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Let (M, I) be an almost complex 6-manifold. The obstruction to the inte-
grability of almost complex structure N : 30,1(M) → 32,0(M) (the so-called
Nijenhuis tensor) maps one 3-dimensional bundle to another 3-dimensional
bundle. We say that Nijenhuis tensor is nondegenerate if it is an isomor-
phism. An almost complex manifold (M, I) is called nearly Kähler if it
admits a Hermitian form ω such that ∇(ω) is totally antisymmetric, ∇ being
the Levi-Civita connection. We show that a nearly Kähler metric on a given
almost complex 6-manifold with nondegenerate Nijenhuis tensor is unique
(up to a constant). We interpret the nearly Kähler property in terms of G2-
geometry and in terms of connections with totally antisymmetric torsion,
obtaining a number of equivalent definitions.

We construct a natural diffeomorphism-invariant functional I →
∫

M VolI

on the space of almost complex structures on M, similar to the Hitchin func-
tional, and compute its extrema in the following important case. Consider
an almost complex structure I with nondegenerate Nijenhuis tensor, admit-
ting a Hermitian connection with totally antisymmetric torsion. We show
that the Hitchin-like functional I →

∫
M VolI has an extremum in I if and

only if (M, I) is nearly Kähler.

Introduction

Almost complex manifolds with nondegenerate Nijenhuis tensor. In geometry,
two kinds of plane distributions often arise. There are integrable ones: complex
structures, foliations, CR-structures. On the other hand, there are “maximally
nonintegrable” distributions, such as the contact structures, where the obstruction
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to integrability is nowhere degenerate. Looking at almost complex structures in
dimension 3, one finds that the obstruction to integrability, the so-called Nijenhuis
tensor

N : 32T 1,0(M) → T 0,1(M),

maps one 3-dimensional bundle to another 3-dimensional bundle. It is only natural
to study the class of complex 3-manifolds such that N is nowhere degenerate.

Given such a manifold M , it is possible to construct a nowhere degenerate,
positive volume form det N ∗

⊗ det N ∗ on M (for details, see (1-2)).
We study the extrema of this volume form, showing that these extrema corre-

spond to an interesting geometric structure; see Theorem 2.2.
In Hermitian geometry, one often encounters a special kind of almost complex

Hermitian manifolds, called strictly nearly Kähler (NK-)manifolds, or Gray mani-
folds, after Alfred Gray; see Definition 4.1. These manifolds can be characterized
in terms of the G2-structure on their Riemannian cone, or in terms of a special set
of equations reminiscent of Calabi–Yau equations; see Section 4D.

We prove that a strictly nearly Kähler 3-manifold is uniquely determined by
its almost complex structure; see Corollary 3.3. Moreover, such manifolds are
extrema of the volume functional associated with the Nijenhuis tensor; see Theo-
rem 2.2. This reminds of the construction of Hitchin’s functional on the space of
all SL(3, C)-structures on a manifold, having extrema on Calabi–Yau manifolds
[Hitchin 2000].

This paper has the following structure. In Section 1, we introduce the class
of 3-manifolds with nowhere degenerate Nijenhuis tensor, and describe the basic
structures associated with these manifolds. We give a sketch of a proof of the
existence of a Hermitian connection with totally antisymmetric torsion, due to
Friedrich and Ivanov, and show that such a Hermitian metric is uniquely determined
by the almost complex structure, if the Nijenhuis tensor is nowhere degenerate.

In Section 2, we introduce the nearly Kähler manifolds, giving several versions
of their definition and listing some examples.

In Section 3, we apply the results about connections with totally antisymme-
tric torsion to nearly Kähler geometry, showing that an almost complex structure
determines the Hermitian structure on such a manifold uniquely, up to a constant
multiplier.

In Section 4, we give several additional versions of the definition of a nearly
Kähler manifold, obtaining an explicit description of a Nijenhuis tensor in terms of
an orthonormal frame. We also interpret the nearly Kähler structure on a manifold
in terms of G2-geometry of its Riemannian cone. This is used to show that an
NK-structure on a manifold M is uniquely determined by its metric, unless M is
locally isometric to a 6-sphere; see Proposition 4.7.
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In Section 5, we study infinitesimal variations of an almost complex structure.
We prove that NK-manifolds are extrema of an intrinsic volume functional de-
scribed earlier. A partial converse result is also obtained. Given an almost com-
plex manifold M with nowhere degenerate Nijenhuis tensor, admitting a Hermitian
connection with totally antisymmetric torsion, M is an extremum of the intrinsic
volume functional if and only if M is nearly Kähler.

1. Almost complex manifolds with nondegenerate Nijenhuis tensor

1A. Nijenhuis tensor on 6-manifolds. Let (M, I ) be an almost complex mani-
fold. The Nijenhuis tensor maps two (1, 0)-vector fields to the (0, 1)-part of their
commutator. This map is C∞-linear, and vanishes, as the Newlander–Nirenberg
theorem implies, precisely when I is integrable. We write the Nijenhuis tensor as

N : 32T 1,0(M) → T 0,1(M).

The dual map

(1-1) N ∗
: 30,1(M) → 32,0(M)

is also called the Nijenhuis tensor. Cartan’s formula implies that N ∗ acts on 31(M)

as the (2, −1)-part of the de Rham differential.
When one studies the distributions, one is usually interested in integrable ones

(such as T 1,0(M) ⊂ T M ⊗ C for complex or CR-manifolds) or ones where the
obstruction to integrability is nowhere degenerate (such as a contact distribution).

For the Nijenhuis tensor in complex dimension > 3, nondegeneracy does not
make much sense, because the space Hom(30,1(M), 32,0(M)) becomes quite com-
plicated. However, for n = 3, both sides of (1-1) are 3-dimensional, and we can
define the nondegeneracy as follows.

Definition 1.1. Let (M, I ) be an almost complex manifold of real dimension 6, and
N : 32T 1,0(M) → T 0,1(M) the Nijenhuis tensor. We say that N is nondegenerate
if N is an isomorphism everywhere. Then (M, I ) is called an almost complex
6-manifold with nowhere degenerate Nijenhuis tensor.

