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We study the space of nearly Kähler structures on compact 6-dimensional
manifolds. In particular, we prove that the space of infinitesimal defor-
mations of a strictly nearly Kähler structure (with scalar curvature scal)
modulo the group of diffeomorphisms is isomorphic to the space of prim-
itive coclosed (1, 1)-eigenforms of the Laplace operator for the eigenvalue
2 scal/5.

1. Introduction

A nearly Kähler manifold is an almost Hermitian manifold (M, g, J ) with the
property that (∇X J )X = 0 for all tangent vectors X , where ∇ denotes the Levi-
Civita connection of g. A nearly Kähler manifold is called strictly nearly Kähler if
(∇X J ) is nonzero for every nonzero tangent vector X . Besides Kähler manifolds,
there are two main families of examples of compact nearly Kähler manifolds:
naturally reductive 3-symmetric spaces, which are classified by A. Gray and J.
Wolf [1968]; and twistor spaces over compact quaternion-Kähler manifolds with
positive scalar curvature that are endowed with the nonintegrable canonical almost
complex structure (see [Nagy 2002]).

A nearly Kähler manifold of dimension 4 is automatically a Kähler surface,
and the only known examples of non-Kähler compact nearly Kähler manifolds in
dimension 6 are the 3-symmetric spaces G2/SU3, SU3/S1

× S1, Sp2/S1
× Sp1,

and Sp1 × Sp1 × Sp1/Sp1. Moreover, J.-B. Butruille [2005] has recently shown
that there are no other homogeneous examples in dimension 6.

On the other hand, using previous results of R. Cleyton and A. Swann on G-
structures with skew-symmetric intrinsic torsion, Nagy [2002] proved that every
compact simply connected nearly Kähler manifold M is isometric to a Riemannian
product M1 × · · · × Mk , such that for each i , Mi is a nearly Kähler manifold
belonging to the following list: Kähler manifolds, naturally reductive 3-symmetric
spaces, twistor spaces over compact quaternion-Kähler manifolds with positive
scalar curvature, and 6-dimensional nearly Kähler manifolds.
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It is thus natural to concentrate on the 6-dimensional case, especially because
in this dimension non-Kähler nearly Kähler manifolds have several interesting fea-
tures: they carry real Killing spinors (and thus are automatically Einstein with
positive scalar curvature) and they are defined by a SU3 structure whose intrinsic
torsion is skew-symmetric. These manifolds were intensively studied by A. Gray
in the 70’s, thus motivating the following

Definition. A compact strictly nearly Kähler manifold of dimension 6 is called a
Gray manifold.

Our main goal is to study the deformation problem for Gray manifolds. We
consider simultaneous deformations of the metric and of the almost complex struc-
ture. Indeed M. Verbitsky [2007] proved that on a 6-dimensional almost complex
manifold there is up to constant rescaling at most one strictly nearly Kähler metric.
Conversely it is well known (see [Baum et al. 1991] or Section 4 below) that on
a manifold (M6, g) that is not locally isometric to the standard sphere, there is
at most one compatible almost complex structure J such that (M, g, J ) is nearly
Kähler.

We start by studying deformations of SU3 structures and then use the characteri-
zation of Gray manifolds as SU3 structures satisfying a certain exterior differential
system in order to compute the space of infinitesimal deformations of a given
Gray structure modulo diffeomorphisms. In particular, we prove that this space
is isomorphic to some eigenspace of the Laplace operator acting on 2-forms (see
Theorem 4.1 for a precise statement).

2. Algebraic preliminaries

Let V denote the standard 6-dimensional SU3 representation space, which comes
equipped with the Euclidean product g ∈ SymV ∗, the complex structure J ∈

End(V ), the fundamental 2-form ω( · , ·) = g(J · , ·) ∈ 32V ∗, and the complex
volume element ψ+

+ iψ−
∈3(3,0)V ∗.

These objects satisfy the compatibility relations ω ∧ψ±
= 0 and ψ+

∧ψ−
=

(2/3)ω3
= 4dv, where dv denotes the volume form of the metric g. It is easy to

check that ψ+ and ψ− are related by

(1) ψ−(X, Y, Z) := −ψ+(J X, Y, Z).

We identify elements of V and V ∗ using the isomorphism induced by g. For
any orthonormal basis {ei } of V adapted to J (that is, J (e2i−1)= e2i ) we have

ω = e12
+ e34

+ e56,

ψ+
= e135

− e146
− e236

− e245, ψ−
= e136

+ e145
+ e235

− e246.
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The following formulas are straightforward (it is enough to check them for X = e1

and use the transitivity of the SU3 action on spheres):

ψ+
∧ (X yψ+)= X ∧ω2, ψ+

∧ (X yψ−)= −J X ∧ω2,(2)

ψ−
∧ (X yψ+)= J X ∧ω2, ψ−

∧ (X yψ−)= X ∧ω2.(3)

Let 3 :3pV →3p−2V denote the metric adjoint of the wedge product with ω,
that is, 3=

1
2

∑
i Jeiyeiy. It is easy to check that

(4) 3(X yψ±)= 0 and 3(X ∧ψ±)= J X yψ± for all X ∈ V

and

(5) 3(τ ∧ω)= ω∧3τ + (3 − p)τ for all τ ∈3pV .

