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An uncertainty principle on Chébli–Trimèche hypergroups is established,
as a generalization of Heisenberg inequalities for Jacobi transforms proved
in my previous paper. It implies and extends the uncertainty principle for
Hankel transforms by M. Rösler and M. Voit. The proof is based on ul-
tracontractive properties of the semigroups generated by a second order
differential operator and on the estimate of the heat kernel.

1. Introduction

The classical Heisenberg uncertainty principle states that for f ∈ L2(R),

(1-1)
∫

R

x2
| f (x)|2dx ·

∫
R

ξ 2
| f̂ (ξ)|2dξ ≥

1
4‖ f ‖

4,

where

f̂ (ξ) =
1

√
2π

∫
R

f (x)e−iξ x dx .

Inequality (1-1) was found in the 1920’s and then studied in many situations.
Recently, considerable attention has been devoted to discovering new contexts
for the uncertainty principle; see the survey [Folland and Sitaram 1997] and the
book [Havin and Jöricke 1994] for other forms of the uncertainty principle. In the
case of hypergroups, the Heisenberg inequalities were given in [Li and Liu 2005]
for some compact Chébli–Trimèche hypergroups, in [Rösler and Voit 1999] for
Bessel–Kingman hypergroups, and in [Ma 2007] for Jacobi hypergroups.

This paper generalizes the results of my previous paper [Ma 2007] to noncom-
pact Chébli–Trimèche hypergroups and establishes an inequality analogous to (1-1)
and variants of it. The proof is based on ultracontractive properties of the semi-
groups generated by a second order differential operator and on the estimate of the
heat kernel. For further uncertainty principles on Chébli–Trimèche hypergroups,
see [Attour and Trimèche 2005; Bouattour and Trimèche 2005; Trimèche 2005].
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The paper is arranged as follows. In Section 2, we recall some basic proper-
ties about Chébli–Trimèche hypergroups. In Section 3, we study the Heisenberg
uncertainty principle on them.

2. Preliminaries of Chébli–Trimèche hypergroups

We now recall some definitions and properties of Chébli–Trimèche hypergroups;
see also [Bloom and Xu 1995; Trimèche 1997].

Suppose that the function A is continuous on R+ = [0, ∞), twice continuously
differentiable on R∗

+
= (0, ∞), and satisfies the conditions:

(1) A(0) = 0 and A(x) > 0 for x > 0;

(2) A is increasing and unbounded;

(3) A′(x)/A(x) = (2α + 1)/x + B(x) on a neighborhood of 0, where α > −1/2
and B is an odd C∞-function on R;

(4) A′(x)/A(x) is a decreasing C∞-function on R∗
+

, and limx→+∞ A′(x)/A(x)=

2ρ ≥ 0.

We denote by (R+, ∗(A)) the Chébli–Trimèche hypergroup associated with A.
It is commutative with neutral element 0 and the identity mapping is the involution.
The Haar measure on (R+, ∗(A)) is given by A(x)dx .

Well-known Chébli–Trimèche hypergroups are the Bessel–Kingman hypergroup
with A(x) = x2α+1 for α > −1/2 and the Jacobi hypergroup defined by A(x) =

sinh2α+1 x cosh2β+1 x , where α ≥ β ≥ −1/2 and α 6= −1/2.
Let L = LA be the differential operator

L =
d2

dx2 +

( A′(x)

A(x)

) d
dx

.

The solutions φλ for λ ∈ C of the differential equation Lv(x) = (λ2
+ρ2)v(x) with

boundary conditions v(0) = 1 and v′(0) = 0 are multiplicative on (R+, ∗(A)) in
that, for all x, y ∈ R∗

+
,∫

R+

φλ(t)(εx ∗ εy)(dt) = φλ(x)φλ(y),

where εx denotes the point mass at x and εx ∗ εy is a probability measure that is
absolutely continuous with respect to the Haar measure and satisfies

supp εx ∗ εy ⊂ [|x − y|, x + y].

The dual space of (R+, ∗(A)) can be identified with the parameter set R+∪ i[0, ρ].
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For 1 ≤ p ≤ ∞, the Lebesgue space L p(R+, A(x)dx) is defined as usual with
norm given by ‖ · ‖p. The Fourier transform of f in L1(R+, A(x)dx) is given by

(2-1) f̂ (λ) :=

∫
∞

0
f (x)φλ(x)A(x)dx .

Theorem 2.1 [Bloom and Heyer 1995]. There exists a unique nonnegative measure
π on R+ such that the Fourier transform extends to an isometry of L2(R+, A(x)dx)

onto L2(R+, π), and for f ∈ L1
∩ L2(R+, A(x)dx),∫

∞

0
| f (x)|2 A(x)dx =

∫
∞

0
| f̂ (λ)|2 π(dλ).

