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A {2, 3}-LOCAL SHADOW OF O’NAN’S SIMPLE GROUP

INNA KORCHAGINA AND RICHARD LYONS

This paper is a contribution to the ongoing project of Gorenstein, Lyons,
and Solomon to produce a complete unified proof of the classification of
finite simple groups. A part of this project deals with classification and char-
acterization of bicharacteristic finite simple groups. This paper contributes
to that particular situation.

1. Introduction

In this paper we continue the characterization of various bicharacteristic finite sim-
ple groups G in the sense of [Korchagina and Lyons 2006] and the earlier papers
[Korchagina and Solomon 2003; Korchagina et al. 2002]. The strategy is part of
the Gorenstein, Lyons, and Solomon revision project [GLS 1994], but expanded to
the case e(G)=3 to make the GLS project fit with the Aschbacher–Smith quasithin
theorem [2004]. We shall give appropriate but concise definitions below, and refer
the reader to [Korchagina and Lyons 2006] for a fuller discussion of bicharacteristic
groups and the context in which they occur in the GLS project.

We use the following notation: G is a finite simple group, p is an odd prime,
m p(X) is the p-rank of an arbitrary group X , m2,p(G) is the maximum value of
m p(N ) over all subgroups N ≤ G such that O2(N ) 6= 1, and e(G) is the maxi-
mum value of m2,p(G) as p ranges over all odd primes. Moreover m I

p(G) is the
maximum value of m p(CG(z)) as z ranges over all involutions of G.

We fix an odd prime p and set

H = H(G) = {H ≤ G | H is a 2-local subgroup of G and m p(H) = m2,p(G)}.

The groups that we consider in this paper satisfy the conditions

(H1) m2,p(G) = e(G) = 3 and m I
p(G) ≤ 2.

We state our theorem, tie it in with the main theorem of our [2006] paper to
obtain a corollary, and then discuss the theorem’s technical terminology.

Theorem 1.1. Suppose that G satisfies the conditions

MSC2000: 20D05.
Keywords: finite simple group, sporadic group, local analysis, bicharacteristic group.

263

http://pjm.berkeley.edu
http://dx.doi.org/10.2140/pjm.2008.235-2


264 INNA KORCHAGINA AND RICHARD LYONS

(1) G is a finite K-proper simple group;

(2) G has restricted even type; and

(3) for some odd prime p, G satisfies (H1) and has weak p-type.

Then p = 3 and there exists H ∈ H such that F∗(H) = O2(H). Moreover, for any
H ∈ H and any B ≤ H such that B ∼= E33 , there is a hyperplane B0 of B such that
L3′(CG(B0)) ∼= A6.

The conclusion of Theorem 1.1 implies that G satisfies all the hypotheses of
our [2006, Theorem 1.2]. That theorem in turn yields that G has the structure
asserted in the corollary, or G ∼= Sp8(2) or F4(2). But these last two groups do not
satisfy the assumption m I

3(G) ≤ 2. Indeed, in both, the centralizer of a long root
involution is a parabolic subgroup P with Levi factor isomorphic to Sp6(2), and
so m I

3(G) ≥ m3(Sp6(2)) = 3. Thus we have a corollary:

Corollary 1.2. If G satisfies the assumptions of Theorem 1.1, then G ∼= A12 or G
has the centralizer of involution pattern of F5.

The K-proper assumption in Theorem 1.1 means that all proper simple sections
of G are among the known simple groups, as is appropriate for the inductive clas-
sification [GLS 1994].

The hypothesis that G is of weak p-type [Korchagina and Lyons 2006] means

(1A)
For every x ∈ G of order p such that m p(CG(x)) ≥ 3,
and for every component L of E(CG(x)/Op′(CG(x))),
the component L ∈ Cp, and Op′(CG(x)) has odd order.

Here Cp is an explicit set of quasisimple K-groups defined for any odd prime
p [GLS 1994, p. 100]. Instead of repeating the definition here, we shall use it in
combination with the condition (H1) and the Thompson dihedral lemma, obtaining
in Lemma 2.3 below a much shorter list of possible components L in Equation
(1A). The term “restricted even type” is defined on [p. 95].1

Rather than repeat the definition we state its impact on the situation at hand: for
any involution z ∈ G, if we set C = CG(z), then these conditions hold:

O2′(C) = 1.(1B1)

m p(C) < 3 and mr (C) ≤ 3 for all odd primes r 6= p.(1B2)

For any component L of C , we have L ∈ Chev(2), or L ∼= L2(17),
or L/Z(L) ∼= L3(3), G2(3) (with p > 3), M11, M12, M22, M23,
M24, J2, J3 (with p > 3), J4, HS, or Ru;

(1B3)

1Because of our frequent references to external results, we abbreviate with the convention that,
unless otherwise indicated, unnamed, bracketed tags implicitly belong to the most recent full citation.
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If L is as in (3) and L/Z(L) ∼= L3(4), then Z(L) has exponent 1
or 2; and

(1B4)

If L ∼= A6, then m2(CG(z)) = 3.(1B5)

Indeed (1B2) is an immediate consequence of (H1). The definition of “even
type” implies that (1) holds, and that any component L in (1B3) lies in the set
C2 (defined in [GLS 1994, p. 100]). But mr (L) ≤ 3 for all odd r , with strict
inequality if r = p. Using the known ranks of simple K-groups [GLS 1998, Tables
3.3.1, 5.6.1] we get the groups listed in (1B3), and the additional groups L2(q), q
a Fermat or Mersenne prime or 9, as possible isomorphism types for L . Now the
definition of restricted even type implies that q ≤ 17 if L ∼= L2(q), so either q = 17
or L ∈ Chev(2). Furthermore, covering groups of L3(4) by centers of exponent 4
are by definition excluded from C2, which proves (1B4), and condition (1B5) is
part of the definition of “restricted even type.”

It is somewhat arbitrary that the definition of C2 excludes the covering groups
4L3(4). This is because the sporadic group O ′N , in which the centralizer of an
involution has such a component, in GLS emerges from the analysis of groups of
odd type in [GLS 2005]. Nevertheless, our assumptions in Theorem 1.1 inevitably
lead toward the situation in which F∗(CG(z)) is a covering group of L3(4) by Z4,
and this situation is prevented only by the definition of C2. In Bender’s terminology,
O ′N is a “shadow” group in our setup.

As may be expected, the proof of Theorem 1.1 uses many properties of the
groups in Cp as well as those in (1B3). To justify these we generally refer to [GLS
1998] or our [2006] paper.

We also use the following notation from our [2006] paper. Here X is any sub-
group of G, and a ∈ G and A ≤ G are respectively any element of order p and
any elementary abelian p-subgroup of G. In the notations C(a, K ) and C(A, K ),
K is any product of p-components of CG(a) or CG(A), respectively. Also,

X̂ = X/Op′(X), ĈG(X) = ĈG(X) and N̂G(X) = N̂G(X);

La = L p′(CG(a)) and L A = L p′(CG(A));

C(a, K ) = CCG(a)(K/Op′(K )) = CCG(a)(K̂ ) and C(A, K ) = CCG(A)(K̂ );

Ao
= {A ≤ G | A is an elementary abelian p-group and m p(CG(A)) ≥ 3}.

Also for any group X on which the group Y acts, AutY (X) is the natural image of
Y in Aut(X).

Section 2 spells out some properties of K-groups. In the next four sections we
prove that p = 3 and obtain, in Proposition 6.1, two possible specific structures for
elements of H. These are analyzed separately in the final section to complete the
proof of the theorem.
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2. Preliminary lemmas

Lemma 2.1. Let p be an odd prime and let K be a quasisimple K-group such that
Op′(K ) = 1 and m2,p(K ) = m p(Z(K )). Then one of the following holds:

(a) m p(K ) = 1;

(b) p = 3 and K/Z(K ) ∼= U3(2n), n odd, n > 1; or

(c) K ∼= L2(pn), n ≥ 1, p 6= 3.

Proof. Let K be a group satisfying the hypotheses of the lemma. First notice
that if K/Z(K ) ∼= L2(pn), then (c) holds. Thus we may assume by the way of
contradiction that m p(K ) > 1, p and K are not as in (b), and that K/Z(K ) 6∼=

L2(pn) with n ≥ 1. Let us show that in most cases there exists a “contradicting”
triple (L , y, z), by which we mean a triple satisfying the conditions

(2A) L ≤ K , z ∈ I2(L), y ∈ Ip(CL(z)) but y 6∈ Z(K ).

If such a triple exists, then m2,p(K ) ≥ m p(CK (z)) > m p(Z(K )), contrary to our
hypothesis.

If K ∈Spor, then the possible values of p for the various K ’s are listed in [GLS
1998, Table 5.6.1]. We take L = CK (z) for a 2-central involution z ∈ K , except
for the case K ∼= He with p = 5, in which case we take L = CK (z) with z a
non-2-central involution. Then [Table 5.3] shows that L contains an element y of
order p, and we have a contradicting triple. If K ∈Alt, then K ∼= An or 3A7, and
n ≥ 2p as m p(K ) > 1. We can take L ∼= A4 × An−4 in the first case, and otherwise
L ∼= A4 × Z3 (with p = 3). Then we can take z in the first direct factor and y in
the second, for a contradicting triple. Thus K 6∈ Spor ∪Alt.

If K/Z(K ) ∈ Chev(p) − {L2(pn)}, then by [4.5.1], K/Z(K ) contains a sub-
group L/Z(K ) ∼= SL2(pm) or Z2 × L2(pm) for some m ≥ 1. This clearly yields a
contradicting triple unless Z(K ) 6= 1, in which cases p = 3 and K/Z(K ) ∼= G2(3),
U4(3) or �7(3), by [6.1.4]. But in those cases K/Z(K ) has a subsystem subgroup
isomorphic to U3(3), which splits over Z(K ); see [6.1.4]. Hence L ∼= U3(3) has a
contradicting SL2(3)-subgroup.