We next describe the decomposition into irreducible summands of 32V and
33V . We use the notation 3(p,q)+(q,p)V for the projection of 3(p,q)V onto the
real space 3p+q V . Then

32V = (3
(1,1)
0 V ⊕ Rω)⊕3(2,0)+(0,2)V,

where the first two summands consist of J -invariant and the last of J -antiinvariant
forms. Here 3(1,1)0 V is the space of primitive (1, 1)-forms, that is, the kernel of
the contraction map3. The map ξ 7→ ξyψ+ defines an isomorphism of the second
summand 3(2,0)+(0,2)V with V . For 3-forms we have the irreducible decomposi-
tion

(6) 33V = (31V ∧ω)⊕3(3,0)+(0,3)V ⊕3
(2,1)+(1,2)
0 V .

The second summand3(3,0)+(0,3)V is 2-dimensional and spanned by the formsψ±.
The third summand 3(2,1)+(1,2)0 V is 12-dimensional and can be identified with the
space of symmetric endomorphisms of V anticommuting with J . Because of the
Schur lemma, the map given by taking the wedge product with ω vanishes on the
last two summands.

An endomorphism A of V (not necessarily skew-symmetric) acts on p-forms
by the formula

(7) (A?u)(X1, . . . , X p) := −

p∑
i=1

u(X1, . . . , A(X i ), . . . , X p).

A more convenient way of writing this action is

(8) A?u = −

p∑
i=1

A∗(ei )∧ ei y u,
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where A∗ denotes the metric adjoint of A. Taking A = J , we obtain the form
spaces 3(p,q)+(q,p)V as eigenspaces of (J?)2 for the eigenvalues −(p − q)2. For
example, J?ϕ = 0 for any 2-form ϕ ∈3(1,1)V .

Let Sym−V denote the space of symmetric endomorphisms anticommuting with
J . This space is clearly invariant by composition with J . The map S 7→ S?ψ+,
with S ∈ Sym−V , defines an isomorphism of SU(3)-representations

Sym−V ∼=3
(2,1)+(1,2)
0 V,

showing in particular that Sym−V is irreducible. Taking (1) into account, we re-
mark that for S ∈ Sym−V we have S?ψ+

= (J S)?ψ−. Notice that tr(S)= 0 for all
S ∈ Sym−V .

Let h be any skew-symmetric endomorphism anticommuting with J . Then the
map h 7→ g(h · , ·) identifies the space of skew-symmetric endomorphism anticom-
muting with J with3(2,0)+(0,2)V . Using the isomorphism ξ 7→ ξyψ+ we can state
this as

Lemma 2.1. An endomorphism F of V anticommuting with J can be written in a
unique way F = S +ψ+

ξ for some S ∈ Sym−V and ξ ∈ V , where ψ+

ξ denotes the
skew-symmetric endomorphism of V defined by g(ψ+

ξ · , ·)= ψ+(ξ, · , ·).

Corresponding to the decomposition of 33V given in (6), we have

Lemma 2.2. An exterior 3-form u ∈33V can be written in a unique way

u = α∧ω+ λψ+
+µψ−

+ S?ψ+,

for some α ∈ V , λ,µ ∈ R, and S ∈ Sym−V . Its contraction with ω satisfies

(9) 3u = 2α.

Proof. The contraction map3 obviously vanishes on3(3,0)+(0,3)V ⊕3
(2,1)+(1,2)
0 V ,

so by (5) we have 3u =3(α∧ω)= 2α. �

The space of symmetric endomorphisms commuting with J is identified with
3(1,1)V via the map h 7→ϕ( · , ·) :=g(h J · , ·), which in particular maps the identity
of V to the fundamental formω. If ϕ is a (1, 1)-form with corresponding symmetric
endomorphism h, then h = h0 +(1/6) tr(h) id, where h0 denotes the trace-free part
of h. As a consequence of this formula and Schur’s Lemma we find that

(10) h?ψ+
=

1
6 tr(h) id?ψ+

= −
1
2 tr(h)ψ+

for all symmetric endomorphisms h commuting with J .
In the rest of this section we recall several properties and formulas related to the

Hodge ∗-operator, which we will use in later computations. We consider the scalar
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product 〈 · , ·〉 on 3k V characterized by the fact that the basis

{ei1 ∧ · · · ∧ eik | 1 ≤ i1 < · · ·< ik ≤ 6}

is orthonormal. With respect to this scalar product, the interior and exterior prod-
ucts are adjoint operators:

〈X yω, τ 〉 = 〈ω, X ∧ τ 〉 for all X ∈ V , ω ∈3k V , and τ ∈3k−1V .

