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For many equations arising in the physical sciences, the solutions are critical
points of functionals. This has led to interest in finding critical points of
such functionals. If a functional G is semibounded, one can find Palais–
Smale (PS) sequences G(uk)→ a and G′(uk)→ 0. These sequences produce
critical points if they have convergent subsequences (that is, if G satisfies the
PS condition). However, there is no clear method of finding critical points
of functionals that are not semibounded. In this paper we find pairs of sets
having the property that functionals bounded from below on one set and
bounded from above on the other have PS sequences. We can allow both
sets to be infinite-dimensional if we make a slight additional smoothness
requirement on the functional. This allows us to solve systems of equations
that could not be solved before.

1. Introduction

Many problems arising in science and engineering call for the solving of the Euler
equations of functionals, that is, equations of the form

G ′(u)= 0,

where G(u) is a C1 functional (usually with physical dimension of energy) arising
from the given data. As an illustration, the equation −1u(x) = f (x, u(x)) is the
Euler equation of the functional

G(u)=
1
2‖∇u‖

2
−

∫
F(x, u(x)) dx

on an appropriate space, where

F(x, t)=

∫ t

0
f (x, s) ds,

and the norm is that of L2. Solving the Euler equations is tantamount to finding
critical points of the corresponding functional. The classical approach was to look
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for maxima or minima. If one is looking for a minimum, it is not sufficient to know
that the functional is bounded from below, as is easily observed. If it is bounded
from below, one can obtain a minimizing sequence satisfying

G(uk)→ a = inf G.

If such a sequence has a convergent subsequence, then we indeed obtain a mini-
mum. However, in dealing with such sequences it is difficult, in general, to estab-
lish the convergence of a subsequence.

Luckily, there is some help. One can show that there is a sequence, called a
Palais–Smale (PS) sequence satisfying

G(uk)→ a and G ′(uk)→ 0,

where a = inf G. It is much easier to establish the existence of a convergent sub-
sequence of a PS sequence than of a minimizing sequence. In fact, a minimizing
sequence may not have a convergent subsequence while a PS sequence for the same
functional does. If every PS sequence for G has a convergent subsequence, then
we say that G satisfies the PS condition.

However, when the functional is not semibounded, there is no clear way of
obtaining critical points. Is there anything that can be used to replace semibound-
edness? Expressed otherwise, how can one level the playing field? One approach
is called linking. As a substitute for semiboundedness, one can look for suitable
sets that separate the given functional, that is, suitable subsets A and B of the space
E satisfying

(1) a0 := sup
A

G ≤ b0 := inf
B

G

for a given C1 functional G on E . There are pairs of subsets such that (1) produces
a PS sequence

(2) G(uk)→ a and G ′(uk)→ 0,

where a ≥ b0. If A and B are such that (1) always implies (2), we say that A links
B. Consequently, if A links B and G is a C1 functional on E that satisfies (1) and
the PS condition, then G has a critical point satisfying

G(u)= a ≥ b0 and G ′(u)= 0.

Linking sets exist and are described in the literature; see for example, [Schechter
1999].

In [Schechter 2008] we discussed the situation in which one cannot find linking
sets that separate the functional, that is, that satisfy (1). Are there sets such that the
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opposite of (1) will imply (2)? More precisely, are there sets A and B such that

(3) −∞< b0 := inf
B

G and a0 := sup
A

G <∞

implies that there is a sequence satisfying

(4) G(uk)→ c for b0 ≤ c ≤ a0 and G ′(uk)→ 0?

This was answered in the affirmative. Such pairs exist. This has led to

Definition 1. We say that a pair of subsets A and B of a Banach space E forms a
sandwich, if for any G ∈ C1(E,R) the inequality (3) implies the existence of a PS
sequence (4).

The root of this approach comes from the work of Silva [1991] and the author
[1993; 1992]. They proved

Theorem 2. Let N be a closed subspace of a Hilbert space E , and let M = N⊥.
Assume that at least one of the subspaces M and N is finite-dimensional. Let G be
a C1-functional on E such that

m0 := inf
w∈M

G(w) 6= −∞ and m1 := sup
v∈N

G(v) 6= ∞.

