Pacific Journal of Mathematics

A {2, 3}-LOCAL SHADOW OF O'NAN'S SIMPLE GROUP

INNA KORCHAGINA AND RICHARD LYONS

Volume 235 No. 2 April 2008

A {2, 3}-LOCAL SHADOW OF O'NAN'S SIMPLE GROUP

INNA KORCHAGINA AND RICHARD LYONS

This paper is a contribution to the ongoing project of Gorenstein, Lyons, and Solomon to produce a complete unified proof of the classification of finite simple groups. A part of this project deals with classification and characterization of bicharacteristic finite simple groups. This paper contributes to t[hat particular situation.](#page-25-0)

[1. Introd](#page-25-1)uction

In this paper we continue the characterization of various bicharacteristic finite sim[ple groups](#page-25-0) *G* in the sense of [Korchagina and Lyons 2006] and the earlier papers [Korchagina and Solomon 2003; Korchagina et al. 2002]. The strategy is part of the Gorenstein, Lyons, and Solomon revision project [GLS 1994], but expanded to the case $e(G) = 3$ to make the GLS project fit with the Aschbacher–Smith quasithin theorem [2004]. We shall give appropriate but concise definitions below, and refer the reader to [Korchagina and Lyons 2006] for a fuller discussion of bicharacteristic groups and the context in which they occur in the GLS project.

We use the following notation: *G* is a finite simple group, *p* is an odd prime, $m_p(X)$ is the *p*-rank of an arbitrary group *X*, $m_{2,p}(G)$ is the maximum value of $m_p(N)$ over all subgroups $N \leq G$ such that $O_2(N) \neq 1$, and $e(G)$ is the maximum value of $m_{2,p}(G)$ as p ranges over all odd primes. Moreover $m_p^1(G)$ is the maximum value of $m_p(C_G(z))$ as *z* ranges over all involutions of *G*.

We fix an odd prime *p* and set

 $\mathcal{H} = \mathcal{H}(G) = \{H \leq G \mid H \text{ is a 2-local subgroup of } G \text{ and } m_p(H) = m_{2,p}(G)\}.$ $\mathcal{H} = \mathcal{H}(G) = \{H \leq G \mid H \text{ is a 2-local subgroup of } G \text{ and } m_p(H) = m_{2,p}(G)\}.$ $\mathcal{H} = \mathcal{H}(G) = \{H \leq G \mid H \text{ is a 2-local subgroup of } G \text{ and } m_p(H) = m_{2,p}(G)\}.$

The groups that we consider in this paper satisfy the conditions

(H1)
$$
m_{2,p}(G) = e(G) = 3
$$
 and $m_p^I(G) \le 2$.

We state our theorem, tie it in with the main theorem of our [2006] paper to obtain a corollary, and then discuss the theorem's technical terminology.

Theorem 1.1. *Suppose that G satisfies the conditions*

MSC2000: 20D05.

Keywords: finite simple group, sporadic group, local analysis, bicharacteristic group.

- (1) *G is a finite* K*-proper simple group*;
- (2) *G has restricted even type*; *and*
- (3) *[for some](#page-1-0) odd prime p*, *G satisfies* (H1) *and has weak p-type.*

Then $p = 3$ *and there exists* $H \in \mathcal{H}$ *such that* $F^*(H) = O_2(H)$ *. Moreover, for any H* ∈ \mathcal{H} *and any B* \leq *H such that B* \cong *E*₃³, *there is a hyperplane B*₀ *of B such that* $L_{3'}(C_G(B_0)) \cong A_6.$

The conclusion of Theorem 1.1 implies that *G* satisfies all the hypotheses of our [2006, Theorem 1.2]. [That theore](#page-1-0)m in turn yields that *G* has the structure asserted in the corollary, or $G \cong Sp_8(2)$ or $F_4(2)$. But these last two groups do not satisfy the assumption $m_3^I(G) \leq 2$. Indeed, in both, the centralizer of a long root involutio[n is a paraboli](#page-1-0)c subgroup P with Levi factor isomorphic to $Sp_6(2)$, and so $m_3^I(G) \ge m_3(Sp_6(2)) = 3$. Thus we have a corollary:

Corollary 1.2. *If G sa[tisfies the assumptions of](#page-25-0) Theorem 1.1, then* $G \cong A_{12}$ *or G has the centralizer of involution pattern of F*5*.*

The K -proper assumption in Theorem 1.1 means that all proper simple sections of *G* are among the known simple groups, as is appropriate for the inductive classification [GLS 1994].

The hypothesis that *G* is of weak *p*-type [Korchagina and Lyons 2006] means

(1A) [Fo](#page-1-1)r every $x \in G$ of order *p* such that $m_p(C_G(x)) \geq 3$, and for every component *L* of $E(C_G(x)/O_{p'}(C_G(x))),$ $E(C_G(x)/O_{p'}(C_G(x))),$ $E(C_G(x)/O_{p'}(C_G(x))),$ the component $L \in \mathcal{C}_p$, [and](#page-2-1) $O_{p'}(C_G(x))$ has odd order.

Here C_p is an explicit set of quasisimple K-groups defined for any odd prime *p* [GLS 1994, p. 100]. Instead of repeating the definition here, we shall use it in combination with the condition $(H1)$ and the Thompson dihedral lemma, obtaining in Lemma 2.3 below a much shorter list of possible components *L* in Equation (1A). The term "restricted even type" is defined on $[p, 95]$.¹

Rather than repeat the definition we state its impact on the situation at hand: for any involution $z \in G$, if we set $C = C_G(z)$, then these conditions hold:

(1B1) $O_{2'}(C) = 1.$

(1B2) $m_p(C) < 3$ and $m_r(C) \leq 3$ for all odd primes $r \neq p$.

For any component *L* of *C*, we have $L \in \mathcal{C}$ *hev*(2), or $L \cong L_2(17)$, or $L/Z(L) \cong L_3(3)$, $G_2(3)$ (with $p > 3$), M_{11} , M_{12} , M_{22} , M_{23} , M_{24} , J_2 , J_3 (with $p > 3$), J_4 , *HS*, or *Ru*; (1B3)

¹Because of our frequent references to external results, we abbreviate with the convention that, unless otherwise indicated, unnamed, bracketed tags implicitly belong to the most recent full citation.

- If *L* is as in (3) and $L/Z(L) \cong L_3(4)$, then $Z(L)$ has exponent 1 or 2; and [\(1B4\)](#page-25-1)
- $I(E \cong A_6, \text{ then } m_2(C_G(z)) = 3.$ $I(E \cong A_6, \text{ then } m_2(C_G(z)) = 3.$

Indeed $(1B2)$ is an immediate consequence of $(H1)$. The definition of "even type" implies that (1) holds, and that any component L in $(1B3)$ lies in the set C_2 (defined in [GLS 1994, p. 100]). But $m_r(L) \leq 3$ for all odd *r*, with strict inequality if $r = p$. Using the [known](#page-3-0) ranks of simple K [-gro](#page-3-1)ups [GLS 1998, Tables 3.3.1, 5.6.1] we get the groups listed in (1B3), and the additional groups $L_2(q)$, *q* a Fermat or Mersenne prime or 9, as possible isomorphism types for *L*. Now the definition of *restricted* even type implies that *q* ≤ 17 if $L \cong L_2(q)$, so either *q* = 17 or $L \in \mathcal{C}$ *hev*(2). Furthermore, covering groups of $L_3(4)$ by centers of exponent 4 [ar](#page-25-3)e by definition excluded from C_2 , [which proves](#page-1-0) (1B4), and condition (1B5) is part of the definition of "restricted even type."

It is somewhat arbitrary that the definition of C_2 excludes the covering groups $4L_3(4)$. This is because the sporadic group O/N , in which the centralizer of an involution has su[ch a compone](#page-1-0)nt, in GLS emerges from the analysis of groups of odd type [in \[GLS](#page-2-2) 2005]. Nevertheless, our assumption[s in](#page-25-2) Theorem 1.1 inevitably lead toward the situation in which $F^*(C_G(z))$ is a covering group of $L_3(4)$ by Z_4 , and this situation is prevent[ed onl](#page-25-0)y by the definition of C_2 . In Bender's terminology, *O* ⁰*N* is a "shadow" group in our setup.

As may be expected, the proof of Theorem 1.1 uses many properties of the groups in C_p as well as those in (1B3). To justify these we generally refer to [GLS 1998] or our [2006] paper.

We also use the following notation from our [2006] paper. Here *X* is any subgroup of *G*, and $a \in G$ and $A \leq G$ are respectively any element of order *p* and any elementary abelian *p*-subgroup of *G*. In the notations $C(a, K)$ and $C(A, K)$, *K* is any product of *p*-components of $C_G(a)$ or $C_G(A)$, respectively. Also,

$$
\widehat{X} = X/O_{p'}(X), \ \widehat{C}_G(X) = \widehat{C_G(X)} \text{ and } \widehat{N}_G(X) = \widehat{N_G(X)};
$$
\n
$$
L_a = L_{p'}(C_G(a)) \text{ and } L_A = L_{p'}(C_G(A));
$$
\n
$$
C(a, K) = C_{C_G(a)}(K/O_{p'}(K)) = C_{C_G(a)}(\widehat{K}) \text{ and } C(A, K) = C_{C_G(A)}(\widehat{K});
$$
\n
$$
\mathcal{A}^o = \{A \le G \mid A \text{ is an elementary abelian } p\text{-group and } m_p(C_G(A)) \ge 3\}.
$$

Also for any group *X* on which the group *Y* acts, $\text{Aut}_Y(X)$ is the natural image of *Y* in Aut(*X*).

Section 2 spells out some properties of K -groups. In the next four sections we prove that $p = 3$ and obtain, in Proposition 6.1, two possible specific structures for elements of H . These are analyzed separately in the final section to complete the proof of the theorem.

2. Preliminary lemmas

Lemma 2.1. *Let p be an odd prime and let K be a quasisimple* K*-group such that* $O_{p'}(K) = 1$ *and* $m_{2,p}(K) = m_p(Z(K))$ *. Then one of the following holds*:

- (a) $m_p(K) = 1$;
- (b) $p = 3$ *and* $K/Z(K) \cong U_3(2^n)$, *n odd*, $n > 1$; *or*
- (c) $K \cong L_2(p^n), n \ge 1, p \ne 3.$

Proof. Let *K* be a group satisfying the hypotheses of the lemma. First notice that if $K/Z(K) \cong L_2(p^n)$, then (c) holds. Thus we may assume by the way of contradiction that $m_p(K) > 1$, *p* and *K* are not as in (b), and that $K/Z(K) \ncong$ $L_2(p^n)$ with $n \geq 1$. Let us show that in most cases there exists a "contradicting" triple (L, y, z) , by which we mean a triple satisfying t[he con](#page-25-2)ditions

(2A)
$$
L \le K
$$
, $z \in \mathcal{I}_2(L)$, $y \in \mathcal{I}_p(C_L(z))$ but $y \notin Z(K)$.

If such a triple exists, then $m_{2,p}(K) \geq m_p(C_K(z)) > m_p(Z(K))$, contrary to our hypothesis.

If $K \in Spor$, then the possible values of p for the various K's are listed in [GLS 1998, Table 5.6.1]. We take $L = C_K(z)$ for a 2-central involution $z \in K$, except for the case $K \cong He$ with $p = 5$, in which case we take $L = C_K(z)$ with z a non-2-central involution. Then [Table 5.3] shows that *L* contains an element *y* of order *p*, and we have a contradicting triple. If $K \in \mathcal{A}$ *lt*, then $K \cong A_n$ or 3 A_7 , and *n* ≥ 2*p* as $m_p(K) > 1$. We can take $L \cong A_4 \times A_{n-4}$ in the first case, and otherwise $L \cong A_4 \times Z_3$ (with $p = 3$). Then we can take *z* in the first direct factor and *y* in the second, for a contradicting triple. Thus $K \notin Spor \cup Alt$.

If $K/Z(K) \in \mathcal{C}$ *hev* $(p) - \{L_2(p^n)\}\$, then by [4.5.1], $K/Z(K)$ contains a subgroup $L/Z(K) \cong SL_2(p^m)$ or $Z_2 \times L_2(p^m)$ for some $m \ge 1$. This clearly yields a contradicting triple unless $Z(K) \neq 1$, in which cases $p = 3$ and $K/Z(K) \cong G_2(3)$, $U_4(3)$ or $\Omega_7(3)$, by [6.1.4]. But in those cases $K/Z(K)$ has a subsystem subgroup isomorphic to *U*₃(3), which splits over *Z*(*K*); see [6.1.4]. Hence $L \cong U_3(3)$ has a contradicting $SL₂(3)$ -subgroup.

Thus $K/Z(K)$ ∈ Chev – Chev(p). By [6.1.4], *K* is a homomorphic image of the universal version K_u of $K/Z(K)$. Suppose first that p divides $|Z(K_u)|$. Thus $K_u \cong SL_n^{\epsilon}(q)$ or $E_6^{\epsilon}(q)$ for $\epsilon = \pm 1$ and $q \equiv \epsilon \pmod{p}$, with $p = 3$ in the E_6^{ϵ} case. In the latter case, *K* contains a subgroup isomorphic to $SL_6^{\epsilon}(q)$. Hence, in both situations *K* contains a contradicting subgroup *L* \cong *Z_p* × *SL*₂(*q*), unless $K_u \cong SL_3^{\epsilon}(q)$ and $p = 3$. Even in that case if *q* is odd, *K* contains a contradicting subgroup $L \cong SL_2(3)$; and if *q* is even, then since (b) fails, $\epsilon = +$, and a Borel subgroup of K is a contradicting subgroup. So we may assume that p does not divide $|Z(K_u)|$. Let $E \leq K$ with $E \cong E_{p^2}$. As *p* does not divide $|Z(K_u)|$, there

is a simple algebraic group \overline{K} and a σ -setup (\overline{K} , σ) for *K* such that $E \leq \overline{T}$ for some maximal torus \overline{T} of \overline{K} . (See [4.1.16].) Then for some $y \in E^{\#}$, $C_{\overline{K}}(y)$ has a simple component. We set $L = C_K(y)$, so that *L* has a Lie component [4.9.3]. In particular, $C_K(y)$ contains an involution *z* and (L, y, z) is a contradicting triple. The proof is complete.

