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A NON-ARCHIMEDEAN WAVE EQUATION

ANATOLY N. KOCHUBEI

Let K be a non-Archimedean local field with the normalized absolute value
| · |. It is shown that a “plane wave” f (t + ω1x1 + · · · + ωnxn), where f is a
Bruhat–Schwartz complex-valued test function on K with (t, x1, . . . , xn) ∈

K n+1 and max1≤ j≤n |ω j | = 1, satisfies, for any f , a certain homogeneous
pseudodifferential equation, an analog of the classical wave equation. A
theory of the Cauchy problem for this equation is developed.

1. Introduction

Pseudodifferential equations for complex-valued functions that are defined on non-
Archimedean local fields, in particular the field Qp of p-adic numbers, are becom-
ing increasingly important, both in view of rich mathematical structures involved
in their studies and due to emerging applications; see the surveys in [Albeverio
et al. 2006b; Kochubei 2001; Kochubei and Sait-Ametov 2003; Kozyrev 2004;
Varadarajan 2004; Vladimirov et al. 1994; Zuniga-Galindo 2004].

Most studies are of pseudodifferential equations over Qn
p with the symbols

|P(ξ1, . . . , ξn)|
α
p for α>0, where P is a polynomial. The class of elliptic operators

correspond to such polynomials P that P(ξ1, . . . , ξn) 6= 0 for (ξ1, . . . , ξn) 6= 0. An
equation of the Schrödinger type is obtained if there is a distinguished variable,
say ξ1, and P(ξ1, . . . , ξn) = ξ1 − r(ξ2, . . . , ξn), where r is a p-adic quadratic
form. It has been understood also that analogs of parabolic equations are evolution
equations with a real time variable and p-adic spatial variables (this is connected
with probabilistic applications; see [Kochubei 2001] and references therein). It
seemed natural to interpret the case where P(ξ1, . . . , ξn)= ξ

2
1 −r(ξ2, . . . , ξn) with

an anisotropic quadratic form r , as the case of hyperbolic equations. However the
results available for this case (see [Kochubei 2001]) are quite scant. In particular,
no well-posed problems for such equations have been identified.

In this paper we propose an alternative approach. Instead of a formal resem-
blance in the definition of an equation, we proceed from its properties. Let us call
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a function u(t, x1, . . . , xn) : Qn+1
p → C a plane wave, if, for ω1, . . . , ωn ∈ Qp and

max1≤ j≤n|ω j |p = 1,

(1) u(t, x1, . . . , xn)= f (t +ω1x1 + · · · +ωnxn),

where f belongs to the Bruhat–Schwartz space D(Qp) of test functions (in fact, we
will consider not only Qp but arbitrary non-Archimedean local fields; see below).

We will show that every function (1) is a solution of the equation

(2) Dα
t u − Dα,n

x u = 0,

where Dα is Vladimirov’s fractional differentiation operator, that is, a pseudodif-
ferential operator with the symbol |ξ |αp, while Dα,n is a pseudodifferential operator
of n variables with the symbol max1≤ j≤n|ξ j |

α
p, where α > 0 is an arbitrary number.

Equation (2) with n = 1 was mentioned in [Vladimirov 2003] as an example of
the following pathology. Consider the equation for a related fundamental solution
E :

(3) Dα
t E − Dα,n

x E = δ,

where E belongs to some class of distributions, on which the operators are defined,
with the usual relations between them and the Fourier transform. Then, performing
the Fourier transform we obtain the contradictory identity(

|τ |αp − max
1≤ j≤n

|ξ j |
α
p

)
Ẽ(τ, ξ1, . . . , ξn)= 1,

where the left side vanishes on the open set{
0 6= (τ, ξ1, . . . , ξn) ∈ Qn+1

p : |τ |p = max
1≤ j≤n

|ξ j |p

}
.

Therefore the fundamental solution cannot exist, and one cannot expect any
reasonable behavior of an inhomogeneous equation associated with (2). On the
other hand, the set of solutions of the one-dimensional equation Dα

t u = λu is
infinite-dimensional; see [Kochubei 2001; Vladimirov et al. 1994]. Thus, at first
sight, Equation (2) does not look like an evolution equation with “time” variable t .

Nevertheless, we will prove here the existence and uniqueness of solutions
for some analogs of the Cauchy problem for Equation (2) in the class of radial
functions, that is, those depending (in the variable t) only on |t |p. On this class,
the operator Dα becomes a counterpart of the Caputo–Dzhrbashyan regularized
fractional derivative appearing in fractional evolution equations of real analysis;
see [Eidelman et al. 2004]. Moreover, the above connection with plane waves,
together with the inversion formula for the Radon transform, which is available
in the non-Archimedean case too [Chernov 1970; 1972], leads to a formula for
solutions and an analog of the Huygens principle.
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2. Preliminaries

2.1. Local fields. Let K be a non-Archimedean local field, that is, a nondiscrete
totally disconnected locally compact topological field. It is well known that K is
isomorphic either to a finite extension of the field Qp of p-adic numbers (if K has
characteristic 0), or to the field of formal Laurent series with coefficients from a
finite field Fq if K has characteristic p 6= 0; in this case q = pν for ν ∈ N. For
a summary of main notions and results regarding local fields see, for example,
[Kochubei 2001].