Then there are a constant c ∈ R and a sequence {uk} ⊂ E such that

G(uk)→ c with m0 ≤ c ≤ m1 and G ′(uk)→ 0.

This theorem, called the “sandwich theorem”, is very useful in dealing with
equations or systems for which the corresponding functional is semibounded in
one of the directions only on a subspace of finite dimension. However, there are
many systems for which this is not the case. On the other hand, the theorem is
probably not true if both subspaces are infinite-dimensional.

Here, we shall show that the theorem is indeed true if we require a bit more
than mere continuous differentiability of the functional. The requirement we have
chosen is present in many applications.

Definition 3. Let E be a Banach space. We shall call a functional G ∈ C1(E,R)

weak-to-weak continuously differentiable if for each sequence

uk → u weakly in E

there exists a renamed subsequence such that

(5) G ′(uk)→ G ′(u) weakly.

For such functionals we have
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Theorem 4. Let N be a closed subspace of a Hilbert space E and let M = N⊥.
Let G be a weak-to-weak continuously differentiable functional on E such that

m0 := inf
w∈M

G(w) 6= −∞ and m1 := sup
v∈N

G(v) 6= ∞.

Then there are a constant c ∈ R and a sequence {uk} ⊂ E such that

G(uk)→ c with m0 ≤ c ≤ m1 and G ′(uk)→ 0.

We shall prove Theorem 4 in Section 2, where we introduce weak sandwich pairs.
Applications will be given in Section 3. One purpose of our investigation is to
solve systems of equations of the form

Av = f (x, v, w) and Bw = g(x, v, w),

where A and B are linear partial differential operators. Such systems have many
applications. For instance, they can describe multiple chemical reactions or stable
states of dynamical systems determined by reaction diffusion equations.

Unlike linking, the order of a sandwich pair is immaterial, that is, if the pair A, B
forms a sandwich, so does B, A. Moreover, we allow sets forming a sandwich pair
to intersect. (A description of sandwich pairs can be found in [Schechter 2008].)
It follows from Theorem 2 that M and N form a sandwich pair if one of them
is finite-dimensional. (Note that m0 ≤ m1.) This is a severe drawback in many
applications.

The purpose of the present paper is find a counterpart of sandwich pairs that
deals with the case when both sets in the pair are infinite-dimensional. To do this
we require weak-to-weak continuous differentiability of the functional as we did
in Theorem 4. We call such pairs weak sandwich pairs.

2. Weak sandwich pairs

We now introduce the corresponding definition for the case when both sets A and
B are infinite-dimensional.

Definition 5. We shall say that a pair of subsets A and B of a Banach space E
forms a weak sandwich pair, if for any weak-to-weak continuously differentiable
G ∈ C1(E,R) the inequality

(6) −∞< b0 := inf
B

G ≤ a0 := sup
A

G <∞

implies that there is a sequence {uk} satisfying

(7) G(uk)→ c with b0 ≤ c ≤ a0 and G ′(uk)→ 0.
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Theorem 6. Let E be a separable Hilbert space, let N be a closed subspace of E ,
and let p be any point of N . Let F be a Lipschitz continuous map of E onto N
such that F |N = I and ‖F(g)− F(h)‖ ≤ K‖g − h‖ for g, h ∈ E. Suppose also
that for each finite-dimensional subspace S of E containing p such that F S 6= {0},
there is a finite-dimensional subspace S0 6= {0} of N containing p such that v ∈ S0

and w ∈ S implies F(v+w) ∈ S0. (The stipulation that S0 6= {0} is made in case
p = 0.) Then A = N and B = F−1(p) form a weak sandwich pair.

Proof. Assume that the theorem is false. Let G be a weak-to-weak continuously
differentiable functional on E satisfying (6), where A and B are the subsets of E
specified in the theorem, such that there is no sequence satisfying (7). Then there
is a positive number δ > 0 such that

(8) ‖G ′(u)‖ ≥ 2δ

whenever u belongs to the set Ê = {∈ E : b0 − 2δ ≤ G(u)≤ a0 + 2δ}. Since E is
separable, we can norm it with a norm |u|w satisfying |u|w ≤ ‖u‖ for u ∈ E and
such that the topology induced by this norm is equivalent to the weak topology of
E on bounded subsets of E .