We define the Hodge star operator ∗ :3k V →36−k V by

ω∧ ∗τ := 〈ω, τ 〉dv for all ω, τ ∈3k V ,

where dv = 1/6ω3 denotes the volume form (dv = e123456 in our notations). It is
well known that the following relations are satisfied:

(11) ∗ω =
1
2ω

2, 〈∗ω, ∗τ 〉 = 〈ω, τ 〉, ∗
2
= (−1)k on 3k V

From the expression of ψ+ and ψ− in any orthonormal basis {ei } we see that
∗ψ+

= ψ− and ∗ψ−
= −ψ+. For later use we compute the Hodge operator on

3
(2,1)+(1,2)
0 V , too. Let S ∈ Sym−V and α ∈ 3

(2,1)+(1,2)
0 V . We have α ∧ψ−

= 0,
whence

〈α, S?ψ+
〉dv

by (8)
= −

∑
i
〈α, S(ei )∧ ei yψ+

〉dv = −
∑

i
〈ei ∧ S(ei ) yα,ψ

+
〉dv

= (S?α)∧ ∗ψ+
= (S?α)∧ψ−

= S?(α∧ψ−)−α∧ (S?ψ−)

= −α∧ (S?ψ−)= 〈α, ∗(S?ψ−)〉dv,

where we used that ∗
2
= −1 on 3-forms to get the last equality. This shows that

(12) ∗(S?ψ−)= S?ψ+ and ∗ (S?ψ+)= −S?ψ−.

There are two other formulas which we will use later. Let ϕ0 be a primitive (1, 1)-
form, let ξ ∈ V , and let α ∈3pV then

(13) ∗(ϕ0 ∧ω)= −ϕ0 and ∗ (ξ ∧α)= (−1)pξy ∗α .

3. Deformations of SU3 structures

Let M be a smooth 6-dimensional manifold.

Definition. An SU3 structure on M is a reduction of the frame bundle of M to
SU3. It consists of a 5-tuple (g, J, ω,ψ+, ψ−), where g is a Riemannian metric,
J is a compatible almost complex structure, ω is the corresponding fundamental
2-form ω( · , ·)= g(J · , ·), and ψ+

+iψ− is a complex volume form of type (3, 0).
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If M carries an SU3 structure, each tangent space Tx M has an SU3 representation
isomorphic to the standard one, and so all algebraic results of the previous section
transfer verbatim to global results on M . In what remains, we will usually identify
tangent vectors and 1-forms on M using the isomorphism induced by the metric g.

Let (gt , Jt , ωt , ψ
+
t , ψ

−
t ) be a smooth family of SU3 structures on M . We omit

the index t when the above tensors are evaluated at t = 0, and we use the dot to
denote the derivative at t = 0 in the direction of t .

We start with the study of the 1-jet at t = 0 of the family of U3 structures
(gt , Jt , ωt).

Lemma 3.1. There exist a vector field ξ , a section S of Sym−M and a section h of
Sym+M (that is, symmetric endomorphism commuting with J ) such that

ġ = g((h + S) · , ·),(14)

J̇ = J S +ψ+

ξ ,(15)

ω̇ = ϕ+ ξ yψ+,(16)

where ϕ is the (1, 1)-form defined by ϕ( · , ·)= g(h J · , ·).

Proof. Let us write gt( · , ·) = g( ft · , ·), so that ġ( · , ·) = g( ḟ · , ·). We then
denote by h := (1/2)( ḟ − J ḟ J ) and S := (1/2)( ḟ + J ḟ J ) the J -invariant and
J -antiinvariant parts of ḟ , which are clearly g-symmetric endomorphisms. This
proves the first relation, which actually holds for deformations of almost Hermitian
structures in all dimensions.

Since J 2
t = − id T M , we see that J̇ anticommutes with J . Lemma 2.1 then

shows that J̇ = S̃ +ψ+

ξ for some section S̃ of Sym−M and some vector field ξ .
Differentiating the relation gt(Jt X, Y )+ gt(X, Jt Y )= 0 yields

0 = ġ(J X, Y )+ ġ(X, JY )+ g( J̇ X, Y )+ g(X, J̇ Y )= 2g(S J X, Y )+ 2g(S̃X, Y ),

thus proving S̃ = −S J = J S. The last formula follows directly from (14) and (15):

ω̇(X, Y )= ġ(J X, Y )+ g( J̇ X, Y )= g((h + S)J X, Y )+ g((J S +ψ+

ξ )X, Y )