Lemma 2.2. *Suppose that p is an odd prime and that X is a* K*-group such that* $K = L_{p'}(X), O_p(X) \neq 1, X = KO_p(X), O_{p'}(X)$ has odd order, and $m_{2,p}(X) \leq 3$. *Suppose that every component of* $X/O_{p'}(X)$ *lies in* C_p *, and that e*(*X*) \leq 3*. Then* $m_{2,r}(X/O_{p}(X)) \leq 3$ *[for all pri](#page-25-4)mes r* > 3*. Moreover*, $m_{2,3}(X/O_{p}(X)) \leq 3$ *unless possibly p* = 7 *and* $K/[K, O_T(K)]$ *is the central product of* $3A_7$ *with either* $3A_7$ *or SL*3(7)*.*

Proof. By induction on |*X*|, we may suppose that no proper subgroup of *X* covers $X/O_{p'}(X)$, whence $O_{p'p}(X) \le \Phi(X)$. By [GLS 1996, 3.1.5], $O_{p'p}(X)$ is nilpotent. Thus $X/F(X)$ is the direct product of simple groups, and $F(X) = O_{2}(X)$.

We assume that $m_{2,r}(X/O_{p'}(X)) > 3$ for some odd prime *r*. Thus,

(2B)
$$
m_{2,r}(X/O_{p'}(X)) > 3 \ge e(X) \ge m_{2,r}(X),
$$

so *X* possesses 2- and *r*-subgroups *T* and *R*, respectively, for some odd prime *r*, with *R* normalizing $TO_{p'}(X)$ and $m_r(R/R \cap O_{p'}(X)) > 3$, but $m_r(R) \le e(X) \le 3$. Clearly $r \neq p$. We must prove that $r = 3$, $p = 7$, and $K/O_{p}(K) \cong A_7 \times A_7$ or $A_7 \times L_3(7)$. Since $O_{p'}(X)$ has odd order, a Frattini argument permits us to take *R* to normalize *T*. By minimality of *X*, we have $X = K O_p(X)$, $K = [K, K]$, and, with $(2B)$,

$$
(2C) \t\t\t O_{p'}(K) = O_r(K) \neq 1.
$$

We factor *K* into *p*-components as $K = K_1 \cdots K_n$, set $W_i = [K_i, O_r(K_i)]$ for $i = 1, \ldots, n$, and assume as we may that nonquasisimple K_i 's come first; that is, for some $0 < m < n$, $W_i \neq 1$ for $i = 1, \ldots, m$, and $W_i = 1$ for $i = m+1, \ldots, n$. Then for any $i = 1, \ldots, n$ and any involution $z_i \in K_i$, we [have](#page-25-2) $m_p(C_X(z_i)) \le m_{2,p}(X) \le 3$. As $O_p(X) \neq 1$ this i[mplies](#page-5-0) that

(2D)
$$
m_p(C_{K_i}(z_i)) \leq 2 + m_p(O_{r,p}(K_i)).
$$

If $K_i/O_r(K_i) \in \mathcal{C}$ *hev* (p) , then the involution centralizer data in [GLS 1998, 4.5.1] and the rank data in [3.3.1] show that (2D) is satisfied only if $K_i/O_r(K_i) \cong$ $L_2(p^n), L_3^{\pm}$ $\frac{1}{3}(p^m)$ for $m \le 2$, *P Sp*₄(*p*), L_4^{\pm} $_{4}^{\pm}(p)$, $G_{2}(p)$, or $3G_{2}(3)$ (with $p = 3$). In all these cases as $r \neq p$, we have $m_r(K_i/O_r(K_i)) \leq 3$; see [4.10.2].

For any *p*-component K_i of K , regardless of its isomorphism type, this implies that either $O_r(K_i) = W_i$, or $r = 3$ with

(2E)
$$
K_i/W_i \cong 3Mc, 3A_7, 3O'N, 3\int_{24}^{'}r_i, \text{ or } S_L^{\epsilon}(p^s),
$$

and $p = 5, 7, 7, 7$ and $p^s \equiv \epsilon \pmod{3}$, respectively. This follows from the definition of C_p , the previous paragraph's restrictions if $K/O_r(K) \in \mathcal{C}$ *hev*(*p*), and the known multipliers of s[imple](#page-6-0) K -groups [6.1.4].

With these preliminaries established, we next prove the lemma by two cases:

Case: $m = 0$, that is, all the K_i are all quasisimple.

By the previous paragraph, we have $r = 3$, $O_3(K)$ is an elementary abelian 3subgroup of $Z(K)$, and some component K_1 of K has one of the isomorphism types in (2E). If $K = K_1$, then among the groups in (2E), the condition $m_3(K_1/Z(K_1)) \ge$ $m_{2,3}(K_1/Z(K_1)) > 3$ is satisfied only by $K_1 \cong 3 \text{ F}i'_{24}$, by [4.10.2, 5.6.1, 5.6.2]. But then $m_{2,3}(K_1) > 3$, a contradiction. Therefore $K \neq K_1$. Set $K^1 = K_2 \cdots K_n \neq 1$. As K^1 is of even order and $[K^1, K_1] = 1$, $m_3(K_1) \le 3$. Thus $K_1 \cong 3A_7$, $3O^{\prime}N$, or $SL_3^{\epsilon}(p^s)$. If $K_1 \cong 3O/N$, then $m_{2,3}(K_1) = 3$ by [5.6.2]. Also $p = 7$, and so no component of *K* is a Suzuki group by definition of C_p . Thus, $C_K(K_1) - K_1$ contains an element of order 3, so $m_{2,3}(K) \ge m_{2,3}(K_1)+1 \ge 4$, a contradiction. Hence $K_1 \cong$ 3 A_7 or $SL_3^{\epsilon}(p^s)$. Thus $m_3(K_1) = m_{2,3}(K_1) = m_3(K_1/Z(K_1)) = m_{2,3}(K_1/Z(K_1)) =$ 2. If $O_3(K^1) = 1$, then $K = K_1 \times K^1$, and it follows immediately that $m_{2,3}(K) =$ $m_{2,3}(K/O_3(K))$, contrary to assumption. So $O_3(K^1) \neq 1$, and K^1 likewise has a 3*A*₇ or $SL_3^{\epsilon}(p^s)$ component. As $m_{2,3}(K) \leq 3$, the only possibility is that $K^1 = K_2$ and $Z(K_1) = Z(K_2)$. If neither K_1 nor K_2 is isomorphic to 3A₇, then using the facts that $O_p(X) \neq 1$, $m_{2,p}(SL_3^{\epsilon}(p^s)) \geq s$ and $m_p(SL_3^{\epsilon}(p^s)) \geq 2$, we reach the contradiction $m_{2,p}(X) \geq 4$. Therefore without loss $K_1 \cong 3A_7$ and $p = 7$. If $K_2 \cong SL_3^{\epsilon}(7^s)$, then $m_{2,7}(X) \ge 1 + m_{2,7}(K_1) + m_7(K_2) = 2 + s$, so $s = 1$. We have obtained the two exceptional conclusions of the lemma.

Case: $m > 0$, so that $W_1 \neq 1$ and K_1 is not quasisimple.

Set $k = m_2(K_1 \cdots K_m)$. Now $C_{K_1 \cdots K_m}(O_r(K)) \leq O_{r,p}(K) \leq O_2(K)$ by the definition of *m*[. Th](#page-5-0)us by the Thompson dihedral lemma, $K_1 \cdots K_m$ contains the direct product of *k* copies of D_{2r} . On the other hand $m_{2,r}(X) \le e(X) \le 3$, and so

(2F)
$$
k \le 4
$$
, whence $m \le 2$.

If $K = K_1$, then since $m_r(K/O_r(K)) \ge m_{2,r}(K/O_r(K)) > 3$, we have $K/O_r(K) \notin$ *Chev*(*p*) by the paragraph following (2D). If $K/O_r(K) \cong A_s$, then since $r \geq 3$ and $m_r(K/O_r(K)) > 3$, certainly $s \ge 12$; see [5.2.10]. But then $k \ge 6$, a contradiction. Likewise if *K*/*O_{<i>r*}(*K*) ∉ Chev(*p*) ∪ Alt, then using the definition of C_p and the values of $k = m_2(K/O_r(K))$ and $m_{2,r}(K/O_r(K))$ given in [3.3.1, 5.6.1], we see that the conditions $k \leq 4$ and $m_{2,r}(K/O_r(K)) \geq 4$ are inconsistent. (Note: if $p = 3$ and $K/O_r(K) \cong U_5(2)$, then $r > 3$ so $m_r(K/O_r(K)) < 4$ by [4.10.2].) Therefore $K \neq K_1$.

Fix a characteristic subgroup R of W_1 of exponent r and class at most 2 such that $C_{\text{Aut}(W_1)}(R)$ is an *r*-group, and choose *R* minimal subject to these conditions. By minimality either *R* is elementary abelian or $Z(R) \leq Z(K_1)$. Since $W_1 =$ $[K_1, W_1] \neq 1, C_{K_1}(R) \leq O_{r,p}(K_1).$

Obviously *R* is K_2 -invariant. Let $V \leq K_2$ be a four-group and set $K_1^o =$ $O^{p'}(C_{K_1}(V))$ and $R_v = C_R(v)$ for each $v \in V^*$. Then K_1^o acts on each $C_R(v)$. The action is nontrivial for some $v \in V^*$, for otherwise K_1^o would centralize $R = \langle R_v | v \in V \rangle$, contradicting $C_{K_1}(R) \leq O_{r,p}(K_1)$. On the other hand $m_r(R_v) \leq$ $m_{2,r}(X) \leq 3$, which immediately implies that $m_r(R_v/\Phi(R_v)) \leq 3$ or $R_v \cong r^{1+4}$. Correspondingly the perfect group $K_1^o/C_{K_1^o}(R_v)$ embeds in $SL_3(r)$ or $Sp_4(r)$. In any case since K_1^o covers $K_1/O_{p'}(K_1)$, we have $m_2(K_1) \leq 2$. Indeed the $Sp_4(r)$ case is impossible since any four-subgroup of $Sp_4(r)$ contains $Z(Sp_4(r))$, whereas $O_2(K_1/C_{K_1}(R)) = 1$ since $O_{p'}(K_1)$ has odd order. Similarly $K_1/C_{K_1}(R_v)$ does not embed in $SL_2(R)$, and so $m_r(R_v/\Phi(R_v)) = 3$; indeed $m_r(R_v) = 3$ since R_v has exponent *r* and class at most 2. Now $K_1/O_{2}(K_1)$ is involved in $SL_3(r)$, and on the other hand lies in C_p . If $m_p(K_1) = 1$, then $K_1/O_{2}(K_1) \cong L_2(p)$ or A_p (or $L_2(8)$ or ${}^2B_2(2^{\frac{5}{2}})$ with $p = 3$ or 5) by definition of C_p . From the known structure of all subgroups of $SL_3(r)$ [6.5.3], and the facts that $r \neq p$ and $K_1/O_{2'}(K_1)$ is simple, we see that whatever the value of $m_p(K_1)$, the only possibilities for the pair $(p, K_1/O_{p'}(K_1))$ are $(3, L_2(9))$, $(5, A_5)$, $(7, L_2(7))$, and $(7, A_7)$. Moreover in the last case $r = 5$. In particular $m_r(K_1/O_r(K)) = 1$.

Similarly, $m_r(K_i/O_r(K_i)) = 1$ for all $1 \le i \le m$. Since $m_r(K/O_r(K)) \ge 4$ but $m \leq 2$, it follows that $m < n$, that is, K_n is quasisimple. Therefore $[K_1, K_n] = 1$. As K_n has even order and $e(X) \leq 3$, this yields $m_r(K_1) \leq 3$. Therefore $m_r(K_1) =$ $m_r(R_v) = 3.$

We argue t[hat](#page-6-0) $m_{2,r}(E(K)) = m_r(Z(E(K)))$. Otherwise, changing indices if necessary, there exist a 2-subgroup $T \leq K_n$ that is not the identity and an element *x* ∈ $N_{E(K)-Z(E(K))}(T)$ of order *r*. Then $N_K(T)$ contains $K_1\langle x \rangle$ so that $m_r(K_1\langle x \rangle) \leq e(X) \leq 3 = m_r(K_1)$. Bec[ause](#page-4-0) $[K_1, x] = 1$, we reach the contradiction. Thus $x \in Z(E(K))$, and our assertion is proved. If $Z(E(K)) \neq 1$, then some K_i for $i > m$ is as in (2E). But then there still exists an element $x \in K_i - Z(K_i)$ of order 3 centralizing an involution of $E(K)$ (see [5.3]), and so $m_{2,r}(E(K)) > m_r(Z(E(K)))$, a contradiction. Therefore $Z(E(K)) = 1$ and so $m_{2,r}(E(K)) = 0$. Using that each K_i lies in \mathcal{C}_p , we can apply Lemma 2.1 and conclude that $m_r(E(K)) \leq 1$.

Finally $X = K_1 \times E(K)$ or $K_1 K_2 \times E(K)$, with $K_1/O_r(K_1)$ (and $K_2/O_r(K_2)$) and $E(K)$ each having cyclic Sylow *r*-subgroups. Therefore $m_r(K/O_r(K)) \leq 3$ and the proof is complete.