Thus K/Z(K ) ∈ Chev − Chev(p). By [6.1.4], K is a homomorphic image of
the universal version Ku of K/Z(K ). Suppose first that p divides |Z(Ku)|. Thus
Ku ∼= SLε

n(q) or Eε
6(q) for ε = ±1 and q ≡ ε (mod p), with p = 3 in the Eε

6
case. In the latter case, K contains a subgroup isomorphic to SLε

6(q). Hence,
in both situations K contains a contradicting subgroup L ∼= Z p × SL2(q), unless
Ku ∼= SLε

3(q) and p = 3. Even in that case if q is odd, K contains a contradicting
subgroup L ∼= SL2(3); and if q is even, then since (b) fails, ε = +, and a Borel
subgroup of K is a contradicting subgroup. So we may assume that p does not
divide |Z(Ku)|. Let E ≤ K with E ∼= E p2 . As p does not divide |Z(Ku)|, there
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is a simple algebraic group K and a σ -setup (K , σ ) for K such that E ≤ T for
some maximal torus T of K . (See [4.1.16].) Then for some y ∈ E#, CK (y) has a
simple component. We set L = CK (y), so that L has a Lie component [4.9.3]. In
particular, CK (y) contains an involution z and (L , y, z) is a contradicting triple.
The proof is complete. �

Lemma 2.2. Suppose that p is an odd prime and that X is a K-group such that
K = L p′(X), Op(X) 6=1, X = K Op(X), Op′(X) has odd order, and m2,p(X)≤3.
Suppose that every component of X/Op′(X) lies in Cp, and that e(X) ≤ 3. Then
m2,r (X/Op′(X)) ≤ 3 for all primes r > 3. Moreover, m2,3(X/Op′(X)) ≤ 3 unless
possibly p = 7 and K/[K , O7′(K )] is the central product of 3A7 with either 3A7

or SL3(7).

Proof. By induction on |X |, we may suppose that no proper subgroup of X covers
X/Op′(X), whence Op′ p(X)≤8(X). By [GLS 1996, 3.1.5], Op′ p(X) is nilpotent.
Thus X/F(X) is the direct product of simple groups, and F(X) = O2′(X).

We assume that m2,r (X/Op′(X)) > 3 for some odd prime r . Thus,

(2B) m2,r (X/Op′(X)) > 3 ≥ e(X) ≥ m2,r (X),

so X possesses 2- and r -subgroups T and R, respectively, for some odd prime r ,
with R normalizing T Op′(X) and mr (R/R ∩ Op′(X)) > 3, but mr (R) ≤ e(X) ≤ 3.
Clearly r 6= p. We must prove that r = 3, p = 7, and K/Op′(K ) ∼= A7 × A7 or
A7 × L3(7). Since Op′(X) has odd order, a Frattini argument permits us to take R
to normalize T . By minimality of X , we have X = K Op(X), K = [K , K ], and,
with (2B),

(2C) Op′(K ) = Or (K ) 6= 1.

We factor K into p-components as K = K1 · · · Kn , set Wi = [Ki , Or (Ki )] for
i =1, . . . , n, and assume as we may that nonquasisimple Ki ’s come first; that is, for
some 0<m <n, Wi 6=1 for i =1, . . . , m, and Wi =1 for i =m+1, . . . , n. Then for
any i = 1, . . . , n and any involution zi ∈ Ki , we have m p(CX (zi )) ≤ m2,p(X) ≤ 3.
As Op(X) 6= 1 this implies that

(2D) m p(CKi (zi )) ≤ 2 + m p(Or,p(Ki )).

If Ki/Or (Ki ) ∈ Chev(p), then the involution centralizer data in [GLS 1998,
4.5.1] and the rank data in [3.3.1] show that (2D) is satisfied only if Ki/Or (Ki ) ∼=

L2(pn), L±

3 (pm) for m ≤ 2, P Sp4(p), L±

4 (p), G2(p), or 3G2(3) (with p = 3). In
all these cases as r 6= p, we have mr (Ki/Or (Ki )) ≤ 3; see [4.10.2].
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For any p-component Ki of K , regardless of its isomorphism type, this implies
that either Or (Ki ) = Wi , or r = 3 with

(2E) Ki/Wi ∼= 3 Mc, 3A7, 3O ′N , 3
′

Fi
24

, or
ε

SL
3

(ps),

and p = 5, 7, 7, 7 and ps
≡ ε (mod 3), respectively. This follows from the defi-

nition of Cp, the previous paragraph’s restrictions if K/Or (K ) ∈ Chev(p), and the
known multipliers of simple K-groups [6.1.4].

With these preliminaries established, we next prove the lemma by two cases:

Case: m = 0, that is, all the Ki are all quasisimple.
By the previous paragraph, we have r = 3, O3(K ) is an elementary abelian 3-

subgroup of Z(K ), and some component K1 of K has one of the isomorphism types
in (2E). If K = K1, then among the groups in (2E), the condition m3(K1/Z(K1))≥

m2,3(K1/Z(K1)) > 3 is satisfied only by K1 ∼= 3 Fi′24, by [4.10.2, 5.6.1, 5.6.2]. But
then m2,3(K1) > 3, a contradiction. Therefore K 6= K1. Set K 1

= K2 · · · Kn 6= 1.
As K 1 is of even order and [K 1, K1] = 1, m3(K1) ≤ 3. Thus K1 ∼= 3A7, 3O ′N ,
or SLε

3(ps). If K1 ∼= 3O ′N , then m2,3(K1) = 3 by [5.6.2]. Also p = 7, and so no
component of K is a Suzuki group by definition of Cp. Thus, CK (K1)−K1 contains
an element of order 3, so m2,3(K )≥m2,3(K1)+1≥4, a contradiction. Hence K1 ∼=

3A7 or SLε
3(ps). Thus m3(K1)=m2,3(K1)=m3(K1/Z(K1))=m2,3(K1/Z(K1))=

2. If O3(K 1) = 1, then K = K1 × K 1, and it follows immediately that m2,3(K ) =

m2,3(K/O3(K )), contrary to assumption. So O3(K 1) 6= 1, and K 1 likewise has a
3A7 or SLε

3(ps) component. As m2,3(K ) ≤ 3, the only possibility is that K 1
= K2

and Z(K1) = Z(K2). If neither K1 nor K2 is isomorphic to 3A7, then using the
facts that Op(X) 6= 1, m2,p(SLε

3(ps)) ≥ s and m p(SLε
3(ps)) ≥ 2, we reach the

contradiction m2,p(X) ≥ 4. Therefore without loss K1 ∼= 3A7 and p = 7. If
K2 ∼= SLε

3(7
s), then m2,7(X) ≥ 1+m2,7(K1)+m7(K2) = 2+ s, so s = 1. We have

obtained the two exceptional conclusions of the lemma.

Case: m > 0, so that W1 6= 1 and K1 is not quasisimple.
Set k = m2(K1 · · · Km). Now CK1···Km (Or (K )) ≤ Or,p(K ) ≤ O2′(K ) by the

definition of m. Thus by the Thompson dihedral lemma, K1 · · · Km contains the
direct product of k copies of D2r . On the other hand m2,r (X) ≤ e(X) ≤ 3, and so

(2F) k ≤ 4, whence m ≤ 2.

If K = K1, then since mr (K/Or (K ))≥ m2,r (K/Or (K ))> 3, we have K/Or (K ) 6∈

Chev(p) by the paragraph following (2D). If K/Or (K ) ∼= As , then since r ≥ 3 and
mr (K/Or (K )) > 3, certainly s ≥ 12; see [5.2.10]. But then k ≥ 6, a contradiction.
Likewise if K/Or (K ) 6∈ Chev(p) ∪Alt, then using the definition of Cp and the
values of k = m2(K/Or (K )) and m2,r (K/Or (K )) given in [3.3.1, 5.6.1], we see
that the conditions k ≤ 4 and m2,r (K/Or (K )) ≥ 4 are inconsistent. (Note: if p = 3
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and K/Or (K ) ∼= U5(2), then r > 3 so mr (K/Or (K )) < 4 by [4.10.2].) Therefore
K 6= K1.

Fix a characteristic subgroup R of W1 of exponent r and class at most 2 such
that CAut(W1)(R) is an r -group, and choose R minimal subject to these conditions.
By minimality either R is elementary abelian or Z(R) ≤ Z(K1). Since W1 =

[K1, W1] 6= 1, CK1(R) ≤ Or,p(K1).
Obviously R is K2-invariant. Let V ≤ K2 be a four-group and set K o

1 =

O p′

(CK1(V )) and Rv = CR(v) for each v ∈ V #. Then K o
1 acts on each CR(v).

The action is nontrivial for some v ∈ V #, for otherwise K o
1 would centralize

R = 〈Rv | v ∈ V 〉, contradicting CK1(R) ≤ Or,p(K1). On the other hand mr (Rv) ≤

m2,r (X) ≤ 3, which immediately implies that mr (Rv/8(Rv)) ≤ 3 or Rv
∼= r1+4.

Correspondingly the perfect group K o
1 /CK o

1
(Rv) embeds in SL3(r) or Sp4(r). In

any case since K o
1 covers K1/Op′(K1), we have m2(K1) ≤ 2. Indeed the Sp4(r)

case is impossible since any four-subgroup of Sp4(r) contains Z(Sp4(r)), whereas
O2(K1/CK1(R)) = 1 since Op′(K1) has odd order. Similarly K1/CK1(Rv) does
not embed in SL2(R), and so mr (Rv/8(Rv)) = 3; indeed mr (Rv) = 3 since Rv

has exponent r and class at most 2. Now K1/O2′(K1) is involved in SL3(r), and
on the other hand lies in Cp. If m p(K1) = 1, then K1/O2′(K1) ∼= L2(p) or Ap (or
L2(8) or 2B2(2

5
2 ) with p = 3 or 5) by definition of Cp. From the known structure

of all subgroups of SL3(r) [6.5.3], and the facts that r 6= p and K1/O2′(K1) is
simple, we see that whatever the value of m p(K1), the only possibilities for the
pair (p, K1/Op′(K1)) are (3, L2(9)), (5, A5), (7, L2(7)), and (7, A7). Moreover
in the last case r = 5. In particular mr (K1/Or (K )) = 1.