Any local field is endowed with an absolute value | · | such that, first, |x | = 0
if and only if x = 0, second, |xy| = |x | · |y|, and, finally, |x + y| ≤ max(|x |, |y|).
Denote O = {x ∈ K : |x | ≤ 1}, P = {x ∈ K : |x | < 1}, and U = O \ P . O is a
subring of K called the ring of integers, P is an ideal in O called the prime ideal;
the multiplicative group U is called the group of units. The ideal P contains an
element β such that P = βO (a prime element). The quotient ring O/P is actually
a finite field; denote by q its cardinality. We will always assume that the absolute
value is normalized, that is, |β| = q−1. The normalized absolute value | · | takes the
values q N for N ∈ Z.

If K = Qp (p is a prime number), that is, a completion of the field Q of rational
numbers with respect to the absolute value

|x |p = p−ν for x = pν m
n

,

where ν,m, n ∈ Z, and m, n are prime to p, then β = p (p is seen as an element
of Qp) and q = p (as a natural number).

Returning to a general local field K , denote by S ⊂ O a complete system of
representatives of the residue classes from O/P . Then any nonzero element x ∈ K
admits the canonical representation in the form of the convergent series

x = β−n(x0 + x1β + x2β
2
+ · · · ),

where n ∈ Z, |x | = qn , x j ∈ S, and x0 /∈ P . For K = Qp, one may choose
S = {0, 1, . . . , p − 1}.

The additive group of any local field is self-dual, that is, if χ is any nonconstant
complex-valued additive character of K , then any other additive character can be
written as χa(x) = χ(ax) for x ∈ K and some a ∈ K . See [Kochubei 2001] for
an explicit description of the character χ used in harmonic analysis on local fields
(“the canonical additive character”). In particular, it is assumed that χ is a rank
zero character, that is, χ(x)≡ 1 for x ∈ O and there exists such an element x0 ∈ K
that |x0| = q and χ(x0) 6= 1.

The duality above is used in the definition of the Fourier transform over K .
Denoting by dx the Haar measure on the additive group of K (normalized so that
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the measure of O equals 1), we write

f̃ (ξ)=

∫
K
χ(xξ) f (x) dx for ξ ∈ K ,

where f is a complex-valued function from L1(K ). As usual, the Fourier transform
F can be extended from L1(K )∩ L2(K ) to a unitary operator on L2(K ). If F f =

f̃ ∈ L1(K ), we have the inversion formula f (x)=
∫

K χ(−xξ) f̃ (ξ) dξ.
Similarly, if f : K n

→ C, we write

f̃ (ξ1, . . . , ξn)=

∫
K n
χ(x1ξ1 + · · · + xnξn) f (x1, . . . , xn) dx1 . . . dxn.

The inversion formula is then

f (x1, . . . , xn)=

∫
K n
χ(−x1ξ1 − · · · − xnξn) f̃ (ξ1, . . . , ξn) dξ1 . . . dξn.

2.2. Spaces of test functions and distributions. A function f : K → C is said to
be locally constant if there exists such an integer l that for any x ∈ K

f (x + x ′)= f (x) if |x ′
| ≤ q−l .

The smallest number l with this property is called the exponent of local constancy
of the function f .

Denote by D(K ) the set of all locally constant functions with compact supports.
D(K ) is a vector space over C. To furnish it with a topology, consider a subspace
Dl

N ⊂ D(K ) of functions supported in the ball

BN =
{

x ∈ K : |x | ≤ q N }
for n ∈ Z

whose exponents of local constancy are ≤ l.
The space Dl

N is finite-dimensional; thus it has a natural topology induced from
C. Then we set

DN = lim
−→

l→∞

Dl
N ,

and define the topology in D(K ) as the inductive limit topology, that is

D(K )= lim
−→

N→∞

DN .

The strong conjugate space D′(K ) is called the space of Bruhat–Schwartz distri-
butions.

The operation of the Fourier transform preserves the space D(K ) or D(K n)

(this property contrasts the Archimedean case). Therefore the Fourier transform
of a distribution defined, by duality (just as for distributions from S′(Rn)), acts
continuously on D′(K ) or D′(K n), respectively. As in the case of Rn , there exists
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a well-developed theory of distributions over local fields including such topics as
convolution, direct product, homogeneous distributions and so on. Note in partic-
ular that a function |x |

α−1 for Reα > 0 admits an analytic continuation in α to a
meromorphic distribution

(4)
〈
|x |

α−1, ϕ
〉
=

∫
K
|x |

α−1(ϕ(x)−ϕ(0)) dx for ϕ ∈ D(K )

and Reα > 0 (see [Vladimirov et al. 1994, Section VIII] for K = Qp. The general
case is completely similar). See [Albeverio et al. 2006a; Gel’fand et al. 1969;
Kochubei 2001; Vladimirov et al. 1994] for further details.

