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EQUIVARIANT ELLIPTIC GENERA

ROBERT WAELDER

We introduce the equivariant elliptic genus for open varieties and prove an
equivariant version of the change of variable formula for blow-ups along
complete intersections. In addition, we prove the equivariant elliptic genus
analogue of the McKay correspondence for the ALE spaces.

1. Introduction

The classical McKay correspondence describes a relationship between the repre-
sentation theory of a finite subgroup G ⊂ SU(2) and the topology of the crepant
resolution C̃2/G of C2/G. One consequence of this relationship is that the Euler
characteristic of C̃2/G is equal to the number of irreducible representations of
G. A simple calculation shows that the number of irreducible representations of
G corresponds in turn to the orbifold Euler number of the pair (C2,G). Here,
if X has an action by a finite group G, we define the orbifold Euler number
eorb(X,G) =

1
|G|

∑
gh=hg e(X g,h), where X g,h denotes the common fixed point

locus of a pair of commuting elements g and h. This definition comes from string
theory; in particular, physicists conjectured that, for G a finite subgroup of SU(3),
the orbifold Euler number of (C3,G) coincided with the topological Euler number
of a crepant resolution of the quotient, when such a resolution existed. In analogy
with the classical McKay correspondence, we refer to formulae of this type as
McKay correspondences for the Euler characteristic.

Investigations along these lines bring to mind several questions. First, what
topological data should eorb(X,G) correspond to when the quotient X/G does
not possess a crepant resolution? Second, what are the analogues of the McKay
correspondence for other algebro-geometric invariants?

Batyrev [1999] used techniques from motivic integration to define the Euler
number of a pair (V, D), where D is a divisor on V . The expression estr(V, D)
behaves well with respect to birational morphisms in the sense that estr(Ṽ , D̃) =

estr(V, D) if K Ṽ + D̃ = φ∗(KV + D) for a birational morphism φ : Ṽ → V .
This definition therefore provides a framework for studying the Euler number of
a resolution of singularities even when no crepant resolution exists. For a special
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choice of a divisor 1 on X/G, Batyrev proved that eorb(X,G)= estr(X/G,1). In
fact, he proved a much stronger variation of this theorem for the χy genus.

An important generalization of both the topological Euler characteristic and the
χy genus is the two variable elliptic genus. If X is an almost complex manifold,
the elliptic genus Ell(X) is defined as∫

X

∏
TX

x jθ
( x j

2π i − z, τ
)

θ
( x j

2π i , τ
) .

The product is taken over the formal Chern roots of the holomorphic tangent bundle
to X . θ(t, τ ) is the Jacobi theta function and z is a formal parameter.

When X possesses an action of a finite group G, there exists a notion of the
orbifold elliptic genus of X which extends Batyrev’s definition of the orbifold χy

genus. Recently, Borisov and Libgober [2005] proved the elliptic genus analogue
of the McKay correspondence. To do this, they first define the elliptic genus and
orbifold elliptic genus of a pair (X, D) for D a divisor on X and show that these
definitions satisfy change of variable formulae similar to the objects estr(X, D) in
Batyrev’s paper. Whereas Batyrev’s proof relies on the change of variables formula
from motivic integration, Borisov and Libgober examine the case of a single blow-
up and appeal to the deep result of Włodarczyk [2003] that every birational map of
smooth complex varieties may be factored into a sequence of blow-ups and blow-
downs along smooth centers. This change of variable formula allowed Borisov and
Libgober to reduce the proof to a version of the McKay correspondence for toroidal
morphisms. A crucial aspect of their proof is a description of the cohomological
pushforward of a toroidal morphism in terms of combinatorial data associated to the
map. We refer to this technique as Borisov and Libgober’s push-forward formula.