Similarly, mr (Ki/Or (Ki )) = 1 for all 1 ≤ i ≤ m. Since mr (K/Or (K )) ≥ 4 but
m ≤ 2, it follows that m < n, that is, Kn is quasisimple. Therefore [K1, Kn] = 1.
As Kn has even order and e(X) ≤ 3, this yields mr (K1) ≤ 3. Therefore mr (K1) =

mr (Rv) = 3.
We argue that m2,r (E(K )) = mr (Z(E(K ))). Otherwise, changing indices if

necessary, there exist a 2-subgroup T ≤ Kn that is not the identity and an el-
ement x ∈ NE(K )−Z(E(K ))(T ) of order r . Then NK (T ) contains K1〈x〉 so that
mr (K1〈x〉) ≤ e(X) ≤ 3 = mr (K1). Because [K1, x] = 1, we reach the con-
tradiction. Thus x ∈ Z(E(K )), and our assertion is proved. If Z(E(K )) 6= 1,
then some Ki for i > m is as in (2E). But then there still exists an element
x ∈ Ki − Z(Ki ) of order 3 centralizing an involution of E(K ) (see [5.3]), and
so m2,r (E(K )) > mr (Z(E(K ))), a contradiction. Therefore Z(E(K )) = 1 and so
m2,r (E(K )) = 0. Using that each Ki lies in Cp, we can apply Lemma 2.1 and
conclude that mr (E(K )) ≤ 1.

Finally X = K1 × E(K ) or K1K2 × E(K ), with K1/Or (K1) (and K2/Or (K2))
and E(K ) each having cyclic Sylow r -subgroups. Therefore mr (K/Or (K )) ≤ 3
and the proof is complete. �
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p m I
p(X) K

3 0 L2(8), L2(3n) for n > 1

3 1 L±

3 (3), A9, M11, J3, 3D4(2), 2F4(2
1
2 )′, Sp4(8), L2(8) × L2(8)

3 2 3G2(3), 3J3

5 0 2B2(2
5
2 )

5 1 A10, 2F4(2
1
2 )′, 2F4(2

5
2 ), J2, HS, He, Ru, Co2, Co3, Mc, F3,

A5 ×
2B2(2

5
2 ), 2B2(2

5
2 ) ×

2B2(2
5
2 )

7 0 A7

7 1 He, O ′N , F3, A7 × A7, A7 × L2(7)

11 0 A11

11 1 J4

p ≥ 5 0 L2(pn) for n ≥ 1

p ≥ 5 1 L±

3 (p), L2(p) × L2(p)

Lemma 2.3. Table 1 is a complete list, for all odd primes p, of all groups the
K = E(K ) such that all components of K lie in Cp, and K ∼= E(X/Op′(X)) for
some group X such that e(X) ≤ 3, Op(X) 6= 1, m I

p(X) ≤ 2, and Op′(X) has odd
order.

Proof. If e(X/Op′(X)) > 3, then p = 7, and either E(X/Op′(X)) ∼= A7 × A7 or
A7×L3(7), by Lemma 2.2. The first case is allowed, and the second is impossible.
This is because the centralizer of an involution in the first 7-component has 7-rank
m7(O7′7(X)) + m7(L3(7)) = 3, contrary to assumption. So we may assume that
e(X/Op′(X)) ≤ 3. All other hypotheses immediately go over to X/Op′(X) and
so we may assume that Op′(X) = 1. Our hypotheses are then the hypotheses of
[Korchagina and Lyons 2006, 4.4], plus the assumption m I

p(X) ≤ 2. We therefore
filter the list in [4.4] through this extra condition. Let L be a component of E(X).
If Z(L) 6= 1, then L is isomorphic to one of the groups in [4.4(h)]. Note that as
3U4(3)≤3 Mc and 3U4(3) contains Z3×(SL2(3)∗SL2(3)), so m I

3(3U4(3))≥3, and
so L 6∼=3U4(3) or 3 Mc. Thus L ∼=3G2(3) or 3J3. Furthermore, m3(L)≥3 by [GLS
1998, 5.6.1, 6.3.1], and so L = E(X) in these cases, as desired. Hence we may
assume that Z(X) = 1. Since Op(X) 6= 1, we know 3 > m I

p(E(X) × Op(X)) >

m I
p(E(X)), and thus m I

p(E(X)) ≤ 1. Consequently if E(X) is not simple, then
it has two components, each of p-rank 1, and our [4.4] gives us only the direct
products as we have listed. Finally, if E(X) is simple, then m p(CE(X)(z)) ≤ 1 for
every involution z ∈ E(X). Using information about centralizers of involutions
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from [GLS 1998] we conclude that E(X) is restricted to be as stated in the lemma,
and the stated values of m I

p(K ) are correct. The references are [4.5.1, 3.3.1] for
components in Chev(p), [5.2.2d, 5.2.10b] for components in Alt, and [5.3] for
components in Spor. For components L ∈ Chev(2), lower bounds on m I

p(L) come
from subsystem subgroups [2.6.2] of type A1(q)× Bn−1(q) in Bn(q), 2 A2(q2) and
2 B2(q) ×

2 B2(q) in 2 F4(q), and A1(q) × A1(q3) in 3 D4(q). Upper bounds come
from the Borel–Tits theorem and the p-ranks of parabolic subgroups [3.1.3, 2.6.5,
4.10.2]. �

Proposition 2.4. Let G be a group satisfying the hypotheses of Theorem 1.1. Take
A ∈ Ao(G). Then Op′(CG(A)) has odd order. If E(ĈG(A)) 6= 1, then E(ĈG(A))

is one of the groups in Table 1. Moreover, if m p(A) = 2, then m I
p(E(ĈG(A))) = 0.

In particular, E(ĈG(A)) is quasisimple.

Proof. Set X = CG(A). By [Korchagina and Lyons 2006, Proposition 5.4], Op′(X)

has odd order. Take any a ∈ A#; the subnormal closure L of L p′(CG(A)) in CG(a) is
a product of p-components of CG(a) by L p′-balance, and L p′(X) = L p′(CL(A)).
Since G has weak p-type, the components of L̂ lie in Cp, and hence so do the
components of L p′(X)Op′(X)/Op′(X) = E(X̂). Then Lemma 2.3 gives the iso-
morphism type of E(X̂). If m p(A) = 2, then since m I

p(G) ≤ 2 by assumption,
m I

p(X̂) = m p(Op(X̂)). From the table, this condition forces m I
p(X̂) = 0, and the

remaining statement of the proposition. �

Remark 2.5. Here it is appropriate to identify and correct an error in [Korchagina
and Lyons 2006]. The statement of [5.1a] is incorrect for p = 7, and in [line 5]
of the “proof”, the reference to [4.4] is inadequate to draw the stated conclusion.
Lemma 2.2 above indicates how to correct the statement of [5.1a] and fill the gap
in its proof by using a variant of [4.4], as follows. Namely, instead of assuming
that K G E(H) for some group H such that e(H) ≤ 3 and Op(H) 6= 1, make
the following weaker hypothesis: K G E(X/Op′(X)) for some group X such that
e(X) ≤ 3 and Op(X) 6= 1. Then weaken the conclusion by adding to [Table 4.4]
the groups K ∼= A7 × A7 and A7 × L3(7), with p = 7 in both cases.

With [Table 4.4] so modified, the statement of [5.1a] is then correct. In the proof
of [5.1a], Lemma 2.2 above shows that either p = 7 with K/Op′(K ) being one of
these two groups, or e(X/Op′(X)) ≤ 3. In the latter case [4.4], as originally stated
and proved, shows that K is one of the groups in the original [Table 4.4].

Thus the effective change is to add two groups to [Table 4.4], weaken the hy-
pothesis of [4.4] as stated above, and use Lemma 2.2 in the proof of [5.1] to reduce
to the case Op′(X) = 1.

In the remainder of our [2006] paper, no changes are necessary in [4.5, 4.6, and
Table 4.5], because no new quasisimple groups have been added to [Table 4.4].
Indeed, through [6.6], the proofs as originally given are correct, because changes
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were only made for p = 7, and because [Table 4.5] is correct as originally stated.
From [6.6] to the end, we are in the clear since p = 3.

Lemma 2.6. Let G be a group satisfying the hypotheses of Theorem 1.1. Let A ∈

Ao(G) and suppose that L is a component of ĈG(A). Suppose that Aut(L) contains
a subgroup B of order p acting nontrivially on a 2-subgroup T . Suppose also that
m I

p(L) = m p(Z(L)), CInn(L)(B) has odd order, and m2,p(L) = 1 + m p(Z(L)).
Then p = 3 and L ∼= L2(3n) for n ≥ 2.

Proof. By Proposition 2.4, L and p are as in Lemma 2.3. For these groups the
condition m I

p(L) = m p(Z(L)) implies m I
p(L) = 0 and Z(L) = 1. All the groups L

in the table that pass this test satisfy m2,p(L) = 0 (contrary to assumption) except
for L ∼= L2(3n); see our [2006, 4.4] for the values of m2,p(L). �

Lemma 2.7. Suppose that p =3 and X = L B is aK-group such that L = E(X) is a
quasisimple group in Table 1, B = 〈b, a1, a2〉 ∼= E33 for b ∈ Z(X) with [ai , L] 6= 1,
and E(CL(ai )) has a component L i ∼= L2(3ni ) with ni ≥ 2 for i = 1, 2. Suppose
also that for either value of i , Ui is a four-subgroup of L i , and U1U2 = U1 × U2.
Suppose finally that m I

3(X) ≤ 2. Then

(a) L ∼= A9, J3, or 3J3; and

(b) CAut(L)(U1U2) is the image in Aut(L) of U1U2.

Proof. Clearly L is a pumpup of L i for i = 1, 2. But the possible pumpups of
L i ∼= L2(3ni ) with ni ≥ 2 for i = 1, 2 in Lemma 2.3 are among those given in
our [2006, 4.5]. Other than the desired isomorphism types of L , we must rule out
L ∼= L2(33ni ) and L ∼= Sp4(8). The first is impossible since m2(L2(3m)) = 2 for
any m, while L ≥ U1U2 ∼= E24 . Finally if L ∼= Sp4(8), then a1 acts as a field
automorphism on L , and so X ≥ 〈b, a1〉 × CL(a1) ∼= E32 × 66 ≥ E32 × 63 × 63,
contradicting m I

3(X) ≤ 2. �

Lemma 2.8. Let G be a group satisfying the hypotheses of Theorem 1.1. Let H be
any 2-local subgroup of G, and let L be a component of E(H). Suppose that p =3.
Then the isomorphism type of L is as specified in (1B3) and (1B4). Furthermore
m3(L) = 1 if and only if L ∼= L2(17), L2(2n), or Lε

3(2
n) for some ε = ±1 such

that 2n
≡ − ε (mod 3).

