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We compute the Galois groups of basic hypergeometric equations.

In this paper q is a complex number such that 0< |q|< 1.

1. Basic hypergeometric series and equations

The theory of hypergeometric functions and equations, which dates back at least
to Gauss, has long been and still is an integral part of the mathematical literature.
In particular, the Galois theory of (generalized) hypergeometric equations has at-
tracted the attention of many authors. See for example [Beukers and Heckman
1989; Beukers et al. 1988; Katz 1990] and references therein. We also single out the
papers [Duval and Mitschi 1989; Mitschi 1996], which are devoted to calculating
some Galois groups by means of a density theorem (the Ramis theorem).

Here, we focus our attention on the Galois theory of the basic hypergeometric
equations, the later being natural q-analogues of the hypergeometric equations.

The basic hypergeometric series φ(z) = 2φ1(a, b; c; z), with three parameters
(a, b, c) ∈ (C∗)3, is defined by

2φ1(a, b; c; z)=
+∞∑
n=0

(a, b; q)n
(c, q; q)n

zn

=

+∞∑
n=0

(1− a)(1− aq) · · · (1− aqn−1)(1− b)(1− bq) · · · (1− bqn−1)

(1− q)(1− q2) · · · (1− qn)(1− c)(1− cq) · · · (1− cqn−1)
zn.

It was first introduced by Heine and was later generalized by Ramanujan. In the
subject of functional equations, the basic hypergeometric series provides a solution
to the second order q-difference equation, called the basic hypergeometric equation
with parameters (a, b, c), given by

(1) φ(q2z)− (a+b)z−(1+c/q)
abz−c/q

φ(qz)+ z−1
abz−c/q

φ(z)= 0.
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This functional equation is equivalent to a functional system. Indeed, with the
notations

λ(a, b; c; z)= (a+b)z−(1+c/q)
abz−c/q

and µ(a, b; c; z)= z−1
abz−c/q

,

a function φ is solution of (1) if and only if the vector 8(z)=
(
φ(z)
φ(qz)

)
satisfies the

functional system

(2) 8(qz)= A(a, b; c; z)8(z)

with

A(a, b; c; z)=
(

0 1
−µ(a, b; c; z) λ(a, b; c; z)

)
.

This paper focuses on calculating the Galois group of the q-difference Equation
(1) or, equivalently, that of the q-difference system (2). A number of authors have
developed q-difference Galois theories over the past years; among them are Franke
[1963], Etingof [1995], van der Put and Singer [1997], van der Put and Reversat
[2005], Chatzidakis and Hrushovski [1999], Sauloy [2003], André [2001]. The
exact relations between the existing Galois theories for q-difference equations are
partially understood; see [Chatzidakis et al. 2006], and also Remark 1.

We follow the approach of Sauloy (initiated by Etingof in the regular case). Our
method for computing the Galois groups of the basic hypergeometric equations
is based on a q-analogue of Schlesinger’s density theorem stated and established
in [Sauloy 2003]. Note that some of these groups were previously computed by
Hendriks [1997] using a radically different method (actually, Hendriks dealt with
the Galois groups defined by van der Put and Singer, but these do coincide with
those defined by Sauloy; see again Remark 1).

In the first part of this paper, we give a brief overview of some results from
[Sauloy 2003]. In the second, we compute the Galois groups of the basic hyperge-
ometric equations in all nonresonant (but possibly logarithmic) cases.

2. Galois theory for regular singular q-difference equations

Using analytic tools together with Tannakian duality, Sauloy [2003] developed a
Galois theory for regular singular q-difference systems. In this section, we will
first recall some notions used there, mainly the Birkhoff matrix and the twisted
Birkhoff matrix. Then we will explain briefly how this leads to a Galois theory for
regular singular q-difference systems, and we will state a density theorem which
will be of main importance in our calculations.
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2.1. Basic notions. Let us consider A ∈ Gln(C({z})). Following Sauloy [2003],
the q-difference system

(3) Y (qz)= A(z)Y (z)

is said to be Fuchsian at 0 if A is holomorphic at 0 and if A(0) ∈ Gln(C). Such a
system is nonresonant at 0 if in addition spectrum(A(0))∩ qZ∗ spectrum(A(0)) =
∅. Lastly we say that the above q-difference system is regular singular at 0 if
there exists an R(0) ∈ Gln(C({z})) such that the q-difference system defined by
(R(0)(qz))−1 A(z)R(0)(z) is Fuchsian at 0. Similar notions hold at ∞ using the
change of variable z← 1/z.

In the case of a global system, that is, A ∈Gln(C(z)), we will use the following
terminology. If A ∈ Gln(C(z)), then the system (3) is called Fuchsian (respec-
tively Fuchsian and nonresonant, regular singular) if it is Fuchsian (respectively
Fuchsian and nonresonant, regular singular) at 0 and at∞.

For instance, the basic hypergeometric system (2) is Fuchsian.

Local fundamental systems of solutions at 0. Suppose that (3) is Fuchsian and
nonresonant at 0, and consider J (0) a Jordan normal form of A(0). According
to [Sauloy 2003] there exists an F (0) ∈ Gln(C{z}) such that

(4) F (0)(qz)J (0) = A(z)F (0)(z).