Below we will often use the subspaces of D(K n),

9(K n)=
{
ψ ∈ D(K n) : ψ(0)= 0

}
,

8(K n)=

{
ϕ ∈ D(K n) :

∫
K n
ϕ(x) dnx = 0

}
,

which were introduced in [Albeverio et al. 2006b]. The space 8(K n) is called
the Lizorkin space of test functions of the second kind; it is a non-Archimedean
counterpart of a space of test functions on Rn proposed by Lizorkin [1963]; see
also [Samko 2002]. The conjugate space 8′(K n) is called the Lizorkin space of
distributions of the second kind. The most important property of these spaces is
that the Fourier transform F is a linear isomorphism from 9(K n) onto 8(K n),
thus also from 8′(K n) onto 9 ′(K n). At the same time, F can be considered as a
linear isomorphism from 8(K n) to 9(K n).

2.3. Pseudo-differential operators. The simplest and best studied pseudodifferen-
tial operator, acting on complex-valued functions over K , is the fractional differen-
tiation operator Dα, α > 0, whose deep investigation was initiated by Vladimirov
[1994]. It is defined as

(Dαϕ)(x)= F−1 [
|ξ |α(F(ϕ))(ξ)

]
(x) for ϕ ∈ D(K ).

Note that Dα does not act on the space D(K ) since the function ξ 7→ |ξ |α is not
locally constant. We can assert, for example, that Dα

: D(K ) → L2(K ), and the
closure of this operator is self-adjoint on L2(K ). On the other hand, Dα

:8(K )→
8(K ) and Dα

:8′(K )→8′(K ); see [Albeverio et al. 2006b].
Similarly, for x = (x1, . . . , xn) ∈ K n , set ‖x‖ = max1≤ j≤n|x j |. The pseudodif-

ferential operator Dα,n
: D(K n)→ L2(K n) is given by the expression

(Dα,nϕ)(x)= F−1 [
‖ξ‖α(F(ϕ))(ξ)

]
(x) for ϕ ∈ D(K n).

We have Dα,n
:8(K n)→8(K n) and Dα,n

:8′(K n)→8′(K n).
An important property of these operators is the possibility of getting rid of the

Fourier transform and representing them as hypersingular integral operators. For



250 ANATOLY N. KOCHUBEI

any u ∈ D(K ),

(5) (Dαu)(x)=
1−qα

1−q−α−1

∫
K
|y|

−α−1(u(x − y)− u(x)) dy;

see [Kochubei 2001; Vladimirov et al. 1994]. The expression in the right side of
(5) makes sense for wider classes of functions, for example, for all bounded locally
constant functions.

Similarly, if u ∈ D(K n), then

(6) (Dα,nu)(x)=
1−qα

1−q−α−n

∫
K n

‖y‖
−α−n(u(x − y)− u(x)) dn y;

see [Taibleson 1968; Albeverio et al. 2006b; Vladimirov et al. 1994].

Lemma 1. If u is a bounded locally constant function on K n , then the distribution
Dα,nu ∈8′(K n) coincides with the function (6).

Proof. Let ϕ ∈8(K n). Then

〈Dα,nu, ϕ〉 =
1−qα

1−q−α−n

∫
K n

u(x) dnx
∫

K n

ϕ(y)−ϕ(x)
‖x−y‖α+n dn y.

Let θ > 0 be so small that u(x)= u(y) and ϕ(x)= ϕ(y) if ‖x − y‖< θ . Denote

Cα =
1−qα

1−q−α−n

∫
‖y‖≥θ

dy
‖y‖α+n .

Then

〈Dα,nu, ϕ〉 =
1−qα

1−q−α−n

∫
K n

u(x) dnx
∫

‖x−y‖≥θ

ϕ(y)
‖x − y‖α+n dn y − Cα

∫
K n

u(x)ϕ(x) dnx

=
1 − qα

1 − q−α−n

∫
K n

ϕ(y) dn y
∫

‖x−y‖≥θ

u(x)− u(y)
‖x − y‖α+n dnx = 〈ϕ,ψ〉,

where ψ is the right-hand side of (6), as desired. �

2.4. The Radon transform. Let ϕ ∈ D(K n) for n ≥ 2. The Radon transform
ϕ̌(ξ, s), where ξ ∈ K n , ξ 6= 0, and s ∈ K , is defined by the relation

ϕ̌(ξ, s)=

∫
ξ ·x=s

ϕ(x) dωξ,s(x)

(see [Chernov 1970; 1972]), where ωξ,s is a measure on the hyperplane ξ · x = s
(we write ξ · x = ξ1x1 + · · · + ξnxn) such that, for any ψ ∈ D(K n),∫

K
ds

∫
ξ ·x=s

ψ(x) dωξ,s(x)=

∫
K n
ψ(x) dx .
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The function ϕ̌ possesses the following properties. It is homogeneous of degree
−1 in ξ and s, that is, ϕ̌(σ ξ, σ s) = |σ |

−1ϕ̌(ξ, s) for any σ ∈ K \ {0}. Next,
ϕ̌(ξ, s)=0 if the expression |s|·‖ξ‖−1 is sufficiently large. The function ϕ̌ is jointly
locally constant in ξ and s. Finally, the integral

∫
K ϕ̌(ξ, s) ds does not depend on

ξ . Note that the above properties of a function of ξ and s are also sufficient for
such a function to be the Radon transform of some function ϕ ∈ D(K n).