As in [Bloom and Xu 1995], here we assume that A satisfies an additional prop-
erty, which gives a nice behavior for the Plancherel measure π .

Condition 2.1. A function f is said to satisfy this condition if, for some µ > 0
and x0 > 0,∫

∞

x0

x$(µ)
|ζ(x)|dx < ∞, where ζ(x) = f (x) −

µ2
−1/4
x2 ,

and if ζ(x) is bounded for x > x0; here $(µ) = µ+1/2 if µ ≥ 1/2 and $(µ) = 1
otherwise.

Letting

G(x) =
1
4

( A′(x)

A(x)

)2
+

1
2

( A′(x)

A(x)

)′

− ρ2 for x > 0,

we have the following theorem from [Bloom and Xu 1995].

Theorem 2.2. Suppose that G satisfies Condition 2.1 together with one of the
conditions

(1) µ > 1/2;

(2) µ 6= |α|;

(3) µ = α ≤
1
2 and either

∫
∞

0 x1/2−αζ(x)φ0(x)A(x)1/2 dx 6= −2α
√

MA, or∫
∞

0 x1/2+αζ(x)φ0(x)A(x)1/2dx = 0,
where MA = limx→0+ x−2α−1 A(x).

Then the Plancherel measure π is absolutely continuous in the Lebesgue measure
and has density |c(λ)|−2, where the function c is such that there exist positive
constants C1, C2, and K such that, for any λ ∈ C with Im λ ≤ 0,

C1|λ|
µ+1/2

≤ |c(λ)|−1
≤ C2|λ|

µ+1/2

C1|λ|
α+1/2

≤ |c(λ)|−1
≤ C2|λ|

α+1/2

for |λ| ≤ K ,

for |λ| > K .
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For 1 ≤ p ≤ +∞, denote by L p(R+, dν) the space of measurable functions f
on [0, ∞) such that

‖ f ‖p, c =

(∫
∞

0
| f (λ)|p

|c(λ)|−2dλ
)1/p

< ∞, 1 ≤ p < ∞,

‖ f ‖∞ = ess sup
λ≥0

| f (λ)| < ∞, p = ∞,

The generalized translate Tx of a function f is defined by

Tx f (y) =

∫
∞

0
f (u)(εx ∗ εy)(du).

The convolution of two functions f and g is defined by

f ∗ g(x) =

∫
∞

0
Tx f (y)g(y)A(y)dy.

The convolution satisfies the following properties (see [Trimèche 1997]).

(1) For all f, g ∈ L1(R+, A(x)dx), the function f ∗ g is defined almost every-
where on R+, belongs to L1(R+, A(x)dx), and satisfies

f̂ ∗ g(λ) = f̂ (λ)ĝ(λ).

(2) Let f and g be in L2(R+, A(x)dx). Then the function f ∗ g belongs to
L2(R+, A(x)dx) if and only if the function f̂ · ĝ belongs to L2(R+, dν) and

f̂ ∗ g(λ) = f̂ (λ)ĝ(λ).

(3) Suppose f ∈ L p(R+, A(x)dx) and g ∈ Lq(R+, A(x)dx) with 1≤ p, q, r ≤∞

and 1/p + 1/q − 1 = 1/r . Then f ∗ g ∈ Lr (R+, A(x)dx) and

‖ f ∗ g‖r ≤ ‖ f ‖p‖g‖q .

3. Uncertainty principle on Chébli–Trimèche hypergroups

In the sequel, we assume that A satisfies the Condition 2.1 in Theorem 2.2. In
addition, we also suppose that in the case ρ = 0, there exists a β ∈ (−1/2, µ] such
that A(x) = O(x2β+1) as x → ∞.

Let Dρ := [(β + 1)/(µ + 1), 1] if ρ = 0. If 0 < ρ < 1, let Dρ := (1/2, 1];
otherwise let Dρ := [1/2, 1].

Theorem 3.1. Assume a, b > 0 and γ ∈ Dρ . Then there exists a constant C > 0
such that

(3-1) ‖xγ a f ‖
b/(a+b)

2 · ‖(λ2
+ ρ2)b/2 f̂ ‖

a/(a+b)

2, c ≥ C‖ f ‖2,

for all f ∈ L2(R+, A(x)dx).
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Remarks. (1) For Bessel–Kingman hypergroups, ρ = 0 and β = µ = α, So (3-1)
becomes

‖xa f ‖
b/(a+b)

2 · ‖λb f̂ ‖
a/(a+b)

2, c ≥ C‖ f ‖2,

which extends the result in [Rösler and Voit 1999].