Therefore, if e(0)(J (0)) denotes a fundamental system solving the q-difference sys-
tem with constant coefficients X (qz)= J (0)X (z), then the matrix-valued function
Y (0) = F (0)e(0)(J (0)) is a fundamental system of solutions of (3). We are going to
describe a possible choice for e(0)(J (0)). We denote by θq the Jacobi theta function
defined by θq(z) = (q; q)∞(z; q)∞(q/z; q)∞. This is a meromorphic function
over C∗ whose zeros are simple and located on the discrete logarithmic spiral qZ.
We also have the functional equation θq(qz) = −z−1θq(z). Now we introduce,
for all λ ∈ C∗ such that |q| ≤ |λ| < 1, the q-character e(0)(λ) = θq/θq,λ with
θq,λ(z) = θq(λz), and we extend this definition to an arbitrary nonzero complex
number λ ∈ C∗ by requiring e(0)(qλ) = ze(0)(λ). If D = P diag(λ1, . . . , λn)P−1

is a semisimple matrix, then we set e(0)(D) := P diag(e(0)(λ1), ..., e(0)(λn))P−1.
Clearly this does not depend on the chosen diagonalization. Furthermore, consider
`q(z)=−zθ ′q(z)/θq(z) and, if U is a unipotent matrix,

e(0)(U )=
n∑

k=0

`(k)q (U − In)
k with `(k)q =

(`q

k

)
.

If J (0)= D(0)U (0) is the multiplicative Dunford decomposition of J (0), where D(0)

is semisimple and U (0) is unipotent, we set e(0)(J (0))= e(0)(D(0))e(0)(U (0)).
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Local fundamental system of solutions at∞. Using the variable change z← 1/z,
we have a similar construction at ∞. The corresponding fundamental system of
solutions is denoted by Y (∞) = F (∞)e(∞)(J (∞)).

Throughout this section we assume that the system (3) is global and that it is
Fuchsian and nonresonant.

Birkhoff matrix. The linear relations between the two fundamental systems of solu-
tions introduced above are given by the Birkhoff matrix (also called the connection
matrix) P = (Y (∞))−1Y (0). Its entries are elliptic functions, that is, meromorphic
functions over the elliptic curve Eq = C∗/qZ.

Twisted Birkhoff matrix. To describe a Zariki-dense set of generators of the Galois
group associated to the system (3), we introduce a “twisted” connection matrix.
As in [Sauloy 2003], we choose for all z ∈ C∗ a group endomorphism gz of C∗

sending q to z. Before giving an example, we need to introduce more notation.
For any fixed τ ∈C such that q = e−2π iτ , write q y

= e−2π iτ y for all y ∈C. We also
define the (not continuous) function logq on the whole punctured complex plane
C∗ by logq(q

y)= y if y ∈ C∗ \R+, and we require that its discontinuity is located
just before its branch cut R+ when turning counterclockwise around 0. An explicit
example of the endomorphism gz is now the function gz : C∗ = U × qR

→ C∗

sending uqω to gz(uqω) = zω = exp(−2π iτ logq(z)ω) for (u, ω) ∈ U×R, where
U⊂ C is the unit circle.

Then for all z in C∗, we set ψ (0)z (λ) = e(0)(λ)(z)/gz(λ) and define ψ (0)z (D(0)),
the twisted factor at 0, by ψ (0)z (D(0))= P diag(ψ (0)z (λ1), ..., ψ

(0)
z (λn))P−1, where

D(0)
= P diag(λ1, ..., λn)P−1. We have a similar construction at∞ using the vari-

able change z← 1/z. We denote the corresponding twisting factor by ψ (∞)z (J (∞)).
Finally, the twisted connection matrix P̆(z) is

P̆(z)= ψ (∞)z (D(∞))P(z)ψ (0)z (D(0))−1.

2.2. Definition of the Galois groups. The definition of the Galois groups of reg-
ular singular q-difference systems given by Sauloy [2003] via a q-analogue of
the Riemann-Hilbert correspondence is somewhat technical. Here we describe the
underlying idea.

(Global) Galois group. Let us denote by E the category of regular singular q-
difference systems with coefficients in C(z). This category is naturally equipped
with a tensor product ⊗ such that (E,⊗) satisfies all the axioms of a Tannakian
category over C except for the existence of a fiber functor, which is not obvious.

The latter problem can be overcome using an analogue of the Riemann–Hilbert
correspondence. For regular singular q-difference systems, this correspondence
entails that E is equivalent to the category C of connection triples whose objects
are triples (A(0), P, A(∞)) ∈ Gln(C)× Gln(M(Eq))× Gln(C) (see [Sauloy 2003]
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for the complete definition of C), and C can be endowed with a tensor product
⊗ making the above equivalence of categories compatible with the tensor prod-
ucts. We emphasize that ⊗ is not the usual tensor product for matrices. Indeed
some twisting factors appear because of the bad multiplicative properties of the
q-characters eq,c, as generally eq,ceq,d 6= eq,cd .

The category C allows us to define a Galois group: C is a Tannakian category
over C. The functor ω0 from C to VectC sending an object (A(0), P, A(∞)) to the
underlying vector space Cn on which A(0) acts is a fiber functor. There is a similar
fiber functor ω∞ at∞. Following the general formalism of the theory of Tannakian
categories (see [Deligne 1990]), the absolute Galois group of C (or, using the above
equivalence of categories, of E) is defined as the proalgebraic group Aut⊗(ω0), and
the global Galois group of an object χ of C (or, as before, of an object of E) is
the complex linear algebraic group Aut⊗(ω0|〈χ〉), where 〈χ〉 denotes the Tannakian
subcategory of C generated by χ . For simplicity, we will often call Aut⊗(ω0|〈χ〉)

the Galois group of χ (or, as before, of the corresponding object of E).

Local Galois groups. Notions of local Galois groups at 0 and at∞ are also avail-
able. As expected, they are subgroups of the (global) Galois group. Nevertheless,
since these groups are of secondary importance in what follows, we omit the details
and refer the interested reader to [Sauloy 2003].

Remark 1. Van der Put and Singer [1997] showed that the Galois groups defined
using Picard–Vessiot theory can be recovered by means of Tannakian duality: it is
the group of tensor automorphisms of some suitable complex-valued fiber functor
over E. Since two complex-valued fiber functors on a same Tannakian category
are necessarily isomorphic, we conclude that the theories of Sauloy and of Van der
Put and Singer coincide.

In the rest of this section we exhibit some natural elements of the Galois group
of a given Fuchsian q-difference system and state a density theorem due to Sauloy.