Remark 1.2. Such manifolds were investigated by R. Bryant. His results were
presented at a conference [Bryant 2000], but never published. The present author
unfortunately did not attend the conference and was not aware of his work.

The first thing one notices is that the determinant det N ∗ gives a section

det N ∗
∈ 33,0(M)⊗2

⊗ 33,0(M)∗.

Taking

(1-2) det N ∗
⊗ det N ∗ ∈ 33,0(M) ⊗ 30,3(M) = 36(M),
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we obtain a nowhere degenerate real volume form Vol I on M . This form is called
the canonical volume form associated with the Nijenhuis tensor. This gives a func-
tional 9 : I →

∫
M Vol I on the space of almost complex structures. One of the

purposes of this paper is to investigate the critical points of the functional 9, in
the spirit of Hitchin’s work [2000; 2001].

1B. Connections with totally antisymmetric torsion. Let (M, g) be a Riemannian
manifold, ∇ : T M → T M ⊗31 M a connection, and T ⊂ 32 M ⊗ T M its torsion.
Identifying T M and 31 M via g, we may consider T as an element in 32 M⊗31 M ,
that is, a 3-form on T M . If T is totally skew-symmetric as a 3-form on T M , we
say that ∇ is a connection with totally skew-symmetric (or totally antisymmetric)
torsion. If, in addition, M is Hermitian, and ∇ preserves the Hermitian structure,
we say that ∇ is a Hermitian connection with totally antisymmetric torsion.

Connections with totally skew-symmetric torsion are extremely useful in physics
and differential geometry. An important example of such a connection is provided
by a theorem of Bismut [1989].

Theorem 1.3. Let (M, I ) be a complex manifold, and g a Hermitian metric. Then
M admits a unique connection with totally skew-symmetric torsion preserving I
and g. �

Connections with totally skew-symmetric torsion were studied at great length by
Friedrich, Ivanov and others; see for example [Friedrich and Ivanov 2002; Friedrich
2003; Agricola and Friedrich 2004]. Bismut’s theorem requires the base manifold
to be complex. Motivated by string theory, Friedrich and Ivanov generalized Bis-
mut’s theorem to nonintegrable almost complex manifolds [Friedrich and Ivanov
2002]. For completeness, we sketch a proof of their theorem below.

Theorem 1.4. Let (M, I, ω) be an almost complex Hermitian manifold, and

N : 32T 1,0(M) → T 0,1(M)

the Nijenhuis tensor. Consider the 3-linear form

(1-3)
ρ:T 1,0(M) × T 1,0(M) × T 1,0(M) → C,

ρ(x, y, z) := ω(N (x, y), z)
.

Then M admits a connection ∇ with totally skew-symmetric torsion preserving
(ω, I ) if and only if ρ is skew-symmetric. Moreover, such a connection is unique.

Sketch of a proof. Theorem 1.4 is proven essentially in the same way as one proves
Bismut’s theorem and the existence and uniqueness of a Levi-Civita connection.
Let (M, I, g) be a Hermitian manifold, and ∇0 a Hermitian connection. Then all
Hermitian connections can be obtained by taking ∇(A) := ∇0 + A, where A is
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a 1-form with coefficients in the algebra u(T M) of all skew-Hermitian endomor-
phisms. The torsion TA of ∇(A) is written as

TA = T0 + Alt12(A),

where T0 is a torsion of ∇0, and Alt12 denotes the antisymmetrization of

31(M) ⊗ u(T M) ⊂ 31(M) ⊗ 31(M) ⊗ T M

over the first two indices. We identify u(T M) with 31,1(M) in a standard way.
Then Theorem 1.4 can be reinterpreted as a statement about linear-algebraic prop-
erties of the operator

(1-4) Alt12 : 31(M) ⊗ 31,1(M) →
(
32(M) ⊗ 31(M)

)(2,1)+(1,2)

(where the superscript (. . . )(2,1)+(1,2) means taking (2, 1) + (1, 2)-part with respect
to the Hodge decomposition), as follows.

By definition, the Nijenhuis tensor N is a section of 32,0
⊗ T 0,1. Identifying

T 0,1 with 31,0 via g, we can consider N as an element of 32,0
⊗ 31,0. By Car-

tan’s formula, N is equal to the (3, 0)-part of the torsion. Therefore, the existence
of a connection with totally skew-symmetric torsion implies that (1-3) is skew-
symmetric.

Conversely, assume that (1-3) is skew-symmetric. Since (1-4) maps 31(M) ⊗

31,1(M) to (2, 1)⊕ (1, 2)-tensors, the (3, 0) and (0, 3)-parts of torsion stay skew-
symmetric if we modify the connection by adding A ∈ 31

⊗ u(T M). Denote by
T1 the (2, 1)⊕(1, 2)-part of the torsion T0. To prove Theorem 1.4, we need to find
A ∈ 31(M) ⊗ 31,1(M) such that T1 − Alt12(A) is totally skew-symmetric.

The map Alt12 : 31(M)⊗32(M) → 32(M)⊗31(M) is an isomorphism, as a
dimension count implies (this map has no kernel, which is easy to see). Therefore,
(1-4) is injective. Using the dimension count again, we find that cokernel of (1-4)
projects isomorphically into

32,1(M) ⊕ 31,2(M) ⊂ 32(M) ⊗ 31(M).

Therefore, for any T1 in (2, 1) ⊕ (1, 2)-part of 32(M) ⊗ 31(M) there exists A ∈

31(M)⊗31,1(M) and B ∈ 32,1(M)⊕31,2(M) such that T1 = Alt12(A)+ B. �

1C. Connections with antisymmetric torsion on almost complex 6-manifolds.
Let (M, I ) be an almost complex manifold, N its Nijenhuis tensor. To obtain all
Hermitian connections with totally skew-symmetric torsion on (M, I ), one needs
to find all metrics g for which the tensor ω(N (x, y), z) is skew-symmetric. As
Theorem 1.4 implies, these metrics are precisely those for which such a connection
exists.

