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We symmetrize the cut-join equation from the proof of the Marifio—Vafa
formula. One can derive more recursion formulas of Hodge integrals out of
this polynomial equation. We also give some applications.

1. Introduction

The Marifio—Vafa formula (Liu-Liu—Zhou’s theorem, see [Liu et al. 2003]) gives
a closed formula for certain Hodge integrals with three A classes. One of its
special cases is the famous ESLV formula [Ekedahl et al. 2001]. By applying
a transcendental change of variable, Goulden, Jackson, and Vainshtein obtained
a symmetrized cut-join equation [Goulden et al. 2000], which is a polynomial
identity with Hodge integral numbers with coefficients in one A class. Comparing
the lowest degree terms, Goulden, Jackson, and Vakil [Goulden et al. 2006] were
able to give a short proof of the A, conjecture, which was first proved by Faber
and Pandharipande [2003]. On the other hand, by using the result of [Goulden
et al. 2006], Chen, Li and, Liu [Chen et al. 2006] gave a short proof of the Witten
conjecture, which was first proved by Kontsevich.

In this paper, we study another transcendental change of variables, apply it to
the Marifio—Vafa formula, and get a symmetrized cut-join equation which is again
a polynomial identity but with Hodge integrals with coefficients in three X classes.
We expect more Hodge integrals can be computed from our symmetrized cut-join
equation. As an example, we illustrate how to get the Witten conjecture/Kontsevich
theorem from our newly derived symmetrized cut-join equation.

We study the new transcendental change of variable formula in Section 2, which
is essentially some calculus based on the formal Lagrange inversion theorem. In
Section 3, we symmetrize the cut-join equation satisfied by the generating series
of Hodge integrals studied in [Liu et al. 2003]. Applying the change of variable
formula developed in Section 2 to the symmetrized cut-join equation in Section 3,
we derive in Section 4 a polynomial cut-join equation, which is Theorem 3 and the
main result of this paper. Section 5 illustrates some applications of our result.
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2. Preliminaries

We first quote a result from the standard text on combinatorics. For a proof and
more about this theorem, we refer to [Stanley 1997].

Theorem 1 (formal Lagrange inversion theorem). Let F[x]= Zl 1 aix' exK[[x]]
where a| # 0 and K is a field of characteristic 0. Let k,n € Z. Then

n[x"1F~ (0 = k[x"7F1(x/ F (x)" = k[x *1F (x)™",

where F~(x) is the formal inverse function of F (x) and [x"1F (x) is the coefficient
of x" in the formal power series F(x).

In particular, taking kK = 1, we have n[x"1F~'(x) =[x~ F(x)™".

The inverse function of x(1 — x)* will play a crucial role in this paper. We
assume (7 — 1) # 0 throughout. Take F(x) = x(1 — x)" in the above theorem for
some fixed complex number t. Then

1. nr ao(nt—l—a)
Foyp — g0 = Z :

and
TSt +a)
F( »o m=1
Denote F~!(x) by w(x). We will next study some basic properties of this func-

tion. The formal Lagrange inversion theorem gives the unique formal power series
solution of the equation w(x)(1 —w(x))* =x as

[x~ 1

o) =F ') = ZM

n=1
One can compute the derivative xw (x) = w(1 —w)/(1 — (1 + 7)w).

Letting y =1/(1 — (1 4+ 7)w), we have

(I+1)xe' =1 —-w)(1/(1-1+71)0)—1),

(1+r)2xa)/=m+l—(]+t)(1—w)=ty—t+(1+t)a),
and so

. I+t . I+ TW

y‘”( T )((Hf)x‘” “’)_1+< T )(1—(1+z)w>

nl

_1+< )Z ao(nr—i-a)
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For a formal power series f(x), if we change the variable to w and then to y,
we have the relations

JAf __d—o  df o (yT1Vdf
Yo T = (xne?ds 2V D(t—i—l)dy'

