proof presented here does not work for genus two surfaces. However,
Schleimer has shown in [2005] that the orbit of a vertex of C(X) under the action
of the Torelli group is 5-dense. This implies that for a genus two handlebody, H*
18 n-dense for some n < 5.

In contrast to H*, a fixed genus boundary set H® has a geometric structure much
closer to H, which is not k-dense for any k. This is demonstrated by the following
two Lemmas, the first of which is a corollary of Conclusion III.15 in [Jaco 1980]
and the second of which follows from a Theorem of Scharlemann [2006].

Lemma 2. If ¥ has genus three or greater and v € H then
div,H®) =1

for every g > 0. If ¥ has genus two then
div,H%) > 1

for every g.

Lemma 3. For g > 1, the set H8 is disjoint from H and contained in a 2g neigh-
borhood of H.

For this paper, every 3-manifold will be compact, connected, closed and ori-
entable. A Heegaard splitting for such a 3-manifold M is a triple (X, H;, H>)
where ¥ C M is a compact, connected, closed, orientable surface and Hy, Hy C M
are handlebodies such that

3H1:E:8H2 and MZH]UHQ.

The inclusion maps from d H; and d H, onto ¥ determine handlebody sets H; and
H,, respectively. The distance of the Heegaard splitting, as defined by Hempel in
[2001] is the distance d(X) = d (Hy, H;) between the two handlebody sets.

The inclusion maps also determine boundary sets HS, Hg, H{°, H5°, allowing
us to generalize this distance to the (g, h)-distance

d*"(£) = d(Hf, H})
and the boundary distance
d*(X) =dH{°, HY).

The set H* is precisely the set of vertices representing simple closed curves
whose homology class is nontrivial in X, but trivial in H. For a Heegaard splitting,
it encodes homology information about the ambient manifold. In particular, the
boundary distance determines precisely when a manifold has infinite homology
(and therefore a nonseparating, incompressible surface).
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Lemma 4. The following are equivalent:
(1) the first homology group of M is infinite;
(2) M contains a nonseparating, two sided, closed incompressible surface;
3)d*®(X)=0and
4)d%>® () =0.

The proof is given in Section 2. The equivalence of (1) and (2) is well known,
but we give a very simple, geometric proof via the boundary set. Theorem 1 is
proved in Section 3.

For any Heegaard splitting (¥, H;, H,) of a non-Haken 3-manifold, Lemma 4
implies that the boundary set in C(X) determined by H, must be completely dis-
joint from the boundary set for H;. Hempel showed that there are handlebody sets
that are arbitrarily far apart in the curve complex. The same is not true for boundary
sets. In particular, Theorem 1 implies that for any Heegaard splitting (X, H;, H>)
of genus 3 or greater, d*°(X) is equal to either 0, 1 or 2. For non-Haken manifolds,
we have the following.

Corollary 5. For any Heegaard splitting (¥, Hy, H») of a non-Haken 3-manifold
M, d>°(X) is equal to 1 or 2.

2. Nonseparating surfaces

The following Lemma will not be used until Section 3, but the method of proof
gives a good introduction to the proof of Lemma 7. Recall that an element o of
a Z module G is called primitive if there is no € G such that o = kf for some
k # £1.

Lemma 6. Let €1, ..., ¢y be pairwise disjoint, essential loops in the boundary of
a genus-g handlebody H with g > k. Then there is a properly embedded, nonsepa-
rating surface F' C H such that O F is disjoint from each { j and the homology class
defined by 0 F in H(X) is primitive.

Proof. Let Dy, ..., Dg be a system of disks for H, that is, a collection of properly
embedded, essential disks whose complement in H is a single ball. Orient the
boundaries of the disks and the loops {1, ..., £, then form the matrix A = (a;;)
such that g;; is the algebraic intersection number of D; and £;.

If we replace one of the disks in the system by a disk slide, the matrix for the
new system of disks can be constructed from A by adding or subtracting one row
from the other. Thus we can perform elementary row operations on A by choosing
new systems of disks for H. In particular, we can make A upper triangular.

Because A has more rows than columns, if A is upper triangular then the bottom
row consists of all zeros. In other words, the disk D, has algebraic intersection 0
with each loop ¢;.
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If D, intersects the loop £, there must be a pair of adjacent intersections in
¢1 with opposite orientations. By attaching a band from 9D, to itself, along the
arc of the loop £;, we can form a new surface F; whose boundary (consisting of
two loops) has algebraic intersection zero with each loop £, but whose geometric
intersection number with the collection of curves £1, ..., ¢ is strictly lower than
that of D,. The surface F; is two sided because the intersections have opposite
orientations and nonseparating because D, is nonseparating.

If 0 F| intersects €1, we can form a new surface F, by attaching a band, and so
on. Continuing in this manner for each £;, we form a surface F which is properly
embedded, two-sided, nonseparating and such that 9 F' is disjoint from each ¢;.

Attaching a band to the boundary of F; does not change the homology class of
the boundary, so the homology class of 0 F is equal to the class of d D,. Because
0Dy is represented by a connected loop, its homology class is primitive, as is the
homology class of 9 F'. 0

We will now use the idea of attaching bands to eliminate intersections to prove
the implication (1) = (4) of Lemma 4.

Lemma 7. If the first homology of M is infinite then d %> (X) = 0.

Proof. Let Dy, ..., D, be a system of disks for H; and Dj, ..., Dz”, be a system of
disk for H,. Orient the boundaries of both systems of disks. Let A be the matrix
of algebraic intersection numbers of the boundaries. Because the first homology is
infinite, the determinant of A must equal zero.