This can be done as follows. Let {ek} be an orthonormal basis for E . We set

|u|
2
w =

∞∑
k=1

|(u, ek)|
2

k2 .

We denote E equipped with this norm by Ẽ . For u ∈ Ê , let h(u)= G ′(u)/‖G ′(u)‖.
Then by (8)

(9) (G ′(u), h(u))≥ 2δ for u ∈ Ê .

Let
T = (a0 − b0 + 4δ)/δ,

R = sup
�

‖u‖ + T,

BR = {u ∈ E : ‖u‖< R},

B̂ = B R ∩ Ê,

where� is a bounded open subset of N containing the point p such that ρ(∂�, p)>
K T + δ and ρ is the distance in E . For each u ∈ B̂ there is an Ẽ neighborhood
W (u) of u such that (G ′(v), h(u))>δ for v ∈ W (u)∩ B̂. For otherwise there would
be a sequence {vk} ⊂ B̂ such that

(10) |vk − u|w → 0 and (G ′(vk), h(u))≤ δ.

Since B̂ is bounded in E , vk → u weakly in E and (5) implies that

(G ′(vk), h(u))→ (G ′(u), h(u))≤ δ
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in view of (10). This contradicts (9). Let B̃ be the set B̂ with the inherited topology
of Ẽ . It is a metric space, and W (u) ∩ B̃ is an open set in this space. Thus,
{W (u) ∩ B̃} for u ∈ B̃ is an open covering of the paracompact space B̃ (see for
example [Kelley 1955]). Consequently, there is a locally finite refinement {Wτ } of
this cover. For each τ there is an element uτ such that Wτ ⊂ W (uτ ). Let {ψτ }

be a partition of unity subordinate to this covering. Each ψτ is locally Lipschitz
continuous with respect to the norm |u|w and consequently with respect to the
norm of E . Let Y (u) =

∑
ψτ (u)h(uτ ) for u ∈ B̃. Then Y (u) is locally Lipschitz

continuous with respect to both norms. Moreover,

(11) ‖Y (u)‖ ≤
∑
ψτ (u)‖h(uτ )‖ ≤ 1

and

(12) (G ′(u), Y (u))=
∑
ψτ (u)(G ′(u), h(uτ ))≥ δ for u ∈ B̂.

For u ∈�∩ Ê , let σ(t)u be the solution of

(13) σ ′(t)= −Y (σ (t)) for t ≥ 0 and σ(0)= u.

Note that σ(t)u will exist as long as σ(t)u is in B̂. Also, it is continuous in (u, t)
with respect to both topologies.

Next we note that if u ∈�∩ Ê we cannot have σ(t)u ∈ B̂ and G(σ (t)u)> b0−δ

for 0 ≤ t ≤ T . For by (13) and (12),

dG(σ (t)u)/dt = (G ′(σ ), σ ′)= −(G ′(σ ), Y (σ ))≤ −δ

as long as σ(t)u ∈ B̂. Hence if σ(t)u ∈ B̂ for 0 ≤ t ≤ T , we would have

G(σ (T )u)− G(u)≤ −δT = −(a0 − b0 + 4δ).

Thus, we would have G(σ (T )u) < b0 − 4δ. On the other hand, σ(s)u exists for
0 ≤ s < T . To see this note that

u − σ(t)u = zt(u) :=

∫ t

0
Y (σ (s)u)ds.

By (11), we have ‖zt(u)‖ ≤ t . Consequently, ‖σ(t)u‖ ≤ ‖u‖ + t < R. Thus
σ(t)u ∈ B̂. We can now conclude that for each u ∈�∩ Ê there is a t ≥ 0 such that
σ(s)u exists for 0 ≤ s ≤ t and G(σ (t)u)≤ b0 − δ. Let

Tu := inf{t ≥ 0 : G(σ (t)u)≤ b0 − δ} for u ∈�∩ Ê .