To find a connection between the Radon and Fourier transforms (similar to the
well-known one for the case of Rn [Helgason 1980]), we write

ϕ̃(sξ)=
∫
K n

ϕ(x)χ(s(x ·ξ)) dnx =

∫
K

dr
∫

ξ ·x=r

ϕ(x)χ(sr) dωξ,r (x)=
∫
K

χ(sr)ϕ̌(ξ, r) dr,

and it follows from the Fourier inversion formula that

(7) ϕ̌(ξ, r)=

∫
K
χ(−sr)ϕ̃(sξ) ds.

From [Chernov 1970; 1972], the inversion formula for the non-Archimedean
Radon transform is

(8) ϕ(x)=
1−qn−1

(1−q−1)(1−q−n)

∫
‖η‖=1

〈|s|−n, ϕ̌(η, s + η · x)〉 dnη for x ∈ K n,

where the distribution |s|−n is understood in the sense of (4). Substituting (4) into
(8) and comparing with (5), we can write the inversion formula in the form

(9) ϕ(x)=
1

1−q−1

∫
‖η‖=1

(Dn−1
s ϕ̌(η, s + η · x))

∣∣
s=0 dnη.

The identity (9) can be proved directly by substituting (7) and calculating the
integrals.

If n = 1, we define the Radon transform by the formula (7). It is easy to check
that the inversion formula (9) remains valid for this case too, in the form

ϕ(x)= (1 − q−1)−1
∫

|η|=1
ϕ̌(η, ηx) dη.

3. Radial eigenfunctions

3.1. L2-solutions. Let u(x)= ψ(|x |) ∈ L2(K ) be such that

(10) Dαu = λu,

where λ= qαN for N ∈ Z and u is not identically zero.
Let us apply the Fourier transform to both sides of (10). We get

(11) (|ξ |α − qαN )̃u(ξ)= 0 for all ξ ∈ K .
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It follows from (11) that the inequality ũ(ξ) 6= 0 is possible only for |ξ | = q N .
Since u is a radial function, ũ also has this property [Kochubei 2001; Vladimirov
et al. 1994]. Therefore

(12) ũ(ξ)=

{
c if |ξ | = q N ,
0 if |ξ | 6= q N ,

for c 6= 0.

By the Fourier inversion and the well-known integration formula (see the two
sources above), we get

(13) u(x)=


cq N (1 − q−1) if |x | ≤ q−N ,
−cq N−1 if |x | = q−N+1,
0 if |x |> q−N+1.

It is easily seen from (12) or (13) that u ∈8(K ).
The only radial eigenfunction u with u(0)=1 (an analog of the function t 7→e−λt

for t ∈ R) corresponds to c = q−N (1 − q−1)−1. On the other hand, if u(0) = 0,
then c = 0.

3.2. Generalized solutions. Let us consider solutions u ∈8′(K ) of Equation (10).
It is natural to call a distribution u ∈8′(K ) radial (or spherically symmetric) if, for
any ω∈ K with |ω|=1 and any ϕ ∈8(K ), 〈u, ϕω〉= 〈u, ϕ〉,where ϕω(x)=ϕ(ωx).
In a similar way, we define a radial distribution from9 ′(K ). It is easy to check that
the Fourier transform maps a radial distribution from8′(K ) to a radial distribution
from 9 ′(K ).

Proposition 1. If a radial distribution u ∈ 8′(K ) satisfies Equation (10), then it
coincides, for some c ∈ C, with the function (13).

Proof. By definition of a generalized solution, we have

〈u, Dαϕ〉 = λ〈u, ϕ〉 for any ϕ ∈8(K ).

Writing ϕ = F−1ψ , where ψ ∈9(K ), we see that (Dαϕ)(x)= F−1
ξ→x(|ξ |

αψ(ξ)).
The function ξ → |ξ |αψ(ξ) belongs to 9(K ). Therefore, considering F as an

operator from 8′(K ) to 9 ′(K ), we may write

〈u, Dαϕ〉 = 〈(Fu)(ξ), |ξ |αψ(ξ)〉 = 〈|ξ |α(Fu)(ξ), ψ(ξ)〉,

so that we come to the equality (11), where this time ũ = Fu ∈ 9 ′(K ), and the
multiplication by |ξ |α − qαN is understood in the distributional sense. Thus, for
any ψ ∈9(K ),

〈(Fu)(ξ), (|ξ |α − qαN )ψ(ξ)〉 = 0.