Lemma 2.3. *Table 1 is a complete list*, *for all odd primes p*, *of all groups the* $K = E(K)$ $K = E(K)$ $K = E(K)$ *such that all components of K lie in* C_p *, and* $K \cong E(X/O_{p'}(X))$ *for some group X such that* $e(X) \leq 3$, $O_p(X) \neq 1$, $m_p^I(X) \leq 2$, and $O_{p'}(X)$ *has odd order.*

Proof. If $e(X/O_{p}(X)) > 3$, then $p = 7$, and either $E(X/O_{p}(X)) \cong A_7 \times A_7$ or $A_7 \times L_3(7)$, by Lemma 2.2. The first case is allowed, and the second is impossible. This is because the centralizer of an involution in the first 7-component has 7-rank $m_7(O_{77}(X)) + m_7(L_3(7)) = 3$, contrary to assumption. So we may assume that $e(X/O_{p}(X)) \leq 3$. All other hypotheses immediately go over to $X/O_{p}(X)$ and so we may assume that $O_{p'}(X) = 1$. Our hypotheses [are th](#page-25-2)en the hypotheses of [Korchagina and Lyons 2006, 4.4], plus the assumption $m_p^I(X) \le 2$. We therefore filter the list in [4.4] through this extra condition. Let *L* be a component of $E(X)$. If $Z(L) \neq 1$, then *L* is isomorphic to one of the groups in [4.4(h)]. Note that as $3U_4(3)$ ≤ 3 *Mc* and $3U_4(3)$ contains $Z_3 \times (SL_2(3) * SL_2(3))$, so $m_3^1(3U_4(3)) \ge 3$, and so *L* \ncong 3*U*₄(3) or 3*Mc*. Thus *L* \cong 3*G*₂(3) or 3*J*₃. Furthermore, *m*₃(*L*) ≥ 3 by [GLS 1998, 5.6.1, 6.3.1], and so $L = E(X)$ in these cases, as desired. Hence we may assume that $Z(X) = 1$. Since $O_p(X) \neq 1$, we know $3 > m_p^I(E(X) \times O_p(X))$ $m_p^I(E(X))$, and thus $m_p^I(E(X)) \leq 1$. Consequently if $E(X)$ is not simple, then it has two components, each of *p*-rank 1, and our [4.4] gives us only the direct products as we have listed. Finally, if $E(X)$ is simple, then $m_p(C_{E(X)}(z)) \leq 1$ for every involution $z \in E(X)$. Using information about centralizers of involutions from [GLS 1998] we conclude that $E(X)$ is restricted to be as stated in the lemma, and the stated values of $m_p^I(K)$ are correct. The references are [4.5.1, 3.3.1] for components in $Chev(p)$, $[5.2.2d, 5.2.10b]$ for components in Alt, and [5.3] for components in *Spor*. For components $L \in \mathcal{C}$ *hev*(2)[, low](#page-1-0)er bounds on $m_p^I(L)$ come from subsystem subgroups [2.6.2] of type $A_1(q) \times B_{n-1}(q)$ in $B_n(q)$, ${}^2A_2(q^2)$ and $^{2}B_{2}(q) \times {}^{2}B_{2}(q)$ in $^{2}F_{4}(q)$, and $A_{1}(q) \times A_{1}(q^{3})$ in $^{3}D_{4}(q)$. Upper bounds come [from the](#page-8-0) Borel–Tits theorem and the *p*-ranks of parabolic subgroups [3.1.3, 2.6.5, $4.10.2$].

Proposition 2.4. *[Let G be a group](#page-25-0) satisfying the hypotheses of Theorem 1.1. Take* $A \in \mathcal{A}^o(G)$. Then $O_{p'}(C_G(A))$ has odd order. If $E(\widehat{C}_G(A)) \neq 1$, then $E(\widehat{C}_G(A))$ *is one of the groups in Table 1. Moreover, if* $m_p(A) = 2$, *then* $m_p^I(E(\widehat{C}_G(A))) = 0$. *In particular,* $E(\widehat{C}_G(A))$ *is quasi[simple.](#page-8-1)*

Proof. Set $X = C_G(A)$. By [Korchagina and Lyons 2006, Proposition 5.4], $O_{p'}(X)$ has odd order. Take any $a \in A^{\#}$; the subnormal closure *L* of $L_{p'}(C_G(A))$ in $C_G(a)$ is a product of *p*-components of $C_G(a)$ by $L_{p'}$ -balance, and $L_{p'}(X) = L_{p'}(C_L(A))$. Since *G* has weak *p*-type, the components of \widehat{L} [lie in](#page-25-0) \mathcal{C}_p , and hence so do the components of $L_{p'}(X)O_{p'}(X)/O_{p'}(X) = E(\widehat{X})$. Then Lemma 2.3 gives the isomorphism type of $E(\widehat{X})$. If $m_p(A) = 2$, then since $m_p^I(G) \le 2$ by assumption, $m_p^I(\widehat{X}) = m_p(O_p(\widehat{X}))$. From the table, this condition forces $m_p^I(\widehat{X}) = 0$, and the remaining statement of the proposition.

Remark 2.5. Here it is appropriate to identify and correct an error in [Korchagina] and Lyons 2006]. The statement of [5.1a] is incorrect for $p = 7$, and in [line 5] of the "proof", the reference to [4.4] is inadequate to draw the stated conclusion. Lemma 2.2 above indicates how to correct the statement of [5.1a] and fill the gap in its proof by using a variant of [4.4], as follows. Namely, instead of assuming that $K \triangleleft E(H)$ for some group *H* such that $e(H) \leq 3$ and $O_p(H) \neq 1$, make the following weaker hypothesis: $K \triangleleft E(X/O_{p}(X))$ for some group X such that $e(X) \le 3$ and $O_p(X) \ne 1$. Then weaken the conclusion by adding to [Table 4.4] the groups $K \cong A_7 \times A_7$ and $A_7 \times L_3(7)$, with $p = 7$ in both cases.

With [Table 4.4] [so modified](#page-5-1), the statement of [5.1a] is then correct. In the proof of [5.1a], Lemma 2.2 above shows that either $p = 7$ with $K/O_{p'}(K)$ being one of these [two g](#page-25-0)roups, or $e(X/O_{p'}(X)) \leq 3$. In the latter case [4.4], as originally stated and proved, shows that K is one of the groups in the original [Table 4.4].

Thus the effective change is to add two groups to [Table 4.4], weaken the hypothesis of [4.4] as stated above, and use Lemma 2.2 in the proof of [5.1] to reduce to the case $O_{p'}(X) = 1$.

In the remainder of our [2006] paper, no changes are necessary in [4.5, 4.6, and Table 4.5], because no new *quasisimple* groups have been added to [Table 4.4]. Indeed, through [6.6], the proofs as originally given are correct, because changes were only made for $p = 7$, and because [Table 4.5] is correct as originally stated. From [6.6] to the end, we are in the clear since $p = 3$.

[Lemm](#page-9-0)a 2.6. *Let G be a [group satisfy](#page-8-1)ing the hypotheses of Theorem 1.1. Let A* \in $\mathcal{A}^o(G)$ *and suppose that L is a component of* $\widehat{C}_G(A)$ *. Suppose that Aut*(*L*) *contains a subgroup B of order p acting nontrivially on a* 2*-subgroup T . Suppose also that* $m_p^I(L) = m_p(Z(L))$ $m_p^I(L) = m_p(Z(L))$ $m_p^I(L) = m_p(Z(L))$, $C_{Inn(L)}(B)$ *has odd order*, *and* $m_{2,p}(L) = 1 + m_p(Z(L))$. *Then* $p = 3$ *and* $L \cong L_2(3^n)$ *for* $n \ge 2$ *.*

[Proof.](#page-8-0) By Proposition 2.4, *L* and *p* are as in Lemma 2.3. For these groups the condition $m_p^I(L) = m_p(Z(L))$ implies $m_p^I(L) = 0$ and $Z(L) = 1$. All the groups *L* in the table that pass this test satisfy $m_{2,p}(L) = 0$ (contrary to assumption) except for *L* \cong *L*₂(3^{*n*}); see our [2006, 4.4] for the values of *m*_{2,*p*}(*L*). □

Lemma 2.7. *Suppose that p* = 3 *and* $X = LB$ *is a* K -group such that $L = E(X)$ *is a quasisimple group in Table 1,* $B = \langle b, a_1, a_2 \rangle \cong E_{3^3}$ *for* $b \in Z(X)$ *with* $[a_i, L] \neq 1$, *and* $E(C_{L}(a_i))$ has a component $L_i \cong L_2(3^{n_i})$ with $n_i \geq 2$ for $i = 1, 2$ *. Suppose also that for either value of i,* U_i *is a four-subgroup of* L_i *, and* $U_1U_2 = U_1 \times U_2$ *. Suppose finally that* $m_3^I(X) \leq 2$ *. Then*

- (a) $L \cong A_9$, J_3 , *or* 3 J_3 ; *and*
- (b) $C_{Aut(L)}(U_1U_2)$ *is the image in Aut*(*L*) *of* U_1U_2 .

Proof. Clearly *L* is a pumpup of L_i for $i = 1, 2$. But the possible pumpups of $L_i \cong L_2(3^{n_i})$ with $n_i \ge 2$ for $i = 1, 2$ in Lemma 2.3 are among those given in our [2006, 4.5]. Other than the desir[ed isomorphis](#page-1-0)m types of *L*, we must rule out $L \cong L_2(3^{3n_i})$ and $L \cong Sp_4(8)$. The first is impossible since $m_2(L_2(3^m)) = 2$ for any *m*, while $L \ge U_1 U_2 \cong E_{2^4}$ [.](#page-2-2) Fina[lly if](#page-3-0) $L \cong Sp_4(8)$, then a_1 acts as a field automorphism on *L*, and so $X \ge \langle b, a_1 \rangle \times C_L(a_1) \cong E_{3^2} \times \Sigma_6 \ge E_{3^2} \times \Sigma_3 \times \Sigma_3$, contradicting $m_3^I(X) \leq 2$.

Lemma 2.8. *Let G be a group satisfying the hypotheses of Theorem 1.1. Let H be any* 2-local subgroup of G, and let L be a component of $E(H)$. Suppose that $p = 3$. *Then the isomorphis[m type of L](#page-25-2) is as specified in* (1B3) *and* (1B4)*. Furthermore* $m_3(L) = 1$ *if and only if* $L \cong L_2(17)$, $L_2(2^n)$, *or* $L_3^{\epsilon}(2^n)$ *for some* $\epsilon = \pm 1$ *such that* $2^n \equiv -\epsilon \pmod{3}$ *.*

Proof. Let $z \in Z(O_2(H))$ be any involution, and let K be the subnormal closure of *L* in $C_G(z)$ $C_G(z)$. By L_2 -balance and the fact that *G* has even type, $K \leq E(C_G(z))$ and *L* is a component of $C_K(O_2(H))$. By [GLS 1998, 7.1.10], for any involutory automorphism *α* of *K*, every component K_1 of $C_K(\alpha)$ lies in C_2 , and hence by the same argument given for $(1B)$ above, the isomorphism type of K_1 is as given in (1B3) and (1B4) above. Using this fact repeatedly we obtain the first assertion. The 3-ranks of the groups in (1B) are determined in [3.3.1, 4.10.2, 5.6.1], and this yields the final statement. **Lemma 2.9.** *Let* $L \in C_2$ *[be](#page-25-4) [as in](#page-25-2)* (1B3)*. Suppose that* F and W are subgroups of *Aut*(*L*) *such th[a](#page-2-3)t* $F \cong A_4$, *F normalizes W*, *and* $W \leq O_2(C_{Inn(L)FW}(O_2(F)))$ $W \leq O_2(C_{Inn(L)FW}(O_2(F)))$ $W \leq O_2(C_{Inn(L)FW}(O_2(F)))$. *Suppose also that either* $L/Z(L)$ *<i>is involved in A*⁹ *or J*₃, *or that* $C_{Aut(L)}(F)$ *contains an element b of order* 3*. If* $W \neq 1$ *, then* $L/Z(L) \cong M_{12}$ *, b is nontrivial, and* $C_{Inn(L)}(O_2(F)) \cong O_2(F) \times \Sigma_3$ $C_{Inn(L)}(O_2(F)) \cong O_2(F) \times \Sigma_3$.

Proof. This proof uses results from [GLS 1996; 1998]. If *L* is embeddable in *A*₉ or *J*₃, set *b* = 1. Assume that $W \neq 1$. Note first that from (1B) and [1998, 2.5.12, 5.3], Out(*L*) is 2-nilpot[ent, an](#page-25-4)d indeed is a 2-group unless $L \in \mathcal{C}$ *hev*(2). In any case $O_2(F)$ [induc](#page-25-2)es inner a[utomo](#page-25-2)rphisms on *L*. Hence if $L \in \mathcal{C}$ *hev*(2), then $W = 1$ by [1998, 3.1.4], a contradiction. Otherwise $\langle W, F \times \langle b \rangle \rangle$ maps into $O²(Aut(L)) = Inn(L)$. Replacing *W* and $F \times \langle b \rangle$ by their images, we may assume that *L* is simple and work within *L*. Write $O_2(F) = \langle u, v \rangle$ and set $C = C_L(u)$. Then $W \leq O_{2'}(C_C(O_2(F))) \leq L_2^*$ $L_2^*(C)$ by L_2^* ^{*}/₂/-balance [1996, 5.18], so L_2^* $_{2'}^*(C) \neq 1.$ But the structure of *C* may be found in [1998, 4.5.1] or [1998, 5.3] according as *L* ∈ *Chev* or *L* ∈ *Spor*. From these tables, we see that L_2^* $Z_2^*(C) = 1$ unless $L \cong M_{12}$, *HS*, *J*₂, or *Ru*, with $C \cong Z_2 \times \Sigma_5$, $Z_2 \times \text{Aut}(A_6)$ $E_{2^2} \times A_5$, or $E_{2^2} \times {}^2B_2(2^{\frac{3}{2}})$, respectively. In particular, since the order of *L* does not divide $|A_9|$ or $|J_3|$, our hypothesis yields $b \neq 1$.