= g(h J X, Y )+ (ξ yψ+)(X, Y ). �

This result actually says that the tangent space to the set of all U3 structures on
M at (g, J, ω) is parametrized by a section (ξ, S, ϕ) of the bundle T M⊕Sym−M⊕

3(1,1)M . We now go forward and describe the 1-jet of a family of SU3 structures.
Since the reduction from a U3 structure to a SU3 structure is given by a section
in some S1-bundle, it is not very surprising that the extra freedom in the tangent
space is measured by a real function (µ in the notation below):
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Lemma 3.2. The derivatives at t = 0 of ψ+
t and ψ−

t are given by

ψ̇+
= −ξ ∧ω+ λψ+

+µψ−
−

1
2 S?ψ+,(17)

ψ̇−
= −Jξ ∧ω−µψ+

+ λψ−
−

1
2 S?ψ−,(18)

where λ= (1/4) tr(h) and µ is some smooth function on M.

Proof. By Lemma 2.2, we can write

(19) ψ̇+
= α∧ω+ λψ+

+µψ−
+ Q?ψ

+,

for some functions λ and µ, a 1-form α, and some section Q of Sym−M .
The fact thatψ+

t defines — in addition to the U3 structure (gt , Jt)— a SU3 struc-
ture is characterized by the two equations

(20) gt(ψ
+

t , ψ
+

t )= 4 and ψ+

t (Jt X, Y, Z)= ψ+

t (X, Jt Y, Z).

We consider the symmetric endomorphism ft introduced above, which corresponds
to gt in the ground metric g. Since the identity acts on 3-forms by −3 id, the first
part of (20) reads g( ft?ψ

+
t , ψ

+
t )= −12. Differentiating this at t = 0 and using the

fact that ψ+ and S?ψ+ live in orthogonal components of 33 M , we obtain

0 = g( ḟ ?ψ+, ψ+)− 6g(ψ̇+, ψ+)= g((h + S)?ψ+, ψ+)− 24λ
by (10)

= 6 tr(h)− 24λ.

This determines the function λ. We next differentiate the identity ψ+
t ∧ωt = 0 at

t = 0. Since the wedge product with ω vanishes on ψ+ and ψ− and on Q?ψ
+

∈

3
(2,1)+(1,2)
0 M , we get

0 = ψ̇+
∧ω+ψ+

∧ ω̇ = α∧ω2
+ψ+

∧ (ϕ+ ξ yψ+)
by (2)
= (α+ ξ)∧ω2,

showing that α = −ξ . Finally, we differentiate the second part of (20) at t = 0:

ψ̇+(J X, Y, Z)+ψ+( J̇ X, Y, Z)= ψ̇+(X, JY, Z)+ψ+(X, J̇ Y, Z).

Using (15) and (19), this is equivalent to the expression

−(ξ ∧ω)(J X, Y, Z)+ (Q?ψ
+)(J X, Y, Z)+ψ+(J SX, Y, Z)+ψ+(ψ+

ξ X, Y, Z)

being skew-symmetric in X and Y . It is easy to check that

−(ξ ∧ω)(J X, Y, Z)+ψ+(ψ+

ξ X, Y, Z)= (Jξ ∧ω)(X, Y, Z);

therefore the above condition reduces to

(Q?ψ
+)(J X, Y, Z)+ψ+(J SX, Y, Z)= (Q?ψ

+)(X, JY, Z)+ψ+(X, J SY, Z).
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Using (7), this last relation becomes

(21) ψ+((2Q + S)J X, Y, Z)=ψ+(X, (2Q + S)JY, Z) for all X, Y, Z ∈ T M .

The set of all elements of the form 2Q + S satisfying this relation is a SU3-
invariant subspace of Sym−M . But Sym−M is irreducible, and not every element
of Sym−M satisfies (21) (to see this, just pick any element in Sym−M and check
directly). This shows that 2Q + S = 0.

Finally, (18) is a straightforward consequence of (17). We simply differentiate
the formula Jt?ψ

+
t = 3ψ−

t (obtained from (1)) at t = 0 and compute. �

Summarizing, we have shown that the tangent space to the set of all SU3 struc-
tures on M at (g, J, ω,ψ+, ψ−) is parametrized by a section (ξ, S, ϕ, µ) of the
vector bundle T M⊕Sym−M⊕3(1,1)M⊕RM , where RM is the trivial line bundle
over M .

Let α :32 M → T M denote the metric adjoint of the linear map

X ∈ T M 7→ X yψ+
∈32 M.

A simple check shows that

(22) α(X yψ+)= 2X, α(X yψ−)= −2J X, α(τ )= 0 for all τ ∈3(1,1)M .

Using the map α, we derive a useful relation between the components ψ̇+ and ω̇
of any infinitesimal SU3 deformation:

(23) 3ψ̇+ by (9)
= −2ξ

by (22)
= −α(ω̇).