2.3. The density theorem. Fix a “base point”

y0 ∈�= C∗ \ {zeros of det(P(z)) or poles of P(z)}.

Sauloy [2003] gives the following elements of the (global) Galois group associated
to the q-difference system (3):

(Ia) γ1(D(0)) and γ2(D(0)), where

γ1 : C
∗
= U× qR

→ U and γ2 : C
∗
= U× qR

→ C∗

are respectively the projection onto the first factor, and the map defined by
γ2(uqω)= e2π iω;

(Ib) U (0);
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(IIa) P̆(y0)
−1γ1(D(∞))P̆(y0) and P̆(y0)

−1γ2(D(∞))P̆(y0);

(IIb) P̆(y0)
−1U (∞) P̆(y0);

(III) P̆(y0)
−1 P̆(z) for z ∈�.

Theorem 1 [Sauloy 2003]. The algebraic group generated by the matrices (Ia)
through (III) is the (global) Galois group G of the q-difference system (3). The
algebraic group generated by the matrices (Ia) and (Ib) is the local Galois group
at 0 of the q-difference system (3). The algebraic group generated by the matrices
(IIa) and (IIb) is the local Galois group at∞ of the q-difference system (3).

The algebraic group generated by the matrices (III) is called the connection
component of the Galois group G. The following result is easy but very useful. Its
proof is left to the reader.

Lemma 1. The connection component of the Galois group G of a regular singular
q-difference system is a subgroup of the identity component G I of G.

3. Galois groups of the basic hypergeometric equations:
nonresonant and nonlogarithmic cases

We write a = uqα, b = vqβ , and c = wqγ with u, v, w ∈ U and α, β, γ ∈ R (we
choose a logarithm of q).

In this section we want to compute the Galois group of the basic hypergeometric
system (2) under the assumptions that a/b 6∈ qZ and c 6∈ qZ.

First, we give explicit formulas for the generators of the Galois group of (2)
involved in Theorem 1.

Local fundamental system of solutions at 0. We have

A(a, b; c; 0)=
(

1 1
1 q/c

)(
1 0
0 q/c

)(
1 1
1 q/c

)
−1
.

Hence the system (2) is nonresonant and nonlogarithmic at 0. A fundamental sys-
tem of solutions at 0 of (2) as described in Section 2.1 is given by Y (0)(a, b; c; z)=
F (0)(a, b; c; z)e(0)(J (0)(c))(z) with J (0)(c)= diag(1, q/c) and

F (0)(a, b; c; z)=
(

2φ1(a, b; c; z) 2φ1(aq/c, bq/c; q2/c; z)
2φ1(a, b; c; qz) (q/c)2φ1(aq/c, bq/c; q2/c; qz)

)
.

Generators of the local Galois group at 0. We have two generators(
1 0
0 e2π iγ

)
and

(
1 0
0 w

)
.
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Local fundamental system of solutions at∞. We have

A(a, b; c;∞)=
(

1 1
1/a 1/b

)(
1/a 0

0 1/b

)(
1 1

1/a 1/b

)
−1
.

Hence the system (2) is nonresonant and nonlogarithmic at∞, and a fundamental
system of solutions at∞ of (2) as described in Section 2.1 is given by

Y (∞)(a, b; c; z)= F (∞)(a, b; c; z)e(∞)(J (∞)(a, b))(z)

with J (∞)(a, b)= diag(1/a, 1/b) and

F (∞)(a, b; c; z)=

 2φ1
(
a, aq

c
;

aq
b
;

cq
ab

z−1
)

2φ1
(
b, bq

c
;

bq
a
;

cq
ab

z−1
)

1
a 2φ1

(
a, aq

c
;

aq
b
;

c
ab

z−1
) 1

b 2φ1
(
b, bq

c
;

bq
a
;

c
ab

z−1
)
 .

Generators of the local Galois group at∞. We have two generators,

P̆(y0)
−1
(

e2π iα 0
0 e2π iβ

)
P̆(y0) and P̆(y0)

−1
(

u 0
0 v

)
P̆(y0).

Birkhoff matrix. The Barnes–Mellin–Watson formula (see [Gasper and Rahman
2004]) says that P(z)= (e(∞)(J (∞)(a, b))(z))−1 M(z)e(0)(J (0)(c))(z), where

(5) M(z)=


(b, c/a; q)∞
(c, b/a; q)∞

θq(az)
θq(z)

(bq/c, q/a; q)∞
(q2/c, b/a; q)∞

θq(
aq
c z)

θq(z)

(a, c/b; q)∞
(c, a/b; q)∞

θq(bz)
θq(z)

(aq/c, q/b; q)∞
(q2/c, a/b; q)∞

θq(
bq
c z)

θq(z)

 .
Twisted Birkhoff matrix. We know P̆(z) equals
(1

z

)−α
0

0
(1

z

)−β


(b, c/a; q)∞
(c, b/a; q)∞

θq(az)
θq(z)

(bq/c, q/a; q)∞
(q2/c, b/a; q)∞

θq(
aq
c z)

θq(z)

(a, c/b; q)∞
(c, a/b; q)∞

θq(bz)
θq(z)

(aq/c, q/b; q)∞
(q2/c, a/b; q)∞

θq(
bq
c z)

θq(z)

(1 0
0 z1−γ

)
.

We now need to consider different cases.

Case 1. a, b, c, a/b, a/c, b/c 6∈ qZ and a/b or c 6∈ ±qZ/2.

Under this assumption, we have four nonzero numbers

(b, c/a; q)∞
(c, b/a; q)∞

,
(bq/c, q/a; q)∞
(q2/c, b/a; q)∞

,
(a, c/b; q)∞
(c, a/b; q)∞

,
(aq/c, q/b; q)∞
(q2/c, a/b; q)∞

.

