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ON CHERN–MOSER NORMAL FORMS
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WITH HIGH-DIMENSIONAL STABILITY GROUP
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We explicitly describe germs of strongly pseudoconvex nonspherical real-
analytic hypersurfaces M at the origin in Cn+1 for which the group of local
CR-automorphisms preserving the origin has dimension d0(M) equal to ei-
ther n2 −2n+1 with n ≥ 2 or n2 −2n with n ≥ 3. The description is given in
terms of equations defining hypersurfaces near the origin, which are writ-
ten in the Chern–Moser normal form. These results are motivated by the
classification of locally homogeneous Levi nondegenerate hypersurfaces in
C3 with d0(M) = 1, 2 due to A. Loboda, and they complement earlier joint
work by V. Ezhov and the author for the case d0(M) ≥ n2 − 2n + 2.

1. Introduction

Let M be a strongly pseudoconvex real-analytic hypersurface in Cn+1 for n ≥ 1
passing through the origin and defined near the origin by the equation r = 0, where
r is some real-valued real-analytic function with nowhere vanishing gradient. In
some local holomorphic coordinates z = (z1, . . . , zn) and w = u + iv in a neigh-
borhood of the origin, M can be given by an equation written in the Chern–Moser
[1974] normal form

(1-1) v = |z|2 +

∑
k,l≥2

Fkl(z, z, u),

where |z| is the norm of the vector z, and Fkl(z, z, u) are polynomials of degree k
in z and of degree l in z whose coefficients are analytic functions of u such that

(1-2) tr F22 ≡ 0, tr2 F23 ≡ 0, tr3 F33 ≡ 0.

Here the operator tr is defined as

tr :=

n∑
α=1

∂2

∂zα∂zα
.
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Everywhere below we assume that the equation of M is given in the normal form.
Let Aut0(M) denote the stability group of M at the origin, that is, the group

of all local CR-automorphisms of M defined near the origin and preserving it.
Every element ϕ of Aut0(M) extends to a biholomorphic mapping defined in a
neighborhood of the origin in Cn+1 and therefore can be written as z 7→ fϕ(z, w)

and w 7→ gϕ(z, w), where fϕ and gϕ are holomorphic. We equip Aut0(M) with
the topology of uniform convergence of the partial derivatives of all orders of the
component functions on neighborhoods of the origin in M . The group Aut0(M)

with this topology is a topological group.
It is shown in [Chern and Moser 1974] that every element ϕ = ( fϕ, gϕ) of

Aut0(M) is uniquely determined by a set of parameters (Uϕ, aϕ, λϕ, rϕ), where Uϕ

lies in the unitary group Un , aϕ ∈ Cn , λϕ > 0, and rϕ ∈ R. These parameters are
found from the relations

∂ fϕ
∂z

(0) = λϕUϕ,

∂gϕ

∂w
(0) = λ2

ϕ,

∂ fϕ
∂w

(0) = λϕUϕaϕ,

Re
∂2gϕ

∂2w
(0) = 2λ2

ϕrϕ.

For results on how local CR-mappings depend on their jets in more general settings,
see for example [Baouendi et al. 1998; 1999; Ebenfelt 2001; Zaitsev 2002].

We assume that M is nonspherical at the origin, that is, M in a neighborhood
of the origin is not CR-equivalent to an open subset of the sphere S2n+1

⊂ Cn+1.
In this case for every element ϕ = ( fϕ, gϕ) of Aut0(M), we have λϕ = 1 and the
parameters aϕ and rϕ are uniquely determined by the matrix Uϕ; moreover, the
mapping