(2) In the case of Jacobi hypergroups, ρ > 0 and µ = 1/2. It’s just the uncertainty
principle for Jacobi transform, which improves the original theorem in [Ma 2007].

(3) If there exists a δ > 0 such that for all x ∈ [x0, ∞) ( for some x0 > 0 ),

A′(x)

A(x)
=

{
2ρ + e−δx D(x), if ρ > 0,

(2α + 1)/x + e−δx D(x) if ρ = 0,

where D and its derivatives are bounded C∞ functions, we have µ = 1/2 if ρ > 0,
and β = µ = α if ρ = 0 and α > 0; see [Trimèche 1997].

Lemma 3.1 [Bloom and Xu 1995]. A(x) ∼ x2α+1 as x → 0+, and if ρ > 0 then
A(x) ∼ e2ρx as x → +∞. Here f ∼ g means that there exist positive constants C1

and C2 such that C1g ≤ f ≤ C2g.

In our proof, the heat kernel ht(x), given by

ht(x) =

∫
∞

0
e−t (λ2

+ρ2)φλ(x)|c(λ)|−2dλ for t > 0

plays an important role. For all t > 0 and f ∈ L2(R+, A(x)dx), we have

ĥt ∗ f (λ) = e−t (λ2
+ρ2) f̂ (λ).

We can now prove nice estimates for ‖ht‖2.

Lemma 3.2.
‖ht‖2 ∼

{
t−(α+1)/2 if t ≤ 1
e−tρ2

t−(µ+1)/2 if t > 1.

Proof.

‖ht‖2 =

(∫
∞

0
e−2t (λ2

+ρ2)
|c(λ)|−2dλ

)1/2
= e−tρ2

(∫
∞

0
e−2tλ2

|c(λ)|−2dλ
)1/2

.

Using the estimates of the c-function,

|c(λ)|−2
∼

{
λ2µ+1 if t ≤ K ,

λ2α+1 if t > K .

Then

‖ht‖2 ∼ e−tρ2
(∫ K

0
e−2tλ2

λ2µ+1 dλ +

∫
∞

K
e−2tλ2

λ2α+1 dλ
)1/2

∼ e−tρ2
(

t−(µ+1)

∫ 2t K 2

0
e−ssµ ds + t−(α+1)

∫
∞

2t K 2
e−ssα ds

)1/2

,
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where the second equivalence is obtained by a change of variables. Because t ∼ 0,
the first term in curly braces is bounded, and the second is equivalent to t−(α+1).
When t tends to infinity, the first term is equivalent to t−(µ+1). By the relation
between the incomplete gamma function 0( · , · ) and the confluent hypergeometric
function G( · , · , · ) (see [Nikiforov and Uvarov 1988, pages 401–413]), we know
that the second term equals

t−(α+1)0(α + 1, 2t K 2) = t−(α+1)e−2t K 2
(2t K 2)α+1G(1, 2 + α, 2t K 2)

∼ e−2t K 2
G(1, 2 + α, 2t K 2) ∼ e−2t K 2

t−1 as t → ∞

The lemma is proved by the above equivalences. �

The constant C below is not fixed and might change appropriately in different
equalities or inequalities.

Lemma 3.3. Assume γ ∈ Dρ . Then for all f ∈ L2(R+, A(x)dx) we have

(3-2) ‖ht ∗ f ‖2 ≤ Ct−a/2
‖xγ a f ‖2,

where a > 0 and satisfies γ a <α+1 if ρ > 0 and γ a < min{α+1, β+1} otherwise.

Proof. We only give the proof for ρ > 0; the case ρ = 0 can be got similarly. For
r > 0, let fr = f χ[0,r ] and f r

= f − fr . Then, since | f r (x)| ≤ r−γ a
|xγ a f (x)|,

‖ht ∗ f r
‖2 = ‖e−t (λ2

+ρ2) f̂ r (λ)‖2, c ≤ ‖ f̂ r‖2, c = ‖ f r
‖2 ≤ r−γ a

‖xγ a f ‖2.

On the other hand, we have

‖ fr ∗ ht‖2 ≤ ‖ fr‖1‖ht‖2 ≤ ‖ht‖2

(∫ r

0
x−2γ a A(x)dx

)1/2
‖xγ a f ‖2.