We also prove the following proposition.
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Proposition 1.5. Let (M, I ) be an almost complex 6-manifold with Nijenhuis ten-
sor which is nondegenerate in a dense subset of M , and g a Hermitian metric
admitting a connection with totally antisymmetric torsion. Then g is uniquely de-
termined by I , up to conformal equivalence. Moreover, the Riemannian metric g
determines I uniquely, unless (M, g) is locally isometric to a 6-sphere.

Proof. This is Proposition 3.1 and Proposition 4.7. �

1D. Correspondence with the results of R. Bryant. Since the first version of this
paper was written, the previously unpublished results of R. Bryant appeared in a
fundamental and important preprint [2006]. There is a significant overlap with our
research, though the presentation and terminology are different. The property (1-3)
(which is equivalent to the existence of Hermitian connection with totally antisym-
metric curvature) is called “Nijenhuis tensor of real type” in [Bryant 2006]. The
main focus of that preprint is the so-called “quasiintegrable almost complex man-
ifold”: manifolds with Nijenhuis tensor of real type, which is at every point of M
either nondegenerate (of constant signature) or zero. Examples of such structures
are found. In particular, all twistor spaces of Kähler surfaces with sign-definite
holomorphic bisectional curvature are shown to be quasiintegrable. A variant of
Theorem 2.2 is also proven. It is shown that nearly Kähler manifolds are critical
points of the functional Vol I [Bryant 2006, Proposition 8].

2. Nearly Kähler manifolds: an introduction

Nearly Kähler manifolds (also known as K -spaces or almost Tachibana spaces)
were defined and studied by Alfred Gray in [1965; 1970; 1971; 1976] in a general
context of intrinsic torsion of U (n)-structures and weak holonomies. An almost
complex Hermitian manifold (M, I ) is called nearly Kähler if ∇X (I )X = 0, for
any vector fields X (∇ denotes the Levi-Civita connection). In other words, the
tensor ∇ω must be totally skew-symmetric, for ω the Hermitian form on M . If
∇X (ω) 6= 0 for any nonzero vector field X , M is called strictly nearly Kähler.

In this section, we give an overview of known results and “folk theorems” of
nearly Kähler geometry. Most of this theory was known (in a different context)
since 1980s, when the study of Killing spinors was initiated [Baum et al. 1991].

2A. Splitting theorems for nearly Kähler manifolds. As V. F. Kirichenko proved,
nearly Kähler manifolds admit a connection with totally antisymmetric, parallel
torsion [Kiričenko 1977]. This observation was used to prove a splitting theorem
for nearly Kähler manifolds: any nearly Kähler manifold is locally a Riemannian
product of a Kähler manifold and a strictly nearly Kähler one [Gray 1976; Nagy
2002b].
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A powerful classification theorem for Riemannian manifolds admitting an or-
thogonal connection with irreducible connection and parallel torsion was obtained
by R. Cleyton and A. Swann [2004]. They proved that any such manifold either
is locally homogeneous, or has vanishing torsion, or has weak holonomy G2 (in
dimension 7) or SU (3) (in dimension 6).

Using Kirichenko theorem, this result can be used to obtain a classification of
nearly Kähler manifolds. P.-A. Nagy has shown [2002a] that any strictly nearly
Kähler manifold is locally a product of locally homogeneous manifolds, strictly
nearly Kähler 6-manifolds, and twistor spaces of quaternionic Kähler manifolds of
positive Ricci curvature, equipped with the Eells-Salamon metric.

These days the term “nearly Kähler” usually denotes strictly nearly Kähler 6-
manifolds. In sequel we shall follow this usage, often omitting “strictly” and “6-
dimensional”.

In dimension 6, a manifold is (strictly) nearly Kähler if and only if it admits
a Killing spinor [Grunewald 1990]. Therefore, such a manifold is Einstein, with
positive Einstein constant.

As one can easily show (see Theorem 4.2), strictly nearly Kähler 6-manifolds
can be defined as 6-manifolds with structure group SU (3) and fundamental forms
ω ∈ 3

1,1
R (M), � ∈ 33,0(M), satisfying dω = 3λ Re � and d Im � = −2λω2. An

excellent introduction to nearly Kähler geometry is found in [Moroianu et al. 2005].
The most puzzling aspect of nearly Kähler geometry is a complete lack of

nonhomogeneous examples. With the exception of four homogeneous cases de-
scribed below (Section 2C), no other compact examples of strictly nearly Kähler
6-manifolds are known to exist.

2B. Nearly Kähler manifolds in G2-geometry and physics. Nearly Kähler mani-
folds have many uses in geometry and physics. Along with Calabi–Yau manifolds,
nearly Kähler manifolds appear as target spaces for supersymmetric sigma-models,
solving equations of type II string theory. These manifolds are the only 6-manifolds
admitting a Killing spinor. This implies that a Riemannian cone C(M) of a nearly
Kähler manifold has a parallel spinor.

Let (M, g) be a Riemannian manifold. Recall that the Riemannian cone of
(M, g) is a product M ×R>0, with a metric gt2

⊕λ·dt2, where t is a unit parameter
on R>0, and λ a constant. It is well known that M admits a real Killing spinor if and
only if C(M) admits a parallel spinor (for appropriate choice of λ). Then, C(M)

has restricted holonomy, for any nearly Kähler 6-manifold. It is easy to check that
in fact C(M) has holonomy G2. This explains a tremendous importance that nearly
Kähler manifolds play in G2-geometry.

We give a brief introduction of G2-geometry, following [Hitchin 2000] and
[Joyce 2000]. Let V 7 be a 7-dimensional real vector space. The group GL(7, R)
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acts on 33(V 7) with two open orbits. For ν in one of these orbits, its stabilizer
St (ν) ⊂ GL(7, R) is 14-dimensional, as a dimension count insures. It is easy to
check that St (ν) is a real form of a Lie group G2. For one of these orbits, St (ν) is
a compact form of G2, for another one it is noncompact. A 3-form ν ∈ 33(V 7) is
called stable if its stabilizer is a compact form of G2.

A 7-manifold X equipped with a 3-form ρ is called a G2-manifold if ρ is stable
everywhere in X . In this case, the structure group of X is reduced to G2. Also, X
is equipped with a natural Riemannian structure:

(2-1) x, y →

∫
X
(ρ y x) ∧ (ρ y x) ∧ ρ (x, y ∈ T M).