Proof. Let z ∈ Z(O2(H)) be any involution, and let K be the subnormal closure
of L in CG(z). By L2′-balance and the fact that G has even type, K ≤ E(CG(z))
and L is a component of CK (O2(H)). By [GLS 1998, 7.1.10], for any involutory
automorphism α of K , every component K1 of CK (α) lies in C2, and hence by the
same argument given for (1B) above, the isomorphism type of K1 is as given in
(1B3) and (1B4) above. Using this fact repeatedly we obtain the first assertion.
The 3-ranks of the groups in (1B) are determined in [3.3.1, 4.10.2, 5.6.1], and this
yields the final statement. �
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Lemma 2.9. Let L ∈ C2 be as in (1B3). Suppose that F and W are subgroups of
Aut(L) such that F ∼= A4, F normalizes W , and W ≤ O2′(CInn(L)FW (O2(F))).
Suppose also that either L/Z(L) is involved in A9 or J3, or that CAut(L)(F) con-
tains an element b of order 3. If W 6= 1, then L/Z(L) ∼= M12, b is nontrivial, and
CInn(L)(O2(F)) ∼= O2(F) × 63.

Proof. This proof uses results from [GLS 1996; 1998]. If L is embeddable in
A9 or J3, set b = 1. Assume that W 6= 1. Note first that from (1B) and [1998,
2.5.12, 5.3], Out(L) is 2-nilpotent, and indeed is a 2-group unless L ∈ Chev(2).
In any case O2(F) induces inner automorphisms on L . Hence if L ∈ Chev(2),
then W = 1 by [1998, 3.1.4], a contradiction. Otherwise 〈W, F × 〈b〉〉 maps into
O2(Aut(L)) = Inn(L). Replacing W and F ×〈b〉 by their images, we may assume
that L is simple and work within L . Write O2(F) = 〈u, v〉 and set C = CL(u).
Then W ≤ O2′(CC(O2(F))) ≤ L∗

2′(C) by L∗

2′-balance [1996, 5.18], so L∗

2′(C) 6= 1.
But the structure of C may be found in [1998, 4.5.1] or [1998, 5.3] according as
L ∈ Chev or L ∈ Spor. From these tables, we see that L∗

2′(C) = 1 unless L ∼= M12,
HS, J2, or Ru, with C ∼= Z2 × 65, Z2 × Aut(A6) E22 × A5, or E22 ×

2B2(2
3
2 ),

respectively. In particular, since the order of L does not divide |A9| or |J3|, our
hypothesis yields b 6= 1.

Now 1 6= W ≤ O2′(CC(v)). If C ∼= E22 × A5, or E22 ×
2B2(2

3
2 ), this would

contradict [1998, 3.1.4]. Thus L ∼= M12 or HS, whence CC(v) ∼= 63 or D10,
respectively [1998, 6.5.1]. Since by assumption b ∈ CC(v) has order 3, we have
L ∼= M12 and the proof is complete. �

Lemma 2.10. Let K be one of the groups in Lemma 2.3 corresponding to p = 3.

(a) Suppose that K G K1 = K 〈c〉 and c3
= 1. If J is a component of CK (c),

J/Z(J ) ∼= L2(3n) for some n > 1, CK (c) has no subgroup isomorphic to 66,
and K1 has no subgroup isomorphic to A4 × A4, then K ∼= L2(3n) or L2(33n),
with c acting on K trivially or as a field automorphism.

(b) There is no I ≤ K such that I/Z(I ) ∼= Lε
3(2

m) for 2m
≡ ε (mod 3), 2m

6≡ ε

(mod 9), and m > 1.

Proof. The possible pumpups of L2(3n) in Lemma 2.3 are among those given in
our [2006, Table 4.5]. Using this, we see that if (a) fails, then K ∼= A9, J3, 3J3, or
Sp4(8), with J ∼= A6. But A9 contains A4× A4, as do J3 and 3J3, inside a subgroup
disjoint from the center and isomorphic to an extension of E24 by GL2(4) [GLS
1998, 5.3h]. Thus K ∼=Sp4(8). But then c acts as a field automorphism, centralizing
Sp4(2). This contradiction proves (a).

In (b), since 2m
6≡ ε (mod 9), we have m 6= 3. Just the condition that |Lε

3(2
m)|

divides |K | reduces the possibilities in Lemma 2.3 (with p = 3) to K ∼= L2(3n),
A9, and Sp4(8). As m ≥ 2, a Sylow 2-subgroup S of I satisfies |S/8(S)| ≥ 24
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[2.4.1, 3.3.1], so L2(3n), whose Sylow 2-subgroups are dihedral, is impossible.
Since L3(4) has an E24-subgroup all of whose involutions are conjugate while
|L3(4)|2 = |A9|2, it does not embed in A9. Neither do Lε

3(2
m) for m > 3, as

m2(Lε
3(2

m))>m2(A9) [3.3.3]. Finally, if K ∼=Sp4(8), let P be a Sylow 3-subgroup
of K . Then �1(P) ∼= E32 and K has more than one conjugacy class of subgroups
of order 3 [4.8.2]. On the other hand, �1(S) ≤ I , while I has a single such class
[4.8.2]. The proof is complete. �

Lemma 2.11. Let K = L2(q) for q odd. Let V ≤ K with V ∼= E22 , and let R be a
2-subgroup of Aut(K ) such that 〈R, V 〉 is a 2-group.

(a) Suppose that R ∩ V = 1, and that either [R, V ] = 1 or R ∼= Z2m for m > 1.
Then any involution of R is a field automorphism on K .

(b) If V ≤ R and [R, V ] = 1, then R = V F , where F is a group of field automor-
phisms of K .

(c) Suppose that q = 3n and 6 ≤ K with 6 ∼= 64. Then 6 ≤ J ≤ K for some
J ∼= A6, and J = 〈CJ (z) | z ∈ I2(6)〉.

Proof. We have Aut(K ) = Inndiag(K )8 where 8 is a group of field automor-
phisms of K and Inndiag(K ) ∼= PGL2(q). All four-subgroups of K are Aut(K )-
conjugate and self-centralizing in Inndiag(K ) [GLS 1998, 4.5.1]. Since CK (8)

contains L2(r), where r is the prime of which q is a power, then, by replacing V
by a conjugate, we obtain CAut(K )(V ) = V × 8. Thus (b) holds. By [4.9.1], all
involutions of V 8 − V are field automorphisms. Hence in proving (a) we may
assume that R ∼= Z2m for m > 1. Expand 〈V, R〉 to S ∈ Syl2(Aut(K )). Again,
by conjugation, we may assume that S is 8-invariant. Set T = S ∩ Inndiag(K ).
Then T is dihedral and has a cyclic maximal subgroup T0 G S. As T0 ∩ V 6= 1, we
have R ∩ T0 = 1. But S/T0 = T/T0 × (S ∩8)T0/T0, so the involution of R lies in
(S ∩ 8)T0 − T0, and again is a field automorphism by [4.9.1]. This proves (a).

Finally in (c), since |K |2 ≥ 8, we know n is even. Thus K contains a subgroup
J ∼= A6. Also NK (V ) ∼= 64 [6.5.1], so 6 is determined up to conjugacy, and we
may assume that 6 ≤ J . The final statement follows easily; indeed 6 is maximal
in J , but CJ (z) ∼= D8 for all z ∈ I2(J ). �

Lemma 2.12. Let K ∈ C2 be simple. Let K ≤ H ≤ Aut(K ) and z ∈ I2(H) with
O2′(CH (z)) 6= 1. Then either K ∼= L2(q) for q a Fermat or Mersenne prime or 9
with CK (z) ∼= Dq±1, or K/O2(K ) ∼= L3(4) with CK/O2(K )(z) ∼= U3(2). In all cases
z 6∈ Inn(K ).

Proof. This is a direct consequence of [GLS 1998, 7.7.1], which specifies all in-
stances of locally unbalancing quasisimple K-groups. �
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Lemma 2.13. Let K ∈ Chev(2) with m3(K ) = 2, and let B ≤ Inndiag(K ) with
B ∼= E32 . Suppose that CK (b) has cyclic Sylow 2-subgroups for each b ∈ B#. Then
K ∼= A6, U3(3), 2F4(2

1
2 )′, or Lε

3(2
n) for ε = ±1 with 2n

≡ ε (mod 3).

Proof. First of all, notice that A6, U3(3), 2F4(2
1
2 )′, and Lε

3(2
n) for ε = ±1 with

2n
≡ ε (mod 3) satisfy the hypotheses of the lemma.
Now, take K to be a group satisfying the hypotheses of this lemma, but not

isomorphic to A6 ∼= B ′

2(2), U3(3) ∼= G ′

2(2), or 2F4(2
1
2 )′. We may suppose that K =

dL(2m). By [GLS 1998, 4.2.2, 4.7.3A, 4.9.1], for each b ∈ B#, O2′

(CK (b)) is the
central product of groups of the form db Lb(2mb), with m dividing mb. Since Sylow
2-subgroups of CK (b) are cyclic, there is at most one factor, and O2′

(CK (b)) ∼=

A1(2), 2B2(2
1
2 ) or 1. In the 2B2(2

1
2 ) case, we would have m = 1/2, so this case

cannot occur by [4.7.3A]. Hence m = 1 or CK (b) has odd order. Let K be the
algebraic group overlying K ; then b acts on K as conjugation by some b ∈ K with
b3

∈ Z(K ), and the connected component CK (b)o
= T L where T is a maximal torus

and L is either trivial or isomorphic to A1. By [4.7.1, 4.8.2], we have L = A1, A2,
or B2. If m = 1, then the only simple choice for K is A2(2), which is impossible
as m3(K ) = 2. Thus m > 1, and L = A1 or A2. Since m3(K ) = 2, K ∼= Lε

3(2
n) for

2n
≡ ε (mod 3). The proof is complete. �

Lemma 2.14. Let K = A6, M11, or L2(8). Let D be an elementary abelian 3-
subgroup of K of maximal rank. Then CAut(K )(D) has odd order.