When X has an action of a compact torus T that commutes with the action of a
finite group G, one has natural definitions for the equivariant orbifold elliptic genus
of (X,G) and the equivariant elliptic genus of T-resolutions of X/G. One reason
for studying these equivariant elliptic genera is that, by localization, they make
sense even when X is not compact, provided that X has compact fixed components.
Here we prove an equivariant elliptic genus analogue of the classical McKay corre-
spondence for ALE spaces. Along the way we prove the equivariant version of the
change of variable formula for blow-ups along complete intersections. In the toric
case, this formula turns out to be linked to a rigidity property of the elliptic genus
of a pair. A prominent feature throughout this paper is the equivariant analogue of
Borisov and Libgober’s push-forward formula; we describe a relationship between
their formula and the functorial localization formula for a toric morphism. The
suggestion that Borisov and Libgober’s push-forward formula is really functorial
localization in disguise might explain the ease with which the proof of their formula
extends to the equivariant case.
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Here is an outline of the paper. In Section 2 we introduce the notion of the
equivariant orbifold elliptic class, which is useful for making sense of elliptic gen-
era on open varieties with a torus action. In Section 3 we discuss various aspects
of equivariant cohomology and prove some technical lemmas which will be used
implicitly throughout the paper. In Sections 4 and 5 we prove the equivariant ana-
logue of Borisov and Libgober’s push-forward formula, and discuss its relationship
to the functorial localization formula applied to a toric morphism. In Section 6 we
prove a rigidity theorem for the elliptic genus of a toric pair (X, D) and discuss
its relationship to the change of variable formula, which we prove in Theorem 7.1.
In Section 8 we use this results to prove an equivariant elliptic genus analogue
of the McKay correspondence for ALE spaces. Finally, in Section 9 we discuss
the relationship between the equivariant elliptic genus and Batyrev’s stringy Euler
number.

2. Equivariant orbifold elliptic class

Let Xn be a smooth compact variety and D =
∑

i δi Di a smooth normal crossing
divisor, with coefficients δi < 1. Let G be a finite group acting holomorphically on
X . For g, h ∈ G a commuting pair, let {X g,h

γ } denote the connected components of
their common fixed point locus. Fix one such component X g,h

γ . The normal bundle
NX g,h

γ
splits as a sum

⊕
λ Nλ over irreducible characters for the subgroup (g, h).

For x ∈ (g, h), let λ(x) ∈ Q ∩ [0, 1) be the rational number such that x acts on the
fibers of Nλ as multiplication by e2π iλ(x).

Now fix an irreducible component Di of D. If X g,h
γ is contained in Di then

x ∈ (g, h) acts on the fibers of O(Di )|X g,h
γ

as multiplication by e2π iεi (x) for some
rational number εi (x) ∈ Q ∩ [0, 1). If X g,h

γ is not contained in Di , we define
εi = 0. Of course the functions λ and εi depend on the choice of the commuting
pair (g, h) and on the connected component X g,h

γ of X g,h . We will omit making
explicit reference to this dependence in order to simplify the notation.

Following [Borisov and Libgober 2005], we define the orbifold elliptic genus
of the pair (X, D) by the formula

Ellorb(X, D,G)=
1

|G|

∑
gh=hg,γ

∫
X g,h
γ

∏
TX g,h

γ

x jθ
( x j

2π i − z
)

θ
( x j

2π i

)
×

∏
Nλ

θ
( xλ

2π i + λ(g)− λ(h)τ − z
)

θ
( xλ

2π i + λ(g)− λ(h)τ
) e2π iλ(h)z

×

∏
Di

θ
( Di

2π i + εi (g)− εi (h)τ − (−δi + 1)z
)
θ(−z)

θ
( Di

2π i + εi (g)− εi (h)τ − z
)
θ
(
−(−δi + 1)z

)e−2π iδi εi (h)z.
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Here of course we mean by x j the Chern roots of TX g,h
γ , by xλ the Chern roots of

Nλ, and by Di the first Chern classes of the corresponding divisors.
Now assume that X has a T-action which commutes with the action of G, and

that the irreducible components of D are T-invariant. Assume that the action lifts
to the bundles O(Di ). We define the equivariant orbifold elliptic genus EllT

orb as
follows: For each fixed component P ⊂ X g,h

γ , let ν j ∈ t∗ denote the infinitesimal
weights of the torus action on the fibers of the normal bundle νP/X g,h

γ
. Similarly, let

χλ ∈ t∗ denote the infinitesimal weights of the torus action on NX g,h
γ

|P . If P ⊂ Di ,
let ηi denote the infinitesimal weight of the torus action on O(Di )|P . Otherwise,
let ηi = 0. All of the above weights depend on the fixed component P and on the
commuting pair g, h. Again, we leave this dependence out of the notation in order
to avoid cluttering. With this in mind, we define EllT

orb(X, D,G) to be

1
|G|

∑
gh=hg,γ

∑
P⊂X g,h

γ

∫
P

∏
T P

pkθ
( pk

2π i − z
)

θ
( pk

2π i

) ∏
νP

θ
( n j

2π i + ν j − z
)

θ
( n j

2π i + ν j
)

×

∏
Nλ

θ
( xλ

2π i +χλ + λ(g)− λ(h)τ − z
)

θ
( xλ

2π i +χλ + λ(g)− λ(h)τ
) e2π iλ(h)z

×

∏
Di

θ
( Di

2π i + ηi + εi (g)− εi (h)τ − (−δi + 1)z
)
θ(−z)

θ
( Di

2π i + ηi + εi (g)− εi (h)τ − z
)
θ
(
−(−δi + 1)z

)e−2π iδi εi (h)z.