As in the last proof, we can perform row operations on A by taking disk slides
of the disks Dy, ..., D,. Because the determinant of A is zero, some sequence of
disk slides will leave A with all zeros in the bottom row. Thus after a sequence of
disk slides, we can assume D, has algebraic intersection 0 with each D}.

By attaching bands to the boundary of D, as in the proof of Lemma 6, we can
form a properly embedded, two sided, nonseparating surface F' whose boundary is
disjoint from D7, ..., Dg,. Thus each boundary component of F' bounds a disk in
H,. The union of F and these disks is a properly embedded, two sided, nonsepa-
rating closed surface in M.

Recall that F' was constructed from D, by attaching bands to its boundary.
The last band defines a boundary compression for F corresponding to an isotopy
pushing this last band into H,. After this isotopy, the second to last band defines
a second isotopy, and so on. The final result is a surface isotopic to F which
intersects H; in a disk isotopic to D,.

The intersection of this surface with H, is orientable, two-sided and nonsepa-
rating because F has these properties. Thus 9 Dy is in both H(l) and H3® so

d%®(2) =dH?, H) = 0. 0
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Proof of Lemma 4. Lemma 7 implies that for any Heegaard splitting (X, H;, H>),
d(H), H) =0

so (1) = (4). Because H(1) is contained in H{®, (4) = (3) is immediate.

Let (X, Hy, H>) be a Heegaard splitting for M. If d*°(X) = O then there is a
simple closed curve £ C X such that £ bounds two-sided, nonseparating properly
embedded surfaces F C H; and F’ C H,. The union FU F” is a two-sided, nonsep-
arating closed surface embedded in M. Compressing F'U F’ to either side produces
at least one new two-sided, nonseparating surface. By compressing repeatedly, we
eventually find a closed, nonseparating, two-sided incompressible surface in M.
Thus (3) = (2).

The final step, (2) = (1), is a classical result. If M contains a two-sided, non-
separating, closed surface S C M, let p be a point in S. There is a path

a:[0,1] > M
from p to itself that does not cross S. The homology class of « has infinite order
so the first homology of M is infinite. 0
3. Density

Proof of Theorem 1. We will prove the following: Let ¢ be a loop in 0 H and
assume the genus of H is at least 3. Then there is an essential loop ¢’ disjoint from
£ and a properly embedded, two-sided, nonseparating surface F such that 9 F is a
single, nonseparating loop disjoint from ¢'.

By Lemma 6, there is a properly embedded surface F” C H such that d F” is
disjoint from £ and defines a primitive element of the homology. Of all the properly
embedded surfaces with boundary disjoint from ¢ and homologous to d F”, let F’
be one with minimal number of boundary components. Each component of 9 F’
has an orientation induced by F’ and thus defines an element of the first homology
of .

For each component C of ¥\ (¢UdF’), an orientation for a loop in dC induces
an orientation of C. Assume two components of 3C come from loops of 3 F’ and
induce the same orientation of C. Because the induced orientations agree, adding
a band between them produces a new orientable surface with fewer boundary com-
ponents, but homologous boundary. Thus the minimality assumption implies that
each component C of ¥ \ (¢ U3 F’) has at most one boundary loop coming from
d F’ inducing each possible orientation. Thus it has at most two boundary loops
coming from 9 F’ and these induce opposite orientations on C.

Assume for contradiction each component of X \ (£ U dF’) is planar. Each
component that is disjoint from £ has exactly two boundary components. A planar
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surface with two boundary loops is an annulus so each component disjoint from ¢
must be an annulus. There are either two components of ¥ \ (£ U dF’) with one
boundary loop each on £, or one component with two boundary loops on £. In the
first case, the two components are pairs of pants or annuli, while in the second,
the component is a four punctured sphere or a pair of pants. The union of such
components and a collection of annuli is a genus-one or genus-two surface. This
contradicts the assumption that X has genus at least three, so we conclude that
some component must be nonplanar.

Let C be a nonplanar component. There is a simple closed curve £ C C such
that ¢’ separates a once-punctured torus from C. In I, the loop ¢ separates a once-
punctured torus that contains no components of d F’. Let F be a surface whose
boundary is homologous to F’, disjoint from the once-punctured torus bounded
by ¢’ and such that the number of boundary components of F’ is minimal over all
such surfaces.

Once again, each component of ¥ \ (¢/ U dF) has at most two boundary com-
ponents on loops in 3 F, with opposite induced orientations. Because ¢’ bounds a
surface disjoint from 9 F, each component of X \ 9 F must also have at most two
boundary loops on 9 F.

If a component C of ¥ \ 0F has a single boundary component, this loop is
homology trivial in X. Attaching a boundary parallel surface to F' removes this
loop so minimality of d F implies that each component has two boundary loops.

If C has two boundary loops (with opposite induced orientations) then these
loops determine the same element of the homology of . Because X is connected,
this implies that any two loops of 0 F' (with their induced orientations) determine
the same element of the homology. Thus the element of the homology determined
by 0 F is of the form kB where k is the number of boundary components of F.

By Lemma 6, 0 F determines a primitive element of the homology of X, so k
must be 1. In other words, the boundary of F' is connected and d F determines an
element of H*. By construction, d F is disjoint from a loop £’ that is disjoint from
£. Thus the vertex v € C(X) determined by ¢ is distance at most 2 from H*. [J
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