4. Deformations of Gray manifolds

Definition. A Gray structure on a 6-dimensional manifold M is a SU3 structure
G := (g, J, ω,ψ+, ψ−) that satisfies the exterior differential system

(24)
dω = 3ψ+,

dψ−
= −2ω∧ω

A Gray manifold is a compact manifold endowed with a Gray structure.

Since SU3 ⊂ Spin6, every Gray manifold is automatically spin. It follows from
the work of Reyes-Carrión [1993] that a Gray manifold is a strictly nearly Kähler
6-dimensional compact manifold with scalar curvature scal = 30. We refer to
[Gray 1976] for an introduction to nearly Kähler geometry. We will use later
on the relations ∇Xω = X yψ+ and ∇Xψ

+
= −X ∧ ω, which show that ∇ω

and ∇ψ+ are SU3-invariant tensor fields on M . Moreover the second equation
immediately implies that ψ+ and ω are both eigenforms of the Laplace operator
for the eigenvalue 12.
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Note let M be a compact 6-dimensional manifold with some Gray structure G on
it. We denote by M the connected component of G in the space of Gray structures
on M . Let D be the group of diffeomorphisms of M isotopic to the identity. This
group acts on M by pull-back and the orbits of this action form the moduli space
of deformations of G.

The 1-jet of a curve of Gray structures (gt , Jt , ωt , ψ
+
t , ψ

−
t ) at G becomes at

the infinitesimal level a tuple γ := (ġ, J̇ , ω̇, ψ̇+, ψ̇−) determined by a section
(ξ, S, ϕ, µ) of the bundle T M ⊕ Sym−M ⊕3(1,1)M ⊕ RM via (15)–(18), which
satisfies the linearized system of (24), that is,

(25)
dω̇ = 3ψ̇+,

dψ̇− = −4ω̇∧ω.

The space of all tuples γ is called the virtual tangent space of M at G and is
denoted by TGM. The Lie algebra χ(M) of D maps to TGM by X 7→ L X G. Its
image, denoted by χG(M), is a vector space isomorphic to χ(M)/K(g), where
K(g) denotes the set of Killing vector fields on M with respect to g. The space
of infinitesimal Gray deformations of G is, by definition, the vector space quotient
TGM/χG(M).

The main purpose of this section is to precisely describe this space.

Theorem 4.1. Let G := (g, J, ω,ψ+, ψ−) be a Gray structure on a manifold M
such that (M, g) is not the round sphere S6. Then the space of infinitesimal defor-
mations of G is isomorphic to the eigenspace for the eigenvalue 12 of the restriction
of the Laplace operator1 to the space of coclosed primitive (1, 1)-forms3(1,1)0 M.

Proof. A simple but very useful remark is that (except on the round sphere S6),
a Gray structure is completely determined by its underlying Riemannian metric.
The reason is that the metric defines a unique line of Killing spinors with posi-
tive Killing constant, which, in turn, defines the almost complex structure, and,
together with the exterior derivative of the Kähler form, one recovers the whole
SU3 structure.

We claim that the dependence of the Gray structure on the metric is smooth.
Let 6M denote the spin bundle of M . By [Baum et al. 1991, p. 137], there is
(up to rescalings) exactly one Killing spinor 9 with Killing constant 1/2, which is
obtained as a section of6M , that is parallel with respect to the modified connection
∇̃X := ∇X − (1/2)X · (here “ · ” denotes the Clifford product). Since ∇̃ depends
smoothly on g, so does 9. The almost complex structure J is then defined by
the equation J X · 9 = i X · 9 (see [Baum et al. 1991, p. 136]), and so J de-
pends smoothly on 9. Finally, since the Kähler form ω( · , ·) = g(J · , ·) depends
smoothly on g, so does its exterior derivative dω = ψ+.
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By the Ebin slice theorem [Berger and Ebin 1969], each infinitesimal deforma-
tion of G has a unique representative γ = (ġ, J̇ , ω̇, ψ̇+, ψ̇−) ∈ TGM such that

(26) δġ = 0 and trg ġ = 0.

Let (ξ, S, ϕ, µ) be the section of the bundle T M ⊕ Sym−M ⊕ 3(1,1)M ⊕ RM
determined by γ via the equations (15)–(18). We have to interpret the system of
(25) and (26) in terms of (ξ, S, ϕ, µ).

We start by taking the exterior product with ψ+ in the first equation of (25) and
use (17) to get dω̇∧ψ+

= 3ψ̇+
∧ψ+

= 3µψ−
∧ψ+

=−12µdv.On the other hand,
using (16) and taking (3) into account yields dω̇ ∧ψ+

= d(ϕ + ξ yψ+)∧ψ+
=

d((ϕ+ ξ yψ+)∧ψ+)= d(ξ ∧ω2), whence

(27) −12µdv = d(ξ ∧ω2).