Now $1 \neq W \leq O_{2'}(C_C(v))$. If $C \cong E_{2^2} \times A_5$, or $E_{2^2} \times {}^2B_2(2^{\frac{3}{2}})$, this would contradict [1998, 3.1.4]. Thus $L \cong M_{12}$ or *HS*, whence $C_C(v) \cong \Sigma_3$ or D_{10} , respectively [1998, 6.5.1]. Since by assumption $b \in C_C(v)$ has order 3, we have $L \cong M_{12}$ and the proof is complete.

Lemma 2.10. *Let K be one of the groups in Lemma 2.3 corresponding to* $p = 3$ *.*

- (a) *Suppose that* $K \triangleleft K_1 = K\langle c \rangle$ *and* $c^3 = 1$ *. If J* is a component of $C_K(c)$, $J/Z(J) \cong L_2(3^n)$ *for some n* > 1, $C_K(c)$ *has no subgroup isomorphic to* Σ_6 , *and* K_1 *has no su[bgroup isom](#page-8-1)orphic to* $A_4 \times A_4$, *then* $K \cong L_2(3^n)$ *or* $L_2(3^{3n})$, *with c acting on K trivially or as a field automorphism.*
- (b) *There is no* $I \leq K$ *such that* $I/Z(I) \cong L_3^{\epsilon}(2^m)$ $I/Z(I) \cong L_3^{\epsilon}(2^m)$ $I/Z(I) \cong L_3^{\epsilon}(2^m)$ *for* $2^m \equiv \epsilon \pmod{3}$, $2^m \not\equiv \epsilon$ $(mod 9)$ *, and m > 1.*

Proof. The possible pumpups of $L_2(3^n)$ in Lemma 2.3 are among those given in our [2006, Table 4.5]. Using this, we see that if (a) fails, then $K \cong A_9$, J_3 , J_3 , or $Sp_4(8)$, with *J* \cong *A*₆[. But](#page-8-1) *A*₉ contains *A*₄ × *A*₄, as do *J*₃ and 3*J*₃, inside a subgroup disjoint from the center and isomorphic to an extension of E_{2^4} by $GL_2(4)$ [GLS 1998, 5.3h]. Thus $K \cong Sp_4(8)$. But then *c* acts as a field automorphism, centralizing *Sp*⁴ (2). This contradiction proves (a).

In (b), since $2^m \not\equiv \epsilon \pmod{9}$, we have $m \neq 3$. Just the condition that $|L_3^{\epsilon}(2^m)|$ divides |*K*| reduces the possibilities in Lemma 2.3 (with $p = 3$) to $K \cong L_2(3^n)$, *A*₉, and *S* $p_4(8)$. As $m \ge 2$, a Sylow 2-subgroup *S* of *I* satisfies $|S/\Phi(S)| \ge 2^4$

[2.4.1, 3.3.1], so $L_2(3^n)$, whose Sylow 2-subgroups are dihedral, is impossible. Since $L_3(4)$ has an E_{2^4} -subgroup all of whose involutions are conjugate while $|L_3(4)|_2 = |A_9|_2$, it does not embed in A_9 . Neither do $L_3^{\epsilon}(2^m)$ for $m > 3$, as $m_2(L_3^{\epsilon}(2^m)) > m_2(A_9)$ [3.3.3]. Finally, if $K \cong Sp_4(8)$, let *P* be a Sylow 3-subgroup of *K*. Then $\Omega_1(P) \cong E_{3^2}$ and *K* has more than one conjugacy class of subgroups of order 3 [4.8.2]. On the other hand, $\Omega_1(S) \leq I$, while *I* has a single such class [4.8.2]. The proof is complete. \Box

Lemma 2.11. *Let* $K = L_2(q)$ *for q odd. Let* $V \leq K$ *with* $V \cong E_{2^2}$ *, and let* R *be a* 2*-subgroup of Aut*(*K*) *such that* $\langle R, V \rangle$ *is a* 2*-group*.

- (a) *Suppose that* $R \cap V = 1$, *and that either* $[R, V] = 1$ *or* $R \cong Z_{2^m}$ *for* $m > 1$. *Then any involution of R is a field automorphism on K .*
- (b) If $V \leq R$ and $[R, V] = 1$, then $R = VF$, where F is a group of field automor*phisms of K .*
- (c) Suppose that $q = 3^n$ [and](#page-25-2) $\Sigma \le K$ with $\Sigma \cong \Sigma_4$. Then $\Sigma \le K$ for some *J* \cong *A*₆*, and J* = $\langle C_J(z) | z \in \mathcal{G}_2(\Sigma) \rangle$ *.*

Proof. We have $Aut(K) = \text{Inndiag}(K)\Phi$ where Φ is a group of field automorphisms of *K* and Inndiag(*K*) \cong *PGL*₂(*q*). All four-subgroups of *K* are Aut(*K*)conjugate and self-centralizing in Inndiag(*K*) [GLS 1998, 4.5.1]. Since $C_K(\Phi)$ contains $L_2(r)$, where *r* is the prime of which *q* is a power, then, by replacing *V* by a conjugate, we obtain $C_{Aut(K)}(V) = V \times \Phi$. Thus (b) holds. By [4.9.1], all involutions of $V\Phi - V$ are field automorphisms. Hence in proving (a) we may assume that $R \cong Z_{2^m}$ for $m > 1$. Expand $\langle V, R \rangle$ to $S \in \text{Syl}_2(\text{Aut}(K))$. Again, by conjugation, we may assume that *S* is Φ -invariant. Set $T = S \cap \text{Inndiag}(K)$. Then *T* is dihedral and has a cyclic maximal subgroup $T_0 \triangleleft S$. As $T_0 \cap V \neq 1$, we have $R \cap T_0 = 1$. But $S/T_0 = T/T_0 \times (S \cap \Phi)T_0/T_0$, so the involution of *R* lies in $(S \cap \Phi)T_0 - T_0$, and again is a field automorphism by [4.9.1]. This proves (a).

Finally in (c), since $|K|_2 \geq 8$, we know *n* is even. Thus *K* contains a subgroup $J \cong A_6$. Also $N_K(V) \cong \Sigma_4$ [6.5.1], so Σ is determined up to conjugacy, and we may assume that $\Sigma \leq J$. The final statement follows easily; indeed Σ is maximal in *J*, but $C_J(z) \cong D_8$ for all $z \in \mathcal{F}_2(J)$. □

Lemma 2.12. Let $K \in C_2$ [be](#page-25-2) simple. Let $K \leq H \leq Aut(K)$ and $z \in \mathcal{F}_2(H)$ with $O_{2'}(C_H(z)) \neq 1$. Then either $K \cong L_2(q)$ for q a Fermat or Mersenne prime or 9 *with* $C_K(z) \cong D_{q\pm 1}$, *or* $K/O_2(K) \cong L_3(4)$ *with* $C_{K/O_2(K)}(z) \cong U_3(2)$ *. In all cases* $z \notin Inn(K)$.

Proof. This is a direct consequence of [GLS 1998, 7.7.1], which specifies all instances of locally unbalancing quasisimple K -groups. **Lemma 2.13.** *Let K* ∈ *Chev*(2) *with* $m_3(K) = 2$, *and let B* ≤ *Inndiag*(*K*) *with* $B \cong E_{3^2}$. Suppose that $C_K(b)$ has cyclic Sylow 2-subgroups for each $b \in B^{\#}$. Then $K \cong A_6$ $K \cong A_6$, $U_3(3)$, ${}^2F_4(2^{\frac{1}{2}})'$, or $L_3^{\epsilon}(2^n)$ for $\epsilon = \pm 1$ with $2^n \equiv \epsilon \pmod{3}$.

Proof. First of all, notice that A_6 , $U_3(3)$, ${}^2F_4(2^{\frac{1}{2}})'$, and $L_3^{\epsilon}(2^n)$ for $\epsilon = \pm 1$ with $2^n \equiv \epsilon \pmod{3}$ satisfy the hypotheses of the lemma.

Now, take *K* to be a group satisfying the hypotheses of this lemma, but not isomorphic to $A_6 \cong B'_2$ $y'_2(2)$, *U*₃(3) ≅ *G*^{*i*}₂ $\chi'_{2}(2)$, or ${}^{2}F_{4}(2^{\frac{1}{2}})'$. We may suppose that $K =$ $d\mathcal{L}(2^m)$. By [GLS 1998, 4.2.2, 4.7.3A, 4.9.1], for each *b* ∈ *B*[#], $O^2(C_K(b))$ is the central product of groups of the form $^{d_b} \mathcal{L}_b(2^{m_b})$, with *m* dividing m_b . Since Sylow 2-subgroups of $C_K(b)$ are cyclic, there is at most one factor, and $O^2(C_K(b)) \cong$ $A_1(2)$, ${}^2B_2(2^{\frac{1}{2}})$ or 1. In the ${}^2B_2(2^{\frac{1}{2}})$ case, we would have $m = 1/2$, so this case cannot occur by [4.7.3A]. Hence $m = 1$ or $C_K(b)$ has odd order. Let \overline{K} be the algebraic group overlying *K*; then *b* acts on *K* as conjugation by some $\overline{b} \in \overline{K}$ with $\bar{b}^3 \in Z(\bar{K})$, and the connected component $C_{\bar{K}}(\bar{b})^o = \bar{T}\bar{L}$ where \bar{T} is a maximal torus and \overline{L} is either trivial or isomorphic to A_1 . By [4.7.1, 4.8.2], we have $\mathcal{L} = A_1, A_2$, or B_2 . If $m = 1$, then the only simple choice for *K* is $A_2(2)$, which is impossible as $m_3(K) = 2$. Thus $m > 1$, and $\mathcal{L} = A_1$ or A_2 . Since $m_3(K) = 2$, $K \cong L_3^{\epsilon}(2^n)$ for $2^n \equiv \epsilon \pmod{3}$. The proof is complete.

Lemma 2.14. *Let* $K = A_6$, M_{11} , *or* $L_2(8)$ *. Let D be an elementary abelian* 3*subgroup of K of maximal rank. Then* $C_{Aut(K)}(D)$ *has odd order.*

Proof. This is immediate from [GLS 1998, 3.1.4] for $K = A_6 \cong L_2(9)$, from [5.3a] for $K = M_{11}$, and from [6.5.1] for $K = L_2(8)$, in the last case using the fact that $|\text{Out}(K)|$ is odd [2.5.12].

Lemma 2.15. *Let* $J \in \text{Chev}(2)$, *and suppose that* $u \in \mathcal{F}_2(Aut(J))$ *and* K *is a component of C_J*(*u*)*.* Assume that m_3 (*J*) \leq 2, $B \leq C_{Aut(J)}(u)$ with $B \cong E_{3^2}$, and *the image of K B in Aut*(*J*) *is isomorphic to A*₆, M_{11} , *or Aut*($L_2(8)$) = $P\Gamma L_2(8)$ *. Then for some* $b \in B^{\#}$ *,* $C_J(b)$ *contains* A_5 *and in particular is not solvable.*

Proof. By [GLS 1998, 4.9.6], *K* ∈ *Chev*(2), and so *K* \cong *M*₁₁. Since *K* ≤ *E*(*C_J*(*u*)), *u* is a field, graph-field or graph automorphism of *J* by [3.1.4]. Indeed by [4.9.1, 4.9.2], either $J \cong L_m^{\epsilon}(2)$, $m = 4$ or 5, $\epsilon = \pm 1$, with $K \cong A_6$ and *u* a graph automorphism, or $J \cong Sp_4(4)$ or $J \cong L_2(8^2)$, with *u* a field automorphism. In the last case since $KB \cong P\Gamma L_2(8)$, we may take as *b* some element of $B^{\#}$ which induces a field automorphism on *J*. If $J \cong Sp_4(4)$ then any $b \in B^*$ satisfies the desired property by [4.8.2]. If $J \cong L_m^{\epsilon}(2)$, then $\epsilon = +1$ by the hypothesis $m_3(J) \leq 2$. Then any $b \in B$ with a four-dimensional commutator space on the natural *J*-module has the property that we want. The proof is complete. \Box

Lemma 2.16. Let K be quasisimple with $\overline{K} := K/Z \cong L_3(4)$, where $Z = Z(K)$ is a 2-group. Let S ∈ $Syl_2(K)$ and identify \overline{S} with its image in Aut(*K*). Let $u ∈ Aut(K)$

be a (*noninner*) *involution such that u normalizes S and* $C_{\overline{K}}(u) \cong U_3(2)$ *. Then these conditions hold*:

- (a) $\overline{Z(S)} = Z(\overline{S})$.
- (b) *If* $B \leq K$ with $B \cong E_{3^2}$, then $C_{Aut(K)}(B) = \overline{B} \times \langle u' \rangle$, where $u \in Aut(K)$ is *Aut*(*K*)*-conjugate to u.*
- (c) All involutions in the coset $u\overline{S}$ are S-conjugate, and all involutions in \overline{S} are *K -conjugate.*
- (d) *u* centralizes so[me involutio](#page-25-2)n $y \in Z(S) Z(K)$.
- (e) *In* (d), *if* $z \in Z(K)$ *is an involution, then no two involutions in* $\langle y, z \rangle$ *are Aut*(*K*)*-conjugate.*
- (f) *S has no normal Z*4*-subgroup.*

Proof. Part (a) is a direct consequence of [GLS 1998, 6.4.2b], which also implies that $Z(S) \cong E_{2^4}$. Then as $m_2(C_{\overline{S}}(u)) = 1$, *u* acts freely on $Z(\overline{S})$, which implies (d). Any conjugacy in (d) would have to occur in $C_K(\bar{y}) = \bar{S}$. As $y \in Z(S)$, (e) holds. In (b), $B \in \text{Syl}_3(K)$ is self-centralizing in *K* since its preimage in $SL_3(4)$ is absolutely irreducible on the natural module; the assertions of (b) and (c) follow from [GLS 2005, 2.1ae] and the fact that *u* acts freely on $\overline{S/Z(\overline{S})}$ and $\overline{Z(\overline{S})}$. Finally $\overline{S} = \overline{E}\,\overline{V}$ where $E_{2^4} \cong \overline{E} \triangleleft \overline{S}$, $\overline{V} \cong E_{2^2}$, and $C_{\overline{E}}(\overline{v}) = Z(\overline{S})$ for all $\overline{v} \in \overline{V}^{\#}$ and $C_{\overline{S}}(\overline{t}) = \overline{E}$ for all $\bar{t} \in \bar{E} - Z(\bar{S})$ (see [2.1f]). Hence $|\bar{S} : C_{\bar{S}}(\bar{t})| = 4$ for all $\bar{t} \in \bar{S} - Z(\bar{S})$, which implies (f). \Box

3. {2, 3}-local subgroups

For the rest of the paper, we fix a group *G* and a prime *p* satisfying the hypotheses [of](#page-1-1) Theorem 1.1. We begin with some simple properties of 2- and 3-local subgroups of *G*.