3. Symmetrization

[Liu et al. 2003] studied the generating function € =" @y 12872t where

g>0,n>1

dn T+ r,
G-p B -fe o I e

d>1 p-d |Aut | pi — 1! ie 1(1 wivi)
l(w)=n
VTea+oyt & —ul 1 T 1(M1f+a)
- n! 2 -1 1_[ —1!
K125 fhn =1
3g-3
«Y ¥ / Fk(r>]_[w l_[u, P
k=0 bi+-+by,= M
3g—3+n—k
3g—3 n
(t(1+r))" ! -
= Yo mm TE) [ [ o6 )
k=0 by+:-+b,= i=1

3g—3+n—k
Here

m—1
¢i (f)) - Z \/__lm—i_lpm M}ni

_ |
vt (m—1)!
m—1
_ T .
_ % )3 /_—1”1“me:%’
m>1 ’

for infinitely many formal variables p = {p;, p2, ...}, and
[e(r) = A;(I)Ag(r)A;(—r —1).

This apparently complicated generating function naturally appears when one
computes the open Gromov—Witten invariants of local Calabi—Yau manifolds; see
[Katz and Liu 2001]. Motivated by the duality between topological string theory
and Chern—Simon theory, the Marifio—Vafa formula gives a closed expression of
the above generating function € in terms of some combinatorial data associated to
representations of symmetric groups. In their proof of the Marifio—Vafa formula,
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Liu, Liu, and Zhou show that the generating function € satisfies a cut-join equation

06 /—1x ( 32% 96 96 96 )
1] >

In this section, we will symmetrize this cut-join equation and make a transcendental

change of variable, so that the resulting symmetrized cut-join equation becomes a

polynomial one.

Define the symmetrization operator E,py = (v—1 )_"_‘al > oes, xgzl) ceeX

forn > 1if [(«) =n with @ = («y, ..., ay); let it be zero otherwise. We have
(3-1)
3g-3

n—1 n
n 65 = — (T(H”) YY" (e w, TR D [ [ b6 Goiy)-

k=0 bi+--+b,= o€S, i=1
3g—3+n—k

a}l
o(n)

[1]

where

L

m>1

Letting C be the change of variable from x to y, one has the relation

d _on(yrt+1\d
dex_y(y 1)<t+l>dyc

Applying this to ¢; (x) for i > 0, we get

G = (e o= (0025 £ (251

It’s clear that this is a polynomial in the new variable y of degree 2i + 1.

The next three lemmas are from [Goulden et al. 2000, Section 4]. However, we
should be careful because in our case some extra coefficients appear due to our
definition of the symmetrized operator. Set

’:‘{al,...,am} — = |
= Pa =P (xl,---,xm)_)(xals---sxam).

Lemma 3.1. Let o and B be partitions with [(«) = k and 1(8) = m. Then

gl Hp,pg = ) (E"pa) (E7pp),
(A, B)
where the sum is over all ordered partitions (4, B) of {1, ..., m+k} with |d| =

and |B| =
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Lemma 3.2. Let o be a partition with [(«) = m, and let 1 <1 <m. Then

0 =l —m lee] o
xlaxl Lo pa—\/ Zao(l)l_[x ©

oEeSy,
=2 “oa)]—[ (V- VAT ) )
geSy,
ZZ‘/—I__UH)(XJ)"E“ ,,,,, m}f{l}iaﬁ.
i>1 ap;

Lemma 3.3. Let o be a partition with [(¢) =m+ 1 and 1 <1 <m. Then

={L,..., m+1} _
X1 3 lxm+1 D Xm i1 = pa|xm+1—xl B
Z 1~ (i+j+2) z+] gllmt )= {Lm+1}; 2
£} ’ ] le
e op;Ip;

Now apply the operator E{!:++"} to the cut-join equation to get a symmetrized
one. Note that 21+~ commutes with taking derivatives with respect to 7. The
left side gives

