Pacific Journal of Mathematics

GENERALIZED HANDLEBODY SETS AND NON-HAKEN 3-MANIFOLDS

JESSE EDWARD JOHNSON AND TERK PATEL

Volume 235 No. 1 March 2008

GENERALIZED HANDLEBODY SETS AND NON-HAKEN 3-MANIFOLDS

JESSE EDWARD JOHNSON AND TERK PATEL

In the curve complex for a surface, a handlebody set is the set of loops that bound properly embedded disks in a given handlebody bounded by the surface. A boundary set is the set of nonseparating loops in the curve complex that bound two-sided, properly embedded surfaces. For a Heegaard splitting, the distance between the boundary sets of the handlebodies is zero if and only if the ambient manifold contains a nonseparating, two sided incompressible surface. We show that every vertex in the curve complex is within two edges of a point in the boundary set.

1. Introduction

The curve complex $C(\Sigma)$ for a compact, connected, closed, orientable surface Σ is the simplicial complex whose vertices are loops (isotopy classes of essential, simple closed curves) in Σ and whose simplices correspond to sets of pairwise disjoint loops in Σ . Given a handlebody H and a homeomorphism $\phi: \Sigma \to \partial H$, we can define the following subsets of $C(\Sigma)$.

The handlebody set \mathbf{H} is the set of loops that bound properly embedded (essential) disks in H. The genus g boundary set \mathbf{H}^g is the set of nonseparating loops such that each bounds a properly embedded, two-sided, incompressible, genus-g surface in H. Note that \mathbf{H}^0 is a proper subset of \mathbf{H} , specifically the set of all the nonseparating loops in \mathbf{H} . Define the boundary set to be the union

$$\mathbf{H}^{\infty} = \bigcup_{g>0} \mathbf{H}^g.$$

We will say that a set A of vertices in $C(\Sigma)$ is k-dense if every vertex in $C(\Sigma)$ is within k edges of a point in A.

Theorem 1. If Σ has genus 3 or greater, then \mathbf{H}^{∞} is 2-dense in $C(\Sigma)$.

MSC2000: 57M50.

Keywords: curve complex, non-Haken 3-manifold. Research supported by NSF MSPRF grant 0602368.

The proof presented here does not work for genus two surfaces. However, Schleimer has shown in [2005] that the orbit of a vertex of $C(\Sigma)$ under the action of the Torelli group is 5-dense. This implies that for a genus two handlebody, \mathbf{H}^{∞} is n-dense for some n < 5.

In contrast to \mathbf{H}^{∞} , a fixed genus boundary set \mathbf{H}^g has a geometric structure much closer to \mathbf{H} , which is not k-dense for any k. This is demonstrated by the following two Lemmas, the first of which is a corollary of Conclusion III.15 in [Jaco 1980] and the second of which follows from a Theorem of Scharlemann [2006].

Lemma 2. If Σ has genus three or greater and $v \in \mathbf{H}$ then

$$d(v, \mathbf{H}^g) = 1$$

for every g > 0. If Σ has genus two then

$$d(v, \mathbf{H}^{g}) > 1$$

for every g.

Lemma 3. For $g \ge 1$, the set \mathbf{H}^g is disjoint from \mathbf{H} and contained in a 2g neighborhood of \mathbf{H} .

For this paper, every 3-manifold will be compact, connected, closed and orientable. A *Heegaard splitting* for such a 3-manifold M is a triple (Σ, H_1, H_2) where $\Sigma \subset M$ is a compact, connected, closed, orientable surface and $H_1, H_2 \subset M$ are handlebodies such that

$$\partial H_1 = \Sigma = \partial H_2$$
 and $M = H_1 \cup H_2$.

The inclusion maps from ∂H_1 and ∂H_2 onto Σ determine handlebody sets \mathbf{H}_1 and \mathbf{H}_2 , respectively. The *distance* of the Heegaard splitting, as defined by Hempel in [2001] is the distance $d(\Sigma) = d(\mathbf{H}_1, \mathbf{H}_2)$ between the two handlebody sets.