8 : Aut0(M) → GLn(C), ϕ 7→ Uϕ

is a topological group isomorphism between Aut0(M) and G0(M) :=8(Aut0(M)),
with G0(M) being a real algebraic subgroup of GLn(C). See [Chern and Moser
1974; Belošapka 1979; Loboda 1981; Beloshapka and Vitushkin 1981; Vitushkin
and Kruzhilin 1987]. We pull back the Lie group structure from G0(M) to Aut0(M)

by means of 8 and let d0(M) be the dimension of Aut0(M). Clearly, d0(M) ≤ n2.
We are interested in characterizing hypersurfaces for which d0(M) is large (cer-

tainly positive). We show that in some normal coordinates the equations of such
hypersurfaces take a very special form. As will be explained below, results of
this kind can potentially be applied to the classification problem for locally CR-
homogeneous strongly pseudoconvex hypersurfaces. For n = 1, this problem was
solved by E. Cartan [1933a; 1933b]. For n = 2 with d0(M)> 0, an explicit classifi-
cation was obtained in [Loboda 2001; 2003]. For n ≥ 3, there is no such classifica-
tion even for hypersurfaces with high-dimensional stability group. Note, however,
that globally homogeneous hypersurfaces have been extensively studied (see for
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example [Azad et al. 1985] and references therein). We also mention that locally
homogeneous hypersurfaces in C3 with nondegenerate indefinite Levi form and
2-dimensional stability group were classified in [Loboda 2002] and that recently
Fels and Kaup [≥ 2008] have determined all locally homogeneous 5-dimensional
CR-manifolds with certain degenerate Levi forms.

For a nonspherical hypersurface M , the group Aut0(M) is known to be lineariz-
able, that is, in some normal coordinates, every ϕ ∈ Aut0(M) can be written in the
form z 7→ Uϕz and w 7→ w; see [Kruzhilin and Loboda 1983]. If all elements of
Aut0(M) in some coordinates have the above form, we say that Aut0(M) is linear
in these coordinates. Thus, to describe hypersurfaces M with a particular value of
d0(M), one needs to (a) write M in normal coordinates in which Aut0(M) is linear,
(b) determine all connected closed subgroups H of Un of dimension d0(M), and
(c) find all H -invariant real-analytic functions of z, z and u that are homogeneous
of fixed degrees in each of z and z. Then every Fkl(z, z, u) in (1-1) is a function
of the kind found in (c), and one obtains the general form of M .

In [Ezhov and Isaev 2005], we considered the case d0(M)≥n2
−2n+2 for n ≥2.

It turned out that if d0(M) ≥ n2
− 2n + 3, then d0(M) = n2, that is, G0(M) = Un .

Clearly, every Un-invariant real-analytic function is a function of |z|2 and u, and
thus the equation of M in any normal coordinates in which Aut0(M) is linear has
the form

(1-3) v = |z|2 +

∞∑
p=4

C p(u)|z|2p,

where C p(u) are real-valued analytic functions of u, and for some p we have
C p(u) 6≡ 0. Here the condition p ≥ 4 comes from identities (1-2).

Further, for d0(M) = n2
− 2n + 2 we showed that the equation of M in some

normal coordinates in which Aut0(M) is linear has the form

(1-4) v = |z|2 +

∑
p+q≥2

C pq(u)|z1|
2p

|z|2q ,

where C pq(u) are real-valued analytic functions of u, C pq(u) 6≡ 0 for some p, q
with p > 0, and C pq for p + q = 2, 3 satisfy certain conditions arising from
identities (1-2).1 Equation (1-4) is the most general form of a hypersurface with
d0(M) = n2

− 2n + 2 and cannot be simplified any further without additional
assumptions on M . This equation is a consequence of our description of connected
closed subgroups of Un of dimension n2

− 2n + 2 obtained earlier in [Isaev and
Krantz 2001].