Then σ(t)u exists for 0 ≤ t ≤ Tu and Tu < T , and Tu is continuous in u. Define

σ̂ (t)u =

{
σ(t)u if 0 ≤ t ≤ Tu ,
σ(Tu)u if Tu ≤ t ≤ T ,

for u ∈�∩ Ê .
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For u ∈�\ Ê , define σ̂ (t)u = u for 0 ≤ t ≤ T . Then σ̂ (t)u is continuous in (u, t),
and

(14) G(σ̂ (T )u)≤ b0 − δ for u ∈�.

Let

(15) ϕ(v, t)= F σ̂ (t)v for v ∈� and 0 ≤ t ≤ T .

Then ϕ is a continuous map of �× [0, T ] to N . Let

K = {(u, t) : u = σ̂ (t)v for v ∈ Q and t ∈ [0, T ]}.

Then K is a compact subset of Ẽ × R. To see this, let (uk, tk) be any sequence in
K . Then uk = σ(tk)vk , where vk ∈ Q. Since Q is bounded, there is a subsequence
such that vk → v0 weakly in E and tk → t0 in [0, T ]. Since Q is convex and
bounded, v0 is in Q and |vk − v0|w → 0. Since σ̂ (t) is continuous in Ẽ × R,

uk = σ̂ (tk)vk ⇀ σ̂(t0)v0 = u0 ∈ K .

Each u0 ∈ B̂ has a neighborhood W (u0) in Ẽ and a finite-dimensional subspace
S(u0) such that Y (u) ⊂ S(u0) for u ∈ W (u0) ∩ B̂. Since σ̂ (t)u is continuous in
(u, t), for each (u0, t0) ∈ K there is a neighborhood W (u0, t0) ⊂ Ẽ × R and a
finite-dimensional subspace S(u0, t0) ⊂ E such that ẑt(u) ⊂ S(u0, t0) for (u, t) ∈

W (u0, t0), where

ẑt(u) := u − σ̂ (t)u =

{∫ t
0 Y (σ̂ (s)u)ds if u ∈ Ê ,

0 if u 6∈ Ê .

Since K is compact, there is a finite number of points (u j , t j ) ⊂ K such that
K ⊂ W =

⋃
W (u j , t j ). Let S be a finite-dimensional subspace of E containing

p and all the S(u j , t j ) and such that F S 6= {0}. Then for each v ∈ �, we have
ẑt(v) ∈ S. Then by hypothesis, there is a finite-dimensional subspace S0 6= {0} of
N containing p such that F(v− ẑt(v))∈ S0 for all v ∈�∩ S0. We note that ϕ(u, t)
maps �∩ S0 × [0, T ] into S0. For t in [0, T ], let ϕt(v)= ϕ(v, t). Then

(16) ϕt(v) 6= p for v ∈ ∂(�∩ S0)= ∂�∩ S0 and 0 ≤ t ≤ T .

To see this, note that if v ∈ ∂�, then ‖v− p‖ ≤ ‖v− F σ̂ (t)v‖ + ‖F σ̂ (t)v− p‖.
Hence ‖F σ̂ (t)v− p‖> K T + δ− t K > 0 for v ∈ ∂� and ≤ t ≤ T , since

‖F σ̂ (t)v− v‖ ≤ K
∫ t

0
‖σ̂ ′(s)v‖ ds ≤ K t.
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Thus (16) holds. Consequently the Brouwer degree d(ϕt , � ∩ S0, p) is defined.
Since ϕt is continuous, we have

d(ϕT , �∩ S0, p)= d(ϕ0, �∩ S0, p)= d(I, �∩ S0, p)= 1.

Hence there is a v∈� such that F σ̂ (T )v= p. Consequently σ̂ (T )v∈ F−1(p)= B.
In view of (6), this implies G(σ̂ (T )v) ≥ b0, contradicting (14). Thus (7) holds,
and the proof is complete. �

Proof of Theorem 4. We take A = N , B = M , p = 0, and F = PN , the projection
onto N . If S is a finite-dimensional subspace such that F S 6= {0}, we take S0 = F S.
All of the hypotheses of Theorem 6 are satisfied. �

Definition 7. Let E and F be Banach spaces. We shall call a map J ∈ C(E, F)
weak-to-weak continuous if for each sequence

uk → u weakly in E

there exists a renamed subsequence such that

J (uk)→ J (u) weakly in F .