We apply the contraction 3 to the first equation of (25) and use (9), (16), and (17):

(28) −6ξ = 33ψ̇+
=3dω̇ =3dϕ+3d(ξ yψ+).

To compute the last term, we apply the general formula (23) to the particular de-
formation of the SU3 structure defined by the flow of ξ : 3(L ξψ

+)= −α(L ξω).
Since dω = 3ψ+ and dψ+

= 0, we get

3d(ξ yψ+)=3(L ξψ
+)= −α(L ξω)

= −α(d(ξ yω))−α(ξ y dω)
by (22)

= −α(d Jξ)− 6ξ,

which, together with (28), yields

(29) 3(dϕ)= α(d Jξ).

We now examine the second equation of the system (25). From (18) we get

dψ̇−
= −d Jξ ∧ω+ 3Jξ ∧ψ+

− dµ∧ψ+
+ dλ∧ψ−

− 2λω2
−

1
2 d(S?ψ−).

We apply the contraction 3 to this formula and use the second equation of (25)
together with (4) and (5):

(30) −4ω̇ =3(−4ω̇∧ω)+ 4(3ω̇)ω =3dψ̇−
+ 4(3ω̇)ω

= −d Jξ −3(d Jξ)ω− 3ξ yψ+
− Jdµ yψ+

+ Jdλ yψ−

− 8λω−
1
23d(S?ψ−)+ 4(3ω̇)ω.

Applying α to this equality and using (1), (16) and (23) yields

−8ξ = −α(d Jξ)− 6ξ − 2Jdµ+ 2dλ−
1
2α3d(S?ψ−).
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From (29) we then get

(31) ξ = Jdµ+
1
23dϕ− dλ+

1
4α3d(S?ψ−).

Lemma 4.2. Let (g, J, ω,ψ+, ψ−) be a Gray structure on a manifold M. For
every section S of Sym−M and (1, 1)-form ϕ, the following relations hold:

3dϕ = δh + 2dλ(32)

δh = −Jδϕ(33)

δ(S?ψ+)= −3d(S?ψ−)− 2δS yψ+(34)

α3d(S?ψ−)= −2δS(35)

3δ(S?ψ+)= 0(36)

where h is the endomorphism defined by ϕ( · , ·)= g(h J · , ·) and λ= (1/4) tr(h)=
(1/2)3ϕ. In the above formulas, δ stands for the usual codifferential when applied
to an exterior form but stands for the divergence operator (see [Besse 1987, 1.59])
when acting on symmetric tensors.

Since the proof is rather technical, we postpone it to the end of this section.
Using (14), (32), (33) and (35), the relation (31) becomes

(37) ξ = Jdµ+
1
2δh −

1
2δS = Jdµ− Jδϕ−

1
2δġ.

From (26) and (37) we obtain

(38) ξ = Jdµ− Jδϕ.

On the other hand, (38) shows that µ is an eigenfunction of 1 with eigenvalue 6:

(39) 1µ= δdµ= δ(Jξ)= − ∗ d ∗ (Jξ)= −
1
2 ∗ d(ξ ∧ω2)

by (27)
= 6µ.

Now, the Obata theorem (see [Obata 1962, Theorem 3]) says that on a compact
n-dimensional Einstein manifold of positive scalar curvature scal, every eigenvalue
of the Laplace operator is greater than or equal to scal/(n − 1), and equality can
only occur on the standard sphere. Since (M, g) is not isometric to the standard
sphere and is Einstein with scalar curvature scal = 30, the Obata theorem thus
implies that µ = 0. Since λ = (1/4) tr(h) = (1/4) tr(ġ), the second part of (26)
also shows that λ= 0. Taking (26), (33), (34), and (38) into account, Equation (30)
now becomes

−4ϕ− 4ξ yψ+
= −4ω̇ = −d Jξ −3(d Jξ)ω− 3ξ yψ+

−
1
23d(S?ψ−)

= −d Jξ −3(d Jξ)ω− 3ξ yψ+
+

1
2δ(S?ψ

+)− ξ yψ+,

whence
d Jξ = −3(d Jξ)ω+ 4ϕ+

1
2δ(S?ψ

+).
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Applying 3 to this relation and using (36) yields 3(d Jξ) = 33(d Jξ), and so
d Jξ = 4ϕ +

1
2δ(S?ψ

+). By (38) we have Jξ = δϕ, and thus 1(Jξ) = δd Jξ =

4δϕ = 4Jξ , that is, Jξ is an eigenform of the Laplace operator with eigenvalue 4.
On the other hand, the Bochner formula on 1-forms,

1= ∇
∗
∇ + Ric = ∇

∗
∇ + 5 id

shows, by integration over M , that 4 cannot be an eigenvalue of 1; so ξ must
vanish identically. From Lemmas 3.1 and 3.2, we get

ψ̇+
= −

1
2 S?ψ+, ψ̇−

= −
1
2 S?ψ−, ω̇ = ϕ ∈�

(1,1)
0 M.