820

Next we study the effect of &'~} on the right side. By Lemma 3.3,

9°p < —(+j+D) itj 3’p
':{1 ,,,,, m} Z o _1 J l+.]?:{l ’’’’’ m}—{l} o
it . Z v X e o
i,j>1 Ipip I=1i,j>1 ap;op;
= /=1 - E{l ,,,,, m+1}
vV ;M aX[xm+1 ET p |xm+1—x1
"y =3 D Y
={l,..., 2g 2+m+1 \ ~ ={l,.., .. m—+
= Pitjlj 7= pH_] i
i,j>1 ap ap g>0 i,j>1 aptapj

8 ~
— Z)LZg 2+4+m+1 le ca{l ..... m—+1} (68

0x; Amt1 0Xm+
§=0
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Letting [(a) =k and [(8) =m — k + 1, we have

- (14i+j) 0 d
1 .
ZZ /1~ J ;+J~{ ,,,,, {1}( Pa><] Pﬂ)
op; op;

I=11i,j>1

“ (i+1) xi g 0Pu G+D_j g . 0PB
S TE (ST ) (DT e 2

I=1 (A, 3) i>1 j=1
= d

—J1 ( 0 osufl )( =BU{1) )
Z X 9% Po I3 p
I1=1 (s4,%)

) 36 96
E Pi+jt ] ——
e} p; BpJ

8(681 8(@82

— )\Zgl —2+k )L2g2 2+(m—k+1) E{ ..... m} Piti -] m—k+1
2. 2 2 Pl

£1,82=0 1<k=m i,j>1

Z Z A28 +28=3+m /7

81,82=0 1<k=m

and

9Pa
m) Z (i +.])plpj

a
i j>1 Pi+j

ey s 0P
=2 Y D VAT it oy P

I<l<k<m i,j>1

_ ) XX XXk 1 1.4y, OPe
Y YA 2t

X — X opr

1<l<k<m r>1

=2/ 1 Y M D gl

0 0 ~
X®k—1<x1 »Ti{l""’l{}%f])(xl3—)61CA{lkJrl mk@fzz k+1

):
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Finally,
gty G+ )pip,
~ J
= OPi+j
aes
= a3 4y, ot
=y i=1 Pi+j
—Z 2\/_k2g 34+m .0, liE{1,3,4,...,m}<6;§;1 .
s X1 — X2 0x

Collecting all these terms, the following theorem is proved.

Theorem 2. The symmetrized cut-join equation of the Marifio—Vafa formula is

Z A2g—2+m i E{l,...,m}(@g

0T m
8=0
0 1 1
— k2g+m( X { ..... m+ }(68 )
22 Z lax Xm+1 3xXm 1 mil )|
g>0
Z Z )"2g1+2g2+m_2®k—1
1<k
818220 1<k<m x( 9 E{l,...,k}(@&)(xlia{l,k—i-l ..... m)cge: )
3xl k 9x m—k+1
2g+m—2 =~{1,3,4,....m}p8
+ A8 ® X1=—2a € .
Xg: X1 — X2 0x1 m—1

Comparing the coefficients of 126~ gives
ig{l’m,m}c@g
ot m

1( 0 (l..m+1) g—l)

= —= X X gt 6
2\ M) | =1
1

0 1.k 0 {lkt1,.., g—a
—5 2 2 Ou(ngatele) (ugatie e )

0<a<g 1<k<m

X2 0
+6 cxy =gl dmigE
X1 — X2 3)61

4. Change of variable

Now we want change the variable in the equation we obtained in the last section.
We first deal with the right side. As in [Goulden et al. 2000], to obtain a polynomial
expression in the variable y;, one has to combine all the unstable terms.
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In the second term, combine the unstable terms a =0, k=1anda=g, k=m

m
I o o)( 9 o{1.2..m) g)
Z(]ClaXIu (61 X[aXIu (€m y

and recall that (3-1) gives

+00
g0 — g S~ _ e s @rta) (dr +a) xf
’ ; d—1)! Z 4
and
_2~{1 (dt+a) _ y1—1= B w;
(x5 ) Z xf! e e

Since xd/dx = (1 —w)/(1 — (t + 1)) - ®9d/dw, we find the unique expression for
02 EWe? = In(1 — wy).
axl
The unstable terms a =0, k=2anda=g, k=m — 1 give

9 =12 0)( L0 o{13,.m)p8 )
8x1u (62 X1 ax1u <6m 1

@1(x1

and

K1 M2 ni—1 )
E{l’z}(@g = —‘L’(‘L’ + 1) Z xl x2 1_[ 1_[a=1 (Mlt +a)
ny+ @2 =12 (i — !