1In [Ezhov and Isaev 2005] we erroneously stated that identities (1-2) imply that C pq = 0 for
p + q = 2, 3. This is in general not the case; see that paper’s erratum.
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A. Loboda [2001] classified strongly pseudoconvex locally CR-homogeneous
hypersurfaces in C3 with d0(M) = 2 (here n = 2) by means of normal form tech-
niques (see also [Loboda 2002]). Using the homogeneity of M and the condition
d0(M) = 2, he showed that the equation of M must significantly simplify, which
eventually yielded the classification. His arguments avoid using the explicit form of
connected closed 2-dimensional subgroups of U2 (every such subgroup is conjugate
to U1 × U1) and, as a result, the special normal form (1-4). It seems that (1-4) can
be used to simplify the proof of the main result of [Loboda 2001]. Further, (1-4)
may be a useful tool for describing locally CR-homogeneous strongly pseudocon-
vex hypersurfaces with d0(M) = n2

− 2n + 2 for arbitrary n ≥ 2. Overall, the
introduction of algebraic arguments into the analysis of normal forms seems to be
a fruitful idea.

Observe for comparison that every locally CR-homogeneous strongly pseudo-
convex hypersurface with d0(M) ≥ n2

− 2n + 3 and n ≥ 2 is spherical, since by
(1-3) the origin is an umbilic point of M . This is in contrast with hypersurfaces
whose Levi form is nondegenerate and indefinite (see [Ezhov and Isaev 2005] for
a description of such hypersurfaces with d0(M) ≥ n2

− 2n + 3 and [Loboda 1999]
for the homogeneous case with n = 2).

In this paper we consider the cases d0(M) = n2
− 2n + 1 with n ≥ 2, and

d0(M) = n2
− 2n with n ≥ 3. Our result is the following theorem.

Theorem 1.1. Suppose M is a strongly pseudoconvex real-analytic nonspherical
hypersurface in Cn+1 passing through the origin.

(A) If d0(M) = n2
− 2n + 1 and n ≥ 2, then in some normal coordinates near

the origin in which Aut0(M) is linear, the equation of M takes one of the
following three forms:

(1-5) v = |z|2 +

∑
p+q≥2, r+s≥2,

(p−r)k1+(q−s)k2=0

C pqrs(u)z p
1 zq

2 z r
1z s

2,

where k1 and k2 are nonzero integers with (k1, k2) = 1 and k2 > 0, C pqrs(u)

are real-analytic functions of u, and C pqrs(u) 6≡ 0 for some p, q, r, s with
either p 6= r or q 6= s (here n = 2);

(1-6) v = |z|2 +

∑
2p+q≥2

C pq(u)
∣∣z2

1 + z2
2 + z2

3

∣∣2p
|z|2q ,

where C pq(u) are real-valued analytic functions of u and C pq(u) 6≡0 for some
p, q with p > 0 (here n = 3);

(1-7) v = |z|2 +

∑
p+r, q+r≥2

C pqr (u)z p
1 zq

1 |z|2r ,
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where C pqr (u) are real-analytic functions of u and C pqr (u) 6≡ 0 for some
p, q, r with p 6= q.

(B) If d0(M)=n2
−2n and n ≥3, then in some normal coordinates near the origin

in which Aut0(M) is linear, the equation of M takes one of the following three
forms:

(1-8) v = |z|2 +

∑
2p+r≥2, 2q+r≥2

C pqr (u)(z2
1 + z2

2 + z2
3)

p(z 2
1 + z 2

2 + z 2
3)q

|z|2r ,

where C pqr (u) are real-analytic functions of u and C pqr (u) 6≡ 0 for some
p, q, r with p 6= q (here n = 3);

(1-9) v = |z|2 +

∑
p+q+r≥2

C pqr (u)|z1|
2p

|z2|
2q

|z3|
2r ,

where C pqr (u) are real-valued analytic functions of u and C pqr (u) 6≡ 0 for
some p, q, r (here n = 3);

(1-10) v = |z|2 +

∑
p+q≥2

C pq(u)|z1
|
2p

|z2
|
2q ,

where z1
:= (z1, z2) and z2

:= (z3, z4), C pq(u) are real-valued analytic func-
tions of u, and C pq(u) 6≡ 0 for some p, q (here n = 4).