Lemma 3.1. *Let* $A \leq G$ *with* $A \cong E_{p^3}$ *. Then* $m_2(C_G(A)) = 0$ *. In particular,* $L_{p'}(C_G(A)) = 1.$

Proof. If $m_2(C_G(A)) \neq 0$, there exists $t \in \mathcal{I}_2(C_G(A))$. But this is absurd since $m_p(C_G(t)) \leq 2$ by (H1). The odd order theorem completes the proof.

Lemma 3.2. *Let N be any p-local or* 2*-local subgroup of G. Then N has at most two p-components, and* $O^2(N)$ *normalizes every p-component of N.*

Proof. Let L_1, \ldots, L_n be the *p*-components of *N*, and let $P \in \text{Syl}_p(N)$. As *p* is odd, by [GLS 1996, 16.11], for each *i* there is $x_i \in P \cap L_i - O_{p/p}(L_i)$ such that $x_i^p = 1 \neq x_i$. Suppose that *n* > 1. Choose any $x \in O_p(N)O_2(N)$ of prime order. If *x* has order *p*, then $\langle x_2, \ldots, x_n, x \rangle \cong E_{p^n}$ centralizes an involution of \widehat{L}_1 . If $x^2 = 1$, then $\langle x_1, \ldots, x_n \rangle \cong E_{p^n}$ centralizes *x*. In either case, $n \le m_p^1(G) \le 2$ by $(H1)$, and the result follows. **Lemma 3.3.** *Let* $A \in \mathcal{A}^{\circ}$ *be such that* $A \cong E_{p^2}$, *and suppose* $C_G(A)$ *contains a noncyclic ele[mentary abelian](#page-25-0)* 2-group *E*. Suppose $L = L_{p'}(C_G(A))$. Then $L \neq 1$, *L* is a single p-component, and *E* acts nontrivially on $\widehat{L} = L/O_p(L)$ *. Moreover*, $m_p(Z(\widehat{L})) = m_p^I(\widehat{L}) = 0$ *and* $m_{2,p}(\widehat{L}) \leq 1$.

[Proof.](#page-9-0) Let $C = C_G(A)$ $C = C_G(A)$. By Proposition 2.4, $O_{p'}(C)$ has odd order. Hence, *E* is isomorphic to its image in \widehat{C} . Clearly, $A \cong \widehat{A} \leq Z(\widehat{C})$. If $C_E(O_p(\widehat{C})) = 1$, then by the Thompson dihedral lemma [Korchagina and Lyons 2006, 2.2], \hat{C} contains $E_{p^2} \times D_{2p} \times D_{2p}$, since *E* is noncyclic. Thus $m^1_{2,p}(\widehat{C}) \geq 3$, whence $m^1_{2,p}(C) \geq 3$, contradicting (H1). Therefore $C_E(O_p(\widehat{C})) > 1$, so *E* acts nontrivially on \widehat{L} . In particular, $\hat{L} \neq 1$. By Proposition 2.4, \hat{L} is a quasisimple group from Table 1 with $m_p^I(\hat{L}) = 0$. The remaining conclusions of the lemma follow immediately from [Proposition 4.4]. \Box

Lemma 3.4. *Let* $A \leq G$ *with* $A \cong E_{p^3}$ *. Then any A-invariant p'-subgroup of G is solvable.*

Proof. Otherwise let *X* be a minimal nonsolvable *A*-invariant p' -subgroup of *G*. By minimality, $X/\text{Sol}(X) = K_1 \times \cdots \times K_n$ $X/\text{Sol}(X) = K_1 \times \cdots \times K_n$ $X/\text{Sol}(X) = K_1 \times \cdots \times K_n$, where K_1, \ldots, K_n are simple groups permuted transitively by *A*. If $n > 1$, then there is $a \in A - N_A(K_1)$, and $C_X(a)$ is nonsolvable, contradicting the minimality of *X*. So $n = 1$. As $[A, K_1] = 1$ contradicts (H1), *A* acts nontrivially on K_1 . By [GLS 1998, 5.2.1, 5.3], $K_1 \in$ *Chev* and the image of A in $Aut(K_1)$ is generated by [a field au](#page-1-0)tomorphism, whence $C_{K_1}(A)$ has even order. This contradicts (H1) and completes the proof. \Box

4. 3-components of type $L_2(3^n)$

Since $m_{2,p}(G) = 3$ by hypothesis, $\mathcal{H} \neq \emptyset$.

The following two results establish the first and third conclusions of Theorem 1.1. They will underlie the proof of the second conclusion as well.

Proposition 4.1. $p = 3$.

Proposition 4.2. *Let* $H \in \mathcal{H}$ *. Choose any* $B \leq H$ *such that* $B \cong E_{3^3}$ *, let* V *be any minimal B-invariant subgroup of* $O_2(H)$ *, and set* $B_0 = C_B(V)$ *and* $L_0 =$ $L_3(C_G(B_0))$. Then there is a $b_0 \in B$ such that these conditions hold:

- (a) $V \cong E_{2^2}$ *and* $VB = V \langle b_0 \rangle \times B_0 \cong A_4 \times E_{3^2}$;
- (b) $V \le L_0$;
- (c) $\widehat{L}_0 \cong L_2(3^n)$ *for some n* ≥ 2 *; and*
- (d) $m_2(C_G(B_0)) = 2$, and Sylow 2-subgroups of $O^2(C_G(B_0))$ are dihedral.

Recall that by convention, $\widehat{L}_0 = L_0/O_{3'}(L_0)$.

Proofs. Choose $H \in \mathcal{H}$ and $B \leq H$ with $B \cong E_{p^3}$. Let *V* be a minimal *B*-invariant subgroup of $O_2(H)$, and set $B_0 = C_B(V)$. Because of (H1), $C_V(B) = 1$. By [GLS [1996, 1](#page-10-0)1.12], $B_0 \cong E_{p^2}$, and there exists *b*₀ ∈ *B* such that *b*₀ acts irreducibly on *V*, *V* is elementary abelian, and $VB = V \langle b_0 \rangle \times B_0$. Since $m_2(C_G(B_0)) \ge m_2(V) \ge 2$, Lemma 3.3 implies that \widehat{L}_0 is quasisimple with $m_p^I(\widehat{L}_0) = m_p(Z(\widehat{L}_0)) = 0$ and $m_{2,p}(\widehat{L}_0) \leq 1 = 1 + m_p(Z(\widehat{L}_0))$; moreover, the image of *V* in Aut(\widehat{L}_0) is nontrivial and normalized by b_0 . In addition, $C_{\widehat{L}_0}(B) = C_{\widehat{L}_0}(b_0)$ has odd order because $m_p^I(G) \le 2$. By Lemma 2.6, these conditions imply that $p = 3$ and $\widehat{L}_0 \cong L_2(3^n)$ [f](#page-25-2)or $n \ge 2$. It remains to prove (b) and (d) of Proposition 4.2. Let $t \in C_G(B_0)$ be any involution. If *t* or induces a (possibly trivial) field automorphism on L_0 , then $m_3(C_G(t)) \ge m_3(C_{L_0}(t)) + m_3(B_0) > 2$, contradiction. Therefore *t* induces a nontrivial inner-diagonal automorphism on \widehat{L}_0 . As *t* was arbitrary, $C(B_0, L_0)$ has odd order and $m_2(C_G(B_0)) \le m_2(PGL_2(3^n)) = 2$. We use the fact that $Out(L_2(3^n))$ is abelian [GLS 1998, 2.5.12]. For one thing, Sylow 2-subgroups of $O^2(C_G(B_0))$ e[mbed](#page-15-0) in O^2 ([Aut](#page-1-0)($PGL_2(3^n)$)) and hence in $L_2(3^n)$, so are dihedral. Hence (d) holds. For another, the image of $V = [V, b_0]$ in $\widehat{C}_G(B_0)$ lies in \widehat{L}_0 , and so $V \leq$ $O^{2'}(L_0C(B_0, L_0)) = L_0$, which proves (b).

5. 2-subgroups of *G* normalized by *E*³ ³ -subgroups

By Propositions 4.1 and [4.2,](#page-16-0) Theorem 1.1 will be completely proved once we show that $F^*(H) = O_2(H)$ for some $H \in \mathcal{H}$. We prove this by contradiction in the next three sections, thus making the following assumption.

(H2) For all
$$
H \in \mathcal{H}
$$
, $E(H)O_{2'}(H) \neq 1$.

In this section we make our only use of $(H2)$. We prove the following result, from which strong restrictions on the {2, 3}-local structure of *G* will be deduced in the next section.

Proposition 5.1. *Let* $B \leq G$ *with* $B \cong E_{3^3}$ *, and suppose that* T *is a nontrivial B*-invariant 2-subgroup of G. Then $T \cong E_{2^2}$.

We prove the proposition by contradiction in a sequence of lemmas. Assuming that $T \ncong E_{2^2}$, we first prove this:

Lemma 5.2. *There exist B-invariant four-subgroups U*1, *U*² *of G and elements* $a_1, a_2, b \in B$ generating B such that

$$
N := U_1 U_2 B = U_1 \langle a_1 \rangle \times U_2 \langle a_2 \rangle \times \langle b \rangle \cong A_4 \times A_4 \times Z_3.
$$

Proof. By (H1), $C_T(B) = 1$. For each hyperplane $B_0 \le B$ set $T_{B_0} = C_T(B_0)$, so that $T_{B_0} = [T_{B_0}, B] \leq O^2(C_G(B_0))$. Thus if $T_{B_0} \neq 1$, then $T_{B_0}B$ contains a copy of *A*₄ centralizing *B*₀. Thus Proposition 4.2 applies with $H = N_G(T_{B_0})$, giving that T_{B_0} is dihedral and hence $T_{B_0} \cong E_{2^2}$ by the action of *B*.

Since $T \neq 1$, there is a hyperplane B_1 of *B* such that $1 \neq T_{B_1} \leq Z(T)$. Since $T \ncong E_{2^2}$, we have $T > T_{B_1}$ and so there is a hyperplane $B_2 \neq B_1$ of *B* such that $T_{B_2} \neq 1$. The lemma follows with $U_i = T_{B_i}$ for $i = 1, 2$, and with any choices of $b \in B_1 \cap B_2^*$, we have $a_1 \in B_2 - B_1$ and $a_2 \in B_1 - B_2$.

We set $H = N_G(U_1U_2)$, $C = C_G(U_1U_2)$, and $L = L_{3'}(C_G(b))$. For $i = 1, 2$, set $J_i = L_{3'}(C_G(\langle b, a_i \rangle)).$

Lemma 5.3. *These conditions hold*:

- (a) $\widehat{L} \cong A_9$, *J*₃, *[or](#page-14-0)* 3*J*₃; *and*
- (b) $U_1 U_2 \in Syl_2(N_G(\langle b \rangle) \cap C)$ $U_1 U_2 \in Syl_2(N_G(\langle b \rangle) \cap C)$ $U_1 U_2 \in Syl_2(N_G(\langle b \rangle) \cap C)$.

Proof. Let $i = 1$ or 2, and $\{i, j\} = \{1, 2\}$. Apply Proposition 4.2 with $N_G(U_i)$, *B*, and *U_j* in the roles of *H*, *B*, and *V*[. We c](#page-25-2)onclude that $\widehat{J}_i \cong L_2(3^n)$ for $n \ge 2$, and $U_j \leq J_i$. By $L_{3'}$ -balance and Lemma 3.2, the subnormal closure L_i of J_i in $C_G(b)$ is a 3-component of *L*. Moreover $m_3(\langle b \rangle L_i) \geq m_3(\langle b \rangle L_i) = n + 1 \geq 3$, so $C(b, L_i)$ [has odd](#page-10-1) order by Lemma 3.1. Therefore $L_1 = L = L_2$. In particular *J_i* is a 3-component of $L_{3'}(C_L(a_i))$ for $i = 1, 2$. Moreover $U_1U_2 \le \langle J_1, J_2 \rangle \le L$. Now Lemma 2.7a implies (a). In particular $m_3(L) \geq 3$ [GLS 1998, 5.6.1]. We set $C_0 = C_{N_G(\langle b \rangle)}(\widehat{L})$ and conclude that C_0 has odd order, since $m_3^1(G) < 3$.