The inclusion maps also determine boundary sets \mathbf{H}_1^g , \mathbf{H}_2^h , \mathbf{H}_1^∞ , \mathbf{H}_2^∞ , allowing us to generalize this distance to the (g,h)-distance

$$d^{g,h}(\Sigma) = d(\mathbf{H}_1^g, \mathbf{H}_2^h)$$

and the boundary distance

$$d^{\infty}(\Sigma) = d(\mathbf{H}_1^{\infty}, \mathbf{H}_2^{\infty}).$$

The set \mathbf{H}^{∞} is precisely the set of vertices representing simple closed curves whose homology class is nontrivial in Σ , but trivial in H. For a Heegaard splitting, it encodes homology information about the ambient manifold. In particular, the boundary distance determines precisely when a manifold has infinite homology (and therefore a nonseparating, incompressible surface).

Lemma 4. The following are equivalent:

- (1) the first homology group of M is infinite;
- (2) M contains a nonseparating, two sided, closed incompressible surface;
- (3) $d^{\infty}(\Sigma) = 0$ and
- $(4) d^{0,\infty}(\Sigma) = 0.$

The proof is given in Section 2. The equivalence of (1) and (2) is well known, but we give a very simple, geometric proof via the boundary set. Theorem 1 is proved in Section 3.

For any Heegaard splitting (Σ, H_1, H_2) of a non-Haken 3-manifold, Lemma 4 implies that the boundary set in $C(\Sigma)$ determined by H_2 must be completely disjoint from the boundary set for H_1 . Hempel showed that there are handlebody sets that are arbitrarily far apart in the curve complex. The same is not true for boundary sets. In particular, Theorem 1 implies that for any Heegaard splitting (Σ, H_1, H_2) of genus 3 or greater, $d^{\infty}(\Sigma)$ is equal to either 0, 1 or 2. For non-Haken manifolds, we have the following.

Corollary 5. For any Heegaard splitting (Σ, H_1, H_2) of a non-Haken 3-manifold $M, d^{\infty}(\Sigma)$ is equal to 1 or 2.

2. Nonseparating surfaces

The following Lemma will not be used until Section 3, but the method of proof gives a good introduction to the proof of Lemma 7. Recall that an element α of a **Z** module *G* is called *primitive* if there is no $\beta \in G$ such that $\alpha = k\beta$ for some $k \neq \pm 1$.

Lemma 6. Let ℓ_1, \ldots, ℓ_k be pairwise disjoint, essential loops in the boundary of a genus-g handlebody H with g > k. Then there is a properly embedded, nonseparating surface $F \subset H$ such that ∂F is disjoint from each ℓ_j and the homology class defined by ∂F in $H(\Sigma)$ is primitive.

Proof. Let D_1, \ldots, D_g be a system of disks for H, that is, a collection of properly embedded, essential disks whose complement in H is a single ball. Orient the boundaries of the disks and the loops ℓ_1, \ldots, ℓ_k , then form the matrix $A = (a_{ij})$ such that a_{ij} is the algebraic intersection number of D_i and ℓ_j .

If we replace one of the disks in the system by a disk slide, the matrix for the new system of disks can be constructed from A by adding or subtracting one row from the other. Thus we can perform elementary row operations on A by choosing new systems of disks for H. In particular, we can make A upper triangular.

Because A has more rows than columns, if A is upper triangular then the bottom row consists of all zeros. In other words, the disk D_g has algebraic intersection 0 with each loop ℓ_i .

If D_g intersects the loop ℓ_1 , there must be a pair of adjacent intersections in ℓ_1 with opposite orientations. By attaching a band from ∂D_g to itself, along the arc of the loop ℓ_1 , we can form a new surface F_1 whose boundary (consisting of two loops) has algebraic intersection zero with each loop ℓ_j , but whose geometric intersection number with the collection of curves ℓ_1, \ldots, ℓ_k is strictly lower than that of D_g . The surface F_1 is two sided because the intersections have opposite orientations and nonseparating because D_g is nonseparating.

If ∂F_1 intersects ℓ_1 , we can form a new surface F_2 by attaching a band, and so on. Continuing in this manner for each ℓ_j , we form a surface F which is properly embedded, two-sided, nonseparating and such that ∂F is disjoint from each ℓ_j .

