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Here we show that the Carathéodory, Eisenman–Kobayashi, and Kähler–
Einstein volume forms are equivalent on Teichmüller space.

Statement of the theorem

Let Tg denote the Teichmüller space of an orientable compact Riemann surface
of genus g > 1. Recently Liu, Sun, and Yau [2004; 2005a; 2005b] made some
important progress made on some of the geometric aspects of Teichmüller space
including a discussion on the equivalence of intrinsic metrics. Here, our goal is to
prove the corresponding theorem in the case of intrinsic volume forms:

Main Theorem. The Carathéodory, Eisenman–Kobayashi, and Kähler–Einstein
intrinsic volume forms are equivalent on Teichmüller space.

This result is also true when the intrinsic measures are defined with respect to
the polydisc instead of the unit ball. The arrangement of this paper is as follows.
Section 1 describes of the Carathéodory and Eisenman–Kobayashi volume forms.
Section 2 gives preliminaries on Teichmüller space. Section 3 proves the main
theorem.

1. Definition of the Carathéodory and Eisenman–Kobayashi volume forms

For the basic materials of this subject, refer to [Graham and Wu 1985; Krantz 2001;
Pelles 1975; Wong 1977b; 1977a]. Let Bn denote the open unit ball in Cn , and let
D be any complex domain in Cn .

Definition. The Carathéodory volume form MC
D is an (n, n)-form( i

2

)n
|MC

D(z)| · dz1 ∧ dz1 · · · dzn ∧ dzn

on D such that |MC
D(z)| is defined for all z ∈ D as

|MC
D(z)| = sup

{
|det f ′(0)|2 : f ∈ Hol(D, Bn) and f (z) = 0

}
,
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where the supremum is taken over all f indicated above.

The function |MC
D | is in general a continuous function. |MC

D | > 0 if D is a
bounded domain.

Definition. The Eisenman–Kobayashi volume form M E
D is an (n, n)-form( i

2

)n
|M E

D(z)| · dz1 ∧ dz1 · · · dzn ∧ dzn

on D such that |M E
D(z)| is defined for all z ∈ D as

|M E
D(z)| = inf

{
1

|det f ′(0)|2
: f ∈ Hol(Bn, D) and f (0) = z

}
,

where the infimum is taken over all f indicated above.

The function |M E
D | is in general a semicontinuous function. If D is a bounded

domain, then |M E
D | is continuous and |M E

D | > 0 since |M E
D | ≥ |MC

D | by the gener-
alized Schwarz lemma. Also, both intrinsic measures are volume decreasing under
holomorphic mappings and invariant under biholomorphic mappings.

2. Preliminaries on Teichmüller space

Let us begin by discussing some basic properties of Teichmüller space Tg. For
the basic definitions and a survey, see [Imayoshi and Taniguchi 1992; Nag 1988].
Let n = 3g − 3 unless stated otherwise. Let R be a Riemann surface of genus
g > 1. The Teichmüller space of R is the collection of Riemann surfaces of genus
g with the following equivalence relation. Let S1 and S2 be two Riemann surfaces
of genus g, and let g1 : R → S1 and g2 : R → S2 be their respective quasiconformal
homeomorphisms. We say that S1 is equivalent to S2 if there exists a conformal
function h : S1 → S2 such that g−1

2 ◦ h ◦ g1 : R → R is homotopic to the identity
by a homotopy that leaves every point on ∂ R fixed if R has boundary. We will
denote the Teichmüller space of R by Tg. Let 0 be the discrete group acting on
the upper-half plane H such that R = H/0. Then we define R to be the Riemann
surface conjugate holomorphic to R. The Bers embedding theorem gives rise to a
holomorphic embedding 8 :Tg →�R where �R is the vector space of holomorphic
quadratic differentials on the Riemann surface R with norm ‖φ‖ = sup |y2φ(z)|.

We will use the notation 8(Tg) = TB(R) ⊂ �R . Tg is a bounded domain when
identified with its image under 8 and has complex dimension n since B1/2

n ⊂

TB(R) ⊂ B3/2
n [Bers and Ehrenpreis 1964]. Also, Tg is a domain of holomorphy

for g > 1 [Bers and Ehrenpreis 1964; Earle 1974], and therefore Tg has a complete
Einstein–Kähler metric of negative Ricci curvature [Cheng and Yau 1980].
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3. Proof of the main theorem

We say that two volume forms M1 and M2 on D ⊂ Cn are equivalent if there exists
a constant C > 0 such that

1
C

|M2
D| ≤ |M1

D| ≤ C |M2
D|,

where M j
D = (i/2)n

|M j
D|dz1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn . Let us denote by M K E

D
the volume form determined by the Kähler–Einstein metric on a bounded domain
of holomorphy D. The following theorems characterize the distance-decreasing
property with respect to volume forms.