Suppose that (b) fails, so that $N_G(\langle b \rangle) \cap C_G(U_1U_2)$ has a 2-element $t \notin U_1U_2$. Then *t* normalizes *L*. But by Lemma 2.7b, $C_{\text{Aut}(\widehat{L})}(U_1U_2)$ is the image in Aut(*L*) of $\widehat{U}_1 \widehat{U}_2$. As *t* ∉ *U*₁*U*₂[, w](#page-25-4)e have $\langle t \rangle U_1 U_2 \cap C_0 \neq 1$. This contradicts that *C*₀ has odd order, so the proof is complete. □ odd order, so the proof is complete.

Lemma 5.4. $E(H) = 1$.

Proof. Clearly $C \cap B = \langle b \rangle$. Suppose first that $m_3(C) > 1$. Let $P \in \text{Syl}_3(H)$, so that $m_3(P) = m_3(B) = 3$. By [GLS 1996, 10.[11\] there](#page-17-0) is $A \le C$ such that $A \cong E_{3^2}$ and $A \triangleleft P$, and then there exists $1 \neq a \in C_{\langle a_1, a_2 \rangle}(A)$. Then $A\langle a \rangle \cong E_{3^3}$ and for some $i = 1, 2, U_i = [A\langle a \rangle, U_i]$ and $A = C_{A\langle a \rangle}(U_i)$ $A = C_{A\langle a \rangle}(U_i)$ $A = C_{A\langle a \rangle}(U_i)$. Now Proposition 4.2 applies with $N_G(U_i)$, U_i , $A\langle a \rangle$, and *A* in the roles of *H*, *V*, *B*, and *B*₀. By part (d) of that proposition, $m_2(C_G(A)) = 2$ $m_2(C_G(A)) = 2$ $m_2(C_G(A)) = 2$. [But](#page-16-0) *A* centralizes $U_1U_2 \cong E_{2^4}$, a contradiction. Therefore $m_3(C) \leq 1$, and equality holds as $b \in C$. By Lemma 5.3b, $N_C(\langle b \rangle) / U_1 U_2$ has odd order, so $b \in Z(N_C(\langle b \rangle))$. Thus *C* has a normal 3-complement by Burnside's normal complement theorem [16.5]. But by Lemma 3.4, $O_{3'}(C)$ is solvable, so *C* is solvable. Hence $E(H) \leq C^{(\infty)} = 1$, as required. \Box

Now we use (H2). Set $W = O_{2'}(H) = O_{2'}(C)$. By Lemma 5.4 and (H2), $W \neq 1$. Also set $N_i = N_G(U_i)$, $C_i = C_G(U_i)$, and $\overline{N}_i = N_i/O_{2'}(N_i)$ for $i = 1, 2$. Then $W = O_{2'}(C_{C_i}(U_j))$ where, as before, $\{i, j\} = \{1, 2\}$. Obviously $E(\overline{N}_i) = E(\overline{C}_i)$.

Lemma 5.5. $W \leq O_{2'}(C_i)$ for $i = 1$ and $i = 2$.

Proof. If false, then as $C = C_{C_i}(U_j)$, t[he theory of](#page-10-2) balance [GLS 1996, 20.6] [provid](#page-2-2)es a WU_1U_2 -invariant 2-component I_i of $L_{2'}(N_i)$ such that $[\overline{W}, \overline{I}_i] \neq 1$, and such that i[f we let](#page-11-0) $Y = W I_i U_1 U_2$ and $\widetilde{Y} = \text{Aut}_Y(\overline{I}_i)$, then $\widetilde{W} \leq O_{2'}(C_{\widetilde{Y}}(\widetilde{U}_1 \widetilde{U}_2)) = O_{2'}(C_{\widetilde{Y}}(\widetilde{U}_1 \widetilde{U}_2))$ $O_{2'}(C_{\widetilde{Y}}(\widetilde{U}_j))$. By Lemma 3.4, no components of $E(\overline{N}_i)$ are 3'-groups. Thus $E(\overline{N}_i) = O^{3'}(E(\overline{N}_i))$, and so $O^2(C_i)$ normalizes \overline{I}_i by Lemma 3.2. Let $Y^* =$ *Y O*²(*C_i*) and write $\widetilde{Y}^* = \text{Aut}_{Y^*}(\overline{I}_i)$ $\widetilde{Y}^* = \text{Aut}_{Y^*}(\overline{I}_i)$ $\widetilde{Y}^* = \text{Aut}_{Y^*}(\overline{I}_i)$. Thus $\widetilde{U}_j \langle \widetilde{a}_j \rangle \cong A_4$. By Lemma 2.8, \overline{I}_i is one of the [groups in](#page-16-1) (1B3). If *b* centralizes I_i , then I_i is involved in A_9 or J_3 by Lemmas 5.3 and 3.4. Hence by Lemma 2.9, either $\widetilde{W} = 1$ or $C_{\widetilde{I}_i}(\widetilde{U}_j) = \widetilde{U}_j \times \Sigma$ with $\widetilde{b} \in \widetilde{\Sigma} \cong \Sigma_3$. In the first case $[\overline{W}, \overline{I}_i] = 1$, contradiction. Hence the second case holds, so an involution of $\tilde{\Sigma}$ has a [preimage](#page-11-0) $t \in C_{I_i}(U_1U_2) \cap N_G(\langle b \rangle) - U_1U_2$ such that *t* i[s a 2-elemen](#page-17-2)t. This contradicts Lemma 5.3b and proves the lemma. \Box

Now we complete the proof of Proposi[tion 5.1. W](#page-25-2)rite $U_1 = \langle u, v \rangle$ and set $C_u =$ $C_G(u)$. Notice [that](#page-25-4) $U_2\langle a_2 \rangle \leq C_u$, and as $W \leq O_{2'}(C_2)$ and $[W, U_1] = 1$, we have $W \leq O_{2'}(C_{C_u}(U_2))$, with *W* being $U_2\langle a_2 \rangle$ -invariant. Using Lemma 2.9 as in the previous proof, we conclu[de that](#page-25-4) $[W, J] = 1$ for every component *J* of C_u , unless possibly $J/Z(J) \cong M_{12}$. But by Lemma 5.5, $W \leq O_{2'}(C_G(U_1)) = O_{2'}(C_{C_u}(v))$, and M_{12} is locally 1-balanced with respect to the prime 2 by [GLS 1998, 7.7.1]. Hence, in any case $[W, J] = 1$, by [GLS 1996, 20.6]. We have therefore shown that $[W, E(C_u)] = 1$.

However, $[W, O_2(C_u)] = 1$ by L_2^* 2 ⁰-balance [GLS 1996, 5.18]. As *G* has (restricted) even type, $O_{2}(C_u) = 1$. Therefore, $[W, F^*(C_u)] = 1$ which contradicts the F^* -Theorem [3.6]. Thus $W = 1$, which proves the proposition.

6. Structure of subgroups $H \in \mathcal{H}$ and of centralizers of involutions

We choose any $H \in \mathcal{H}$, set $V_H = O_2(H)$ and $C_H = C_G(V_H)$, and choose any involution $z \in V_H$. Set $E_z = E(C_G(z))$. Also let $B \le H$ with $B \cong E_{3^3}$, and set $B_0 = C_B(V_H)$, $L_0 = L_{3'}(C_G(B_0))$, and $L_b = L_{3'}(C_G(b))$ for every $b \in B_0^{\#}$. Using Proposition 5.1 we can now prove the following result.

Proposition 6.1. $V_H \cong E_{2^2}$, $B_0 \cong E_{3^2}$, and either (a) *or* (b) *holds*:

- (a) $F^*(H) = V_H \times E(H)$ *with* $E(H) \cong A_6$, M_{11} , *or* $L_2(8)$, *and* $C_H \cong E_{2^2} \times$ *Aut*(*L*₂(8)) *in the last case. More[over](#page-1-1)*, $\widehat{L}_0 \cong L_2(3^2)$ *or* $L_2(3^4)$ *.*
- (b) $F^*(H) = V_H \times O_3(H)$, $O^2(C_H) = O_3(H) \in Syl_3(E_z)$, $E_z/O_2(E_z) \cong L_3(4)$, $C_{E_7/O_2(E_7)}(V_H) \cong U_3(2)$, *and* $C_H B \cong A_4 \times U$ where U is isomorphic to a *subgroup of U*₃(2) *of index at most* 2*. Moreover* $\widehat{L}_0 \cong L_2(3^2)$ *.*

By Proposition 5.1, $V_H \cong E_{2^2}$ and $m_{2,3}(H/V_H) < 3$. By (H1) and the fact that $B/B_0 \leq \text{Aut}(V_H)$, we have $B_0 \cong E_{3^2}$. Notice that several choices may be possible for B_0 . In particular any E_{3^2} -subgroup $B^* \leq C_H$ that is normal in some Sylow

3-subgroup of *H* is a possible choice for *B*₀, because $m_3(C_H(B^*))=3$ by [GLS 1996, 10.20(ii)].

We proceed in a sequence of lemmas, the first of which describes normalizers of subgroups of *B*₀. By Proposition 4.2, $\widehat{L}_0 \cong L_2(3^n)$ for $n \ge 2$.

Lemma 6.2. *Let* $b \in B_0^{\#}$ *and set* $L_b = L_{3'}(C_G(b))$ *. Then*

- $(L_b/D_{3'}(L_b) \cong L_2(3^{n_b})$ *with* $n_b = n$ *or* 3*n*;
- (b) *if there is* $1 \neq S \leq C_G(b)$ *such that S is a* 2*-group*, $[S, V_H] = 1$ *and* $S \cap V_H = 1$, *then* $S \cong Z_2$, $n = n_b = 2$, *and* $[S, B_0] \neq 1$;
- (c) *CC^H* /*V^H* (*b*) *has a normal* 2*-compleme[nt and cyclic](#page-25-4) Sylow* 2*-subgroups of order dividing n*;
- (d) $Aut_G(B_0)$ *does not contain* $SL(B_0) \cong SL_2(3)$; *and*
- (e) *if* $Aut_G(B_0)$ *contains a* Q_8 -subgroup, then $\widehat{L}_0 \cong A_6$.

Proof. [Choos](#page-1-1)e any $b_0 \in B - B_0$ [. Th](#page-16-1)en $V_H B = B_0 \times V_H \langle b_0 \rangle \cong E_{3^2} \times A_4$. By Proposition 4.2, $V_H \le L_0$. Write $B_0 = \langle b, b' \rangle$. By $L_{3'}$ -balance [GLS 1996, 5.17] and Lemma 2.3, the pumpup *L* of L_0 in $C_G(b)$ is a single 3-component, and $L_3(\widehat{C}_L(b'))$ $L_3(\widehat{C}_L(b'))$ $L_3(\widehat{C}_L(b'))$ is a covering group of $\widehat{L}_0 \cong L_2(3^n)$. Furthermore, $C_{\widehat{L}}(b') = C_{\widehat{L}}(B_0)$ does not contain an isomorphic copy of Σ_6 , for if it did, then $m_3^I(G) \ge m_3(B_0) +$ $m_3^I(\Sigma_6) = 2+1$, contradicting (H1). And by Proposition 5.1, $\hat{L}(b^i)$ does not contain any subgroup isomorphic [to](#page-19-0) *A*₄ × *A*₄. Therefore by Lemma 2.10, $\hat{L} \cong L_2(3^n)$ or $L_2(3^{3n})$, with *b*['] inducing a field automorphism on \widehat{L} in the latter case. In particular, $m_3(L\langle b \rangle) \geq 3$, and so by (H1),

$$
(6A) \tC(b, L) has odd order.
$$

This implies that $L = L_b$, so (a) holds. Also, (6A) implies that any 2-subgroup *R* of $C_G(b)$ acts faithfully on \widehat{L}_b . If *S* is a[s in \(b\), we t](#page-12-0)ake $R = S \times V_H$, and Lemma 2.11a implies that any involution $s \in S$ induces a field automorphism on L_b . Thus $C_{\langle b\rangle L_b/O_{3'}(\langle b\rangle L_b)}(s)$ contains $Z_3 \times L_2(3^{n_b/2})$. As $m_3(C_G(s)) \leq m_3^I(G) < 3$, we conclude that $n_b = 2$, and it follows that $S = \langle s \rangle$, and $n = 2$ by (a). Similarly, as $m_3(C_{L_b}(s)) = 1$, the fact that $m_3(C_G(s)) < 3$ implies that $[s, B_0] \neq 1$, and (b) is completely proved. In (c), we take $R \in \text{Syl}_2(C_{C_H}(b))$, so that, by Lemma 2.11b, $R = V_H F$, where *F* is a group of field automorphisms of \widehat{L}_b . In particular R/V_H is cyclic. Hence $C_{C_H/V_H}(b)$ has a normal 2-complement [GLS 1996, 16.7] and (c) holds.

Since Out(\widehat{L}_0) is abelian, $N := [N_G(B_0), N_G(B_0)]$ induces inner automorphisms on \widehat{L}_0 . If Aut_{*G*}(B_0) contains Q_8 , then the image of *N* in Aut(B_0) contains an involution, and so $C(B_0, L_0)$ has even order. As $m_3^1(G) \le 2$, $\widehat{L}_0 \cong A_6$ in this case, proving (e). Continuing, we have $O^2(\text{Aut}(\widehat{L})) = \text{Inn}(\widehat{L})$ and so $O^2(N_G(B_0))$ maps into Inn(\widehat{L}_0). Therefore if Aut_{*G*}(B_0) contains *SL*₂(B_0), then Aut_{*C*(B_0 , L_0)}(B_0) contains $SL_2(B_0)$, and in particular $C(B_0, L_0)$ contains commuting elements *z* and *y* of orders 2 and 3, respectively. [But then](#page-25-4) $C_G(z)$ contains *y* and covers \widehat{L}_0 , so $m_3(C_G(z)) > 3$, a contradiction. Hence (d) holds, and the proof is complete. $m_3(C_G(z)) \geq 3$, a contradiction. Hence (d) holds, and the proof is complete.