A G2-manifold is called parallel if ∇ρ = 0, where ∇ is the Levi-Civita connection
associated with this Riemannian structure.

Isolated singularities of G2-manifolds are of paramount importance in physics;
see [Acharya and Gukov 2004; Atiyah and Witten 2002]. A simplest example of
an isolated singular point is a conical singularity.

A metric space X with marked points x1, . . . , xn is called a space with isolated
singularities, if X\{x1, . . . , xn} is a Riemannian manifold. Consider a space (X, x)

with a single singular point. The singularity x ∈ X is called conical if X is equipped
with a flow acting on X by homotheties and contracting X to x . In this case, X \ x
is isomorphic to a Riemannian cone of a Riemannian manifold M .

It is easy to check that the cone C(M) of a nearly Kähler manifold is equipped
with a parallel G2-structure, and, conversely, every conical singularity of a parallel
G2-manifold is obtained as C(M), for some nearly Kähler manifold M [Hitchin
2001; Ivanov et al. 2006]. For completeness’ sake, we give a sketch of a proof of
this result in Proposition 4.5.

The idea of this correspondence is quite clear. Let X = C(M) be a parallel G2-
manifold, and ωC its 3-form. Unless X is flat, we may assume that X has holonomy
which is equal to G2 and not its proper subgroup. Indeed, if holonomy of X is less
than G2, by Berger’s classification of irreducible holonomies, X is represented (as
a Riemannian manifold) as a product of manifolds of smaller dimension. However,
the singular point of the metric completion X is isolated, and this precludes such
a decomposition, unless X is smooth. In the latter case, X is flat.

Since the holonomy of X is (strictly) G2, the 3-form can be reconstructed from
the Riemannian structure uniquely. After rescaling, we may assume that the Rie-
mannian structure on X = C(M) is homogeneous of weight 2, with respect to the
action of R>0 on C(M). Then ωC is homogeneous of weight 3. Homogeneous
G2-structures on C(M) correspond naturally to SU (3)-structures on M . We write
ωC as t2 π∗ω ∧ dt + t3 π∗ρ, where ρ, ω are forms on M , and π : C(M) → M is
the standard projection. From a local coordinate expression of a G2-form, we find
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that ω is a Hermitian form corresponding to an almost complex structure I , and
ρ = Re � for a nowhere degenerate (3, 0)-form � on (M, I ).

The converse is proven by the same computation: given an SU (3)-manifold
(M, I, ω,�), we write a 3-form

(2-2) ωC := t2 π∗ω ∧ dt + t3 π∗ρ,

on C(M), and show that it is a G2-structure, using a coordinate expression for a
G2-form.

As Fernandez and Gray proved in [1982], a G2-manifold (X, ωC ) is parallel
if and only if ωC is harmonic. For the form (2-2), dωC = 0 is translated into
dω = 3ρ.

Since ∗ρ = Iρ and ∗ω = ω2, the condition d∗ωC = 0 becomes d Iρ = −2ω2.
After an appropriate rescaling, we find that this is precisely the condition defining
the nearly Kähler structure Theorem 4.2. Therefore, C(M) is a G2-manifold if and
only if M is nearly Kähler (see Section 4C for a more detailed argument).

The correspondence between conical singularities of G2-manifolds and nearly
Kähler geometry can be used further to study the locally conformally parallel G2-
manifolds (see also [Ivanov et al. 2006]). A locally conformally parallel G2-mani-
fold is a 7-manifold M with a covering M̃ equipped with a parallel G2-structure,
with the deck transform acting on M̃ by homotheties. Since homotheties preserve
the Levi-Civita connection ∇̃ on M̃ , ∇̃ descends to a torsion-free connection on M ,
which is no longer orthogonal, but preserves the conformal class of a metric. Such a
connection is called a Weyl connection, and a conformal manifold of dimension >2
equipped with a torsion-free connection preserving the conformal class is called
a Weyl manifold. The Weyl manifolds are a subject of much study in conformal
geometry; see for example [Dragomir and Ornea 1998] and the reference therein.

The key theorem of Weyl geometry is proven by P. Gauduchon [1984]. He has
shown that any compact Weyl manifold is equipped with a privileged metric in
its conformal class. This metric (called a Gauduchon metric now) is defined as
follows.

Let (M, [g], ∇) be a compact Weyl manifold, where [g] is a conformal class,
and g ∈ [g] any metric within this conformal class. Since ∇[g] = 0, we have
∇(g) = g ⊗ θ , where θ is a 1-form, called a Lee form. A metric g is called
Gauduchon if θ satisfies d∗θ = 0. A Gauduchon metric is unique (up to a complex
multiplier).

Let now (M, ∇, [g]) be a Weyl manifold with a Ricci-flat connection ∇. In
[1995], Gauduchon has shown that the Lee form θ of the Gauduchon metric on M
is parallel with respect to the Levi-Civita connection associated with this metric.

Applying this argument to a compact locally conformally parallel G2-manifold
M , we obtain that the Lee form is parallel. From this one infers that the parallel
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G2-covering M̃ of M is a cone over some Riemannian manifold S; see for ex-
ample [Verbitskiı̆ 2004, Proposition 11.1], also see [Kamishima and Ornea 2005]
and [Gini et al. 2005]. Using the argument stated above, we find that this mani-
fold is in fact nearly Kähler. Therefore, S is Einstein, with positive Ricci curva-
ture. Since M is compact, S is complete, and by Myers theorem, S is actually
compact; see [Verbitskiı̆ 2004, Remark 10.7]. Now, the argument which proves
Theorem 12.1 of [Verbitskiı̆ 2004] can be used to show that dim H 1(M, Q) = 1,
and M = C(S)/Z. This gives the following structure theorem, which is proven
independently in [Ivanov et al. 2006].