Proposition 8. If A and B is a weak sandwich pair and J is a weak-to-weak con-
tinuous diffeomorphism on the entire space having a derivative J ′(u) depending
compactly on u and satisfying

(17) ‖J ′(u)−1
‖ ≤ C for u ∈ E,

then J A and J B is a weak sandwich pair.

Proof. Let G be a weak-to-weak continuously differentiable functional on E sat-
isfying

−∞< b0 := inf
J B

G ≤ a0 := sup
J A

G <∞.

Let G1(u) = G(Ju) for u ∈ E . Then (G1(u), h) = (G ′(Ju), J ′(u)h). If uk → u
weakly, then there is a renamed subsequence such that J (uk)→ J (u) weakly and
J ′(uk)→ J ′(u). Hence, (G1(uk), h)→ (G ′(Ju), J ′(u)h), and G1 is weak-to-weak
continuously differentiable. Moreover,

−∞< b0 := inf
J B

G = inf
Ju∈J B

G(Ju)= inf
B

G1

≤ a0 := sup
J A

G = sup
Ju∈J A

G(Ju)= sup
A

G1 <∞.

Since A and B form a weak sandwich pair, there is a sequence {hk} ⊂ E such that

G1(hk)→ c for b0 ≤ c ≤ a0 and G ′

1(hk)→ 0.
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If we set uk = J hk , this becomes G(uk)→ c for b0 ≤ c ≤ a0 and G ′(uk)J ′(hk)→ 0.
In view of (17), this implies G ′(uk)→ 0. Thus J A and J B form a weak sandwich
pair. �

Proposition 9. Let N be a closed subspace of a Hilbert space E with complement
M ′

= M ⊕ {v0}, where v0 is an element in E having unit norm, and let δ be any
positive number. Let ϕ(t) ∈ C1(R) be such that 0 ≤ ϕ(t) ≤ 1, ϕ(0) = 1, and
ϕ(t)= 0 for |t | ≥ 1. Let

F(v+w+ sv0)= v+ [s + δ− δϕ(‖w‖
2/δ2)]v0 for v ∈ N , w ∈ M, s ∈ R.

Then A = N ′
= N ⊕ {v0} and B = F−1(δv0) form a weak sandwich pair.

Proof. Define

J (v+w+ sv0)= v+w+[s − δ+ δϕ(‖w‖
2/δ2)]v0 for v ∈ N , w ∈ M, s ∈ R.

Then J is a diffeomorphism on E satisfying the hypotheses of Proposition 8. Also,
A = J N ′ and B = J [M + δv0]. Since N ′ and M + δv0 form a weak sandwich pair
by Theorem 4, A and B also form a weak sandwich pair (Proposition 8). �

3. Applications

Let A and B be positive, self-adjoint operators on L2(�) with compact resolvents,
where �⊂ Rn . Let F(x, v, w) be a Carathéodory function on �× R2 such that

f (x, v, w)= ∂F/∂v and g(x, v, w)= ∂F/∂w

are also Carathéodory functions satisfying

(18) | f (x, v, w)| + |g(x, v, w)| ≤ C0(|v| + |w| + 1) for v,w ∈ R

and

(19)
f (x, t y, t z)/t → α+(x)v+

−α−(x)v−
+β+(x)w+

−β−(x)w−,

g(x, t y, t z)/t → γ+(x)v+
− γ−(x)v−

+ δ+(x)w+
− δ−(x)w−

as t → +∞, y → v, and z → w, where a±
= max(±a, 0). We wish to solve the

system

(20)
Av = − f (x, v, w),

Bw = g(x, v, w).

Such systems have been studied in the literature by many authors (for example,
[Costa 1994; Costa and Magalhães 1994; de Figueiredo and Felmer 1994; Furtado
and Silva 2001; Furtado et al. 2002a; 2002b; Li and Yang 2004; Schechter 1998;
Schechter and Zou 2003; Silva 2001; Tintarev 1999; Peihao et al. 2002; Zou 2001]
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and the literature quoted in them). Let λ0(µ0) be the lowest eigenvalue of A(B).
We assume that the only solution of

(21)
−Av = α+v

+
−α−v

−
+β+w

+
−β−w

−,

Bw = γ+v
+

− γ−v
−

+ δ+w
+

− δ−w
−

is v = w = 0.
The equations (21) take the place of the equation characterizing the Fučı́k spec-

trum for a problem involving only one function. Essentially, our hypotheses require
that (α+, α−, β+, β−, γ+, γ−, δ+, δ−) is not in the “Fučı́k ” spectrum of (−A,B).