Lemma 6.3. Suppose that $O_{2'}(H) \neq 1$. Then [Proposition 6.1](#page-12-1)*b* holds.

Proof. Set $W = O_{2'}(H)$, and write $V_H = \langle z, z' \rangle$. Then $W = O_{2'}(C_{C_G(z)}(z'))$. Since *G* has restricted even type, $O_{2}(C_G(z)) = 1$, and hence by [GLS 1996, 20.6], *W* acts faithfully on the product J_1 of all $\langle z \rangle$ *W*-invariant components of $E_z := E(C_G(z))$ that are locally unbalanced with respect to z' . Let *J* be a component of J_1 . Again as *G* has restricted even type, $J \in C_2$ with $O_{2'}(J) = 1$, and so by Lemma 2.12, either *J* \cong *L*₂(*q*) for *q* a Fermat or Mersenne prime or 9 with $C_J(z') \cong D_{q\pm 1}$, or $J/O_2(J) \cong L_3(4)$ with $C_{J/O_2(J)}(z') \cong U_3(2)$. In all cases *z'* induces a noninner automorphism on *J* . Denote by *S* a *V^H* -invariant Sylow 2-subgroup of *J* .

Assume first that *J*/*O*₂(*J*) $\cong L_3(4)$. Then *S*∩*V_H* = 1. Now *B*₀ ≤ *C_H* ≤ *C_G*(*z*). If $C_{B_0}(J)$ contains a nonidentity element *b*, then since $S \leq C_G(b)$ and $S \cap V_H =$ 1, Lemma 6.2b is contradicted. Therefore $C_{B_0}(J) = 1$, so $m_3(C_{Aut(J)}(z')) \ge 2$. Given the possible isomorphism types of *J*, we have a contradiction. Therefore $J/O_2(J) \cong L_3(4)$.

Then $C_{C_G(z)}(J)$ is a 3'-group as $m_3^I(G) \leq 2$. Since every component of J_1 has order divisible by 3, we have $J = J_1 = O^{3'}(E_z)$. If $J \neq E_z$, then E_z has a component *I* such that $I/Z(I) \cong {}^{2}B_{2}(2^{\frac{n}{2}})$ for $n \geq 3$. But then $m_{2}(C_{V_{H}I}(b)) \geq 5$, contradicting Lemma 6.2b. Ther[efore](#page-19-1) $E_z = J$.

Finally $O_{2'}(C_H)E(C_H) \leq L_2^*$ $O_{2'}(C_H)E(C_H) \leq L_2^*$ $O_{2'}(C_H)E(C_H) \leq L_2^*$ $2^{\prime}(C_G(z))$ by L_2^* $*_{2'}^*$ -balance [GLS 1996, 5.18]. But Sylow 2-subgroups of $L_3(4)$ are self-centralizing in Aut($L_3(4)$) [GLS 1998, 3.1.4], and so L_2^* $2^x_2(C_G(z)) = E_z$. Thus $O_{2'}(C_H) = O_{2'}(C_{E_z}(z')) \cong E_{3^2}$. By the remark before L[emma 6.2, we](#page-18-0) may take $B_0 = O_{2'}(C_H)$. Then $Aut_{E_z}(B_0) \cong Q_8$, but Aut_{*G*}(B_0) does not contain *SL*(B_0), by Lemma 6.2d. Therefore Aut_{*G*}(B_0) is a 2-group, whence $B_0 = O^2(C_H)$. By Lem[ma 6.2e,](#page-18-0) $\widehat{L}_0 \cong L_2(3^2)$ and the lemma is \Box

For the rest of the proof of Propo[sition 6.1, we](#page-15-1) may assume that $O_{2'}(H) = 1$, whence $F^*(H) = V_H E(H)$ and $E(H) \neq 1$, because $m_3(H) = 3$.

Lemma 6.4. *Either* $E(H)$ *is quasisimple with* $m_3(E(H)) = 2$, *or Proposition* 6.1*a holds with* $C_H \cong Aut(L_2(8))$ *.*

Proof. Let H_1, \ldots, H_m be the components of $E(H)$. By Lemma 3.4, 3 divides $|H_i|$ for each $i = 1, ..., m$. But $m_3(E(H)) \le m_3(C_H) = m_3(B_0) = 2$. Thus if the first alternative of the lemma fails, either $m = 2$ or $m = 1$ with $E(H) = H_1$ and $m_3(H_1) = 1$. In the former case, take a nontrivial 3-element $b \in H_1$ and *S* ∈ *Syl*₂(*H*₂). Then *S* ≤ *C_G*(*b*), [*S*, *V_H*] = 1 and *S* ∩ *V_H* = 1. As *S* is noncyclic, we have a contradiction with Lemma 6.2b. Thus the latter case holds.

Because of Lemma 6.2c, for all $b \in B_0^{\#}$, $C_{H_1}(b)$ is solvable with cyclic Sylow 2-subgroups. In particular, $C_{B_0}(H_1) = 1$ and any $b \in B_0 - H_1$ induces a noninner [automorph](#page-18-0)ism on H_1 . In particular 3 divides $|Out(H_1)|$.

By Lemma 2.8, $H_1 \cong L_2(2^n)$ for $n \ge 2$ or $L_3^{\epsilon}(2^n)$ for $n \ge 1$ with $\epsilon = \pm 1$ and $2^n \equiv -\epsilon \pmod{3}$. Hence $C_{H_1}(b) \cong L_2(2^{n/3})$ or $L_2^{\epsilon}(2^{n/3})$. As this must have cyclic Sylow 2-subgroups, the only possibility is $H_1 \cong L_2(8)$. Then $H_1\langle b \rangle \cong \text{Aut}(H_1)$, and since $C_{H_1}(b)$ has a S[ylow 2-subgr](#page-20-0)oup *S* [of order 2](#page-10-2), Lemma 6.2b implies that $\widehat{L}_0 \cong A_6$. Thus Proposition 6.1a holds, as asserted.

Lemma 6.5. *If* $m_3(E(H)) = 2$, *then* $E(H) ≅ A_6$ *or* M_{11} *, and* $\widehat{L}_0 ≅ A_6$ *. Moreover* $n = 2$ *or* 4 *in the first case, and* $n = 2$ *<i>in the last case.*

Proof. Set $X = E(H)$, a quasisimple group by Lemma 6.4. By Lemma 2.8, $X \in$ *Chev*(2), $X \cong L_3(3)$, or *X* is isomorphic to one of the sporadic groups listed in (1B3). Mo[st of th](#page-2-2)ese will be ruled out using [Lemm](#page-19-1)a 6.2c, reducing us to the following cases:

(6B) $X \cong A_6$, $L_3(3)$, $U_3(3)$, ${}^2F_4(2^{\frac{1}{2}})'$, or M_{11} , or $X/O_2(X) \cong L_3^{\epsilon}(2^n)$,

where $\epsilon = \pm 1$, $2^n \equiv \epsilon \pmod{3}$, and $n > 1$.

Indeed all the sporadic cases in (1B3) except $X \cong M_{11}$ violate Lemma 6.2c; see [GLS 1998, Table 5.3]. Suppose then that *X* \in *Chev*(2). If some *b* \in *B*[#]₀ acts as an [element of](#page-13-0) $Aut(X)$ – Inndiag(*X*), then either *b* in[duces](#page-21-0) a graph automorphism on *X*, in which case $m_2(C_X(b)) > 1$ by [4.7.3A], or *b* induces a field or graph-field automorphism, in which case the facts that $C_X(b)$ has cyclic Sylow 2-subgroups and $|X|_3 \neq 1$ imply with [4.9.1] that $X \cong L_2(2^3)$. This is a contradiction as $m_3(L_2(2^3)) = 1$. Hence B_0 induces inner-diagonal automorphisms on *X*. Then *X* [is as in](#page-19-1) (6B) by Lemma 2.13. So we are indeed reduced to the cases (6B).

If $X \cong U_3(3)$ or ${}^2F_4(2^{\frac{1}{2}})'$, then $C_X(b)$ contains a Z_4 -subgroup, contradicting Lemma 6.2b.

If $X \cong L_3(3)$, then Out(*X*) is a 2-group, so $O^2(H) \cong A_4 \times X$. Moreover a maximal parabolic subgroup $Y \le X$ satisfies $F^*(Y) \cong E_{3^2}$ and $Y/F^*(Y) \cong SL(Y)$. By the re[mark before](#page-19-1) Lemma 6.2, we may assume that $B_0 = O_3(Y)$, and then Le[mma 6.2d is](#page-19-1) contradicted.

Suppose that $X \cong L_3^{\epsilon}(2^m)$. If $2^m \equiv 1 \pmod{9}$, then there is $B_1 \le X$ such that *B*₁ is normal in a Sylow 3-subgroup of *X*, and for some $b \in B_1^{\#}$, $C_X(b)$ contains $L_2(2^m)$; namely we can take B_1 to be the image of a diagonalizable subgroup of $SL_3^{\epsilon}(2^m)$. By the remark before Lemma 6.2, we may take $B_0 = B_1$. However, as *m* > 1, this contradicts Lemma 6.2c. Therefore $2^m \not\equiv \epsilon \pmod{9}$, so $|X|_3 = 9$ and we may take $B_0 \in \text{Syl}_3(X)$, whence $\text{Aut}_X(B_0) \cong Q_8$. But in this case $n \neq 0$ $(\text{mod } 3)$, so $O^{3'}(\text{Aut}(X)) \cong PGL_3^{\epsilon}(2^m)$. Hence $C_B(X) \neq 1$. Choose $b \in C_B(X)$. If *X* acted faithfully on $O_{3/3}(C_G(b))/O_{3'}(C_G(b))$, then, by the Thompson dihedral

lemma, $C_G(b)$ woul[d contain the](#page-19-1) direct product of $\langle b \rangle$ and $m_2(X)$ copies of Σ_3 , and so $m_3^I(G) \ge m_2(X)$. This is absurd as $m_2(X) > 2$ but $m_3^I(G) < 3$. Thus X centralizes $O_{3/3}(C_G(b))/O_{3'}(C_G(b))$, whence $X \le L_b := L_{3'}(C_G(b))$. By Lemma 2.10, $\hat{L}_b \cong Mc$ $\hat{L}_b \cong Mc$ or $U_4(3)$, and then $m_3^I(C_G(b)) > 2$, a contradiction.

Consequently *X* \cong *A*₆ or *M*₁₁ as claimed. If *X* \cong *M*₁₁, then for any *b* \in *B*[#]₀, *C_X*(*b*) contains an involution and so $\widehat{L}_0 \cong A_6$ by Lemma 6.2b. If $X \cong A_6$, then $N_X(B_0)$ co[ntain](#page-21-1)s a su[bgroup](#page-18-0) $\langle t \rangle \cong Z_4$ acting faithfully on *B*₀. Then $\langle t \rangle$ normalizes *L*₀ and \hat{L}_0 in V_H = 1. Suppose that $\hat{L}_0 \cong L_2(3^n)$ for *n* > 2. Then $C_G(\hat{L}_0)$ has odd order as $m_3^I(G) < 3 \le m_3(L_0)$. Hence by Lemma 2.11a, the involution $t_0 \in \langle t \rangle$ induces a field automorphism on \widehat{L}_0 . Thus $C_{\widehat{L}_0}(t_0) \cong L_2(3^{n/2})$ [, so](#page-18-0) $n/2 \le m^I_3(G) \le 2$, whence $n = 2$ or 4. The [lem](#page-22-0)[ma is](#page-23-0) proved.

Lemmas 6.3, 6.4, and 6.5 prove Proposition 6.1.

7. The residual cases

Fix *H* ∈ \mathcal{H} . First suppose that $E(H) \cong L_2(8)$, M_{11} , or A_6 as in Proposition 6.1a. We keep this assumption in Lemmas 7.1–7.3. Since $\widehat{L}_0 \cong L_2(3^n)$ with *n* even, $L_0 \cap H = N_{L_0}(V_H)$ contains a subgroup $\Sigma \cong \Sigma_4$, which we fix. Then in *H*, since $[\Sigma, B_0] = 1$, it is immediate by [Lemma](#page-2-4) 2.14 that $[\Sigma, E(H)] = 1$, since Σ has no nontrivial quotient of odd order.

Lemma 7.1. *For any involution* $y \in \Sigma$, *we have* $E(H) = E(C_G(y))$.

Proof. First suppose that *V* is any four-subgroup of Σ such that $E(H) = E(C_G(V))$. [We claim that](#page-19-1) $E(H) = E(C_G(y))$ for all $y \in V^*$. Fix *y* and write $V = \langle y, y' \rangle$. Let E_y be the subnormal closure of $E(H)$ in $C_G(y)$. By [\(1B1\)](#page-13-1) and L_2 -balance, E_y is a component of $E(C_G(y))$ or the product of two such components interchanged by y', and $E(H)$ is a component of $C_{E_y}(y')$. Since B_0 acts faithfully on $E(H)$, it acts faithfully on each component of E_y . But $m_3(B_0) = 2 = m_3(C_G(y))$, and so *E*_{*y*} is quasisimple. By Lemma 6.2, $C_{E_y}(b)$ is solvable for all $b \in B_0^{\#}$. Given that $E(H)$ $B_0 \cong$ Aut(*L*₂(8)), *A*₆, or *M*₁₁, and that $E_y \in C_2$, we conclude by Lemma 2.15 that $E(H) = E_y$, proving our claim.

For any involution $y \in \Sigma$, choose an involution $z \in V_H$ such that $Y := \langle z, y \rangle \cong$ E_{2^2} . Then $E(C_G(z)) = E(H)$ by o[ur claim, and](#page-22-0) it follows immediately using L_{2^2} . balance again that $E(C_G(Y)) = E(C_G(z)) = E(H)$ [. Then](#page-12-0) $E(C_G(y)) = E(H)$ by our claim again, as desired.