Proposition 1. Suppose that Case 1 holds. Then the natural action of G I on C2 is
irreducible.
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Proof. Suppose, at the contrary, that the action of G I is reducible and let L ⊂C2 be
an invariant line. For this and subsequent proofs define a basis in C2 in the usual
way with ê1 =

( 1
0

)
and ê2 =

( 0
1

)
.

Note that L is distinct from Cê1 and Cê2. Indeed, assume to the contrary that
L =Cê1 (the case L =Cê2 is similar). Because the line L =Cê1 is invariant by the
connection component, the line generated by P̆(z)ê1 does not depend on z ∈ �.
This yields a contradiction because the ratio of the components of

P̆(z)ê1 =


(b, c/a; q)∞
(c, b/a; q)∞

θq(az)
θq(z)

zα

(a, c/b; q)∞
(c, a/b; q)∞

θq(bz)
θq(z)

zβ


depends on z (recall a/b 6∈ qZ).

On the other hand, since, for all n ∈ N, the matrices(
1 0
0 e2π iγ n

)
and

(
1 0
0 wn

)
belong to G and since G I is a normal subgroup of G, the lines

Ln :=

(
1 0
0 e2π iγ n

)
L and L ′n :=

(
1 0
0 wn

)
L

are also invariant by G I .
Note that because Case 1 holds, at least one of the complex numbers w, e2π iγ ,

u/v, and e2π i(α−β) is distinct from ±1.
Now suppose w 6= ±1. We have seen that L 6= Cê1,Cê2; hence L0, L1, and L2

are three distinct lines invariant by the action of G I . This implies that G I consists
of scalar matrices: this is a contradiction because, for instance, Cê1 is not invariant
for the action of G I . Hence for w 6= ±1, we have proved that G I acts irreducibly.

The case e2π iγ
6= ±1 is similar.

Finally, the proof is analogous in the case u/v 6= ±1 or e2π i(α−β)
6= ±1, as we

may then use that, for all z ∈�, G I is normalized by P̆(z)−1 diag(u, v)P̆(z) and
P̆(z)−1 diag(e2π iα, e2π iβ)P̆(z) and that there exists a z ∈ � such that P̆(z)L is
distinct from Cê1 and Cê2. �

Theorem 2. Suppose that Case 1 holds. Then we have this dichotomy:

If abq/c 6∈ qZ then G = Gl2(C); otherwise G = 〈Sl2(C),
√
w I, eπ iγ I 〉.

Proof. Since G I acts irreducibly on C2, the general theory of algebraic groups
entails that G I is generated by its center Z(G I ) together with its derived subgroup
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G I,der and that Z(G I ) acts as do scalars. Hence G I,der
⊂ Sl2(C) also acts irre-

ducibly on C2. Therefore G I,der
=Sl2(C). (A connected algebraic group of dimen-

sion less than or equal to 2 is solvable; hence dim(G I,der)= 3 and G I,der
=Sl2(C).)

To complete the proof, it is sufficient to determine det(G). We have

det(P̆(z))=
(1/z)−(α+β)z1−γ

(q2/c, a/b, c, b/a; q)∞
ψ(z),

where

ψ(z)= θq(b)θq(c/a)
θq(az)
θq(z)

θq((bq/c)z)
θq(z)

− θq(c/b)θq(a)
θq((aq/c)z)
θq(z)

θq(bz)
θq(z)

.

A straightforward calculation shows that the function

θq(b)θq(c/a)θq(az)θq((bq/c)z)− θq(c/b)θq(a)θq((aq/c)z)θq(bz)

vanishes for z ∈qZ and for z ∈ (c/abq)qZ. On the other hand, ψ is a solution of the
first order q-difference equation y(qz)= (c/abq)y(z). Hence, if we suppose that
abq/c 6∈ qZ, we deduce that the ratio χ(z) = ψ(z)/(θq((abq/c)z)/θq(z)) defines
a holomorphic elliptic function over C∗. Therefore χ is constant and, evaluating
χ at z = 1/b, we get χ = − bθq(a/b)θq(c). Finally, we obtain the identity

(6) det(P̆(z))=
1− q/c

1/a− 1/b
(1/z)−(α+β)z1−γ θq(

abq
c z)

θq(z)
.

By analytic continuation (with respect to the parameters) we see that this formula
also holds if abq/c ∈ qZ.

Consequently, if abq/c 6∈ qZ, then det(P̆(y0)
−1 P̆(z)) for any fixed y0 ∈ � is a

nonconstant holomorphic function (with respect to z), implying G =G I
=Gl2(C).

On the other hand, if abq/c ∈ qZ, then det(P̆(y0)
−1 P̆(z))= 1, so that the connec-

tion component of the Galois group is a subgroup of Sl2(C) and the Galois group
G is the smallest algebraic group that contains Sl2(C) and {

√
w I, eπ iγ I }. �

We study the case a, b, c, a/b, a/c, b/c 6∈qZ and a/b, c∈±qZ+1/2 in two steps.

Case 2. a, b, c, a/b, a/c, b/c 6∈ qZ and

qZa ∪ qZb∪ qZaq/c∪ qZbq/c = qZa ∪−qZa ∪ qZ+1/2a ∪−qZ+1/2a.

We first establish a preliminary result.

Lemma 2. Suppose that Case 2 holds. Let us consider A, B,C, D ∈ C and
n,m, l, k, N ,M, L , K ∈ Z Then the functional equation (in z)

0= Azn/2θq(q N az)+ Bzm/2θq(−q Maz)

+Czl/2θq(q Lq1/2az)+ Dzk/2θq(−q K q1/2az)
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holds if and only if A = B = C = D = 0.