Proof. This is immediate from [GLS 1998, 3.1.4] for K = A6 ∼= L2(9), from [5.3a]
for K = M11, and from [6.5.1] for K = L2(8), in the last case using the fact that
|Out(K )| is odd [2.5.12]. �

Lemma 2.15. Let J ∈ Chev(2), and suppose that u ∈ I2(Aut (J )) and K is a
component of CJ (u). Assume that m3(J ) ≤ 2, B ≤ CAut(J )(u) with B ∼= E32 , and
the image of K B in Aut(J ) is isomorphic to A6, M11, or Aut(L2(8)) = P0L2(8).
Then for some b ∈ B#, CJ (b) contains A5 and in particular is not solvable.

Proof. By [GLS 1998, 4.9.6], K ∈Chev(2), and so K 6∼= M11. Since K ≤ E(CJ (u)),
u is a field, graph-field or graph automorphism of J by [3.1.4]. Indeed by [4.9.1,
4.9.2], either J ∼= Lε

m(2), m = 4 or 5, ε = ±1, with K ∼= A6 and u a graph
automorphism, or J ∼= Sp4(4) or J ∼= L2(82), with u a field automorphism. In
the last case since K B ∼= P0L2(8), we may take as b some element of B# which
induces a field automorphism on J . If J ∼= Sp4(4) then any b ∈ B# satisfies the
desired property by [4.8.2]. If J ∼= Lε

m(2), then ε =+1 by the hypothesis m3(J )≤2.
Then any b∈ B with a four-dimensional commutator space on the natural J -module
has the property that we want. The proof is complete. �

Lemma 2.16. Let K be quasisimple with K := K/Z ∼= L3(4), where Z = Z(K ) is a
2-group. Let S ∈ Syl2(K ) and identify S with its image in Aut(K ). Let u ∈ Aut(K )
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be a (noninner) involution such that u normalizes S and CK (u) ∼= U3(2). Then
these conditions hold:

(a) Z(S) = Z(S).

(b) If B ≤ K with B ∼= E32 , then CAut(K )(B) = B × 〈u′
〉, where u ∈ Aut(K ) is

Aut(K )-conjugate to u.

(c) All involutions in the coset uS are S-conjugate, and all involutions in S are
K -conjugate.

(d) u centralizes some involution y ∈ Z(S) − Z(K ).

(e) In (d), if z ∈ Z(K ) is an involution, then no two involutions in 〈y, z〉 are
Aut(K )-conjugate.

(f) S has no normal Z4-subgroup.

Proof. Part (a) is a direct consequence of [GLS 1998, 6.4.2b], which also implies
that Z(S)∼= E24 . Then as m2(CS(u))= 1, u acts freely on Z(S), which implies (d).
Any conjugacy in (d) would have to occur in CK (y)= S. As y ∈ Z(S), (e) holds. In
(b), B ∈ Syl3(K ) is self-centralizing in K since its preimage in SL3(4) is absolutely
irreducible on the natural module; the assertions of (b) and (c) follow from [GLS
2005, 2.1ae] and the fact that u acts freely on S/Z(S) and Z(S). Finally S = EV
where E24 ∼= E G S, V ∼= E22 , and CE(v) = Z(S) for all v ∈ V # and CS(t) = E
for all t ∈ E − Z(S) (see [2.1f]). Hence |S : CS(t)| = 4 for all t ∈ S − Z(S), which
implies (f). �

3. {2, 3}-local subgroups

For the rest of the paper, we fix a group G and a prime p satisfying the hypotheses
of Theorem 1.1. We begin with some simple properties of 2- and 3-local subgroups
of G.

Lemma 3.1. Let A ≤ G with A ∼= E p3 . Then m2(CG(A)) = 0. In particular,
L p′(CG(A)) = 1.

Proof. If m2(CG(A)) 6= 0, there exists t ∈ I2(CG(A)). But this is absurd since
m p(CG(t)) ≤ 2 by (H1). The odd order theorem completes the proof. �

Lemma 3.2. Let N be any p-local or 2-local subgroup of G. Then N has at most
two p-components, and O2(N ) normalizes every p-component of N .

Proof. Let L1, . . . , Ln be the p-components of N , and let P ∈ Sylp(N ). As p is
odd, by [GLS 1996, 16.11], for each i there is xi ∈ P ∩ L i − Op′ p(L i ) such that
x p

i = 1 6= xi . Suppose that n > 1. Choose any x ∈ Op(N )O2(N ) of prime order.
If x has order p, then 〈x2, . . . , xn, x〉 ∼= E pn centralizes an involution of L̂1. If
x2

= 1, then 〈x1, . . . , xn〉 ∼= E pn centralizes x . In either case, n ≤ m I
p(G) ≤ 2 by

(H1), and the result follows. �
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Lemma 3.3. Let A ∈ Ao be such that A ∼= E p2 , and suppose CG(A) contains a
noncyclic elementary abelian 2-group E. Suppose L = L p′(CG(A)). Then L 6= 1,
L is a single p-component, and E acts nontrivially on L̂ = L/Op′(L). Moreover,
m p(Z(L̂)) = m I

p(L̂) = 0 and m2,p(L̂) ≤ 1.

Proof. Let C = CG(A). By Proposition 2.4, Op′(C) has odd order. Hence, E is
isomorphic to its image in Ĉ . Clearly, A ∼= Â ≤ Z(Ĉ). If CE(Op(Ĉ)) = 1, then
by the Thompson dihedral lemma [Korchagina and Lyons 2006, 2.2], Ĉ contains
E p2 × D2p × D2p, since E is noncyclic. Thus m I

2,p(Ĉ) ≥ 3, whence m I
2,p(C) ≥ 3,

contradicting (H1). Therefore CE(Op(Ĉ)) > 1, so E acts nontrivially on L̂ . In
particular, L̂ 6= 1. By Proposition 2.4, L̂ is a quasisimple group from Table 1 with
m I

p(L̂) = 0. The remaining conclusions of the lemma follow immediately from
[Proposition 4.4]. �

Lemma 3.4. Let A ≤ G with A ∼= E p3 . Then any A-invariant p′-subgroup of G is
solvable.

Proof. Otherwise let X be a minimal nonsolvable A-invariant p′-subgroup of G.
By minimality, X/ Sol(X) = K1 ×· · ·× Kn , where K1, . . . , Kn are simple groups
permuted transitively by A. If n > 1, then there is a ∈ A − NA(K1), and CX (a)

is nonsolvable, contradicting the minimality of X . So n = 1. As [A, K1] = 1
contradicts (H1), A acts nontrivially on K1. By [GLS 1998, 5.2.1, 5.3], K1 ∈ Chev
and the image of A in Aut(K1) is generated by a field automorphism, whence
CK1(A) has even order. This contradicts (H1) and completes the proof. �

4. 3-components of type L2(3n)

Since m2,p(G) = 3 by hypothesis, H 6= ∅.

The following two results establish the first and third conclusions of Theorem
1.1. They will underlie the proof of the second conclusion as well.

Proposition 4.1. p = 3.

Proposition 4.2. Let H ∈ H. Choose any B ≤ H such that B ∼= E33 , let V
be any minimal B-invariant subgroup of O2(H), and set B0 = CB(V ) and L0 =

L3′(CG(B0)). Then there is a b0 ∈ B such that these conditions hold:

(a) V ∼= E22 and V B = V 〈b0〉 × B0 ∼= A4 × E32 ;

(b) V ≤ L0;

(c) L̂0 ∼= L2(3n) for some n ≥ 2; and

(d) m2(CG(B0)) = 2, and Sylow 2-subgroups of O2(CG(B0)) are dihedral.

Recall that by convention, L̂0 = L0/O3′(L0).
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Proofs. Choose H ∈ H and B ≤ H with B ∼= E p3 . Let V be a minimal B-invariant
subgroup of O2(H), and set B0 = CB(V ). Because of (H1), CV (B) = 1. By [GLS
1996, 11.12], B0 ∼= E p2 , and there exists b0 ∈ B such that b0 acts irreducibly on V ,
V is elementary abelian, and V B = V 〈b0〉× B0. Since m2(CG(B0)) ≥ m2(V ) ≥ 2,
Lemma 3.3 implies that L̂0 is quasisimple with m I

p(L̂0) = m p(Z(L̂0)) = 0 and
m2,p(L̂0) ≤ 1 = 1+m p(Z(L̂0)); moreover, the image of V in Aut(L̂0) is nontrivial
and normalized by b0. In addition, C L̂0

(B) = C L̂0
(b0) has odd order because

m I
p(G) ≤ 2. By Lemma 2.6, these conditions imply that p = 3 and L̂0 ∼= L2(3n)

for n ≥ 2. It remains to prove (b) and (d) of Proposition 4.2. Let t ∈ CG(B0)

be any involution. If t or induces a (possibly trivial) field automorphism on L̂0,
then m3(CG(t)) ≥ m3(CL0(t))+m3(B0) > 2, contradiction. Therefore t induces a
nontrivial inner-diagonal automorphism on L̂0. As t was arbitrary, C(B0, L0) has
odd order and m2(CG(B0))≤m2(PGL2(3n))=2. We use the fact that Out(L2(3n))

is abelian [GLS 1998, 2.5.12]. For one thing, Sylow 2-subgroups of O2(CG(B0))

embed in O2(Aut(PGL2(3n))) and hence in L2(3n), so are dihedral. Hence (d)
holds. For another, the image of V = [V, b0] in ĈG(B0) lies in L̂0, and so V ≤

O2′

(L0C(B0, L0)) = L0, which proves (b). �

5. 2-subgroups of G normalized by E33-subgroups

By Propositions 4.1 and 4.2, Theorem 1.1 will be completely proved once we show
that F∗(H) = O2(H) for some H ∈ H. We prove this by contradiction in the next
three sections, thus making the following assumption.