Finally, motivated by [Borisov and Libgober 2005], we introduce the notion of
the equivariant elliptic class

EllT
orb(X, D,G) ∈ H∗

T (X).

For convenience, assume that every component X g,h
γ of X g,h is a connected com-

ponent of Di1 ∩· · ·∩ Dir for some indexing set I g,h
γ = {ik}. We also assume that D

is G-normal. Then TX −
⊕r

k=1 O(Dik ) ∈ KT (X) is a bundle which equals TX g,h
γ

when restricted to X g,h
γ . Thus, consider the class(

2π iθ(−z)
θ ′(0)

)n−r

8T
X g,h
γ

∏
TX

x j (t)
2π i θ

( x j (t)
2π i − z

)
θ ′(0)

θ
( x j (t)

2π i

)
θ(−z)

∏
I g,h
γ

θ
( Di (t)

2π i

)
θ(−z)

Di (t)
2π i θ

( Di (t)
2π i − z

)
θ ′(0)

×

∏
I g,h
γ

θ
( Di (t)

2π i + εi (g)− εi (h)τ − (−δi + 1)z
)
θ(−z)

θ
( Di (t)

2π i + εi (g)− εi (h)τ
)
θ
(
−(−δi + 1)z

) e2π i(−δi +1)εi (h)z

×

∏
IX −I g,h

γ

θ
( Dk(t)

2π i − (−δk + 1)z
)
θ(−z)

θ
( Dk(t)

2π i − z
)
θ
(
−(−δk + 1)z

) .
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Here the parameter t in expressions such as x j (t) and Dk(t) refers to the equivariant
Chern roots. When X is simply connected we can always make sense of this
definition (see Section 3.2). The term 8T

X g,h
γ

is the equivariant Thom class of X g,h
γ

in X . All of the fractions εi implicitly depend on γ . By localization, the integral of
this class over X is the contribution from X g,h

γ to the equivariant orbifold elliptic
genus. We call this equivariant cohomology class EllT

orb(D, X g,h
γ ). We define the

equivariant orbifold elliptic class

EllT
orb(X, D,G)=

1
|G|

∑
gh=hg,γ

EllT
orb(D, X g,h

γ ).

When G = 1, this is called simply the equivariant elliptic class Ell(X, D). We call
the integral of this class the equivariant elliptic genus EllT (X, D).

Suppose that f : X̃ → X is the blow-up of X along a T ×G-invariant subvariety.
Define D̃ on X̃ so that f ∗(K X + D)= K X̃ + D̃.

Theorem 2.1. f∗EllT
orb(D̃, X̃ ,G)= EllT

orb(D, X,G).

This is the equivariant analogue of the change of variable formulae discovered by
Chin-Lung Wang and Borisov and Libgober. We will refer to the above formula as
the change of variable formula for the orbifold elliptic class. We refer to the formula
obtained by integrating both sides as the change of variable formula for the orbifold
elliptic genus. For a proof of the formula in this general case, see [Waelder 2007].
For our present purposes, we will only need to examine the simpler situation in
which the blow-up locus and orbifold fixed data of X are complete intersections.
For that case, we will provide a complete proof in Theorem 7.1.

The value of the change of variable formula is that it allows us to compare
orbifold elliptic data between varieties which are birationally equivalent. In Section
8 we will provide an interesting application of the change of variable formula to
the computation of equivariant elliptic indices of ALE spaces. The approach we
take is inspired by Borisov and Libgober’s proof of the nonequivariant McKay
correspondence for the elliptic genus.

Remark 2.2. If X has a torus action with compact fixed components, via the
localization formula we can always make sense of the quantity EllT

orb(X, D,G)
even when X is open. We will continue to refer to this quantity as the equivariant
orbifold elliptic genus of X .

Remark 2.3. A word on notation: There are many objects associated to a variety
X which encode the data of the equivariant elliptic genus of X . We use the prefix
EllT to refer to objects in H∗

T (pt), EllT to refer to objects in H∗

T (X), and ELLT

to refer to objects in KT (X).



350 ROBERT WAELDER

3. Preliminaries on equivariant cohomology

In this section we gather the ingredients from equivariant cohomology which we
will be using in this paper. For a thorough reference on the subject, see [Atiyah
and Bott 1984].