Theorem 2.1. Let M be a compact locally conformally parallel G2-manifold.
Then M = C(S)/Z, where S is a nearly Kähler manifold, and the Z-action on
C(S) ∼= S ×R>0 is generated by a map (x, t) 7→ (ϕ(x), qt), where |q| > 1 is a real
number, and ϕ : S → S an automorphism of nearly Kähler structure. �

2C. Examples of nearly Kähler manifolds. Just as the conical singularities of par-
allel G2-manifolds correspond to nearly Kähler manifolds, the conical singularities
of Spin(7)-manifolds correspond to the so-called “nearly parallel” G2-manifolds
(see [Ivanov 2004]). A G2-manifold (M, ω) is called nearly parallel if dω = c∗ω,
where c is some constant. The analogy between nearly Kähler 6-manifolds and
nearly parallel G2-manifolds is almost perfect. These manifolds admit a connec-
tion with totally antisymmetric torsion and have weak holonomy SU (3) and G2

respectively. N. Hitchin realized nearly Kähler 6-manifolds and nearly parallel G2-
manifolds as extrema of a certain functional, called Hitchin functional by physicists
(see [Hitchin 2001]).

However, examples of nearly parallel G2-manifolds are found in profusion (ev-
ery 3-Sasakian manifold is nearly parallel G2), and compact nearly Kähler mani-
folds are rare.

Only four compact examples are known (see the list below); all of them homo-
geneous. In [Butruille 2005] it was shown that any homogeneous nearly Kähler
6-manifold belongs to this list.

(1) The 6-dimensional sphere S6. Since the cone C(S6) is flat, S6 is a nearly
Kähler manifold, as shown in Section 2B. The almost complex structure on S6 is
reconstructed from the octonion action, and the metric is standard.

(2) S3
× S3, with the complex structure mapping ξi to ξ ′

i , ξ ′

i to −ξi , where ξi , ξ ′

i ,
i = 1, 2, 3 is a basis of left invariant 1-forms on the first and the second component.

(3) Given a selfdual Einstein Riemannian 4-manifold M with positive Einstein
constant, one defines its twistor space Tw(M) as a total space of a bundle of unit
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spheres in 32
−
(M) of antiselfdual 2-forms. Then Tw(M) has a natural Kähler-

Einstein structure (I+, g), obtained by interpreting unit vectors in 32
−
(M) as com-

plex structure operators on T M . Changing the sign of I+ on T M , we obtain an
almost complex structure I− which is also compatible with the metric g [Eells
and Salamon 1985]. A straightforward computation insures that (Tw(M), I−, g)

is nearly Kähler [Muškarov 1987].
As N. Hitchin proved [1981], there are only two compact selfdual Einstein 4-

manifolds: S4 and CP2. The corresponding twistor spaces are CP3 and the flag
space F(1, 2). The almost complex structure operator I− induces a nearly Kähler
structure on these two symmetric spaces.

2D. Nearly Kähler manifolds are extrema of volume on almost complex mani-
folds with nowhere degenerate Nijenhuis tensor. Let (M, I, ω) be a nearly Kähler
manifold, and N ∗

: 30,1(M) → 32,0(M) the Nijenhuis tensor. By Cartan’s for-
mula, N ∗ is the (2, −1)-part of the de Rham differential (with respect to the Hodge
decomposition). In Theorem 4.2, it is shown that dω is a real part of a nowhere
degenerate (3, 0)-form �. Therefore, the 3-form

ω(N (x, y), z) = dω(x, y, z) = Re �(x, y, z)

is nowhere degenerate on T 1,0(M). So the Nijenhuis tensor N is nowhere degen-
erate.

The main result of this paper is the following theorem, which is analogous to
[Hitchin 2001].

Theorem 2.2. Let (M, I ) be a compact almost complex 6-manifold with nowhere
degenerate Nijenhuis tensor admitting a Hermitian connection with totally anti-
symmetric torsion. Consider the functional I →

∫
M Vol I on the space of such

manifolds constructed in Section 1A. Then this functional has a critical point at I
if and only if (M, I ) admits a nearly Kähler metric.

Proof. This follows from Proposition 5.6 and Theorem 4.2. �

Remark 2.3. As follows from Corollary 3.3, the nearly Kähler metric on (M, I )
is uniquely determined by the almost complex structure.

3. Almost complex structures and connections
with totally antisymmetric torsion

Let (M, I ) be a 6-dimensional almost complex manifold, and

N ∗
: 30,1(M) → 32,0(M)

its Nijenhuis tensor. Given a point x ∈ M , the operator N ∗
∣∣
3

0,1
x (M)

can a priori take
any value within Hom(30,1(M), 32,0(M)). For N ∗

∣∣
3

0,1
x (M)

generic, the stabilizer
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St (N ∗
x ) of N ∗

x within GL(Tx M) is 2-dimensional. If we fix a complex parameter,
the eigenspaces of N ∗

x (taken in appropriate sense) define a frame in T M . Thus,
a geometry of a “very generic” 6-dimensional almost complex manifold is rather
trivial.

However, for a N ∗
x inside a 10-dimensional subspace

W0 ⊂ Hom(30,1(M), 32,0(M))

(see Remark 3.2), the stabilizer St (N ∗
x ) contains SU (3), and the geometry of

(M, I ) becomes more interesting.

Proposition 3.1. Let (M, I ) be an almost complex 6-manifold with Nijenhuis ten-
sor which is nondegenerate in a dense set. Assume that (M, I ) admits a Hermitian
structure ω and a Hermitian connection with totally antisymmetric torsion. Then
ω is uniquely determined by I , up to conformal equivalence.

Proof. Consider the map

(3-1) C := Id ⊗ N ∗
: 31,1(M) → 31,0(M) ⊗ 32,0(M)

obtained by acting with the Nijenhuis tensor N ∗
: 30,1(M) → 32,0(M) on the

second tensor multiplier of 31,1(M) ∼= 31,0(M) ⊗ 30,1(M). Then C maps ω to
a 3-form x, y, z 7→ ω(N (x, y), z). As Theorem 1.4 implies, (M, I, ω) admits a
Hermitian connection with totally antisymmetric torsion if and only if C(ω) lies
inside a 1-dimensional space

33,0(M) ⊂ 31,0(M) ⊗ 32,0(M).

However, C is an isomorphism in a dense subset of M ; hence, all ω which satisfy
the conditions of Theorem 1.4 are proportional. �

Remark 3.2. The same argument can be used to prove that an almost complex
manifold admits a Hermitian connection with totally antisymmetric torsion if and
only if C−1(33,0(M)) contains a Hermitian form. This is the space W0 alluded to
in the beginning of this section.