Proof. Using the nontrivial monodromy of z1/2, we reduce the problem to the case
of odd n, m, l, and k. Then, using the functional equation θq(qz) = −z−1θq(z),
we can assume without loss of generality that n = l = m = k = 0. The expansion
of θq as an infinite Laurent series θq(z)=

∑
j∈Z q j ( j−1)/2(−z) j ensures that

A(q N ) j
+ B(−q M) j

+C(q L+1/2) j
+ D(−q K+1/2) j

= 0

for all j ∈ Z. Considering the associated generating series, this implies

A
1−q N z

+
B

1+q M z
+

C
1−q L+1/2z

+
D

1+q K+1/2z
= 0.

Considering the poles of this rational fraction, we obtain A= B = C = D = 0. �

Proposition 2. Suppose Case 2 holds. Then the natural action of G I on C2 is
irreducible.

Proof. Suppose to the contrary that the action of G I is reducible and consider
an invariant line L ⊂ C2. In particular, L is invariant under the action of the
connection component. Consequently, the line P̆(z)L does not depend on z ∈ �.
However, this is impossible by Lemma 2. (The cases L =Cê1 or Cê2 are excluded
by direct calculation; for the remaining cases consider the ratio of the coordinates
of a generator of L and apply Lemma 2.) �

Theorem 3. If Case 2 holds then we have this dichotomy:

If abq/c 6∈ qZ then G = Gl2(C); otherwise G = 〈Sl2(C),
√
w I, eπ iγ I 〉.

Proof. The proof follows the same lines as that of Theorem 2. �

The remaining subcases are b ∈ −aqZ and c ∈ −qZ; b ∈ −aqZ+1/2 and c ∈
−qZ+1/2; and b ∈ aqZ+1/2 and c ∈ qZ+1/2.

Case 3. a, b, c, a/b, a/c, b/c 6∈ qZ, b ∈ −aqZ and c ∈ −qZ.

We use the notations b =−aqδ and c =−qγ with δ = β −α, γ ∈ Z.
The twisted connection matrix takes the form

P̆(z)= (1/z)−α

 (b,c/a;q)∞
(c,b/a;q)∞

θq (az)
θq (z)

(bq/c,q/a;q)∞
(q2/c,b/a;q)∞

θq (
aq
c z)

θq (z)
z1−γ

(a,c/b;q)∞
(c,a/b;q)∞

θq (bz)
θq (z)

zδ (aq/c,q/b;q)∞
(q2/c,a/b;q)∞

θq (
bq
c z)

θq (z)
z1+δ−γ

= (1
z

)−α

×

 (b,c/a;q)∞
(c,b/a;q)∞

θq (az)
θq (z)

(bq/c,q/a;q)∞
(q2/c,b/a;q)∞

q
γ (1−γ )

2 aγ−1 θq (−az)
θq (z)

(a,c/b;q)∞
(c,a/b;q)∞

q
−δ(δ−1)

2 a−δ θq (−az)
θq (z)

(aq/c,q/b;q)∞
(q2/c,a/b;q)∞

q−
(δ−γ+1)(δ−γ )

2 (−a)γ−δ−1 θq (az)
θq (z)


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Theorem 4. Suppose that Case 3 holds. For some

R =
(

1 1
C −C

)
, where C ∈ C∗,

we have G = R diag(C∗,C∗)R−1
∪ diag(1,−1)R diag(C∗,C∗)R−1,

Proof. Note there exist two nonzero constants A and B such that, for all z ∈�,

P̆(−1/a)−1 P̆(z)= (−a)α
θq(−1/a)
θq(−1)

(1/z)−α

 θq (az)
θq (z)

A θq (−az)
θq (z)

B θq (−az)
θq (z)

θq (az)
θq (z)


= (−a)α

θq(−1/a)
θq(−1)

(1/z)−αR

(
θq (az)
θq (z)
+
√

B A θq (−az)
θq (z)

0

0 θq (az)
θq (z)
−
√

B A θq (−az)
θq (z)

)
R−1,

where R =
(

1 1
√

B/A −
√

B/A

)
.

We claim that the functions

X (z) := (1/z)−α
(θq(az)
θq(z)

+
√

B A
θq(−az)
θq(z)

)
,

Y (z) := (1/z)−α
(θq(az)
θq(z)

−
√

B A
θq(−az)
θq(z)

)
do not satisfy any nontrivial relation of the form X r Y s

=1 with (r, s)∈Z2
\{(0, 0)}.

Indeed, suppose to the contrary that such a relation holds. Then

((1/z)−α(θq(az)+
√

B Aθq(−az)))r

((1/z)−α(θq(az)−
√

B Aθq(−az)))s
= θq(z)s−r .

Let us first exclude the case r 6= s. If s > r , then θq(az)+
√

B Aθq(−az) must
vanish on qZ. In particular, θq(a)+

√
B Aθq(−a)=0 and θq(aq)+

√
B Aθq(−aq)=

−(az)−1(θq(az)−
√

B Aθq(−az))= 0, and so θq(a)= 0, that is, a ∈ qZ. This is a
contradiction. The case r > s is similar by symmetry. Hence we have r = s, and
so (θq(az)+

√
B Aθq(−az)

θq(az)−
√

B Aθq(−az)

)r
= 1.

Since r 6= 0, the function in parentheses is constant. This is clearly impossible and
our claim is proved.

This ensures that the connection component of G I , generated by the matrices
P̆(−1/a)−1 P̆(z) for z ∈ �, is equal to R diag(C∗,C∗)R−1. Thus G is generated
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as an algebraic group by R diag(C∗,C∗)R−1, diag(1,−1),

P̆(−1/a)−1 diag(u,−u)P̆(−1/a)= diag(u,−u),

P̆(−1/a)−1 diag(e2π iα, e2π iα)P̆(−1/a)= diag(e2π iα, e2π iα). �

The case b∈−aqZ+1/2 and c∈−qZ+1/2 and the case b∈aqZ+1/2 and c∈qZ+1/2

are similar.

Case 4. a ∈ qN∗ .