=1, po>1
_ oy xp ' I i it +a)
= — S S T X .
T s T2 2 Hi:
Taking the derivatives, we find
0 d ~{1,2}¢p0 w1
S S .
(1ax1 2% 2 D e Den( — @ + D)

One can verify that

g2 _ _1n<w‘ _wz) — 2(n(1 — ) +In(1 — @)
X1 —X2

is the unique solution, and thus

0 ~(12) w1 (1 —wy) X TW)

Xio—a 7= + +
ox) (@1 —o)(1—(t+Dwy)  x1—x2  1—(t+ Doy
. w1 (1+ Tw, )+ X1
a w] — w2 1—(t+Dwy .Xl—xz‘
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Remember that w (1 — w)* = x, where @ depends on the parameter t. Taking
partial derivative to 7, we find

dw 1—(t+1Dw _
7t wll—w THUI-e)=

Move the terms involve In(1 — wy) to the left side of the symmetrized cut-join
equation. Since dy(w, T)/d7 = y?w when w is fixed, we have

m
d ~{l,...,m} 80)1 ad ~{l,...,m}
— gthmigs — g <6g>
C(dr m P ot OJwy m

d ~~
= EC&“ """ m}%ﬁl(yl(wl, ), ..., Ym(wn, T), T)

m
— i 21) ={1,...m}pg
_<8T+;wlyl ayl Ce Cgm()’l,---»)’m’f)-

Theorem 3. After the transcendental change of variables to y, the symmetrized
generating series CEL-"™€E (yi, ..., vy, T) is a polynomial in the y; variables
of total degree 6g — 6 + 3m and satisfies the cut-join equation

yyi—1) 9 -
(37,’ Z —— 8y1)c sy m}C@g(YI’-..,Ym,T)

T+1 T+1

9 ~{1 1} 1
Cgll-mtligs—
aYm-H m+1

nt+1 L)
Z ®k71()71()ﬁ — 1)( ) 2 cgit- c(%@
l<a<g—1 l<k<m T+1 /oy
nt+1 .
X (yl(y] — 1)( )ayl a{l’k+1 ,,,,, m}(@i C;(+1)

- nr+1y 9
=Y Ot (nn = D(H) 55 cal-He)
2 k-1 yi(y1— 1) 1 )y, X

T+ 0 ik
-1 ( )_ a{’+ ..... mhcp8 )
X(}’l(yl ) ——l 8y1C €kt

m
1 nt+1\ 3 Ym+1T +1
521@1—1)( ) gy i Oman = D(F)

Ym+1=)1

N —

Vi — D —1) <ylr +1

+ ©
yi—»m T+1

m—1-

cglh3-mqs
)ayl

5. Applications

The cut-join equation of Theorem 3 is a generalization of the symmetrized cut-
join equation of [Goulden et al. 2006]. In their equation, only Hodge integrals
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with at most one A class show up, while in our equation, Hodge integrals have up
to three A classes. This is not surprising, since their starting point ESLV formula,
as shown in [Liu et al. 2003; 2006], is the large 7 limit of Marifio—Vafa formula.
Thus we expect by taking the large 7 limit of Theorem 3, one should be able to
recover the equation of [Goulden et al. 2000]. To illustrate an application, we make
derivation of the Witten conjecture/Kontsevich theorem similar to the one in [Chen
et al. 2006]. We don’t regard this as a new proof.