By Lemma 3.1, A(x) ∼ e2ρx when x is big, and A(x) ∼ x2α+1 when x ∼ 0 . Under
the assumption on γ , we have that there exists some positive constant d such that(∫ r

0
x−2γ a A(x)dx

)1/2
≤ dr−γ a V (r), where V (r) =

{
rα+1 if r ≤ 1,

r1/2eρr if r > 1.

So
‖ht ∗ f ‖2 ≤ ‖ht ∗ fr‖2 + ‖ht ∗ f r

‖2

≤ Cr−γ a (1 + ‖ht‖2V (r))‖xγ a f ‖2.

Choosing r = t1/(2γ ) for γ ∈ Dρ , we obtain (3-2) by Lemma 3.2. �

Proof of Theorem 3.1. We only prove the case ρ > 0, as it can be proved similarly
for ρ = 0. Assume that γ ∈ Dρ for γ a < α + 1. If b ≤ 2, it suffices to prove that

‖xγ a f ‖
b/(a+b)

2 · ‖(λ2
+ ρ2)b/2 f̂ (λ)‖

a/(a+b)

2, c ≥ C‖ f ‖2.

for f and xγ a f in L2(R+, A(x)dx) and (λ2
+ ρ2)b/2 f̂ (λ) in L2(R+, dν).
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By (3-2),

‖ f ‖2 ≤ ‖ht ∗ f ‖2 + ‖ f − ht ∗ f ‖2

≤ Ct−a/2
‖xγ a f ‖2 + ‖(1 − e−t (λ2

+ρ2)) f̂ (λ)‖2, c

= Ct−a/2
‖xγ a f ‖2 +‖(1 − e−t (λ2

+ρ2))(t (λ2
+ρ2))−b/2(t (λ2

+ρ2))b/2 f̂ (λ)‖2,c.

The size of last term is controlled by tb/2
‖(λ2

+ρ2)b/2 f̂ (λ)‖2, c, since the function
(1 − e−s)s−b/2 is bounded for s ≥ 0 if b ≤ 2 . Therefore

‖ f ‖2 ≤ C(t−a/2
‖xγ a f ‖2 + tb/2

‖(λ2
+ ρ2)b/2 f̂ (λ)‖2, c),

from which, optimizing in t , we obtain (3-1) for γ a < α + 1 and b ≤ 2.
If b > 2, let b′

≤ 2. For u ≥ 0 and b′ < b, we have ub′

≤ 1 + ub which, for
u = ((λ2

+ρ2)/ε)1/2 gives the inequality ((λ2
+ρ2)/ε)b′/2

≤ 1+ ((λ2
+ρ2)/ε)b/2

for all ε > 0.
It follows that

‖(λ2
+ ρ2)b′/2 f̂ ‖2, c ≤ εb′/2

‖ f ‖2 + ε(b′
−b)/2

‖(λ2
+ ρ2)b/2 f̂ ‖2, c.

Optimizing in ε, we get

‖(λ2
+ ρ2)b′/2 f̂ ‖2, c ≤ ‖ f ‖

1−b′/b
2 ‖(λ2

+ ρ2)b/2 f̂ ‖
b′/b
2, c .

Together with (3-1) for b′, we get the result for b > 2.
If γ a ≥ α + 1, let γ a′ < α + 1. Then using

xγ a′

εγ a′ ≤ 1 +
xγ a

εγ a for ε > 0,

we get the result similarly. �

Acknowledgment

The author thanks the referee for many valuable comments and suggestions.

References

[Attour and Trimèche 2005] L. B. Attour and K. Trimèche, “Uncertainty principle and (L p, Lq )

sufficient pairs on Chébli–Trimèche hypergroups”, Integral Transforms Spec. Funct. 16:8 (2005),
625–637. MR 2007c:43005 Zbl 1089.43004

[Bloom and Heyer 1995] W. R. Bloom and H. Heyer, Harmonic analysis of probability measures
on hypergroups, de Gruyter Studies in Mathematics 20, Walter de Gruyter, Berlin, 1995. MR 96a:
43001 Zbl 0828.43005

[Bloom and Xu 1995] W. R. Bloom and Z. F. Xu, “The Hardy–Littlewood maximal function for
Chébli–Trimèche hypergroups”, pp. 45–70 in Applications of hypergroups and related measure
algebras (Seattle, WA, 1993), edited by W. C. Connett et al., Contemp. Math. 183, Amer. Math.
Soc., Providence, RI, 1995. MR 96c:43013 Zbl 0834.42011

http://dx.doi.org/10.1080/10652460500110404
http://dx.doi.org/10.1080/10652460500110404
http://www.ams.org/mathscinet-getitem?mr=2007c:43005
http://www.emis.de/cgi-bin/MATH-item?1089.43004
http://www.ams.org/mathscinet-getitem?mr=96a:43001
http://www.ams.org/mathscinet-getitem?mr=96a:43001
http://www.emis.de/cgi-bin/MATH-item?0828.43005
http://www.ams.org/mathscinet-getitem?mr=96c:43013
http://www.emis.de/cgi-bin/MATH-item?0834.42011