Plugging these equations into (25) yields dϕ = −
3
2 S?ψ+ and

δ(S?ψ+)= − ∗ d ∗ (S?ψ+)
by (12)

= ∗d(S?ψ−)= −2 ∗ dψ̇−

by (25)
= 8 ∗ (ω̇∧ω)

by (13)
= −8ϕ.

Thus ϕ is a coclosed eigenform of the Laplace operator for the eigenvalue 12.
Conversely let us assume that ϕ ∈�

(1,1)
0 M is coclosed and satisfies 1ϕ = 12ϕ.

We have to show that ϕ defines an infinitesimal deformation of the given Gray
structure. The main point is to remark that dϕ is a form in �(2,1)+(1,2)0 M .

Lemma 4.3. If ϕ is a coclosed form in �(1,1)0 M , then dϕ ∈�
(2,1)+(1,2)
0 M.

Proof. Using Lemma 2.2, this amounts to checking that dϕ satisfies the system

(40)

dϕ ∧ψ+
= 0,

dϕ ∧ψ−
= 0,

〈dϕ, X ∧ω〉 = 0 for all X ∈ T M .

Each of these equations follows easily:

dϕ ∧ψ+
= d(ϕ ∧ψ+)= 0,

dϕ ∧ψ−
= d(ϕ ∧ψ−)−ϕ ∧ dψ− by (24)

= 2ϕ ∧ω2 by (11)
= 4〈ϕ, ω〉 = 0,

〈dϕ, X ∧ω〉 = 〈3dϕ, X〉
by (32)

= −〈Jδϕ, X〉dv = 0. �

Consequently, there is a unique section S of Sym−M with dϕ = −(3/2)S?ψ+.
Taking ξ =0, λ=0, andµ=0, the equations (15)–(18) define an infinitesimal SU3-
deformation by ω̇ := ϕ, ψ̇+

:= −(1/2)S?ψ+, and ψ̇−
:= −(1/2)S?ψ−. It remains

to show that (ω̇, ψ̇+, ψ̇−) satisfy the linearized system (25). The first equation is
clear by definition, and the second is equivalent to d(S?ψ−)= 8ϕ∧ω. Using again
(12) and (13), this last equation is equivalent to δ(S?ψ+) = −8ϕ, which follows
directly from the hypothesis on ϕ and the definition of S. �
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Proof of Lemma 4.2. By the isomorphism ξ 7→ ξyψ+, we have ∇X J = ψ+

X ∈

3(0,2)+(2,0)M , and so 〈ϕ,∇X J 〉 = 0 for all vectors X . Identifying ϕ with the
corresponding skew-symmetric endomorphism of T M , we compute in a local or-
thonormal basis {ei } parallel at some point:

3dϕ =
1
2 Jei y ei y (ek ∧ ∇ekϕ)=

1
2 Jei y ∇eiϕ−

1
2 Jei y (ek ∧ (∇ekϕ)ei )

=
1
2(∇eiϕ)Jei −

1
2(∇Jeiϕ)ei +

1
2 ek(∇ekϕ)(ei , Jei )

= (∇eiϕ)Jei + d〈ϕ, ω〉 − ekϕ(ei , (∇ek J )ei )

= (∇ei (ϕ J ))ei −ϕ((∇ei J )ei )+ 2dλ− 2ek〈ϕ,∇ek J 〉

= −(∇ei h)(ei )+ 2dλ= δh + 2dλ.

This proves (32). To prove the second relation, we notice that

g((∇ei J )(ϕei ), X)= ψ+(ei , ϕei , X)= 2〈ψ+

X , ϕ〉 = 0,

and so

δh = −(∇ei h)ei = (∇ei (Jϕ))ei = −Jδϕ+ (∇ei J )ϕei = −Jδϕ.

We will now use several times (and signal this by a star above the equality sign in
the calculations below) the fact that any SU3-equivariant map Sym−M →32 M is
automatically zero by the Schur lemma. For every 3-form τ we can write

3d(τ )=
1
2 Jei y ei y (ek ∧ ∇ekτ)= ek ∧

( 1
2 Jei y ei y ∇ekτ

)
+ Jek y ∇ekτ

= d3τ −
1
2 ek ∧ (∇ek J )ei y ei y τ + Jek y ∇ekτ.