Our first result is

Theorem 10. Assume

2F(x, s, 0)≥ −λ0s2
− W1(x) for x ∈� and t ∈ R,(22)

2F(x, 0, t)≤ µ0t2
+ W2(x) for x ∈� and t ∈ R,(23)

where Wi (x) ∈ L1(�). Then the system (20) has a solution.

Proof. Let D = D(A1/2)× D(B1/2). Then D becomes a Hilbert space with norm
given by ‖u‖

2
D = (Av, v)+ (Bw,w) for u = (v,w) ∈ D. We define

G(u)= b(w)− a(v)− 2
∫
�

F(x, v, w) dx for u ∈ D,

where a(v)= (Av, v) and b(w)= (Bw,w). Then G ∈ C1(D,R) and

(24) (G ′(u), h)/2 = b(w, h2)− a(v, h1)− ( f (u), h1)− (g(u), h2),

where we write f (u) and g(u) in place of f (x, v, w) and g(x, v, w), respectively.
It is readily seen that the system (20) is equivalent to

(25) G ′(u)= 0.

We let N be the set of those (v, 0) ∈ D, and let M be the set of those (0, w) ∈ D.
Then M and N are orthogonal closed subspaces such that D = M⊕N . If we define
Lu = 2(−v,w) for u = (v,w) ∈ D, then L is a selfadjoint bounded operator on
D. Also G ′(u) = Lu + c0(u), where c0(u) = −(A−1 f (u),B−1g(u)) is compact
on D. This follows from (18) and the fact that A and B have compact resolvents.
It also follows that G ′ has weak-to-weak continuity. For if uk → u weakly, then
Luk → Lu weakly and c0(uk) has a convergent subsequence. Now by (23)

G(0, w)≥ b(w)−µ0‖w‖
2
−

∫
�

W2(x) dx for (0, w) ∈ M.

Thus
inf
M

G ≥ −

∫
�

W (x) dx ≡ b0.
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On the other hand, (22) implies

G(v, 0)≤ −a(v)+ λ0‖v‖
2
+

∫
�

W1(x) dx for (v, 0) ∈ N .

Thus

(26) sup
N

G ≤

∫
�

W1(x) dx ≡ a0.

We can now apply Theorem 4 to conclude that there is a sequence {uk} ⊂ D such
that (7) holds. Let uk = (vk, wk). I claim that

(27) ρ2
k = a(vk)+ b(wk)≤ C.

For assume that ρk →∞, and let ũk = uk/ρk . Then there is a renamed subsequence
such that ũk → ũ weakly in D, strongly in L2(�) and almost everywhere in �. If
h = (h1, h2) ∈ D, then

(G ′(uk), h)/ρk = 2b(w̃k, h2)− 2a(ṽk, h1)− 2( f (uk), h1)/ρk − 2(g(uk), h2)/ρk .

Taking the limit and applying (18) and (19), we see that ũ = (ṽ, w̃) is a solution
of (21). Hence ũ = 0 by hypothesis. On the other hand, since a(ṽk)+ b(w̃k)= 1,
there is a renamed subsequence such that a(ṽk)→ ã and b(w̃k)→ b̃ with ã+b̃ = 1.
Thus by (19) and (24)

(G ′(uk), (ṽk, 0))/2ρk = −a(ṽk)− ( f (uk), ṽk)/ρk

→ −ã −

∫
�

(α+ṽ
+

−α−ṽ
−

+β+w̃
+

−β−w̃
−)ṽ dx,

(G ′(uk), (0, w̃k))/2ρk = b(w̃k)− (g(uk), w̃k)/ρk

→ b̃ −

∫
�

(γ+ṽ
+

− γ−ṽ
−

+ δ+w̃
+

− δ−w̃
−)w̃ dx .