(H2) For all H ∈ H, E(H)O2′(H) 6= 1.

In this section we make our only use of (H2). We prove the following result,
from which strong restrictions on the {2, 3}-local structure of G will be deduced
in the next section.

Proposition 5.1. Let B ≤ G with B ∼= E33 , and suppose that T is a nontrivial
B-invariant 2-subgroup of G. Then T ∼= E22 .

We prove the proposition by contradiction in a sequence of lemmas. Assuming
that T 6∼= E22 , we first prove this:

Lemma 5.2. There exist B-invariant four-subgroups U1, U2 of G and elements
a1, a2, b ∈ B generating B such that

N := U1U2 B = U1〈a1〉 × U2〈a2〉 × 〈b〉 ∼= A4 × A4 × Z3.

Proof. By (H1), CT (B) = 1. For each hyperplane B0 ≤ B set TB0 = CT (B0), so
that TB0 = [TB0, B] ≤ O2(CG(B0)). Thus if TB0 6= 1, then TB0 B contains a copy of
A4 centralizing B0. Thus Proposition 4.2 applies with H = NG(TB0), giving that
TB0 is dihedral and hence TB0

∼= E22 by the action of B.
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Since T 6= 1, there is a hyperplane B1 of B such that 1 6= TB1 ≤ Z(T ). Since
T 6∼= E22 , we have T > TB1 and so there is a hyperplane B2 6= B1 of B such that
TB2 6= 1. The lemma follows with Ui = TBi for i = 1, 2, and with any choices of
b ∈ B1 ∩ B#

2 , we have a1 ∈ B2 − B1 and a2 ∈ B1 − B2. �

We set H = NG(U1U2), C = CG(U1U2), and L = L3′(CG(b)). For i = 1, 2, set
Ji = L3′(CG(〈b, ai 〉)).

Lemma 5.3. These conditions hold:

(a) L̂ ∼= A9, J3, or 3J3; and

(b) U1U2 ∈ Syl2(NG(〈b〉) ∩ C).

Proof. Let i = 1 or 2, and {i, j} = {1, 2}. Apply Proposition 4.2 with NG(U j ),
B, and U j in the roles of H , B, and V . We conclude that Ĵi ∼= L2(3n) for n ≥ 2,
and U j ≤ Ji . By L3′-balance and Lemma 3.2, the subnormal closure L i of Ji in
CG(b) is a 3-component of L . Moreover m3(〈b〉L i ) ≥ m3(〈b〉Ji ) = n + 1 ≥ 3,
so C(b, L i ) has odd order by Lemma 3.1. Therefore L1 = L = L2. In particular
Ji is a 3-component of L3′(CL(ai )) for i = 1, 2. Moreover U1U2 ≤ 〈J1, J2〉 ≤ L .
Now Lemma 2.7a implies (a). In particular m3(L) ≥ 3 [GLS 1998, 5.6.1]. We set
C0 = CNG(〈b〉)(L̂) and conclude that C0 has odd order, since m I

3(G) < 3.
Suppose that (b) fails, so that NG(〈b〉) ∩ CG(U1U2) has a 2-element t 6∈ U1U2.

Then t normalizes L . But by Lemma 2.7b, CAut(L̂)(Û1Û2) is the image in Aut(L̂)

of Û1Û2. As t 6∈ U1U2, we have 〈t〉U1U2 ∩ C0 6= 1. This contradicts that C0 has
odd order, so the proof is complete. �

Lemma 5.4. E(H) = 1.

Proof. Clearly C ∩ B = 〈b〉. Suppose first that m3(C) > 1. Let P ∈ Syl3(H),
so that m3(P) = m3(B) = 3. By [GLS 1996, 10.11] there is A ≤ C such that
A ∼= E32 and A G P , and then there exists 1 6= a ∈ C〈a1,a2〉(A). Then A〈a〉 ∼= E33

and for some i = 1, 2, Ui = [A〈a〉, Ui ] and A = CA〈a〉(Ui ). Now Proposition
4.2 applies with NG(Ui ), Ui , A〈a〉, and A in the roles of H , V , B, and B0. By
part (d) of that proposition, m2(CG(A)) = 2. But A centralizes U1U2 ∼= E24 , a
contradiction. Therefore m3(C) ≤ 1, and equality holds as b ∈ C . By Lemma
5.3b, NC(〈b〉)/U1U2 has odd order, so b ∈ Z(NC(〈b〉)). Thus C has a normal
3-complement by Burnside’s normal complement theorem [16.5]. But by Lemma
3.4, O3′(C) is solvable, so C is solvable. Hence E(H) ≤ C (∞)

= 1, as required. �

Now we use (H2). Set W = O2′(H)= O2′(C). By Lemma 5.4 and (H2), W 6= 1.
Also set Ni = NG(Ui ), Ci = CG(Ui ), and N i = Ni/O2′(Ni ) for i = 1, 2. Then
W = O2′(CCi (U j )) where, as before, {i, j} = {1, 2}. Obviously E(N i ) = E(C i ).

Lemma 5.5. W ≤ O2′(Ci ) for i = 1 and i = 2.
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Proof. If false, then as C = CCi (U j ), the theory of balance [GLS 1996, 20.6]
provides a WU1U2-invariant 2-component Ii of L2′(Ni ) such that [W , I i ] 6= 1, and
such that if we let Y = W IiU1U2 and Ỹ = AutY (I i ), then W̃ ≤ O2′(CỸ (Ũ1Ũ2)) =

O2′(CỸ (Ũ j )). By Lemma 3.4, no components of E(N i ) are 3′-groups. Thus
E(N i ) = O3′

(E(N i )), and so O2(Ci ) normalizes I i by Lemma 3.2. Let Y ∗
=

Y O2(Ci ) and write Ỹ ∗
= AutY ∗(I i ). Thus Ũ j 〈̃a j 〉 ∼= A4. By Lemma 2.8, I i is

one of the groups in (1B3). If b centralizes I i , then I i is involved in A9 or J3 by
Lemmas 5.3 and 3.4. Hence by Lemma 2.9, either W̃ = 1 or C Ĩi

(Ũ j ) = Ũ j × 6

with b̃ ∈ 6̃ ∼= 63. In the first case [W , I i ] = 1, contradiction. Hence the second
case holds, so an involution of 6̃ has a preimage t ∈ C Ii (U1U2)∩ NG(〈b〉)−U1U2

such that t is a 2-element. This contradicts Lemma 5.3b and proves the lemma. �

Now we complete the proof of Proposition 5.1. Write U1 = 〈u, v〉 and set Cu =

CG(u). Notice that U2〈a2〉 ≤ Cu , and as W ≤ O2′(C2) and [W, U1] = 1, we have
W ≤ O2′(CCu (U2)), with W being U2〈a2〉-invariant. Using Lemma 2.9 as in the
previous proof, we conclude that [W, J ] = 1 for every component J of Cu , unless
possibly J/Z(J ) ∼= M12. But by Lemma 5.5, W ≤ O2′(CG(U1)) = O2′(CCu (v)),
and M12 is locally 1-balanced with respect to the prime 2 by [GLS 1998, 7.7.1].
Hence, in any case [W, J ] = 1, by [GLS 1996, 20.6]. We have therefore shown
that [W, E(Cu)] = 1.

However, [W, O2(Cu)] = 1 by L∗

2′-balance [GLS 1996, 5.18]. As G has (re-
stricted) even type, O2′(Cu) = 1. Therefore, [W, F∗(Cu)] = 1 which contradicts
the F∗-Theorem [3.6]. Thus W = 1, which proves the proposition.

6. Structure of subgroups H ∈ H and of centralizers of involutions

We choose any H ∈ H, set VH = O2(H) and CH = CG(VH ), and choose any
involution z ∈ VH . Set Ez = E(CG(z)). Also let B ≤ H with B ∼= E33 , and set
B0 = CB(VH ), L0 = L3′(CG(B0)), and Lb = L3′(CG(b)) for every b ∈ B#

0 . Using
Proposition 5.1 we can now prove the following result.

Proposition 6.1. VH ∼= E22 , B0 ∼= E32 , and either (a) or (b) holds:

(a) F∗(H) = VH × E(H) with E(H) ∼= A6, M11, or L2(8), and CH ∼= E22 ×

Aut(L2(8)) in the last case. Moreover, L̂0 ∼= L2(32) or L2(34).

(b) F∗(H) = VH × O3(H), O2(CH ) = O3(H) ∈ Syl3(Ez), Ez/O2(Ez) ∼= L3(4),
CEz/O2(Ez)(VH ) ∼= U3(2), and CH B ∼= A4 × U where U is isomorphic to a
subgroup of U3(2) of index at most 2. Moreover L̂0 ∼= L2(32).

By Proposition 5.1, VH ∼= E22 and m2,3(H/VH ) < 3. By (H1) and the fact that
B/B0 ≤ Aut(VH ), we have B0 ∼= E32 . Notice that several choices may be possible
for B0. In particular any E32-subgroup B∗

≤ CH that is normal in some Sylow
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3-subgroup of H is a possible choice for B0, because m3(CH (B∗)) = 3 by [GLS
1996, 10.20(ii)].

We proceed in a sequence of lemmas, the first of which describes normalizers
of subgroups of B0. By Proposition 4.2, L̂0 ∼= L2(3n) for n ≥ 2.

Lemma 6.2. Let b ∈ B#
0 and set Lb = L3′(CG(b)). Then

(a) Lb/O3′(Lb) ∼= L2(3nb) with nb = n or 3n;

(b) if there is 1 6= S ≤ CG(b) such that S is a 2-group, [S, VH ]= 1 and S∩VH = 1,
then S ∼= Z2, n = nb = 2, and [S, B0] 6= 1;

(c) CCH /VH (b) has a normal 2-complement and cyclic Sylow 2-subgroups of order
dividing n;

(d) AutG(B0) does not contain SL(B0) ∼= SL2(3); and

(e) if AutG(B0) contains a Q8-subgroup, then L̂0 ∼= A6.