In this case, the twisted connection matrix is lower triangular:

P̆(z)=


(b, c/a; q)∞
(c, b/a; q)∞

(−1)αq−α(α−1)/2 0

(a, c/b; q)∞
(c, a/b; q)∞

θq(bz)
θq(z)

(1/z)−β
(aq/c, q/b; q)∞
(q2/c, a/b; q)∞

θq(
bq
c z)

θq(z)
(1/z)−βz1−γ


Let

GI =

(
1 0
C C∗

)
, GII =

(
1 0

C 〈w, e2π iγ 〉

)
, GIII =

(
1 0

0 〈w, e2π iγ 〉

)
.

Theorem 5. Suppose Case 4 holds. We have the following trichotomy :

(I) if b/c 6∈ qZ then G = GI;

(II) if c/b ∈ qN∗ then G = GII;

(III) if bq/c ∈ qN∗ then G = GIII.

Proof. In each case for all z ∈�, we have

P̆(1/b)−1 P̆(z)=
(

1 0
X1 Y1

)
,

where

X1 = A
θq(bz)
θq(z)

(1/z)−β and Y1 = B
θq((bq/c)z)
θq(z)

(1/z)−βz1−γ ,

for some constants A, B with B 6= 0. Hence the connection component is a sub-
group of GI.

Now assume case (I), that is, b/c 6∈ qZ. Then A 6= 0 and we claim that the
connection component is equal to G1. Indeed, for all n ∈ Z, the matrix

(P̆(1/b)−1 P̆(z))n =

 1 0

X1
1− Y n

1

1− Y1
Y n

1


belongs to the connection component. Consider a polynomial in two variables
K (X, Y )∈C[X, Y ] such that K (X1(1−Y n

1 )/(1−Y1), Y n
1 )= 0. If K were nonzero
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then we could assume K (X, 0) 6= 0. But, for all z ∈� in a neighborhood of c/(bq),
we have |Y1|<1; hence letting n tend to+∞, we would get K (X1/(1−Y1), 0)=0,
which would imply K (X, 0) = 0. This proves that K = 0. In other words the
only algebraic subvariety of C×C∗ containing (X1(1− Y n

1 )/(1− Y1), Y n
1 ) for all

n ∈ Z is C×C∗ itself. In particular, the algebraic group generated by the matrix
(P̆(1/b)−1 P̆(z))n for all n ∈ Z is GI, hence the connection component is equal to
GI. It is now straightforward that G = GI.

Now assume for case (II) that c/b ∈ qN∗ . Then Y1 is constant in z. Hence

P̆(1/b)−1 P̆(z)=
(

1 0
X1 1

)
with A 6= 0 (in X1). The connection component is equal to

( 1
C

0
1

)
and the whole

Galois group G is equal to GII.
Finally for case (II), suppose bq/c ∈ qN∗ . Then A = 0 and the Y1 is constant,

hence G = GIII. �

Case 5. a ∈ q−N.

In this case, the twisted connection matrix is upper triangular:

P̆(z)=


(b, c/a; q)∞
(c, b/a; q)∞

(−1)αq−
α(α−1)

2
(bq/c, q/a; q)∞
(q2/c, b/a; q)∞

θq(
aq
c z)

θq(z)
(1/z)−αz1−γ

0 (aq/c, q/b; q)∞
(q2/c, a/b; q)∞

θq(
bq
c z)

θq(z)
(1/z)−βz1−γ

 .
For any set of matrices G, denote by tG the set of transposed elements of G.

Theorem 6. Suppose that Case 5 holds. We have the following trichotomy :

(I) if b/c 6∈ qZ then G = tGI;

(II) if bq/c ∈ qN∗ then G = tGII;

(III) if c/b ∈ qN∗ then G = tGIII.

Proof. We argue as in Theorem 5. �

The case b ∈ qZ or a/c ∈ qZ or b/c ∈ qZ is similar to the case a ∈ qZ. We omit
the details.

4. Galois groups of the basic hypergeometric equations: logarithmic cases

We write a = uqα, b = vqβ , and c = wqγ with u, v, w ∈ U and α, β, γ ∈ R (we
choose a logarithm of q).

4.1. The first logarithmic case. Here we compute the Galois group of the basic
hypergeometric system (2) under the assumption that c = q and a/b 6∈ qZ.
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Local fundamental system of solutions at 0. We have

A(a, b; q; 0)=
(

1 0
1 1

)(
1 1
0 1

)(
1 0
1 1

)−1

.

Consequently, we are in the nonresonant logarithmic case at 0. We consider this
situation as a degenerate case as c tends to q , but c 6= q .

More precisely, we consider the limit as c tends to q, with c 6= q, of the matrix-
valued function

F (0)(a, b; c; z)
(

1 1
1 q/c

)−1 (1 0
1 1

)

=
−c

c− q


(q

c
− 1

)
2φ1(a, b; c; z) 2φ1

(aq
c
,

bq
c
;

q2

c
; z
)
− 2φ1(a, b; c; z)(q

c
− 1

)
2φ1(a, b; c; qz) q

c 2φ1
(aq

c
,

bq
c
;

q2

c
; qz

)
− 2φ1(a, b; c; qz)


Using the notations

ζ(a, b; z)=
d
dc

∣∣∣∣
c=q

2φ1(a, b; c; z) and ξ(a, b; z)=
d
dc

∣∣∣∣
c=q

2φ1(aq/c, bq/c; q2/c; z),

the above limit is equal to(
2φ1(a, b; q; z) −q(ξ(a, b; z)− ζ(a, b; z))

2φ1(a, b; q; qz) 2φ1(a, b; q; qz)− q(ξ(a, b; qz)− ζ(a, b; qz))

)
,

a matrix we denote by F (0)(a, b; q; z). From (4) we deduce that this satisfies
F (0)(a, b; q; qz)J (0)(q)= A(a, b; c; z)F (0)(a, b; q; z), where J (0)(q)=

( 1
0

1
1

)
. As

this matrix is invertible as a matrix in the field of meromorphic functions, the
matrix-valued function Y (0)(a, b; q; z) = F (0)(a, b; q; z)e(0)(J (0)(q))(z) is a fun-
damental system of solutions of the basic hypergeometric equation with c = q .
Recall that

e(0)(J (0)(q))(z)=
(

1 `q(z)
0 1

)
.