Thus by (7),

ã = −

∫
�

(α+ṽ
+

−α−ṽ
−

+β+w̃
+

−β−w̃
−)ṽdx,

b̃ =

∫
�

(γ+ṽ
+

− γ−ṽ
−

+ δ+w̃
+

− δ−w̃
−)w̃ dx .

Since one of the two numbers ã and b̃ is not zero, we cannot have ũ ≡ 0. This
contradiction proves (27). This known, we can use the usual procedures to show
that there is a renamed subsequence such that uk → u in D, and u satisfies (25). �

Theorem 11. In addition, assume that the eigenfunctions of λ0 andµ0 are bounded
and 6= 0 almost everywhere in�, and there is a q > 2 such that ‖w‖

2
q ≤ Cb(w) for

w ∈ M. Assume 2F(x, 0, t)≤ µ(x)t2 for x ∈� and t ∈ R, where
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µ(x)≤ µ0 and µ(x) 6≡ µ0 for x ∈�,(28)

2F(x, s, t)≤ µ0t2
− λ0s2 for |t | + |s| ≤ δ,(29)

for some δ > 0. Then the system (20) has a nontrivial solution.

Proof. Let N ′ be the orthogonal complement of N0 = {(ϕ0, 0)} in N , where ϕ0 is
the eigenfunction of A corresponding to λ0. Then N = N ′

⊕ N0. Let M0 be the
subspace of M spanned by the eigenfunctions {(0, ψ)} of B corresponding to µ0,
and let M ′ be its orthogonal complement in M . Since N0 and M0 are contained in
L∞(�), there is a positive constant ρ such that

(30)
a(y)≤ ρ2

⇒ ‖y‖∞ ≤ δ/4 for y ∈ N0,

b(h)≤ ρ2
⇒ ‖h‖∞ ≤ δ/4 for h ∈ M0,

where δ is the number in (29). If a(y)≤ ρ2, b(w)≤ ρ2, and |y(x)| + |w(x)| ≥ δ,
we write w = h +w′, h ∈ M0, w′

∈ M ′, and

δ ≤ |y(x)| + |w(x)| ≤ |y(x)| + |h(x)| + |w′(x)| ≤ (δ/2)+ |w′(x)|.

Thus

(31)

|y(x)| + |h(x)| ≤ δ/2 ≤ |w′(x)|,

|y(x)| + |w(x)| ≤ 2|w′(x)|.

Now by (29) and (31)

G(y, w)= b(w)− a(y)− 2
∫
�

F(x, y, w) dx

≥ b(w)− a(y)−
∫

|y|+|w|<δ

(µ0w
2
− λ0 y2)dx − c0

∫
|y|+|w|>δ

(|y| + |w| + 1)2 dx

≥ b(w)− a(y)−µ0‖w‖
2
+ λ0‖y‖

2
− c1

∫
2|w′|>δ

|w′
|
qdx

≥ b(w′)−µ0‖w
′
‖

2
− c2b(w′)q/2

≥

(
1 −

µ0
µ1

− c2b(w′)(q/2)−1
)

b(w′) for a(y)≤ ρ2 and b(w)≤ ρ2,

where µ1 is the next eigenvalue of B after µ0. If we reduce ρ accordingly, we can
find a positive constant ν such that

(32) G(y, w)≥ νb(w′), a(y)≤ ρ2, b(w)≤ ρ2.

I claim that either (20) has a nontrivial solution or there is an ε > 0 such that

(33) G(y, w)≥ ε and a(y)+ b(w)= ρ2.
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For suppose (33) did not hold. Then there would be a sequence {yk, wk} such that
a(yk)+b(wk)= ρ2 and G(yk, wk)→ 0. If we write wk =w′

k +hk , w′

k ∈ M ′, and
hk ∈ M0, then (32) tells us that b(w′

k)→ 0. Thus a(yk)+ b(hk)→ ρ2. Since N0

and M0 are finite-dimensional, there is a renamed subsequence such that yk → y
in N0 and hk → h in M0. By (30), ‖y‖∞ ≤ δ/4 and ‖h‖∞ ≤ δ/4. Consequently
(29) implies

(34) 2F(x, y, h)≤ µ0h2
− λ0 y2.