Corollary 1.2. Suppose M is a strongly pseudoconvex real-analytic nonspherical
hypersurface in Cn+1 passing through the origin. Assume that n ≥ 5 and that
d0(M) ≥ n2

− 2n. Then d0(M) ≥ n2
− 2n + 1. Also, in some normal coordinates

near the origin in which Aut0(M) is linear, the equation of M has the form

v = |z|2 +

∑
p+r, q+r≥2

C pqr (u)z p
1 zq

1 |z|2r ,

where C pqr (u) are real-analytic functions of u and C pqr (u) 6≡ 0 for some p, q, r .

Locally CR-homogeneous hypersurfaces in C3 with d0(M) = 1 (here n = 2)
were classified in [Loboda 2003]. We believe that Part (A) of Theorem 1.1 can be
used to simplify Loboda’s arguments.

2. Proof of Theorem 1.1

The main ingredient of the proof is the following proposition.

Proposition 2.1. Let H be a connected closed subgroup of Un with n ≥ 2. If
dim H = n2

− 2n + 1, then H is conjugate in Un to one of these three subgroups:

(i) eiRSO3(R) (here n = 3);
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(ii) U1×SUn−1 realized as the subgroup of all matrices diag(eiθ , A), where θ ∈ R

and A ∈ SUn−1, for n ≥ 3;

(iii) the subgroup H n
k1,k2

of all matrices diag(a, A), where k1 and k2 are fixed inte-
gers with (k1, k2) = 1 and k2 > 0, a ∈ (det A)k1/k2 := exp(k1/k2 log(det A)),
and A ∈ Un−1.2

If dim H = n2
− 2n, then H is conjugate in Un to one of these four subgroups:

(iv) SO3(R) (here n = 3);

(v) U1 × U1 × U1 realized as diagonal matrices in U3 (here n = 3);

(vi) U2 × U2 realized as block-diagonal matrices in U4 (here n = 4);

(vii) SUn−1 realized as the subgroup of all matrices diag(1, A) for A ∈ SUn−1.

Proof. The proof consists of two parts corresponding to the two different group
dimensions.

Part I. Suppose first that dim H = n2
−2n+1. Since H is compact, it is completely

reducible, that is, Cn splits into the sum Cn
= V1⊕· · ·⊕Vm of H -invariant pairwise

orthogonal complex subspaces such that the restriction H j of H to each V j is
irreducible. Let n j := dimC V j (hence n1 + · · · + nm = n), and let Un j be the
group of unitary transformations of V j . Clearly H j ⊂ Un j , and therefore dim H ≤

n2
1 + · · ·+ n2

m . On the other hand, dim H = n2
− 2n + 1, which shows that m ≤ 2.

We will now consider two cases.

Case 1. Let H be reducible, that is, m = 2. Then there exists a unitary change of
coordinates in Cn such all elements of H take the form diag(a, A), where a ∈ U1

and A ∈ Un−1. If dim H1 = 0, then H1 = {1}, and therefore H2 = Un−1. In this
case we obtain the group H n

0,1. Suppose now dim H1 = 1, that is, H1 = U1. Then
n2

− 2n ≤ dim H2 ≤ n2
− 2n + 1. If dim H2 = n2

− 2n, then H2 = SUn−1, and
hence H is conjugate to U1 × SUn−1 for n ≥ 3 and to H 2

0,1 for n = 2. Now let
dim H2 = n2

−2n +1, that is, H2 = Un−1. Consider the Lie algebra h of H . Up to
conjugation, it consists of matrices of the form diag(l(A), A), where A ∈ un−1 and
l(A) 6≡ 0 is a linear function of the matrix elements of A ranging in iR. Clearly,
l(A) must vanish on the derived algebra of un−1, which is sun−1. Hence matrices
diag(l(A), A) form a Lie algebra if and only if l(A) = c · tr A, where c ∈ R \ {0}.
Such an algebra can be the Lie algebra of a closed subgroup of U1 × Un−1 only if
c ∈ Q \ {0}. Hence H is conjugate to H n

k1,k2
for some k1, k2 ∈ Z, where one can

always assume that k2 > 0 and (k1, k2) = 1.