Lemma 7.2. $E(C_G(E(H))) \cong E(H) \cong A_6$.

Proof. Let $L_0^* = \{C_{L_0}(y) \mid \text{is an involution of } \Sigma\}$. By Lemma 7.1, L_0^* $_0^*$ normalizes $E(H)$, and of course L_0^* ^{*}₀ centralizes *B*₀. Since $\widehat{L}_0 \cong L_2(3^n)$ for $n = 2$ or 4, $O^2(L_0^*$ ^{*}₀) covers an A_6 -subgroup of L_0 containing the image of Σ , by Lemma 2.11. As $[\Sigma, E(H)B_0] = 1$, it follows that $[O^2(L_0^*)]$ $E(H)B_0$] = 1.

Let $D \in \text{Syl}_3(L_0^*)$ \mathcal{L}_{0}^{*} , so that *D* ≅ E_{3^2} . If $E(H)$ ≅ $L_2(8)$ or M_{11} , then $E(H)B_0$ contains $Z_3 \times \Sigma_3$ and so $m_3^I(G) \ge m_3^I(DE(H)B_0) \ge 3$, contradicting (H1). Therefore $E(H) \cong A_6$. Let *W* be an A_4 -subgroup of $E(H)$. Then $H' := N_G(O_2(W))$ contains $D \times W$, so $H' \in \mathcal{H}$. But $L_0^* \leq C_G(E(H)) \leq H'$ with L_0^* $_{0}^{*}/O_{3'}(L_{0}^{*})$ $\binom{*}{0}$ \cong *A*₆. Applying Proposition 6.1 and the prior argument in this lemma to H' , we deduce that $E(H') \cong A_6$ is the unique nonsolvable composition factor of *H'*. Therefore $E(H') = E(C_G(H))$, completing the proof.

Lemma 7.3. $\widehat{L}_b \cong A_6$ *for all b* $\in B_0^{\#}$ *, and* $E(H) = E(C_G(y))$ *for all involutions* $y \in C_G(E(H))$.

Proof. [Let](#page-1-1) $T \in \text{Syl}_2(N_{E(H)}(B_0))$, so that $T \cong Z_4$. If $\widehat{L}_0 \cong L_2(3^4)$, then we saw above that *T* acts faithfully by field automorphisms on \widehat{L}_0 . However, this is absurd because $E(C_G(E(H))) \cong A_6$ lies in L_0 and centralizes *T*. Therefore $\widehat{L}_0 \cong A_6$. Likewise for any $b \in B_0^{\#}$ [, t](#page-22-1)he involution $t \in T$ inverts *b* and centralizes \widehat{L}_0 . If $\widehat{L}_b \cong L_2(3^6)$, then th[e centralizer](#page-22-1) of \widehat{L}_0 in \widehat{L}_b wo[uld be of](#page-13-1) order 3, so *t* would centralize \widehat{L}_b , contradicting (H1). Therefore $\widehat{L}_b \cong A_6$, proving the first assertion [of the l](#page-18-0)emma.

Let $y \in C_G(E(H))$ be any involution. Then $[y, y'] = 1$ for some involution $y' \in E(C_G(E(H)))$, and we know by Le[mma 7.2](#page-23-0) that $E(H) = E(C_G(y'))$. Hence [we may as](#page-25-5)sume that $y \neq y'$, and then as in Lemma 7.2, with the help of Lemma 2.15 we [may aga](#page-2-5)in argue that $E(H) = E(C_G(\langle y, y' \rangle)) = E(C_G(y)).$

Lemma 7.4. *Proposition 6.1b holds.*

Proof. Assume false and continue the above [analysis. By](#page-18-0) Lemma 7.3, *E*(*H*) is terminal in *G* and $E(H) \cong A_6$. Thus by the Aschbacher–Gilman–Solomon component theorem [GLS 1999, Theorem PU^{*}₄], $E(H)$ is standard in *G*. Hence by definition of restricted even type (1B2), $m_2(C_G(E(H)))=1$. But $E(C_G(E(H)))$ [≃] A_6 by Lemma 7.3, a contradiction.

Now fix $z \in V_H^{\#}$ and set $C = C_G(z)$, $Q = O_2(C)$, and $K = E(C)$. By Proposition 6.1b and (1B4), $O_2(K)$ is elementary abelian and $K/O_2(K) \cong L_3(4)$. Also $\widehat{L}_0 \cong$ *A*6.

Expand V_H to $R \in \text{Syl}_2(C_G(B_0))$.

[L](#page-19-1)emma 7.5. *These conditions hold*:

- (a) $\Omega_1(Q \cap L_0) = \langle z \rangle = \Omega_1(Z(Q));$
- (b) *z is* 2*-central in G*; *and*
- (c) *for any involution* $y \in K Z(K)$ *, no two involutions in* $\langle y, z \rangle$ *are G-conjugate.*

Proof. By Lemma 6.2, *R* embeds in Aut(\widehat{L}_0), and since $m_3^I(G) \le 2$, $C_{L_0}(u)$ is a 3'-group for all $u \in R^*$. Therefore the image of RL_0 in Aut (\widehat{L}_0) is isomorphic to \widehat{L}_0 , *M*₁₀, or *PGL*₂(9), and so *R* is dihedral or semidihedral of order at most 16. In any case $N_R(V_H) \in \text{Syl}_2(L_0)$. As L_0 has only one class of involutions, we could have chosen *R* so that $z \in Z(R)$. In particular, we may expand *R* to $S \in \text{Syl}_2(C)$.

By Lemma 2.16b, $C_{Aut(K)}(B_0) \cong B_0 \times Z_2$, and so $R \leq V_H C_R(K)$. Set $R_0 =$ $C_R(K) \cap N_R(V_H)$, so that $|R_0| = 4$. If $R_0 \cong E_{2^2}$, then as $R_0 \le L_0$, R_0 lies in an *A*₄subgroup of L_0 . Hence $N_G(R_0) \in \mathcal{H}$, and so Proposition 6.1 applies to $N_G(R_0)$ in place of *H*. This yields a contradiction since $C_G(R_0)$ involves $K/O_2(K) \cong L_3(4)$. Therefore $R_0 \cong Z_4$.

[Sin](#page-13-2)ce *R* i[s of m](#page-24-0)aximal class, *Q* is cyclic or of maximal class, and there is $Q_0 \triangleleft S$ such that $Z_4 \cong Q_0 \leq Q$. Thus (a) holds. Moreover

(7A) for any
$$
Q_1 \triangleleft S
$$
 such that $Q_1 \triangleleft Z_4$ for $z \in Q_1$.

Otherwise, in $\overline{C} = C/C_C(K) \le \text{Aut}(\overline{K})$, we would have $\overline{Q}_1 \triangleleft \overline{S}$ with $\overline{Q}_1 \cong Z_4$, contradicting Lemma 2.16f. Now (7A) implies that $\langle z \rangle$ char *S*, and so $S \in \text{Syl}_2(G)$, proving (b).

Let *y* ∈ *K* − *Z*(*K*) be an involution. By Lemma 2.16c, *y* has a *K*-conjugate in $Z(S)$, and no two involutions of $\langle y, z \rangle$ are $N_G(K)$ -conjugate (we use Lemma [2.16e](#page-18-0) if $Z(K) \neq 1$). By Burnside's lemma [GLS 1996, 16.2], *G*-fusion in $\langle y, z \rangle$ is controlled in $N_G(S)$, and hence in *C*, since $\langle z \rangle$ char *S*. As $C \leq N_G(K)$, (c) follows, completing the proof of the lemma.

Lemma 7.6. *If* $U \cong E_{2^2}$ *and* $U \le C_H \cap V_H K$, *then* $U = V_H$ *or* $|U \cap z^G|$ [≤](#page-23-1) 1*.*

[Proof.](#page-18-0) By Proposition 6.1b, $C_H \cap V_H K = V_H \times B_0 P$ where $P \leq C_K(V_H)$, and *P* ≅ *Z*₄ or *Q*₈. Let $\langle u \rangle = \Omega_1(P)$. Then $\langle u \rangle = \Phi(V_H \times P)$ so by a Frattini argument, *C_H*(*u*) contains a 3-element *t* acting nontrivially on *V_H*. Since $u \in K - Z(K)$, no two involutions in $\langle u, z \rangle$ [are](#page-13-2) *G*-conjugate, by Lemma 7.5c. Conjugating this st[atement by](#page-13-2) *t*, we find that $z^G \cap V_H P = V_H$. This implies the lemma.

Lemma 7.7. *[Proposit](#page-24-1)ion 6.1b does not hold.*

P[roof](#page-24-2). Suppose tha[t it does hold](#page-1-0) and continue the preceding argument. Write $V_H = \langle z, z' \rangle$, so that $C_{K/O_2(K)}(z') \cong U_3(2)$. By Lemma 2.16d, there is an involution $u \in C_K(z') - Z(K)$. By Lemma 2.16c, *z*' and *z'u* are *K*-conjugate, modulo $Z(K)$. As $Z(K) \le \langle z \rangle$ it follows from Lemma 7.6 that $V_H = \langle z', z'u \rangle$ or $V_H = \langle z', zz'u \rangle$. In either case *u* ∈ *V_H*, which is absurd as $V_H \cap K = \langle z \rangle \leq Z(K)$.

[As Lemmas](http://www.ams.org/mathscinet-getitem?mr=2005m:20038a) 7.4 [and](http://www.emis.de/cgi-bin/MATH-item?1065.20023) 7.7 are in conflict, Theorem 1.1 is proved.

References

[[]Aschbacher and Smith 2004] M. Aschbacher and S. D. Smith, *The classification of quasithin groups. I, II*, Mathematical Surveys and Monographs 111–112, American Mathematical Society, Providence, RI, 2004. MR 2005m:20038a Zbl 1065.20023

- [GLS 1994] D. Gorenstein, R. Lyons, and R. Solomon, *The classification of the finite simple groups*, Mathematical Surveys and Monographs 40, American Mathematical Society, Providence, RI, 1994. MR 95m:20014 Zbl 0816.20[016](http://www.ams.org/mathscinet-getitem?mr=98j:20011)
- [GLS 1996] D. Gorenstein, R. Lyons, and R. Solomon, *The classification of the finite simple groups. Number 2. Part I. Chapter G: General group theory*, Mathematical Surveys and Monographs 40, American Mathematical Society, [Providence, RI, 19](http://www.ams.org/mathscinet-getitem?mr=2000c:20028)96. [MR 96h:200](http://www.emis.de/cgi-bin/MATH-item?0922.20021)32 Zbl 0836.20011
- [GLS 1998] D. Gorenstein, R. Lyons, and R. Solomon, *The classification of the finite simple groups. Number 3. Part I. Chapter A: Almost simple K -groups*, Mathematical Surveys and Monographs 40, American Mathem[atical Society, Provi](http://www.ams.org/mathscinet-getitem?mr=2005m:20039)[dence, RI, 1998.](http://www.emis.de/cgi-bin/MATH-item?1069.20011) MR 98j:20011 Zbl 0890.20012
- [GLS 1999] D. Gorenstein, R. Ly[ons, and R. Solomon,](http://dx.doi.org/10.1016/j.jalgebra.2006.01.030) *The classification of the finite simple groups. [Number 4.](http://dx.doi.org/10.1016/j.jalgebra.2006.01.030) Part II. Chapters 1–4: Uniqueness theorems*[, Mathema](http://www.ams.org/mathscinet-getitem?mr=2007c:20032)[tical](http://www.emis.de/cgi-bin/MATH-item?1106.20008) Surveys and Monographs 40, American Mathematical Society, Providence, RI, 1999. MR 2000c:20028 Zbl 0922.20021
- [GLS 2005] D. Gorenstein, R. Lyons, and R. Solomon, *[The classification](http://dx.doi.org/10.1112/S0024609303002340) of the finite simple groups. Number 6. Part IV: The special odd case*[, Mathematic](http://www.ams.org/mathscinet-getitem?mr=2004e:20024)[al Surveys and M](http://www.emis.de/cgi-bin/MATH-item?1043.20012)onographs 40, American Mathematical Society, Providence, RI, 2005. [MR 2005m:20039](http://dx.doi.org/10.1016/S0021-8693(02)00529-X) Zbl 1069.20011
- [\[Korchagina and L](http://dx.doi.org/10.1016/S0021-8693(02)00529-X)yons 2006] I. Korchagina and R. L[yons,](http://www.ams.org/mathscinet-getitem?mr=2004b:20027) "A {2, 3}-local characterization of the groups *A*12, Sp⁸ (2), *F*4(2) and *F*5", *J. Algebra* 300:2 (2006), 590–646. MR 2007c:20032 Zbl 1106.20008
- [Korchagina and Solomon 2003] I. Korchagina and R. Solomon, "Toward a characterization of Conway's group Co3", *Bull. London Math. Soc.* 35 (2003), 793–804. MR 2004e:20024 Zbl 1043.20012
- [Korchagina et al. 2002] I. Korchagina, R. Lyons, and R. Solomon, "Toward a characterization of the sporadic groups of Suzuki and Thompson", *J. Algebra* 257:2 (2002), 414–451. MR 2004b:20027 Zbl 1028.20011

Received May 5, 2007. Revised October 15, 2007.

I[NN](mailto:I.Korchagina@warwick.ac.uk)A KORCHAGINA MATHEMATICS INSTITUTE ZEEMAN BUILDING UNIVERSITY OF WARWICK COVENTRY CV4 7AL UNITED KINGDOM

I.Korchagina@warwick.ac.uk

RICHARD LYONS DEPARTMENT OF MATHEMATICS RUTGERS UNIVERSITY 110 FRELINGHUYSEN ROAD PISCATAWAY, NJ 08854 UNITED STATES lyons@math.rutgers.edu