Theorem 3.1 [Chern 1968]. Let f : Bn → N be a holomorphic mapping where Bn

is the unit n-ball with the standard Kähler metric and where N is an n-dimensional
Hermitian Einsteinian manifold with scalar curvature ≤ −n(n + 1). Then f is
volume-decreasing.

Theorem 3.2 [Mok and Yau 1983; Yau 1978]. Let M be a complete Hermitian
manifold with scalar curvature bounded from below by −K1, and let N be a com-
plex manifold of the same dimension with a volume form VN such that the Ricci
form is negative definite and VN = ( i

2)n
|VN |dz1

∧ dz1
∧ . . . ∧ dzn

∧ dzn is almost
Einstein with respect to volume; that is,( i

2
∂∂ ln|VN |

)n
≥ K2VN .

Suppose f : M → N is a holomorphic map and the Jacobian is nonvanishing at
one point. Then K1 > 0 and

sup
f ∗VN

VM
≤

K n
1

nn K2
,

where VM is the volume form associated to the given Kähler metric on M.

The proof of the main theorem will depend on the next two lemmas.

Lemma 3.1. Let D be a bounded domain of holomorphy. Then

|MC
D | ≤ |M K E

D | ≤ |M E
D |.

Proof. Let’s choose the scalar curvature of the Kähler–Einstein metric on both Bn

and D to be −n(n + 1). We are going to apply Theorems 3.1 and 3.2 to these two
metrics.

(i) Suppose f : Bn → D is any holomorphic mapping with f (0) = z. By Theorem
3.1, M = Bn , N = D, and f ∗M K E

D ≤ MBn . Also

|det f ′(0)|2|M K E
D (z)| ≤ |MBn (0)| and |M K E

D (z)| ≤ 1/|det f ′(0)|2.



300 ERIC OVERHOLSER

Taking the infimum over all such holomorphic mappings f , we find |M K E
D |≤|M E

D |.

(ii) Suppose f : D → Bn is any holomorphic mapping with f (z) = 0. By Theorem
3.2, in this case M = D, N = Bn , K1 = n(n+1), and K2 = n+1, and we obtain an
inequality f ∗MBn ≤ M K E

D , so that |det f ′(z)|2 ≤ |M K E
D (z)|. Taking the supremum

over all such holomorphic mappings f , we have |MC
D | ≤ |M K E

D |. �

Lemma 3.2. |M E
Tg

(X)| ≤ k|MC
Tg

(X)|, where k is a positive constant and X is any
point in Tg.

Proof. Let the Bers embedding be denoted by B : Tg → �R, where Tg is identified
with TB(R) for some Riemann surface R and R is the Riemann surface conjugate
holomorphic to R. There exists a biholomorphism F : TB(R)→ TB(X)⊂�X such
that F(B(X)) = 0 [Earle 1974; Imayoshi and Taniguchi 1992] (comparing with
earlier notation, we have B(Tg) = TB(R) ⊂ �R). The image of this map has the
property that B1/2

n ⊂ TB(X) ⊂ B3/2
n . Now,

|MC
TB(X)(0)| ≥ |MC

B3/2
n

(π(0))| =
1
9n |MC

B1/2
n

(0)|

=
1
9n |M E

B1/2
n

(0)| ≥
1
9n |M E

TB(X)(ι(0))| =
1
9n |M E

TB(X)(0)|,

since the intrinsic measures are volume decreasing under the holomorphic inclusion
mappings ι : B1/2

n → TB(X) and π : TB(X) → B3/2
n , and they are equal on any

Euclidean ball in Cn .
The composition F ◦ B is a biholomorphic mapping from Tg to TB(X) ⊂ �X .

Hence |M E
Tg

(X)| ≤ 9n
|MC

Tg
(X)|, since our volume measures are invariant under

biholomorphic mappings. �

Proof of Main Theorem. The proof now follows from Lemmas 3.1 and 3.2. �
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