Proposition 3.1 leads to the following corollary.

Corollary 3.3. Let (M, I ) be an almost complex 6-manifold. Then (M, I ) admits
at most one strictly nearly Kähler metric, up to a constant multiplier.

Proof. Let ω1 and ω2 be nearly Kähler metrics on (M, I ). Since (M, I, ωi ) is
strictly nearly Kähler, the 3-form C(ωi ) ∈ 33,0(M) is nowhere degenerate; see
(3-1). Therefore, (M, I ) has nowhere degenerate Nijenhuis tensor. Then, by
Proposition 3.1, ωi are proportional: ω1 = f ω2 . However, dω2

i = 0 on any nearly
Kähler 3-manifold; see for example Theorem 4.2 (ii). Then 2 f d f ∧ ω2

2 = 0. This
implies d f = 0, because the map η 7→ η ∧ ω2

2 is an isomorphism on 31(M). �
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Remark 3.4. The converse is also true: unless (M, g) is locally isometric to a
6-sphere, the Riemannian metric g determines the nearly Kähler almost complex
structure I uniquely; see Proposition 4.7.

4. Nearly Kähler geometry and Hermitian connections
with totally antisymmetric torsion

4A. Hermitian structure on 33,0(M) and nearly Kähler manifolds. Let (M, I )
be an almost complex 6-manifold, and � ∈ 33,0(M) a nondegenerate (3, 0)-form.
Then �∧� is a positive volume form on M . This gives a Vol(M)-valued Hermitian
structure on 33,0(M). If M is in addition Hermitian, then M is equipped with a
natural volume form Vol h associated with the metric, and the map

� 7→
� ∧ �

Vol h

can be considered as a Hermitian metric on 33,0(M). This metric agrees with
the usual Riemann-Hodge pairing known from algebraic geometry, when I is inte-
grable. The following definition is a restatement of the classical one; see Section 2.

Definition 4.1. Let (M, I, ω) be an almost complex Hermitian manifold, and ∇

the Levi-Civita connection. Then (M, I, ω) is called nearly Kähler if the tensor
∇ω is totally antisymmetric, that is, ∇ω ⊂ 33(M).

The following theorem is a main result of this section.

Theorem 4.2. Let (M, I, ω) be an almost complex Hermitian 6-manifold equipped
with a (3, 0)-form �. Assume that � satisfies 3λ Re � = dω, and |�|ω = 1, where
λ is a constant, and |.|ω is the Hermitian metric on 33,0(M) constructed above.
Then the following conditions are equivalent.

(i) M admits a Hermitian connection with totally antisymmetric torsion.

(ii) d� = −2
√

−1 λω2.

(iii) (M, I, ω) is nearly Kähler, and dω = ∇ω.

The equivalence of (ii) and (iii) is known; see for example the second part of
the proof of Theorem 6 in [Hitchin 2001].

The existence of Hermitian connections with totally antisymmetric torsion on
nearly Kähler manifolds is also well known (see Section 2). This connection is
written as ∇N K = ∇ + T , where ∇ is the Levi-Civita connection on M , and T
the operator obtained from the 3-form 3λ Im � by raising one of the indices. The
torsion of ∇N K is totally antisymmetric by construction (it is equal T ). Also by
construction, we find that T (ω) = −3λ Re �, hence ∇N K (ω) = 0. Therefore, ∇N K

is a Hermitian connection with totally antisymmetric torsion. This takes care of
the implication (iii) ⇒ (i).
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To prove Theorem 4.2, it remains to prove that (i) implies (ii); we do that in
Section 4B. For completeness’ sake, we sketch the proof of the implication (ii) ⇒

(iii) in Section 4D.

Remark 4.3. As Corollary 3.3 shows, a non-Kähler nearly Kähler metric on M is
uniquely determined by the almost complex structure I .

4B. Connections with totally antisymmetric torsion and Nijenhuis tensor.

Lemma 4.4. In the assumptions of Theorem 4.2, (i) implies (ii).

Proof. Step 1: We show that d� ∈ 32,2(M). Were (M, I ) integrable, the differ-
ential d would have only (0,1)- and (1,0)-part with respect to the Hodge decom-
position: d = d1,0

+ d0,1. For a general almost complex manifold, d splits into 4
parts:

d = d2,−1
+ d1,0

+ d0,1
+ d−1,2.

This follows immediately from the Leibniz rule. However,

(4-1) 0 = d2ω = d(� + �) = d� + d�.

Since 3p,q(M) vanishes for p or q > 3, we also have

(4-2) d� + d� = d0,1� + d−1,2� + d2,−1� + d1,0� .

The four terms on the right hand side of (4-2) have Hodge types (3, 1), (2, 2),
(2, 2) and (1, 3). Since their sum vanishes by (4-1), we obtain

d0,1� = 0, d1,0� = 0, d2,−1� = −d−1,2�.

Then (4-2) gives

(4-3) d� = −d2,−1� = d−1,2�.

Step 2:

(4-4) d2,−1∣∣
31,1(M)

= ∧ ◦ Id ⊗N ∗,

where N ∗
: 30,1(M) → 32,0(M) is the Nijenhuis tensor,

Id ⊗N ∗
: 31,1(M) → 32,0(M) ⊗ 31,0(M)

acts as N ∗ on the second multiplier of 31,1(M) ∼= 31,0(M) ⊗ 30,1(M), and ∧

denotes the exterior product. (4-4) is immediately implied by the Cartan’s formula
for the de Rham differential.

Step 3: From the existence of Hermitian connection with totally antisymmetric
torsion we obtain that the form

ω(N (x, y), z) : T 1,0 M × T 1,0 M × T 1,0 M → C
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is totally antisymmetric; see Theorem 1.4. From (4-4) it follows that

(4-5) ω(N (x, y), z) = dω = 3λ Re �.