296 RUIQIN MA

[Bouattour and Trimèche 2005] L. Bouattour and K. Trimèche, “Beurling–Hörmander’s theorem for
the Chébli–Trimèche transform”, Glob. J. Pure Appl. Math. 1:3 (2005), 342–357. MR 2007h:43002
Zbl 1105.43004

[Folland and Sitaram 1997] G. B. Folland and A. Sitaram, “The uncertainty principle: a mathemati-
cal survey”, J. Fourier Anal. Appl. 3:3 (1997), 207–238. MR 98f:42006 Zbl 0885.42006

[Havin and Jöricke 1994] V. Havin and B. Jöricke, The uncertainty principle in harmonic analysis,
Ergebnisse der Mathematik (3) 28, Springer, Berlin, 1994. MR 96c:42001 Zbl 0827.42001

[Li and Liu 2005] Z. Li and L. Liu, “Uncertainty principles for Sturm–Liouville operators”, Constr.
Approx. 21:2 (2005), 193–205. MR 2005h:34219 Zbl 1072.34095

[Ma 2007] R. Ma, “Heisenberg inequalities for Jacobi transforms”, J. Math. Anal. Appl. 332:1
(2007), 155–163. MR 2319650 Zbl 1116.43008

[Nikiforov and Uvarov 1988] A. F. Nikiforov and V. B. Uvarov, Special functions of mathematical
physics, Birkhäuser, Basel, 1988. MR 89h:33001 Zbl 0624.33001

[Rösler and Voit 1999] M. Rösler and M. Voit, “An uncertainty principle for Hankel transforms”,
Proc. Amer. Math. Soc. 127:1 (1999), 183–194. MR 99i:44007 Zbl 0910.44003

[Trimèche 1997] K. Trimèche, Generalized wavelets and hypergroups, Gordon and Breach Science
Publishers, Amsterdam, 1997. MR 99h:43014 Zbl 0926.42016

[Trimèche 2005] K. Trimèche, “Cowling–Price and Hardy theorems on Chébli–Trimèche hyper-
groups”, Glob. J. Pure Appl. Math. 1:3 (2005), 286–305. MR 2007f:43004 Zbl 1122.43005

Received August 20, 2007. Revised December 5, 2007.

RUIQIN MA

SCHOOL OF SCIENCES

BEIJING INSTITUTE OF TECHNOLOGY

BEIJING 100081
CHINA

rqma@163.com

http://www.ams.org/mathscinet-getitem?mr=2007h:43002
http://www.emis.de/cgi-bin/MATH-item?1105.43004
http://dx.doi.org/10.1007/BF02649110
http://dx.doi.org/10.1007/BF02649110
http://www.ams.org/mathscinet-getitem?mr=98f:42006
http://www.emis.de/cgi-bin/MATH-item?0885.42006
http://www.ams.org/mathscinet-getitem?mr=96c:42001
http://www.emis.de/cgi-bin/MATH-item?0827.42001
http://dx.doi.org/10.1007/s00365-003-0555-0
http://www.ams.org/mathscinet-getitem?mr=2005h:34219
http://www.emis.de/cgi-bin/MATH-item?1072.34095
http://dx.doi.org/10.1016/j.jmaa.2006.09.044
http://www.ams.org/mathscinet-getitem?mr=2319650
http://www.emis.de/cgi-bin/MATH-item?1116.43008
http://www.ams.org/mathscinet-getitem?mr=89h:33001
http://www.emis.de/cgi-bin/MATH-item?0624.33001
http://dx.doi.org/10.1090/S0002-9939-99-04553-0
http://www.ams.org/mathscinet-getitem?mr=99i:44007
http://www.emis.de/cgi-bin/MATH-item?0910.44003
http://www.ams.org/mathscinet-getitem?mr=99h:43014
http://www.emis.de/cgi-bin/MATH-item?0926.42016
http://www.ams.org/mathscinet-getitem?mr=2007f:43004
http://www.emis.de/cgi-bin/MATH-item?1122.43005
mailto:rqma@163.com

	1. Introduction 
	2. Preliminaries of Chébli--Trimèche hypergroups
	3. Uncertainty principle on Chébli--Trimèche hypergroups
	Acknowledgment
	References