Proof. Choose any b0 ∈ B − B0. Then VH B = B0 × VH 〈b0〉 ∼= E32 × A4. By
Proposition 4.2, VH ≤ L0. Write B0 = 〈b, b′

〉. By L3′-balance [GLS 1996, 5.17]
and Lemma 2.3, the pumpup L of L0 in CG(b) is a single 3-component, and
L3′(ĈL(b′)) is a covering group of L̂0 ∼= L2(3n). Furthermore, C L̂(b′) = C L̂(B0)

does not contain an isomorphic copy of 66, for if it did, then m I
3(G) ≥ m3(B0) +

m I
3(66)=2+1, contradicting (H1). And by Proposition 5.1, L̂〈b′

〉 does not contain
any subgroup isomorphic to A4 × A4. Therefore by Lemma 2.10, L̂ ∼= L2(3n) or
L2(33n), with b′ inducing a field automorphism on L̂ in the latter case. In particular,
m3(L〈b〉) ≥ 3, and so by (H1),

(6A) C(b, L) has odd order.

This implies that L = Lb, so (a) holds. Also, (6A) implies that any 2-subgroup
R of CG(b) acts faithfully on L̂b. If S is as in (b), we take R = S × VH , and
Lemma 2.11a implies that any involution s ∈ S induces a field automorphism on
Lb. Thus C〈b〉Lb/O3′ (〈b〉Lb)(s) contains Z3×L2(3nb/2). As m3(CG(s))≤ m I

3(G)< 3,
we conclude that nb = 2, and it follows that S = 〈s〉, and n = 2 by (a). Similarly,
as m3(CLb(s)) = 1, the fact that m3(CG(s)) < 3 implies that [s, B0] 6= 1, and (b) is
completely proved. In (c), we take R ∈ Syl2(CCH (b)), so that, by Lemma 2.11b,
R = VH F , where F is a group of field automorphisms of L̂b. In particular R/VH

is cyclic. Hence CCH /VH (b) has a normal 2-complement [GLS 1996, 16.7] and (c)
holds.

Since Out(L̂0) is abelian, N :=[NG(B0), NG(B0)] induces inner automorphisms
on L̂0. If AutG(B0) contains Q8, then the image of N in Aut(B0) contains an
involution, and so C(B0, L0) has even order. As m I

3(G) ≤ 2, L̂0 ∼= A6 in this
case, proving (e). Continuing, we have O2(Aut(L̂)) = Inn(L̂) and so O2(NG(B0))

maps into Inn(L̂0). Therefore if AutG(B0) contains SL2(B0), then AutC(B0,L0)(B0)
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contains SL2(B0), and in particular C(B0, L0) contains commuting elements z and
y of orders 2 and 3, respectively. But then CG(z) contains y and covers L̂0, so
m3(CG(z)) ≥ 3, a contradiction. Hence (d) holds, and the proof is complete. �

Lemma 6.3. Suppose that O2′(H) 6= 1. Then Proposition 6.1b holds.

Proof. Set W = O2′(H), and write VH = 〈z, z′
〉. Then W = O2′(CCG(z)(z′)). Since

G has restricted even type, O2′(CG(z))=1, and hence by [GLS 1996, 20.6], W acts
faithfully on the product J1 of all 〈z′

〉W -invariant components of Ez := E(CG(z))
that are locally unbalanced with respect to z′. Let J be a component of J1. Again
as G has restricted even type, J ∈ C2 with O2′(J ) = 1, and so by Lemma 2.12,
either J ∼= L2(q) for q a Fermat or Mersenne prime or 9 with CJ (z′) ∼= Dq±1, or
J/O2(J ) ∼= L3(4) with CJ/O2(J )(z′) ∼= U3(2). In all cases z′ induces a noninner
automorphism on J . Denote by S a VH -invariant Sylow 2-subgroup of J .

Assume first that J/O2(J ) 6∼= L3(4). Then S ∩VH = 1. Now B0 ≤ CH ≤ CG(z).
If CB0(J ) contains a nonidentity element b, then since S ≤ CG(b) and S ∩ VH =

1, Lemma 6.2b is contradicted. Therefore CB0(J ) = 1, so m3(CAut(J )(z′)) ≥ 2.
Given the possible isomorphism types of J , we have a contradiction. Therefore
J/O2(J ) ∼= L3(4).

Then CCG(z)(J ) is a 3′-group as m I
3(G) ≤ 2. Since every component of J1 has

order divisible by 3, we have J = J1 = O3′

(Ez). If J 6= Ez , then Ez has a component
I such that I/Z(I ) ∼=

2B2(2
n
2 ) for n ≥ 3. But then m2(CVH I (b)) ≥ 5, contradicting

Lemma 6.2b. Therefore Ez = J .
Finally O2′(CH )E(CH ) ≤ L∗

2′(CG(z)) by L∗

2′-balance [GLS 1996, 5.18]. But
Sylow 2-subgroups of L3(4) are self-centralizing in Aut(L3(4)) [GLS 1998, 3.1.4],
and so L∗

2′(CG(z)) = Ez . Thus O2′(CH ) = O2′(CEz (z
′)) ∼= E32 . By the remark

before Lemma 6.2, we may take B0 = O2′(CH ). Then AutEz (B0) ∼= Q8, but
AutG(B0) does not contain SL(B0), by Lemma 6.2d. Therefore AutG(B0) is a
2-group, whence B0 = O2(CH ). By Lemma 6.2e, L̂0 ∼= L2(32) and the lemma is
proved. �

For the rest of the proof of Proposition 6.1, we may assume that O2′(H) = 1,
whence F∗(H) = VH E(H) and E(H) 6= 1, because m3(H) = 3.

Lemma 6.4. Either E(H) is quasisimple with m3(E(H)) = 2, or Proposition 6.1a
holds with CH ∼= Aut(L2(8)).

Proof. Let H1, . . . , Hm be the components of E(H). By Lemma 3.4, 3 divides
|Hi | for each i = 1, . . . , m. But m3(E(H)) ≤ m3(CH ) = m3(B0) = 2. Thus if
the first alternative of the lemma fails, either m = 2 or m = 1 with E(H) = H1

and m3(H1) = 1. In the former case, take a nontrivial 3-element b ∈ H1 and
S ∈ Syl2(H2). Then S ≤ CG(b), [S, VH ] = 1 and S ∩ VH = 1. As S is noncyclic,
we have a contradiction with Lemma 6.2b. Thus the latter case holds.
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Because of Lemma 6.2c, for all b ∈ B#
0 , CH1(b) is solvable with cyclic Sylow

2-subgroups. In particular, CB0(H1) = 1 and any b ∈ B0 − H1 induces a noninner
automorphism on H1. In particular 3 divides |Out(H1)|.

By Lemma 2.8, H1 ∼= L2(2n) for n ≥ 2 or Lε
3(2

n) for n ≥ 1 with ε = ±1 and
2n

≡−ε (mod 3). Hence CH1(b)∼= L2(2n/3) or Lε
2(2

n/3). As this must have cyclic
Sylow 2-subgroups, the only possibility is H1 ∼= L2(8). Then H1〈b〉 ∼= Aut(H1),
and since CH1(b) has a Sylow 2-subgroup S of order 2, Lemma 6.2b implies that
L̂0 ∼= A6. Thus Proposition 6.1a holds, as asserted. �

Lemma 6.5. If m3(E(H)) = 2, then E(H) ∼= A6 or M11, and L̂0 ∼= A6. Moreover
n = 2 or 4 in the first case, and n = 2 in the last case.

Proof. Set X = E(H), a quasisimple group by Lemma 6.4. By Lemma 2.8, X ∈

Chev(2), X ∼= L3(3), or X is isomorphic to one of the sporadic groups listed in
(1B3). Most of these will be ruled out using Lemma 6.2c, reducing us to the
following cases:

(6B) X ∼= A6, L3(3), U3(3), 2F4(2
1
2 )′, or M11, or X/O2(X) ∼= Lε

3(2
n),

where ε = ±1, 2n
≡ ε (mod 3), and n > 1.

Indeed all the sporadic cases in (1B3) except X ∼= M11 violate Lemma 6.2c; see
[GLS 1998, Table 5.3]. Suppose then that X ∈ Chev(2). If some b ∈ B#

0 acts as an
element of Aut(X) − Inndiag(X), then either b induces a graph automorphism on
X , in which case m2(CX (b)) > 1 by [4.7.3A], or b induces a field or graph-field
automorphism, in which case the facts that CX (b) has cyclic Sylow 2-subgroups
and |X |3 6= 1 imply with [4.9.1] that X ∼= L2(23). This is a contradiction as
m3(L2(23)) = 1. Hence B0 induces inner-diagonal automorphisms on X . Then
X is as in (6B) by Lemma 2.13. So we are indeed reduced to the cases (6B).

If X ∼= U3(3) or 2F4(2
1
2 )′, then CX (b) contains a Z4-subgroup, contradicting

Lemma 6.2b.
If X ∼= L3(3), then Out(X) is a 2-group, so O2(H) ∼= A4 × X . Moreover a

maximal parabolic subgroup Y ≤ X satisfies F∗(Y ) ∼= E32 and Y/F∗(Y ) ∼= SL(Y ).
By the remark before Lemma 6.2, we may assume that B0 = O3(Y ), and then
Lemma 6.2d is contradicted.