Generators of the local Galois group at 0. There is one generator,
( 1

0
1
1

)
.

Local fundamental system of solutions at ∞. The situation is as in Section 3.
Hence we are in the nonresonant and nonlogarithmic case at∞, and a fundamental
system of solutions at ∞ of (2) (see Section 2.1) is given by Y (∞)(a, b; q; z) =
F (∞)(a, b; q; z)e(∞)(J (∞)(a, b))(z) with J (∞)(a, b)= diag(1/a, 1/b) and

F (∞)(a, b; q; z)=

(
2φ1(a, a; aq/b; q2

ab z−1) 2φ1(b, b; bq/a; q2

ab z−1)

1
a 2φ1(a, a; aq/b; q

ab z−1) 1
b 2φ1(b, b; bq/a; q

ab z−1)

)
.
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Generators of the local Galois group at∞. We have two generators

P̆(y0)
−1
(

e2π iα 0
0 e2π iβ

)
P̆(y0) and P̆(y0)

−1
(

u 0
0 v

)
P̆(y0).

Connection matrix. The connection matrix is the limit as c tends to q of

(e(∞)(J (∞)(a, b))(z))−1 M(z)
(

1 1
1 q/c

)−1 (1 0
1 1

)
e(0)(J (0)(q))(z),

where M(z) is as in (5). This is equal to

P(z) := (e(∞)(J (∞)(a, b))(z))−1 M2(z)e(0)(J (0)(q))(z),

where M2(z) equalsu(a, b; q)
θq(az)
θq(z)

q(uc(a, b; q)− vc(a, b; q))
θq(az)
θq(z)

+ azv(a, b; q)
θ ′q(az)
θq(z)

w(a, b; q)
θq(bz)
θq(z)

q(wc(a, b; q)− yc(a, b; q))
θq(bz)
θq(z)

+ bzy(a, b; q)
θ ′q(bz)
θq(z)


and

u(a, b; c)=
(b, c/a; q)∞
(c, b/a; q)∞

;

w(a, b; c)=
(a, c/b; q)∞
(c, a/b; q)∞

;

v(a, b; c)=
(bq/c, q/a; q)∞
(q2/c, b/a; q)∞

;

y(a, b; c)=
(aq/c, q/b; q)∞
(q2/c, a/b; q)∞

,

and where the subscript c means that we take the derivative with respect to the
third variable.

Twisted connection matrix. For this we have

P̆(z)=
(
(1/z)−α 0

0 (1/z)−β

)
M2(z)

(
1 `q(z)
0 1

)
.

We need to consider different cases.

Case 6. a 6∈ qZ and b 6∈ qZ.

Subject to this condition, the complex numbers u(a, b; q), v(a, b; q),w(a, b; q),
and y(a, b; q) are nonzero.

Proposition 3. If Case 6 holds then the natural action of G I on C2 is irreducible.

Proof. Assume to the contrary that the action of G I is reducible and let L be an
invariant line.

First note L 6=Cê1 (in particular, G I does not consist of scalar matrices). Indeed,
if not, Cê1 would be stabilized by the connection component, and the line spanned
by P̆(z)ê1 would be independent of z ∈�, but this is clearly false.
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Because the group G I is normalized by
( 1

0
1
1

)
(since G I is a normal subgroup

of G), the lines
( 1

0
1
1

)n L are also invariant by the action of G I . These lines being
distinct (since L 6= Cê1), we conclude that G I consists of scalar matrices and we
get a contradiction. �

As a consequence we have the following theorem.

Theorem 7. Suppose Case 6 holds. Then we have the following dichotomy:

if ab 6∈ qZ then G = Gl2(C); otherwise G = Sl2(C).

Proof. Using the irreducibility of the natural action of G I and arguing as in the
proof of Theorem 2, we obtain the equality G I,der

= Sl2(C). From (6) we deduce
that the determinant of the twisted connection matrices when c= q is equal to the
limit as c tends to q of

−1
1/a−1/b

(1/z)−(α+β)z1−γ θq(
abq

c z)
θq(z)

.

If ab 6∈ qZ, then this determinant is a nonconstant holomorphic function and
consequently G = Gl2(C).

If ab ∈ qZ, then this determinant does not depend on z. This implies that the
connection component of the Galois group is a subgroup of Sl2(C). Furthermore,
ab ∈ qZ entails that uv = 1 and α+ β ∈ Z, that is, e2π i(α+β)

= 1. Consequently,
the local Galois groups are subgroups of Sl2(C) and the global Galois group G is
therefore a subgroup of Sl2(C). �

Case 7. b ∈ qN∗ .

In this case, the twisted connection matrix simplifies to

P̆(z)=

u(a, b; q)
θq(az)
θq(z)

(1/z)−α p12

0 p22

(1 `q(z)
0 1

)
,

where

p12 = q(uc(a, b; q)− vc(a, b; q))
θq(az)
θq(z)

(1/z)−α + azv(a, b; q)
θ ′q(az)
θq(z)

(1/z)−α,

p22 = q(wc(a, b; q)− yc(a, b; q))(−1)βq−β(β−1)/2.

Theorem 8. Suppose Case 7 holds. Then

G =
(

C∗ C

0 1

)
.
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Proof. Fix a point y0 ∈ � such that P̆(y0) is of the form
( A

0
B
C

)
with A,C 6= 0.

There exists a constant D ∈ C∗ such that

P̆(y0)
−1 P̆(z)=

(
D θq (az)

θq (z)
(1/z)−α ∗
0 1

)
.