Case 2. Let H be irreducible, that is, m = 1. We shall proceed as in the proof of
[Isaev 2007, Lemma 1.4]. Let hC

:= h + ih ⊂ gln be the complexification of h,
where gln := gln(C). The algebra hC acts irreducibly on Cn and by a theorem of

2The group Hn
k1,k2

is a k2-sheeted cover of Un−1 (note that k2 = 1 if k1 = 0).
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E. Cartan, hC is either semisimple or the direct sum of the center c of gln and a
semisimple ideal t. Clearly, the action of the ideal t on Cn is irreducible. We will
now separately consider each of these situations.

Case 2.1. Assume first that hC is semisimple, and let hC
= h1 ⊕ · · · ⊕ hk be its

decomposition into the direct sum of simple ideals. Then the natural irreducible
n-dimensional representation of hC (given by the embedding of hC in gln) is the
tensor product of some irreducible faithful representations of the h j . Let n j be the
dimension of the corresponding representation of h j for j = 1, . . . , k. Then n j ≥ 2,
dimC h j ≤ n2

j − 1, and n = n1 × · · · × nk .
It is straightforward to show that if n = n1 × · · · × nk with k ≥ 2 and n j ≥ 2

for j = 1, . . . , k, then
∑k

j=1 n2
j ≤ n2

− 2n. Since dimC hC
= n2

− 2n + 1, it then
follows that k = 1, that is, hC is simple. The minimal dimensions of irreducible
faithful representations V of complex simple Lie algebras s are well known and
shown in the following table (see for example [Onishchik and Vinberg 1990]).

s dim V dim s

slk , k ≥ 2 k k2
− 1

ok , k ≥ 7 k k(k − 1)/2

sp2k , k ≥ 2 2k 2k2
+ k

e6 27 78

e7 56 133

e8 248 248

f4 26 52

g2 7 14

It is straightforward to see that none of these dimensions is compatible with the
condition dimC hC

= n2
− 2n + 1.

Case 2.2. Suppose now that hC
= c ⊕ t, where dim t = n2

− 2n. Then, if n = 2,
we obtain that H coincides with the center of U2, which is impossible since its
action on C2 is then not irreducible. Assuming that n ≥ 3 and repeating the above
argument for t in place of hC, we see that t can only be isomorphic to sln−1. But
sln−1 does not have an irreducible n-dimensional representation unless n = 3.

Thus, n =3 and hC
'C⊕sl2 'C⊕so3. Further, we observe that every irreducible

3-dimensional representation of so3 is equivalent to its defining representation.
This implies that H is conjugate in GL3(C) to eiRSO3(R). Since H ⊂ U3, it is
straightforward to show that the conjugating element can be chosen to belong to
U3. This completes the proof of the proposition in the case dim H = n2

− 2n + 1.
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Part II. Let dim H = n2
−2n. Arguing as in Part I, we see that either m ≤ 2 or, for

n = 3, we have m = 3. As before, we consider two cases.

Case 1. Let H be reducible. If n = 3 and m = 3, then H is conjugate in U3 to
U1 × U1 × U1. Suppose that m = 2. Then either n = 4 and H is conjugate in U4

to U2 ×U2, or there exists a unitary change of coordinates in Cn such all elements
of H take the form diag(a, A), where a ∈ U1 and A ∈ Un−1. If dim H1 = 0,
then H1 = {1}, and therefore H2 = SUn−1. Assume now that dim H1 = 1, that is,
H1 = U1. Then n ≥ 3 and n2