Consider an orthonormal frame dz1, dz2, dz3 in 31,0(M), satisfying

� = dz1 ∧ dz2 ∧ dz3

(such a frame exists because |�|ω = 1). Then (4-5) gives

(4-6) N ∗(d z̄i ) = λdži ,

where dž1 = dz2 ∧ dz3, dž2 = −dz1 ∧ dz3, dž3 = dz1 ∧ dz2.

Step 4: Using Cartan’s formula as in Step 2, we express d−1,2� through the Nijen-
huis tensor. Then (4-3) can be used to write d� = d−1,2� in terms of N ∗. Finally,
(4-6) allows us to write d−1,2� in coordinates, yielding d� = −2

√
−1 λω2. �

4C. G2-structures on cones of Hermitian 6-manifolds.

Proposition 4.5. Let (M, I, ω) be an almost complex Hermitian manifold, � ∈

33,0(M) a (3, 0)-form which satisfies dω = 3λ Re �, for some real constant, and
|�|ω =1. Assume, in addition, that d�=−2

√
−1λω2. Consider the cone C(M)=

M × R>0, equipped with a 3-form ρ = 3t2ω ∧ dt + t3dω, where t is the unit
parameter on the R>0-component. Then (C(M), ρ) is a parallel, G2-manifold;
see Section 2B. Moreover, any parallel G2-structure ρ ′ on C(M) is obtained in
this way if ρ ′ is homogeneous of weight 3 with respect to the natural action of R>0

on C(M).

Proof. As Fernandez and Gray has shown in [1982], to show that a G2-structure ρ

is parallel it suffices to prove that dρ = d∗ρ = 0. Clearly, dρ = 0, because

dρ = 3t2dω ∧ dt + 3t2dt ∧ dω = 0.

On the other hand, ∗(ω∧dt) =
1
2 t2ω2, and ∗dω = −3dt ∧ I (dω), where ∗ is taken

with respect to the cone metric on C(M). This is clear, because (ω, �) defines an
SU (3)-structure on M , and dω = 3λ Re �. Then

(4-7) ∗ρ =
3
2 t4ω2

− 3t3dt ∧ I (dω).

Since d� = −2
√

−1 λω2 and 3λd Re � = d2ω = 0, we obtain d Im � = −2λω2.
This gives d I (dω) = −2ω2, because λI (dω) = Im �. Then (4-7) implies

d(∗ρ) = 6t3dt ∧ ω2
+ 3t3dt ∧ d I (dω) = 6t3dt ∧ ω2

− 6t3dt ∧ ω2
= 0.

We proved that C(M) is a parallel G2-manifold. The converse statement is straight-
forward. �
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In Section 2B, it is shown that the holonomy of C(M) is strictly G2, unless it is
flat (in the latter case, M is locally isometric to a sphere). Therefore, Proposition
4.5 implies the following corollary.

Corollary 4.6. In the assumptions of Proposition 4.5, the almost complex structure
is uniquely determined by the metric, unless M is locally isometric to a 6-sphere. �

4D. Near Kählerness obtained from G2-geometry. Now we can conclude the
proof of Theorem 4.2.

Proof of (iii) from (ii). Let M be a 6-manifold satisfying the assumptions of The-
orem 4.2 (ii). Consider the cone C(M) equipped with a parallel G2-structure ρ as
in Proposition 4.5. Let g0 be a cone metric on C(M). From the argument used to
prove Proposition 4.5, it is clear that g0 is a metric induced by the 3-form ρ as in
(2-1).

Consider the map C(M)
τ

→ M × R induced by (m, t) 7→ (m, log t), and let
g1 = τ ∗gπ be induced by the product metric gπ on M × R. Denote by ∇0, ∇1 the
corresponding Levi-Civita connections. We know that ∇0(ρ) = 0, and we need to
show that

(4-8) ∇1(ω) = dω.

The metrics g0, g1 are proportional: g1 = g0e−t . This allows one to relate the
Levi-Civita connections ∇1 and ∇0 (see for example [Ornea and Piccinni 1998])
by

∇1 = ∇0 +
1
2 A,

where A :T M →End(31(M)) is an End(31(M))-valued 1-form mapping X ∈T M
to

(4-9) (θ, X) Id −X ⊗ θ + X ]
⊗ θ ],

with θ the 1-form defined by ∇0(g1) = g1 ⊗θ , X ⊗θ the tensor product of X and θ

considered as an endomorphism of 31(M), and X ]
⊗ θ ] the dual endomorphism.

From (4-9) and ∇0(ρ) = 0 we obtain

(4-10) (∇1)X (ρ) = (X, θ)ρ − (ρ y X) ∧ θ + (ρ y θ ]) ∧ X ].

Since θ =
dt
t , we have ∇1(θ)=0, and ∇1 preserves the decomposition 3∗(C(M))∼=

3∗(M) ⊕ dt ∧ 3∗(M). Restricting ourselves to the dt ∧ 3∗(M)-summand of this
decomposition and applying (4-10), we find

(∇1)X (t3ω ∧ θ) = t3(dω y X) ∧ θ

for any X orthogonal to dt . Since g1 is a product metric on C(M) ∼= M × R, this
leads to ∇ω = dω, where ∇ is the Levi-Civita connection on M . This implies
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(4-8). So we deduced Theorem 4.2 (iii) from (ii) and the proof of Theorem 4.2 is
finished. �

Using Corollary 4.6, we also obtain the following useful proposition.

Proposition 4.7. Let (M, I, g) be a nearly Kähler manifold. Then the almost
complex structure is uniquely determined by the Riemannian structure, unless M
is locally isometric to a 6-sphere.

5. Almost complex structures on 6-manifolds and
their infinitesimal variations

5A. Hitchin functional and the volume functional. Let (M, I ) be an almost com-
plex 6-manifold with nowhere degenerate Nijenhuis tensor N , and Vol I =det N ∗

⊗

det N ∗ the corresponding volume form as in (1-2). In this section we study the
extrema of the functional

I
9

−→

∫
M

Vol I .

A similar functional was studied by N. Hitchin for 6- and 7-manifolds equipped
with a stable 3-form [Hitchin 2001]. Since then, this functional has acquired a
pivotal role in string theory and M-theory, under the name “Hitchin functional”.

Our first step is to describe the variation of 9. We denote by M the space of all
almost complex structures with nowhere degenerate Nijenhuis tensor on M .