On the sphere {ξ ∈ K : |ξ | = ql
} for l 6= N , the set of functions ξ 7→ (|ξ |α −

qαN )ψ(ξ) runs the set of restrictions of all the functions from 9(K ). Therefore
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the restriction of the distribution Fu to such a sphere equals zero, so that Fu is
concentrated on the sphere SN = {ξ ∈ K : |ξ | = q N

}.
The set of restrictions to SN of functions from 9(K ) coincides with

D(SN )= lim
−→

l→∞

Dl(SN ),

where Dl(SN ) is the set of complex-valued functions on SN with the exponents
of local constancy ≤ l. The space Dl(SN ) is finite-dimensional; its basis can be
constructed from the functions δσ0,σ1,...,σN+l−1(t) (here σ0, σ1, . . . , σN+l−1 ∈ S and
σ0 /∈ P), which equal 1 on elements t ∈ SN with the canonical representations
t = β−N (σ0 + σ1β + · · · + σN+l−1β

N+l−1)+ O(βl), and 0 on all other t ∈ SN .
Denote

cσ0,σ1,...,σN+l−1 = 〈Fu, δσ0,σ1,...,σN+l−1〉.

The ratio of any two elements β−N (σ0 + σ1β + · · · + σN+l−1β
N+l−1) belongs to

the group of units U . The transformation of one of the functions δσ0,σ1,...,σN+l+1

into another (with the same l) is implemented by multiplying the argument by
the appropriate ratio. Since Fu is a radial distribution, we find that cσ0,σ1,...,σN+l−1

depends only on l, say cσ0,σ1,...,σN+l−1 = c′

l−1. At the same time,∑
σN+l∈S

δσ0,σ1,...,σN+l−1,σN+l = δσ0,σ1,...,σN+l−1,

whence c′

l−1 = qc′

l and c′

l = c′

0q−l for c′

0 ∈ C. Thus, we have found that

(14) 〈Fu, δσ0,σ1,...,σN+l 〉 = c′

0q−l

for all l.
Meanwhile, the integral

∫
|t |=q N δσ0,σ1,...,σN+l (t) dt equals q N−(N+l)−1

= q−l−1;
see [Vladimirov et al. 1994, Section IV]. Together with (14), this shows that the
restriction of the distribution Fu to the sphere SN is a constant; outside SN , Fu
equals 0. Thus, Fu has the form (12), so that u coincides with the function (13). �

4. Plane waves

Following a classical pattern we call a function

(15) F(t, x)= f (t +ω1x1 + · · · +ωnxn) for t ∈ K and (x1, . . . , xn) ∈ K n,

where ‖(ω1, . . . , ωn)‖ = 1 and f ∈ D(K ), a non-Archimedean plane wave.

Proposition 2. For any α > 0, a non-Archimedean plane wave (15) satisfies the
equation

(16) Dα
t F − Dα,n

x F = 0.
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Proof. Suppose that n ≥ 2 (in the case n = 1 the validity of (16) is checked in a
straightforward way). Let us compute Dα,n

x F . By its definition,

(Dα,n
x F)(t, x)=

1 − qα

1 − q−n−α

∫
K n

(
max j |y j |

)−n−α

×

(
f
(
t +

n∑
j=1
ω j x j −

n∑
j=1
ω j y j

)
− f

(
t +

n∑
j=1
ω j x j

))
dy1 . . . dyn.

Since max j |ω j | = 1, we can choose an index j0 so that |ω j0 | = 1. Suppose for
simplicity that |ω1| = 1. Let us perform the change of variables

η1 =

n∑
j=1
ω j y j , η2 = y2, . . . , ηn = yn.

Obviously, max j |η j | ≤ max j |y j |. On the other hand,

y1 =
1
ω1
(η1 −ω2η2 − · · · −ωnηn),

whence max j |y j | ≤ max j |η j |, so that max j |y j | = max j |η j |.
The Jacobian of the transformation (y1, . . . , yn) 7→ (η1, . . . , ηn) equals∣∣∣∣∣∣∣∣∣

ω1 ω2 . . . ωn

0
... In−1,n−1

0

∣∣∣∣∣∣∣∣∣ ,
where I is the appropriate identity matrix. It belongs to U . We have

(Dα,n
x F)(t, x)=

1−qα

1−q−n−α

∫
K n

(
max j |η j |

)−n−α

×

(
f
(
t +

n∑
j=1
ω j x j − η1

)
− f

(
t +

n∑
j=1
ω j x j

))
dη1 . . . dηn

=
1−qα

1−q−n−α

∫
K

(
f
(
t +

n∑
j=1
ω j x j − η1

)
− f

(
t +

n∑
j=1
ω j x j

))
dη1

×

∫
K n−1

(
max1≤ j≤n |η j |

)−n−αdη2 . . . dηn.