− 2n − 1 ≤ dim H2 ≤ n2
− 2n. [Isaev 2007, Lemma

1.4] shows that the possibility dim H2 = n2
− 2n − 1 cannot in fact occur, and

thus we have dim H2 = n2
− 2n. Then H2 = SUn−1, and hence H is conjugate

to a codimension 1 subgroup of the group of all matrices of the form diag(a, A)

with A ∈ SUn−1. Consider the Lie algebra h of H . Up to conjugation, it consists
of matrices of the form diag(l(A), A), where A ∈ sun−1 and l(A) 6≡ 0 is a linear
function of the matrix elements of A ranging in iR. Clearly, l(A) must vanish on
the derived algebra of sun−1, which is sun−1 itself. This contradiction shows that
the possibility dim H1 = 1 does not in fact realize.

Case 2. Let H be irreducible. Then n ≥ 3, and we argue as in Part I. If hC is
semisimple, it follows as before that hC is in fact simple. A glance at the table of
minimal dimensions of irreducible faithful representations of complex simple Lie
algebras now yields that n = 3 and hC

' sl2 ' so3, and hence H is conjugate in
U3 to SO3(R). Finally, if hC

= c⊕ t, where dim t = n2
−2n −1, we see that t must

be simple and obtain a contradiction with the above table.
The proof of the proposition is complete. �

To finish the proof of Theorem 1.1 we now need to determine polynomials in z
and z with coefficients depending on u that are invariant under each of the groups
listed in (i)–(vii) of Proposition 2.1. Note that by the assumption of Theorem 1.1,
we have n ≥ 2 for case (iii) and n ≥ 3 for case (vii).

(i) and (iv). It is known from the classical invariant theory (see [Weyl 1997, Theo-
rem 2.9.A]) that every SO3(R)-invariant polynomial is a polynomial in z2

1+z2
2+z2

3,
z 2

1 + z 2
2 + z 2

3 and |z|2; see also [Huebschmann 1996, Section 5]. If in addition such
a polynomial is eiR-invariant, it depends only on |z2

1 + z2
2 + z2

3|
2 and |z|2. These

observations lead to forms (1-6) and (1-8).

(ii). Every U1 ×SUn−1-invariant polynomial for n ≥ 3 is a polynomial in |z1|
2 and

|z′
|
2, where z′

:= (z2, · · · , zn). Therefore, such polynomials are in fact U1 ×Un−1-
invariant and hence lead to hypersurfaces with d0(M) ≥ n2

−2n +2; this rules out
case (ii).

(iii). Every H n
0,1-invariant polynomial is a polynomial in z1, z1 and |z′

|
2, which

leads to form (1-7). Let k1 6=0 and n ≥3. Taking A∈SUn−1 and a =1 in diag(a, A),
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we see that every H n
k1,k2

-invariant polynomial is a polynomial in z1, z1 and |z′
|
2.

Further, setting A to be a scalar matrix yields that every H n
k1,k2

-invariant polynomial
is in fact a polynomial in |z1|

2 and |z′
|
2 and hence is U1 × Un−1-invariant. As in

case (ii) above, such polynomials lead to hypersurfaces with d0(M) ≥ n2
−2n +2,

thus ruling out case (iii) for k1 6= 0, n ≥ 3. Finally, invariance under the group
H 2

k1,k2
with k1 6= 0 (here n = 2) leads to form (1-5).

(v). Every U1 ×U1 ×U1-invariant polynomial is a polynomial in |z1|
2, |z2|

2, |z3|
3,

which leads to form (1-9).

(vi). Every U2 × U2-invariant polynomial is a polynomial in |z1
|
2, |z2

|
2, where

z1
:= (z1, z2) and z2

:= (z3, z4); this leads to form (1-10).

(vii). Every SUn−1-invariant polynomial for n ≥ 3 is a polynomial in z1, z1 and
|z′

|
2, and hence is in fact Un−1-invariant. Therefore, such polynomials lead to

hypersurfaces with d0(M) ≥ n2
− 2n + 1, thus ruling out case (vii).

The proof of Theorem 1.1 is complete. �
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