Suppose that X ∼= Lε
3(2

m). If 2m
≡ 1 (mod 9), then there is B1 ≤ X such that

B1 is normal in a Sylow 3-subgroup of X , and for some b ∈ B#
1 , CX (b) contains

L2(2m); namely we can take B1 to be the image of a diagonalizable subgroup of
SLε

3(2
m). By the remark before Lemma 6.2, we may take B0 = B1. However, as

m > 1, this contradicts Lemma 6.2c. Therefore 2m
6≡ ε (mod 9), so |X |3 = 9

and we may take B0 ∈ Syl3(X), whence AutX (B0) ∼= Q8. But in this case n 6≡ 0
(mod 3), so O3′

(Aut(X)) ∼= PGLε
3(2

m). Hence CB(X) 6= 1. Choose b ∈ CB(X).
If X acted faithfully on O3′3(CG(b))/O3′(CG(b)), then, by the Thompson dihedral
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lemma, CG(b) would contain the direct product of 〈b〉 and m2(X) copies of 63,
and so m I

3(G) ≥ m2(X). This is absurd as m2(X) > 2 but m I
3(G) < 3. Thus X

centralizes O3′3(CG(b))/O3′(CG(b)), whence X ≤ Lb := L3′(CG(b)). By Lemma
2.10, L̂b ∼= Mc or U4(3), and then m I

3(CG(b)) > 2, a contradiction.
Consequently X ∼= A6 or M11 as claimed. If X ∼= M11, then for any b∈ B#

0 , CX (b)

contains an involution and so L̂0 ∼= A6 by Lemma 6.2b. If X ∼= A6, then NX (B0)

contains a subgroup 〈t〉 ∼= Z4 acting faithfully on B0. Then 〈t〉 normalizes L0 and
〈t〉∩ VH = 1. Suppose that L̂0 ∼= L2(3n) for n > 2. Then CG(L̂0) has odd order as
m I

3(G) < 3 ≤ m3(L0). Hence by Lemma 2.11a, the involution t0 ∈ 〈t〉 induces a
field automorphism on L̂0. Thus C L̂0

(t0) ∼= L2(3n/2), so n/2 ≤ m I
3(G) ≤ 2, whence

n = 2 or 4. The lemma is proved. �

Lemmas 6.3, 6.4, and 6.5 prove Proposition 6.1.

7. The residual cases

Fix H ∈ H. First suppose that E(H) ∼= L2(8), M11, or A6 as in Proposition 6.1a.
We keep this assumption in Lemmas 7.1–7.3. Since L̂0 ∼= L2(3n) with n even,
L0 ∩ H = NL0(VH ) contains a subgroup 6 ∼= 64, which we fix. Then in H , since
[6, B0] = 1, it is immediate by Lemma 2.14 that [6, E(H)] = 1, since 6 has no
nontrivial quotient of odd order.

Lemma 7.1. For any involution y ∈ 6, we have E(H) = E(CG(y)).

Proof. First suppose that V is any four-subgroup of 6 such that E(H)= E(CG(V )).
We claim that E(H) = E(CG(y)) for all y ∈ V #. Fix y and write V = 〈y, y′

〉. Let
Ey be the subnormal closure of E(H) in CG(y). By (1B1) and L2′-balance, Ey

is a component of E(CG(y)) or the product of two such components interchanged
by y′, and E(H) is a component of CEy (y′). Since B0 acts faithfully on E(H), it
acts faithfully on each component of Ey . But m3(B0) = 2 = m3(CG(y)), and so
Ey is quasisimple. By Lemma 6.2, CEy (b) is solvable for all b ∈ B#

0 . Given that
E(H)B0 ∼= Aut(L2(8)), A6, or M11, and that Ey ∈ C2, we conclude by Lemma
2.15 that E(H) = Ey , proving our claim.

For any involution y ∈ 6, choose an involution z ∈ VH such that Y := 〈z, y〉 ∼=

E22 . Then E(CG(z)) = E(H) by our claim, and it follows immediately using L2′-
balance again that E(CG(Y )) = E(CG(z)) = E(H). Then E(CG(y)) = E(H) by
our claim again, as desired. �

Lemma 7.2. E(CG(E(H))) ∼= E(H) ∼= A6.

Proof. Let L∗

0 = {CL0(y) | is an involution of 6}. By Lemma 7.1, L∗

0 normal-
izes E(H), and of course L∗

0 centralizes B0. Since L̂0 ∼= L2(3n) for n = 2 or 4,
O2(L∗

0) covers an A6-subgroup of L̂0 containing the image of 6, by Lemma 2.11.
As [6, E(H)B0] = 1, it follows that [O2(L∗

0), E(H)B0] = 1.
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Let D ∈ Syl3(L∗

0), so that D ∼= E32 . If E(H) ∼= L2(8) or M11, then E(H)B0

contains Z3 ×63 and so m I
3(G) ≥ m I

3(DE(H)B0) ≥ 3, contradicting (H1). There-
fore E(H) ∼= A6. Let W be an A4-subgroup of E(H). Then H ′

:= NG(O2(W ))

contains D × W , so H ′
∈ H. But L∗

0 ≤ CG(E(H)) ≤ H ′ with L∗

0/O3′(L∗

0)
∼= A6.

Applying Proposition 6.1 and the prior argument in this lemma to H ′, we deduce
that E(H ′) ∼= A6 is the unique nonsolvable composition factor of H ′. Therefore
E(H ′) = E(CG(H)), completing the proof. �

Lemma 7.3. L̂b ∼= A6 for all b ∈ B#
0 , and E(H) = E(CG(y)) for all involutions

y ∈ CG(E(H)).

Proof. Let T ∈ Syl2(NE(H)(B0)), so that T ∼= Z4. If L̂0 ∼= L2(34), then we saw
above that T acts faithfully by field automorphisms on L̂0. However, this is absurd
because E(CG(E(H))) ∼= A6 lies in L0 and centralizes T . Therefore L̂0 ∼= A6.
Likewise for any b ∈ B#

0 , the involution t ∈ T inverts b and centralizes L̂0. If
L̂b ∼= L2(36), then the centralizer of L̂0 in L̂b would be of order 3, so t would
centralize L̂b, contradicting (H1). Therefore L̂b ∼= A6, proving the first assertion
of the lemma.

Let y ∈ CG(E(H)) be any involution. Then [y, y′
] = 1 for some involution

y′
∈ E(CG(E(H))), and we know by Lemma 7.2 that E(H) = E(CG(y′)). Hence

we may assume that y 6= y′, and then as in Lemma 7.2, with the help of Lemma
2.15 we may again argue that E(H) = E(CG(〈y, y′

〉)) = E(CG(y)). �

Lemma 7.4. Proposition 6.1b holds.

Proof. Assume false and continue the above analysis. By Lemma 7.3, E(H)

is terminal in G and E(H) ∼= A6. Thus by the Aschbacher–Gilman–Solomon
component theorem [GLS 1999, Theorem PU∗

4], E(H) is standard in G. Hence by
definition of restricted even type (1B2), m2(CG(E(H)))=1. But E(CG(E(H)))∼=

A6 by Lemma 7.3, a contradiction. �

Now fix z ∈ V #
H and set C = CG(z), Q = O2(C), and K = E(C). By Proposition

6.1b and (1B4), O2(K ) is elementary abelian and K/O2(K ) ∼= L3(4). Also L̂0 ∼=

A6.
Expand VH to R ∈ Syl2(CG(B0)).

Lemma 7.5. These conditions hold:

(a) �1(Q ∩ L0) = 〈z〉 = �1(Z(Q));

(b) z is 2-central in G; and

(c) for any involution y ∈ K −Z(K ), no two involutions in 〈y, z〉 are G-conjugate.

Proof. By Lemma 6.2, R embeds in Aut(L̂0), and since m I
3(G) ≤ 2, CL0(u) is a

3′-group for all u ∈ R#. Therefore the image of RL0 in Aut(L̂0) is isomorphic to
L̂0, M10, or PGL2(9), and so R is dihedral or semidihedral of order at most 16. In
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any case NR(VH ) ∈ Syl2(L0). As L0 has only one class of involutions, we could
have chosen R so that z ∈ Z(R). In particular, we may expand R to S ∈ Syl2(C).

By Lemma 2.16b, CAut(K )(B0) ∼= B0 × Z2, and so R ≤ VH CR(K ). Set R0 =

CR(K )∩ NR(VH ), so that |R0| = 4. If R0 ∼= E22 , then as R0 ≤ L0, R0 lies in an A4-
subgroup of L0. Hence NG(R0) ∈ H, and so Proposition 6.1 applies to NG(R0) in
place of H . This yields a contradiction since CG(R0) involves K/O2(K ) ∼= L3(4).
Therefore R0 ∼= Z4.

Since R is of maximal class, Q is cyclic or of maximal class, and there is Q0 G S
such that Z4 ∼= Q0 ≤ Q. Thus (a) holds. Moreover

(7A) for any Q1 G S such that Q1 G Z4 for z ∈ Q1.

Otherwise, in C = C/CC(K ) ≤ Aut(K ), we would have Q1 G S with Q1 ∼= Z4,
contradicting Lemma 2.16f. Now (7A) implies that 〈z〉 char S, and so S ∈ Syl2(G),
proving (b).

Let y ∈ K − Z(K ) be an involution. By Lemma 2.16c, y has a K -conjugate
in Z(S), and no two involutions of 〈y, z〉 are NG(K )-conjugate (we use Lemma
2.16e if Z(K ) 6= 1). By Burnside’s lemma [GLS 1996, 16.2], G-fusion in 〈y, z〉 is
controlled in NG(S), and hence in C , since 〈z〉 char S. As C ≤ NG(K ), (c) follows,
completing the proof of the lemma. �

Lemma 7.6. If U ∼= E22 and U ≤ CH ∩ VH K , then U = VH or |U ∩ zG
| ≤ 1.

Proof. By Proposition 6.1b, CH ∩ VH K = VH × B0 P where P ≤ CK (VH ), and
P ∼= Z4 or Q8. Let 〈u〉=�1(P). Then 〈u〉=8(VH × P) so by a Frattini argument,
CH (u) contains a 3-element t acting nontrivially on VH . Since u ∈ K − Z(K ),
no two involutions in 〈u, z〉 are G-conjugate, by Lemma 7.5c. Conjugating this
statement by t , we find that zG

∩ VH P = VH . This implies the lemma. �

Lemma 7.7. Proposition 6.1b does not hold.

Proof. Suppose that it does hold and continue the preceding argument. Write
VH =〈z, z′

〉, so that CK/O2(K )(z′)∼=U3(2). By Lemma 2.16d, there is an involution
u ∈ CK (z′)− Z(K ). By Lemma 2.16c, z′ and z′u are K -conjugate, modulo Z(K ).
As Z(K ) ≤ 〈z〉 it follows from Lemma 7.6 that VH = 〈z′, z′u〉 or VH = 〈z′, zz′u〉.
In either case u ∈ VH , which is absurd as VH ∩ K = 〈z〉 ≤ Z(K ). �

As Lemmas 7.4 and 7.7 are in conflict, Theorem 1.1 is proved.
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