Attaching a band to the boundary of F_i does not change the homology class of the boundary, so the homology class of ∂F is equal to the class of ∂D_g . Because ∂D_g is represented by a connected loop, its homology class is primitive, as is the homology class of ∂F .

We will now use the idea of attaching bands to eliminate intersections to prove the implication $(1) \Rightarrow (4)$ of Lemma 4.

Lemma 7. If the first homology of M is infinite then $d^{0,\infty}(\Sigma) = 0$.

Proof. Let D_1, \ldots, D_g be a system of disks for H_1 and D'_1, \ldots, D'_g be a system of disk for H_2 . Orient the boundaries of both systems of disks. Let A be the matrix of algebraic intersection numbers of the boundaries. Because the first homology is infinite, the determinant of A must equal zero.

As in the last proof, we can perform row operations on A by taking disk slides of the disks D_1, \ldots, D_g . Because the determinant of A is zero, some sequence of disk slides will leave A with all zeros in the bottom row. Thus after a sequence of disk slides, we can assume D_g has algebraic intersection 0 with each D'_i .

By attaching bands to the boundary of D_g as in the proof of Lemma 6, we can form a properly embedded, two sided, nonseparating surface F whose boundary is disjoint from D'_1, \ldots, D'_g . Thus each boundary component of F bounds a disk in H_2 . The union of F and these disks is a properly embedded, two sided, nonseparating closed surface in M.

Recall that F was constructed from D_g by attaching bands to its boundary. The last band defines a boundary compression for F corresponding to an isotopy pushing this last band into H_2 . After this isotopy, the second to last band defines a second isotopy, and so on. The final result is a surface isotopic to F which intersects H_1 in a disk isotopic to D_g .

The intersection of this surface with H_2 is orientable, two-sided and nonseparating because F has these properties. Thus ∂D_g is in both \mathbf{H}_1^0 and \mathbf{H}_2^∞ so

$$d^{0,\infty}(\Sigma) = d(\mathbf{H}_1^0, \mathbf{H}_2^\infty) = 0.$$

Proof of Lemma 4. Lemma 7 implies that for any Heegaard splitting (Σ, H_1, H_2) ,

$$d(\mathbf{H}_1^0, \mathbf{H}_2^\infty) = 0$$

so (1) \Rightarrow (4). Because \mathbf{H}_1^0 is contained in \mathbf{H}_1^{∞} , (4) \Rightarrow (3) is immediate.

Let (Σ, H_1, H_2) be a Heegaard splitting for M. If $d^{\infty}(\Sigma) = 0$ then there is a simple closed curve $\ell \subset \Sigma$ such that ℓ bounds two-sided, nonseparating properly embedded surfaces $F \subset H_1$ and $F' \subset H_2$. The union $F \cup F'$ is a two-sided, nonseparating closed surface embedded in M. Compressing $F \cup F'$ to either side produces at least one new two-sided, nonseparating surface. By compressing repeatedly, we eventually find a closed, nonseparating, two-sided incompressible surface in M. Thus $(3) \Rightarrow (2)$.

The final step, $(2) \Rightarrow (1)$, is a classical result. If M contains a two-sided, non-separating, closed surface $S \subset M$, let p be a point in S. There is a path

$$\alpha:[0,1]\to M$$

from p to itself that does not cross S. The homology class of α has infinite order so the first homology of M is infinite.

3. Density

Proof of Theorem 1. We will prove the following: Let ℓ be a loop in ∂H and assume the genus of H is at least 3. Then there is an essential loop ℓ' disjoint from ℓ and a properly embedded, two-sided, nonseparating surface F such that ∂F is a single, nonseparating loop disjoint from ℓ' .

By Lemma 6, there is a properly embedded surface $F'' \subset H$ such that $\partial F''$ is disjoint from ℓ and defines a primitive element of the homology. Of all the properly embedded surfaces with boundary disjoint from ℓ and homologous to $\partial F''$, let F' be one with minimal number of boundary components. Each component of $\partial F'$ has an orientation induced by F' and thus defines an element of the first homology of Σ .