In particular, for τ = S?ψ+ we have 3τ = 0 and ek ∧ (∇ek J )ei y ei y τ = 0, and so
from (8) and the remark above we get

3d(S?ψ−)= Jek y ∇ek (S?ψ
−)= Jek y ((∇ek S)?ψ−)+ Jek y (S?(∇ekψ

−))

∗
= −Jek y ((∇ek S)e j ∧ e j yψ−)

= −〈(∇ek S)e j , Jek〉e j yψ−
+ (∇ek S)e j ∧ (Jek y e j yψ−)

∗
= 〈(∇ek S)Je j , ek〉Je j yψ+

+ (∇ek S)e j ∧ (Jek y e j yψ−)

= −δS yψ+
+ (∇ek S)e j ∧ (Jek y e j yψ−).

So by (1)

(41) 3d(S?ψ−)= −δS yψ+
+ (∇ek S)e j ∧ (ek y e j yψ+).
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On the other hand, we have

δ(S?ψ+) = ek y ∇ek (Se j ∧ e j yψ+)
∗
= ek y ((∇ek S)e j ∧ e j yψ+)

= − δS yψ+
− (∇ek S)e j ∧ ek y e j yψ+

by (41)
= − 2δS yψ+

−3d(S?ψ−),

thus proving (34). Let σ := (∇ek S)e j ∧ (ek y e j yψ+) denote the last summand in
(41). A similar calculation easily shows that J?σ = 0, so σ belongs to 3(1,1)M .
From (22) we thus get α3d(S?ψ−)= −α(δS yψ+)= −2δS. Finally, the relation
(36) can be checked in the same way:

3δ(S?ψ+)= −
1
2 Jek y ek y (e j y ∇e j (S?ψ

+))

= −
1
2

(
e j y ∇e j (Jek y ek y (S?ψ+))− e j y (∇e j J )ek y ek y (S?ψ+)

)
∗
= δ3(S?ψ+)= 0. �

5. Concluding remarks

So far we have identified the space of infinitesimal deformations of a given Gray
structure with the space of coclosed primitive (1, 1)-forms which are eigenforms
of the Laplace operator for the eigenvalue 12. To proceed further there are two
immediate options. One could try to compute the second derivative of a curve of
Gray structures and obtain additional equations. However, this leads to quadratic
expressions, which for the moment seem difficult to handle.

A second natural task is to consider the known homogeneous examples and to
study the question of whether or not there exist at least infinitesimal deformations.
This amounts to studying the Laplace operator on 2-forms on certain homogeneous
spaces and should reduce to a tractable algebraic problem.

Since a nearly Kähler deformation always gives rise to an Einstein deformation,
one could equally well ask for the existence of infinitesimal Einstein deformations
on nearly Kähler manifolds. This issue was recently treated in [Moroianu and
Semmelmann 2007].

The deformation problem for the standard nearly Kähler structure on S6 has to
be considered separately since the almost complex structure is no longer uniquely
defined. However, since the round metric on S6 has no Einstein deformations,
the problem is much simpler in this case. Th. Friedrich [2006] showed that the
action of the isometry group SO7 on the set of nearly Kähler structures on the
round sphere S6 is transitive. The isotropy group of this action at the standard
nearly Kähler structure is easily seen to be the group G2 (the stabilizer in SO7

of a vector cross product). The space of nearly Kähler structures on the round
sphere is thus isomorphic to SO7/G2 ' RP7; see also [Butruille 2005, Prop. 7.2].
More geometrically, the set of nearly Kähler structures compatible with the round
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metric on S6 can be identified with the set of nonzero real Killing spinors (modulo
constant rescalings), and it is well known that the space of real Killing spinors on
S6 is isomorphic to R8.

The counterpart of Theorem 4.1 on S6 can be stated as follows:

Theorem 5.1. Let G := (g, J, ω,ψ+, ψ−) be a Gray structure on S6 such that g is
the round metric. Then the space of infinitesimal deformations of G is isomorphic
to the eigenspace for the eigenvalue 6 of the Laplace operator 1 on functions, and
that space is, in particular, 7-dimensional.

Proof. Since there are no Einstein deformations on the round sphere, we may
assume ġ = 0. From (14) we get ϕ = 0, h = 0, S = 0, and in particular λ= 0 too.
Then Equation (38) gives ξ = Jdµ and (39) shows that µ is an eigenfunction of 1
on S6 corresponding to its first nonzero eigenvalue, 6. These eigenfunctions (also
called first spherical harmonics) satisfy ∇X dµ = −µX for all tangent vectors X .
We define the infinitesimal SU3 deformation ω̇ := ξyψ+, ψ̇+

:= −ξ ∧ω+µψ−

and ψ̇−
:= −Jξ ∧ω−µψ+. A short calculation easily shows that this indeed is

a solution of the linearized system (25). �
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GERMANY

uwe.semmelmann@math.uni-koeln.de
http://www.mi.uni-koeln.de/~semmelma/