Since G I is normalized by
( 1

0
1
1

)
(remember that G I is a normal subgroup of G),

it contains, for all n ∈ Z, the matrix(
D θq (az)

θq (z)
(1/z)−α ∗+ n

(
D θq (az)

θq (z)
(1/z)−α − 1

)
0 1

)
.

Because a 6∈ qZ, the function D(θq(az)/θq(z))(1/z)−α−1 is not identically equal
to zero over C∗ and therefore G I contains, for all z ∈�,(

D θq (az)
θq (z)

(1/z)−α C

0 1

)
.

The element whose upper right entry is zero belongs to G I , so that diag(C∗, 1) is
a subgroup of G I and

(
C∗

0
C

1

)
⊂ G. The converse inclusion is clear. �

Case 8. b ∈ q−N.

Using the identity bzθ ′q(bz)/θq(z)= (−β−`q(z))(−1)βq−β(β−1)/2, we see that
in this case the twisted connection matrix P̆(z) equals(

0 q(uc(a, b; q)− vc(a, b; q)) θq (az)
θq (z)

(1/z)−α

w(a, b, q)(−1)βq−
β(β−1)

2 q(wc(a, b; q)− yc(a, b; q)−β/q)(−1)βq−
β(β−1)

2

)
Theorem 9. Suppose Case 8 holds. Then

G =
(

1 C

0 C∗

)
.

Proof. Fix a base point y0 ∈ �. There exist three constants C,C ′,C ′′ ∈ C with
C 6= 0, such that

P̆(y0)
−1 P̆(z)=

(
1 C ′ θq (az)

θq (z)
(1/z)−α +C ′′

0 C θq (az)
θq (z)

(1/z)−α

)
for all z ∈�. The rest is similar to the proof of Theorem 8. �

The remaining case a ∈ qZ is similar to Case 8.
The case a = b and c 6∈ qZ is similar to the case treated in this section.

4.2. The second logarithmic case. Here we compute the Galois group of the basic
hypergeometric system (2) under the assumption that a = b and c = q .
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Local fundamental system of solutions at 0. The situation is the same as in the case
c = q and a/b 6∈ qZ.

Generator of the local Galois group at 0. The generator is
( 1

0
1
1

)
.

Local fundamental system of solutions at∞. We have

A(a, a; q; z)=
(

1 0
1/a 1

)(
1/a 1

0 1/a

)(
1 0

1/a 1

)−1

.

Thus, we are in the nonresonant logarithmic case at∞. We consider the case a= b
and c = q as a degenerate case of the situation c = q as a tends to b for a/b 6= 1.

We consider the matrix-valued function

F (∞)(a, b; q; z)
(

1 1
1/a 1/b

)−1 ( 1 0
1/a 1

)
.

A straightforward but tedious calculation, which we omit, shows that this matrix-
valued function does admit a limit F (∞)(a, a; q; z) as a tends to b. A fundamental
system of solutions at ∞ of (2) (see Section 2.1) is given by Y (∞)(a, a; q; z) =
F (∞)(a, a; q; z)e(∞)(J (∞)(a, a))(z) with J (∞)(a, a)= diag(1/a, 1/a).

Generator of the local Galois group at∞. We have the generators(
u 0
0 u

)
,

(
e2π iα 0

0 e2π iα

)
, P̆(y0)

−1
(

1 a
0 1

)
P̆(y0).

Birkhoff matrix. This matrix is (e(∞)(J (∞)(a, a))(z))−1 Qe(0)(J (0)(q))(z), where
Q is the limit as a tends to b of(

1 0
1/a 1

)−1 ( 1 1
1/a 1/b

)
M2(z).

It has the form

Q :=

C θq (az)
θq (z)
+ az θq (a)

(q;q)2∞

θ ′q (az)
θq (z)

∗

−(1/a) θq (a)
(q;q)2∞

θq (az)
θq (z)

C ′ θq (az)
θq (z)
− z θq (a)

(q;q)2∞

θ ′q (az)
θq (z)

 ,
where ∗ denotes some meromorphic function.

The twisted Birkhoff matrix. This matrix is of the form

(1/z)−α
(

1 −a`q(z)
0 1

)
Q
(

1 `q(z)
0 1

)
.

We need to consider different cases.

Case 9. a 6∈ qZ.
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Proposition 4. Suppose Case 9 holds. Then the natural action of G I on C2 is
irreducible.

Proof. Note Cê1 is not an invariant line. Indeed, if not, it would be invariant by the
action of the connection component, and hence the line spanned by P̆(z)ê1 would
be independent of z ∈�. Considering the ratio of the coordinates of this line, this
would imply the existence of some constant A ∈C making the functional equation

C
θq(az)
θq(z)

+ az
θq(a)
(q; q)2

∞

θ ′q(az)
θq(z)

+
θq(a)
(q; q)2

∞

θq(az)
θq(z)

`q(z)= A
θq(az)
θq(z)

.

true on C∗. The fact that θq(az) vanishes identically to first order at z= 1/a, yields
a contradiction.

The rest is similar to the proof of Proposition 3. �

Theorem 10. If Case 9 holds then we have the dichotomy

if a2
6∈ qZ then G = Gl2(C); otherwise G = Sl2(C).

Proof. The proof follows the same reasoning as that of Theorem 2. �

Case 10. a ∈ qZ.

In this case, the connection matrix simplifies, for some constants C,C ′ ∈ C, to(
C ∗

0 C ′

)
.

Theorem 11. Suppose Case 10 holds. Then

G =
(

1 C

0 1

)
.

Proof. The local Galois group at 0 is generated by
( 1

0
1
1

)
, hence G contains

(1
0

C

1

)
.

Since the twisted connection matrix is upper triangular with constant diagonal
entries, the connection component is a subgroup of

( 1
0

C

1

)
. The generators of the

local Galois group at 0 and at ∞ also lie in
( 1

0
C

1

)
. Therefore G is a subgroup of( 1

0
C

1

)
. �
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