As CEm8 (y1, ..., yu, T) is a polynomial in the variables yy, ..., y,, of
total degree 6g — 6 + 3m, after applying the operator

m
9y Z =10 93
ot P T+1 oy’

we see that the left side of Theorem 3 and the four terms on the right (after a careful
check) become polynomials of total degree 6g — 5+ 3m in the y;. We compare the
leading degree term. Recall that I'g(7) = AéY(l)AéY(r)Ag(—r — 1), and only the
constant term (—1)8(t(r 4+ 1))8 contributes to the leading degree term. Denote by
F, the operator sending a formal power series to its degree d part. Then

F6g—6+3mCE{1”"’m}(€§1(yl, <o Ymo T)

2 \2g—2+m :
=(—1)g‘1(1f?) > (Thys v e Thy,) H(zb DUyt

b1+-+by=3g—3+m

Here we abbreviate (t, - - - = [ Mg -+ Y, and the genus g is deter-
mined by the restriction j1 + + Jntd= 3 g-—3 + n if w has degree d.
For the left side, only the derivatives of y; contribute:

3 ~yi—1D 3 ~{1,..om)cpg
F6g—5+3m(al_+; T+1 8y1>c © (yl’--"ymaf)

2 0

L y JE—
Loy

—I—l

-1 g—1 2 \2¢—2+m mn
:ﬁ( ‘ ) > > (Toys s Toy) - b4+ Dy 2

1+t
=1 by+++b,=3g—3+m m
< [T @b =Dy
i=1,i#l

= F6g76+3mCE{1 .... mk@f,,()’l, v Yms 7:)

gk
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Now for the right side, after applying the operator Fgg_s3,,, the first term becomes

(=D&, 12 \2e-24m O
2(1+t)<1+r> > > (Tors vy Thyyr)

I=1 by+-Abpi1=3g—5+m

m
X (2 + DN @by g1 + Dy 2t T @b — 1y,
i=1,i#l

and the second term becomes

(_])8*1 2 \28—2+m
eTaY o) IRRD DEND DI S

l<a<g—11<k<m

k
x( > (t;,l,...,rhk)(Zbl+1)!!y12b1+31_[(2bi—1)!!y2b"+1>
i=2

bi+-+by=
3a—3+k
20 +3 -
/ 2b;+1
x( > (Thr s Toprs - o, ) QDT+ Dy [T @b =Dy * >
by +br1++by= i=k+1

3(g—a—1)+(m+1-k)

The third term basically is the same as the second, except that the summation range
fixes @ = 0 and k varies from 3 to m. The second and the third terms together give
all the stable cut contributions, and we combine them in the sequel.

(_1)g71< .[2 >2g—2+m
1+ 147 Z Or-1

3<k<m

k

x< > (tbl,...,tbk)(2b1+1)!!y12b‘+31_[(2b,-—1)!!y2b"+1)
by+--+by=k—3 i=2
m

20| +3 ,

x( > T Ths o Th, @D DIy l_[(2bi—1)!!y2”’+1>.

b/1+bk+l+“'+bm: i=k+1

3(g—1)+(m+1—k)

The fourth term is

1 (=D& 1/ 2 \28—2+m
§%<m> O Z <Tb1,Tb3,---,Tb,,,)
b1+b3++bm=3g—4+m

yRorh _ 2bikd
X (2b1 + 1)”)11))2(%) 1_[(2bl _ 1)”y12br‘r]
Y=y i=3

Collecting all these and comparing the coefficients of yl%l+2 ]_[;.":L i£l yl.zb" +

we get the Dijkgraaf—Verlinde—Verlinde formula, which is equivalent to the Witten
conjecture. See [Chen et al. 2006; Kim and Liu 2006] for more details.
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Other interesting applications of Theorem 3 may follow from taking other spe-
cial values of T or from considering terms of different degree. For example, the
lowest and the next lowest degree terms may give some relations for Hodge inte-

grals fﬁg,n I g hg 1 hg—3.
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