Let (M, I, ω) be an almost complex manifold with nowhere degenerate Nijen-
huis tensor

N ∈ Hom(32T 1,0(M), T 0,1(M)),

δ ∈ TI M an infinitesimal variation of I , and

Nδ ∈ Hom(32T 1,0(M), T 0,1(M))

the corresponding variation of the Nijenhuis tensor. Consider the form

ρ := ω(N (x, y), z)

associated with the Hermitian structure on M as in Theorem 1.4. After rescaling
ω, we assume that

(5-1) |ρ|ω = 1.

Since the Nijenhuis tensor is nowhere degenerate, ρ is also nowhere degenerate.
Therefore, ρ can be used to identify T 0,1(M) and 32T 1,0(M), and we may consider
Nδ as an endomorphism of 30,1(M). Notice that this identification maps N to the
identity automorphism of 30,1(M).
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Claim 5.1. With these assumptions,

d9

d I
(δ) = 2 Re

∫
M

Tr Nδ Vol I .

Proof. It is well known that

d(det A)

dt
= det A Tr

(
A−1 d A

dt

)
for any matrix A. Applying that to the map

N ∗
⊗ N ∗

: 31,0(M) ⊗ 30,1(M) → 30,2(M) ⊗ 32,0(M),

we obtain that

(5-2)
d(det(N ∗

⊗ N ∗))

d I
(δ) = Tr

(
N ∗

δ ⊗ N ∗
+ N ∗

⊗ N ∗

δ

N ∗ ⊗ N ∗

)
· det(N ∗

⊗ N ∗).

However, after we identify 31,0(M) and 30,2(M) as above, N becomes an identity,
and (5-2) gives

d(det(N ∗
⊗ N ∗))

d I
(δ) = 2 Re Tr Nδ Vol I . �

Remark 5.2. We find that the extrema of the functional 9(M, I ) =
∫

M Vol I are
precisely those almost complex structures for which Re Tr Nδ = 0 for any infini-
tesimal variation δ of I .

5B. Variations of almost complex structures and the Nijenhuis tenor. It is con-
venient, following Kodaira and Spencer, to consider infinitesimal variantions of
almost complex structures as tensors δ ∈ 30,1(M) ⊗ T 1,0(M). Indeed, a com-
plex structure on a vector space V , dim R V = 2d, can be considered as a point
of the Grassmannian of d-dimensional planes in V ⊗ C. The tangent space to a
Grassmannian at a point W ⊂ V ⊗ C is given by Hom(W, V ⊗ C/W ).

Consider the (0, 1)-part ∇
0,1 of the Levi-Civita connection

∇
0,1δ ∈ 30,1(M) ⊗ T 1,0(M) ⊗ 30,1(M),

and let

∂ : 30,1(M) ⊗ T 1,0(M) → 30,2(M) ⊗ T 1,0(M)

denote the composition of ∇
0,1 with the exterior multiplication map

30,1(M) ⊗ T 1,0(M) ⊗ 30,1(M) → 30,2(M) ⊗ T 1,0(M).

The following claim is well known.
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Claim 5.3. Let (M, I ) be an almost complex manifold, and

δ ∈ 30,1(M) ⊗ T 1,0(M)

an infinitesimal variation of almost complex structure. Denote by Nδ ⊂ 32,0(M)⊗

T 0,1(M) the corresponding infinitesimal variation of the Nijenhuis tensor (see Sec-
tion 5A). Then N δ = ∂δ, where ∂ is the differential operator defined above.

Proof. The proof follows from a direct computation; see for example [Kodaira and
Spencer 1958]. �

Claim 5.3 can be used to study the deformation properties of the functional
I 9

−→
∫

M Vol I constructed above; see Section 5A. Indeed, from Remark 5.2 it
follows that 9 has an extremum at I if and only if Re Tr Nδ = 0 for any δ ∈

30,1(M) ⊗ T 1,0(M). Using the identification T 1,0(M) ∼= 32,0(M), provided by
the nondegenerate (3, 0)-form as above, we can consider δ as a (2, 1)-form on M .
Then

∂δ ∈ 30,2(M) ⊗ 32,0(M) = 32,2(M)

is the (2, 2)-part of dδ. Under these identifications, and using |ρ|ω = 1 from (5-1),
we can express Tr N δ as

(5-3) Tr N δ =
∂δ ∧ ω

Vol I
,

where ∂ is a (0, 1)-part of the de Rham differential. This gives the following claim.

Claim 5.4. Let (M, I, ω) be an almost complex Hermitian 6-manifold with nowhere
degenerate Nijenhuis tensor. Assume that the corresponding 3-form ρ satisfies
|ρ|ω = 1; see (5-1). Consider the functional 9(I ) =

∫
M Vol I on the space of such

almost complex structures. Then

d9

d I
(δ) = 2 Re

∫
M

∂δ ∧ ω,

where δ ∈30,1(M)⊗T 1,0(M) is an infinitesimal deformation of an almost complex
structure I , considered as a (2, 1)-form on M.

Proof. The claim is implied immediately by (5-3) and Claim 5.1. �

Comparing Claim 5.4 with Remark 5.2, we find the following corollary.

Corollary 5.5. In assumptions of Claim 5.4, I is an extremum of 9 if and only if

(5-4) Re
∫

M
∂δ ∧ ω = 0

for any δ ∈ 32,1(M). �
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Integrating by parts, we find that (5-4) is equivalent to

Re
∫

M
δ ∧ ∂ω = 0

and to ∂ω = 0. This gives the following proposition.

Proposition 5.6. Let (M, I, ω) be an almost complex Hermitian 6-manifold with
nowhere degenerate Nijenhuis tensor. Consider the functional 9(I ) =

∫
M Vol I on

the space of such almost complex structures on M. Then I is an extremum of 9 if
and only if dω lies in 33,0(M) ⊕ 30,3(M). �

Now, Proposition 5.6 together with Theorem 4.2 implies Theorem 2.2. Notice
that by Corollary 3.3, the nearly Kähler Hermitian structure on (M, I ) is (up to a
constant multiplier) uniquely determined by I .
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