To compute the integral over K n−1, we write it in the form∫
K n−1

(
max1≤ j≤n|η j |

)−n−αdη2 . . . dηn = I1 + I2,
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where
I1 =

∫
max2≤ j≤n |η j |<|η1|

|η1|
−n−αdη2 . . . dηn,

I2 =

∫
max2≤ j≤n |η j |≥|η1|

(
max2≤ j≤n|η j |

)−n−αdη2 . . . dηn.

It is well known (see, for example, [Taibleson 1968]) that∫
max2≤ j≤n |η j |=qk

dη2 . . . dηn = q(n−1)k(1 − q−n+1).

Suppose that |η1| = qν for ν ∈ Z. Then

I1 = |η1|
−n−α

ν−1∑
k=−∞

q(n−1)k(1 − q−n+1)= |η1|
−n−αq(n−1)(ν−1)

= q−(n−1)
|η1|

−α−1,

I2 =

∞∑
k=ν

q−k(n+α)q(n−1)k(1 − q−n+1)= (1 − q−n+1)
∞∑

k=ν

q−k(α+1)

=
1−q−n+1

1−q−α−1 |η1|
−α−1,

so that ∫
K n−1

(
max1≤ j≤n|η j |

)−n−αdη2 . . . dηn =
1−q−n−α

1−q−α−1 |η1|
−α−1.

Therefore (Dα,n
x F)(t, x) equals

1 − qα

1 − q−α−1

∫
K

|η1|
−α−1

(
f
(
t +

n∑
j=1
ω j x j − η1

)
− f

(
t +

n∑
j=1
ω j x j

))
dη1,

which equals (Dα
t F)(t, x). This means that F satisfies Equation (16). �

5. Cauchy problems

5.1. Applications of the Radon transform. Let ϕ ∈ D(K n). We will look for a
solution F(t, x) of Equation (16) satisfying the initial condition

(17) F(0, x)= ϕ(x) for x ∈ K n,

or the modified initial condition

(18)
(
Dn−1

t F
)
(0, x)= ϕ(x) for x ∈ K n.

Of course, the conditions (17) and (18) coincide if n = 1.
Let ϕ̌(ξ, s) be the Radon transform of the initial function ϕ. Denote

0(t, x, u)= ϕ̌(u, t + u · x) for t ∈ K , x, u ∈ K n , and ‖u‖ = 1.
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Let us consider the functions

F1(t, x)= (1 − q−1)−1
∫

‖u‖=1
(Dn−1

t 0)(t, x, u) dnu,

F2(t, x)= (1 − q−1)−1
∫

‖u‖=1
0(t, x, u) dnu.

Theorem 1. The function F1(t, x) is radial in t , is jointly locally constant in
(t, x), and is a bounded solution of the Cauchy problem (16), (17). The function
F2(t, x) has the same properties, except that it solves the modified Cauchy problem
(16), (18).

Proof. It follows from the identity (7) that ϕ̌(ξ, r) belongs to D(K ) in r uniformly
with respect to ξ ∈ K n with ‖ξ‖ = 1 — there exists a compact set in K outside of
which ϕ̌(ξ, ·) vanishes for all the above ξ , and ϕ̌(ξ, r + r ′)= ϕ̌(ξ, r) if |r ′

| ≤ q−l ,
where l does not depend on ξ . This means that 0 is locally constant in t and x
uniformly with respect to u ∈ K n with ‖u‖ = 1. In addition, 0 and Dn−1

t 0 are
bounded uniformly with respect to u. These properties make it possible to change
the order of integration while Dα

t F j and Dα,n
x are computed. Then Proposition 2

shows that F1 and F2 satisfy Equation (16). The initial conditions are satisfied due
to the Radon inversion formula (9).

To check that F2(t, x) is radial in t , we notice that ϕ̌(ωξ, ωs) = ϕ̌(ξ, s) for
|ω| = 1, by virtue of the homogeneity property of ϕ̌. Therefore 0(ωt, x, u) =

ϕ̌(u, ωt + u · x)= ϕ̌(ω−1u, t + (ω−1u) · x)= 0(t, x, ω−1u), so that

F2(ωt, x)= (1 − q−1)−1
∫

‖u‖=1
0(t, x, ω−1u) dnu = F2(t, x).

Since the operator Dn−1
t commutes with the operator f (t) 7→ f (ωt) with |ω| = 1,

we find also that F1 is radial in t . �

Let us study the solution F2(t, x) of the modified Cauchy problem (16), (18)
in a little greater detail. Using the connection (7) between the Fourier and Radon
transforms we get that

(19)
∫

‖u‖=1
0(t, x, u) dnu =

∫
K
χ(−st) ds

∫
‖u‖=1

χ(−s(u · x))ϕ̃(su) dnu.