For each component C of $\Sigma \setminus (\ell \cup \partial F')$, an orientation for a loop in ∂C induces an orientation of C. Assume two components of ∂C come from loops of $\partial F'$ and induce the same orientation of C. Because the induced orientations agree, adding a band between them produces a new orientable surface with fewer boundary components, but homologous boundary. Thus the minimality assumption implies that each component C of $\Sigma \setminus (\ell \cup \partial F')$ has at most one boundary loop coming from $\partial F'$ inducing each possible orientation. Thus it has at most two boundary loops coming from $\partial F'$ and these induce opposite orientations on C.

Assume for contradiction each component of $\Sigma \setminus (\ell \cup \partial F')$ is planar. Each component that is disjoint from ℓ has exactly two boundary components. A planar

surface with two boundary loops is an annulus so each component disjoint from ℓ must be an annulus. There are either two components of $\Sigma \setminus (\ell \cup \partial F')$ with one boundary loop each on ℓ , or one component with two boundary loops on ℓ . In the first case, the two components are pairs of pants or annuli, while in the second, the component is a four punctured sphere or a pair of pants. The union of such components and a collection of annuli is a genus-one or genus-two surface. This contradicts the assumption that Σ has genus at least three, so we conclude that some component must be nonplanar.

Let C be a nonplanar component. There is a simple closed curve $\ell' \subset C$ such that ℓ' separates a once-punctured torus from C. In Σ , the loop ℓ' separates a once-punctured torus that contains no components of $\partial F'$. Let F be a surface whose boundary is homologous to F', disjoint from the once-punctured torus bounded by ℓ' and such that the number of boundary components of F' is minimal over all such surfaces.

Once again, each component of $\Sigma \setminus (\ell' \cup \partial F)$ has at most two boundary components on loops in ∂F , with opposite induced orientations. Because ℓ' bounds a surface disjoint from ∂F , each component of $\Sigma \setminus \partial F$ must also have at most two boundary loops on ∂F .

If a component C of $\Sigma \setminus \partial F$ has a single boundary component, this loop is homology trivial in Σ . Attaching a boundary parallel surface to F removes this loop so minimality of ∂F implies that each component has two boundary loops.

If C has two boundary loops (with opposite induced orientations) then these loops determine the same element of the homology of Σ . Because Σ is connected, this implies that any two loops of ∂F (with their induced orientations) determine the same element of the homology. Thus the element of the homology determined by ∂F is of the form $k\beta$ where k is the number of boundary components of F.

By Lemma 6, ∂F determines a primitive element of the homology of Σ , so k must be 1. In other words, the boundary of F is connected and ∂F determines an element of \mathbf{H}^{∞} . By construction, ∂F is disjoint from a loop ℓ' that is disjoint from ℓ . Thus the vertex $v \in C(\Sigma)$ determined by ℓ is distance at most 2 from \mathbf{H}^{∞} . \square

References

[Hempel 2001] J. Hempel, "3-manifolds as viewed from the curve complex", *Topology* **40**:3 (2001), 631–657. MR 2002f:57044 Zbl 0985.57014

[Jaco 1980] W. Jaco, *Lectures on three-manifold topology*, CBMS Regional Conference Series in Mathematics **43**, American Mathematical Society, Providence, R.I., 1980. MR 81k:57009 Zbl 0433.57001

[Scharlemann 2006] M. Scharlemann, "Proximity in the curve complex: boundary reduction and bicompressible surfaces", *Pacific J. Math.* **228**:2 (2006), 325–348. MR 2008c:57035 Zbl 05190398

[Schleimer 2005] S. Schleimer, "Notes on the complex of curves", lecture notes, 2005, Available at http://www.math.rutgers.edu/~saulsch/math.html.

Received July 11, 2007. Revised September 27, 2007.

JESSE EDWARD JOHNSON MATHEMATICS DEPARTMENT YALE UNIVERSITY PO BOX 208283 NEW HAVEN, CT 06520-8283 UNITED STATES

jessee.johnson@yale.edu http://math.yale.edu/~jj327/

TERK PATEL
18 DUMAS STREET
PONDICHERRY - 605001
INDIA
terkpatel@yahoo.com