Since

G(y, h)= b(h)− a(y)− 2
∫
�

F(x, y, h)dx = 0,

we have ∫
�

(2F(x, y, h)+ λ0 y2
−µ0h2)dx = 0.

In view of (34), this implies 2F(x, y, h)≡µ0h2
−λ0 y2. For ζ ∈ C∞

0 (�) and t > 0
small, we have

2(F(x, y + tζ, h)− F(x, y, h))/t ≤ −λ0((y + tζ )2 − y2)/t.

Taking t → 0, we have f (x, y, h)ζ ≤ −λ0 yζ . Since this is true for all ζ ∈ C∞

0 (�),
we have

(35) f (x, y, h)= −λ0 y = −Ay.

Similarly,

2[F(x, y, h + tζ )− F(x, y, h)]/t ≤ µ0[(h + tζ )2 − h2
]/t,

and consequently g(x, y, h)ζ ≤ µ0hζ and

(36) g(x, y, h)= µ0h = Bh.

We see from (35) and (36) that (20) has a nontrivial solution. Thus, we may assume
that (33) holds.

Next, we note that there is an ε > 0 depending on ρ such that G(0, w) ≥ ε

for b(w) ≥ ρ > 0. To see this, suppose that {wk} ⊂ M is a sequence such that
G(0, wk)→0 for b(wk)≥ρ. If bk =b(wk)≤C , this implies b(wk)−µ0‖wk‖

2
→0

and
∫
[µ0 −µ(x)]w2

k dx → 0, since

G(0, w)≥ b(w)−µ0‖w‖
2
+

∫
[µ0 −µ(x)]w2dx for w ∈ M.

If we write wk =w′

k +hk and w′

k ∈ M ′ and hk ∈ M0 as before, then this tells us that
b(w′

k)→ 0. Since M0 is finite-dimensional, there is a renamed subsequence such
that hk → h. But the two conclusions above tell us that h = 0. Since b(h)≥ ρ, we
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see that ε > 0 exists for any constant C . If the sequence {bk} is not bounded, we
take w̃k = wk/

√
bk . Then

G(0, wk)/bk ≥ b(w̃k)−µ0‖w̃k‖
2
+

∫
[µ0 −µ(x)](w̃k)

2dx .

Next we note that there is a ν > 0 such that

(37) G(0, w)≥ νb(w) for w ∈ M.

Assuming this for the moment, we see that infB G ≥ ε1 > 0, where

B =
{
w ∈ M : b(w)≥ ρ2} ⋃{

u = (sϕ0, w) : s ≥ 0, w ∈ M, ‖u‖D = ρ
}
,

and ε1 = min{ε, νρ2
}. By (26) there is an R > ρ such that supA G = a0 < ∞,

where A = N . By Proposition 9, A and B form a weak sandwich pair. Moreover,
G satisfies (6) with ε1 ≤ b0. Hence, there is a sequence {uk} ⊂ D such that (7)
holds with c ≥ ε1. Arguing as in the proof of Theorem 10, we see that there is a
u ∈ D such that G(u)= c ≥ ε1 > 0 and G ′(u)= 0. Since c 6= 0 and G(0)= 0, we
see that u 6= 0, and we have a nontrivial solution of the system (20).

It therefore remains only to prove (37). Clearly ν ≥ 0. If ν = 0, then there
is a sequence {wk} ⊂ M such that G(0, wk) → 0 for b(wk) = 1. Thus there is
a renamed subsequence such that wk → w weakly in M , strongly in L2(�) and
almost everywhere in �. Consequently∫

�

[µ0 −µ(x)]w2
k dx ≤ 1 −

∫
�

µ(x)w2
k dx ≤ G(0, wk)→ 0

and

1 =

∫
�

µ(x)w2dx ≤ µ0‖w‖
2
≤ b(w)≤ 1,

which means that we have equality throughout. It follows that w must belong to
E(µ0), the eigenspace of µ0. Since w 6≡ 0, we have w 6= 0 almost everywhere.
But

∫
�
[µ0 −µ(x)]w2dx = 0 implies that the integrand vanishes identically on �,

and consequently µ(x) ≡ µ0, violating (28). This establishes (37) and completes
the proof of the theorem. �
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