Next,∫
‖u‖=1

χ(−s(u · x))ϕ̃(su) dnu =

∫
K n
ϕ(y) dn y

∫
‖u‖=1

χ(s(u · (y − x))) dnu.
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By the well-known integration formula (see, for example, [Taibleson 1968]),∫
‖u‖=1

χ(s(u · (y − x))) dnu =


1 − q−n if |s| · ‖y − x‖ ≤ 1,
−q−n if |s| · ‖y − x‖ = q,
0 if |s| · ‖y − x‖> q,

so that

(20)
∫

‖u‖=1

χ(−s(u·x))ϕ̃(su) dnu = (1−q−n)

∫
‖y−x‖≤|s|−1

ϕ(y) dn y−q−n
∫

‖y−x‖=q|s|−1

ϕ(y) dn y.

Proposition 3. Suppose that ϕ(x)= 0 for ‖x‖> q N , and ϕ(y)= ϕ(x) if ‖y −x‖ ≤

q−ν for ν, N ∈ N. Then F2(t + t ′, x)= F2(t, x) if |t ′
| ≤ q−ν , and F2(t, x)= 0 for

|t |> q N+1.

Proof. By (19) and (20),

(21) F2(t, x)= (1 − q−1)−1
∫

K
χ(−st)R(s, x) ds,

where

(22) R(s, x)=
(
1 − q−n) ∫

‖y−x‖≤|s|−1
ϕ(y) dn y − q−n

∫
‖y−x‖=q|s|−1

ϕ(y) dn y.

If |s| ≥ qν+1, then

R(s, x)= ϕ(x)
{(

1 − q−n) ∫
‖y‖≤|s|−1

dn y − q−n
∫

‖y‖=q|s|−1
dn y

}
= ϕ(x)|s|−n((1 − q−n)− q−n

· qn(1 − q−n)
)
= 0,

so that
F2(t, x)= (1 − q−1)−1

∫
|s|≤qν

χ(−st)R(s, x) ds,

which implies the required local constancy in t .
Let |t |> q N+1. Then there exists an element s0 ∈ K with |s0| = q−N−1 such that

χ(s0t) 6= 1. If ‖x‖ ≤ q N , then ϕ(y)= 0 for ‖y −x‖> q N . Therefore for |s|< q−N

the second summand in the right-hand side of (22) equals zero, while the domain
of integration in the first summand can be fixed as {y ∈ K n

: ‖y − x‖ ≤ q N
} if

|s|< q−N . Therefore R(s, x) is constant in s on the set {s ∈ K : |s|< q−N
}, which

implies the equality R(s+s0, x)= R(s, x) for all the values of s. Making in (21) the
change of variables s = s ′

+ s0 we come to the identity F2(t, x)= χ(s0t)F2(t, x),
which yields the required equality F2(t, x)= 0. �

Note that the local constancy of F2 in t may be interpreted as a counterpart of
the finite domain of dependence for a classical wave equation: if the initial function
ϕ is such that ϕ(x) = 0 outside some compact set C ⊂ K n , then F2(t, x) = 0 for
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x ∈ K n
\C , at least on some neighborhood of the origin t = 0. Meanwhile, the fact

that F2(t, x) vanishes, as |t | becomes big enough (for a given ‖x‖), resembles the
Huygens principle, the existence of the trailing edge of a wave.

5.2. A uniqueness theorem. Here we consider the uniqueness problem in the class
of generalized solutions that are radial in t .

Denote by 8′(K ,8′(K n)) the set of distributions over the test function space
8(K ), with values in 8′(K n).

Theorem 2. Let F ∈8′(K ,8′(K n)) be a generalized solution of the Equation (16),
that is, 〈〈F, Dα

t ϕ1〉, ϕ2〉 = 〈〈F, ϕ1〉, Dα,n
x ϕ2〉 for any ϕ1 ∈ 8(K ), ϕ2 ∈ 8(K n).

If F is radial in t , then F ∈ D(K ,8′(K n)). If , in addition, F(0, x) = 0 or
(Dn−1

t F)(0, x)= 0, then F(t, x)≡ 0.

Proof. Denote by F̃(t, ·) the Fourier transform of F in the variable x ; as usual, we
abuse the notation slightly, writing a distribution in the variable t as a function of t .
For any ψ ∈9(K n) we have Dα

t 〈F̃(t, ·), ψ〉 = 〈‖ξ‖α F̃(t, ξ), ψ(ξ)〉. If suppψ ⊂

SN = {ξ ∈ K n
: ‖ξ‖ = q N

} for N ∈ N, then Dα
t 〈F̃(t, ·), ψ〉 = qαN

〈F̃(t, ·), ψ〉.
By Proposition 1, the function 〈F̃(t, ·), ψ〉 has the form (13) with t substituted

for x and some c ∈ C. If ψ ∈ 9(K n), then ψ is a sum of a finite number of
functions supported on spheres SN . Taking, in particular, ψ = ϕ̃ for ϕ ∈ 8(K n),
we find that 〈F(t, ·), ϕ〉 belongs to D(K ) in the variable t for any ϕ ∈8(K n).

If F(0, ·) = 0, then also F̃(0, ·) = 0. If ψ ∈ 9(K n) with suppψ ⊂ SN , then,
as we have seen, 〈F̃(t, ·), ψ〉 has the form (13), and the assumption F̃(0, ·) = 0
implies the equality c = 0, whence 〈F̃(t, ·), ψ〉 = 0, and F̃(t, ·)= 0 (since ψ and
N are arbitrary), and F(t, ·)= 0.

Next, if a function u(t) has a form (13), then its Fourier transform has a form
(12), and it is easy to find

(Dn−1u)(t)=


c(1 − q−1)q Nn if |t | ≤ q−N ,
−cq Nn−1 if |t | = q−N+1,
0 if |t |> q−N+1.

Repeating the above arguments, we find that the equality
(
Dn−1 F

)
(0, x)) implies

F(t, x)≡ 0. �

It follows from Lemma 1 that bounded locally constant solutions of Equation
(16) are generalized solutions of the class considered in Theorem 2. Therefore the
solutions of the Cauchy problems constructed in Theorem 1 are unique in the class
of radial in t , bounded locally constant functions. It is natural to see such solutions
as classical solutions of the non-Archimedean wave equation (16).

5.3. Representation of solutions. Suppose that ϕ ∈ 8(K n). We will look for a
solution belonging to8(K ) and radial in t , for each x ∈ K , and belonging to8(K n)
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in x , for each t ∈ K n . In this framework, we may use the Fourier transform, but
we should not forget to check that the resulting solution indeed satisfies the above
requirements.

Let us consider the modified Cauchy problem (16), (18). Suppose that n ≥ 2.
Performing the Fourier transform in x we come to the problem

Dα
t F̃2(t, ξ)− ‖ξ‖α F̃2(t, ξ)= 0,(23)

(Dn−1
t F̃2)(0, ξ)= ϕ̃(ξ).(24)

As we have seen,

F̃2(t, ξ)=


c(ξ)(1 − q−1)‖ξ‖ if |t | ≤ ‖ξ‖−1,
−c(ξ)q−1

‖ξ‖ if |t | = q‖ξ‖−1,
0 if |t |> q‖ξ‖−1,

where c(ξ) ∈ C and c(0)= 0; note that for ξ = 0 it follows from (23) that F̃2(t, 0)
is a constant which must equal zero by our assumption that F2 ∈8(K ) in t .

Computing Dn−1
t F̃2 as above (see the proof of Theorem 2) we find that

(Dn−1
t F̃2)(t, ξ)=


c(ξ)(1 − q−1)‖ξ‖n if |t | ≤ ‖ξ‖−1,
−c(ξ)q−1

‖ξ‖n if |t | = q‖ξ‖−1,
0 if |t |> q‖ξ‖−1.

We find from the initial condition (24) that c(ξ)= (1−q−1)−1
‖ξ‖−nϕ̃(ξ), and we

come to the expression

(25) F̃2(t, ξ)= ‖ξ‖−n+1b(tξ)ϕ̃(ξ), where b(z)=


1 if ‖z‖ ≤ 1,
−1/(q − 1) if ‖z‖ = q,
0 if ‖z‖> q.

Since ϕ̃ ∈ 9(K n), it vanishes on a neighborhood of the origin, and it follows
from (25) that F̃2 ∈ 9(K n) in ξ , so that F2 ∈ 8(K n) in x . Also, F2, F̃2 ∈ D(K )
in t uniformly with respect to x (in the sense of support and local constancy),
which permits to interchange operations in different variables. On the other hand,
calculating the Fourier transforms, we use (25) to write the solution of F2(t, x) as

(26) F2(t, x)= (A ∗ Bt ∗ϕ) (x)

where the convolution is taken with respect to x , and

A(x)=
1−q−n+1

1−q−1 ‖x‖
−1,

Bt(x)= |t |−n b̃(t−1x), where b̃(ζ )=


q−qn

q−1 if ‖ζ‖ ≤ q−1,
q

q−1 if ‖ζ‖ = 1,
0 if ‖ζ‖> 1.
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The representation (26) makes it possible, for example, to investigate the de-
pendence ϕ 7→ F2(t, ·) with respect to the L~-norms (for a fixed t ∈ K ) with
1< ~ <∞.

Note that

‖Bt‖L1(K n) = |t |−n
∫

K n
|β̃(t−1x)| dnx =

∫
K n

|β̃(x)| dnx,

and the Young inequality, together with the commutativity of convolution, gives

‖F2(t, ·)‖L~ ≤ C‖A ∗ϕ‖L~ ,

where C does not depend on t . Applying a result regarding the Riesz potentials
from [Taibleson 1968], we find that for 1< ~ < n/(n − 1),

‖F2(t, ·)‖Lλ ≤ C ′
‖ϕ‖L~ ,

where λ= n~/(n − ~(n − 1)) and C ′ does not depend on t .
For the Cauchy problem (16), (17) (including the case n =1), we have F1(t, x)=

(Bt ∗ϕ) (x), so that
‖F1(t, ·)‖L~ ≤ C‖ϕ‖L~

for any ~ ∈ (1,∞), with a constant C independent of t .
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