3.1. Definitions and localization. Let X be a smooth T-space, where T is a com-
pact torus of rank `. Let ET = (S∞)`. ET is a contractible space on which T
acts freely. The diagonal action of T on X × ET therefore gives rise to a smooth
(infinite-dimensional) quotient XT = (X × ET )/T . It is easy to see that XT is a
fiber bundle over BT = ET/T with fiber X . Define the equivariant cohomology
group H∗

T (X)= H∗(XT ).
The translation of concepts from cohomology to equivariant cohomology is

more or less routine. For example, a T-map f : X → Y gives rise to a natural
map fT : XT → YT , and therefore induces a pullback f ∗

: H∗

T (Y ) → H∗

T (X).
Similarly, for any E ∈ KT (X), ET defines a finite rank vector bundle over XT

which corresponds to the vector bundle E → X over every fiber of XT → BT .
In this way, we may define the equivariant characteristic classes of E to be the
characteristic classes of ET .

If p is a single point with trivial T-action, the equivariant map π : X → p induces
a map π∗

: H∗

T (p)→ H∗

T (X). Since H∗

T (p)= H∗(BT )=C[u1, . . . , u`], the map π∗

makes H∗

T (X) into a C[u1, . . . , u`]-module. Define H∗

T (X)loc = H∗

T (X)⊗C[u1,...,u`]

C(u1, . . . , u`). A fundamental result of the subject is the localization theorem:

Theorem 3.1. Let {P} denote the set of T-fixed components of X. Then H∗

T (X)loc ∼=⊕
P H∗(P)⊗ C(u1, . . . , u`).

If P is a fixed component of X , the normal bundle to P splits as a sum over the
characters of the T-action on the fibers: NP =

⊕
λ Vλ. Let ni

λ denote the formal
Chern roots of Vλ. If we identify the equivariant parameters u1, . . . , u` with linear
forms on the Lie algebra of T , then the equivariant Euler class e(P) of NP is equal
to
∏
λ

∏
i (n

i
λ+λ). Since none of the characters λ are equal to zero, we see that e(P)

is always invertible. In light of this fact, we can describe the above isomorphism
more explicitly. The map H∗

T (X)loc →
⊕

P H∗(P)⊗ C(u1, . . . , u`) is given by
ω 7→

⊕
P i∗

Pω/e(P), where iP : P ↪→ X is the inclusion map.
If f : X → Y is a proper map of T-spaces, we have the equivariant analogue of

the cohomological push-forward f∗ : H∗

T (X)→ H∗

T (Y ). As in the nonequivariant
setting, f∗ satisfies the projection formula f∗( f ∗(ω)∧η)=ω∧ f∗η. The new feature
in equivariant cohomology is that we have an explicit expression for the restriction
of f∗ω to a fixed component in Y . This is given by the functorial localization
formula [Lian et al. 1999a; 1999b]:
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Theorem 3.2. Let f : X → Y be a proper map of T-spaces. Let P be a fixed
component of Y and let {F} be the collection of fixed components in X which f
maps into P. Let ω ∈ H∗

T (X). Then

∑
F

f∗
i∗

Fω

e(F)
=

i∗

P f∗ω
e(P)

.

Suppose f : X → Y is a proper map of n-dimensional T spaces with isolated
fixed points. For F a fixed point in X , let λ(F)1+· · ·+λ(F)n denote the decompo-
sition of TF X into irreducible characters. Clearly e(F)=

∏n
j=1 λ(F) j . Moreover,

each ω∈ H∗

T (X) is defined by a collection of polynomial functions (with relations)
ωF ∈ C[u1, . . . , u`] attached to the fixed points F in X . For P a fixed point in Y ,
we have, by functorial localization,

( f∗ω)P =

∑
F

ωF

n∏
j=1

λ(P) j

λ(F) j
.

In the next two sections we will discuss the similarity between this formula and
the push-forward formula of Borisov and Libgober.

Note that the localization techniques discussed here continue to hold in the ring
formed by uniformly convergent power series of equivariant classes, which is more
precisely the domain of definition for the equivariant elliptic class. For simplicity
of exposition, we will not make that distinction here; but see [Waelder 2007] for a
discussion of this technical point.

Before ending this subsection, we make one final remark on an alternative ap-
proach to equivariant cohomology. Let e1, . . . , e` form a basis for the Lie algebra
of T which is dual to the linear forms u1, . . . , u`. Every V ∈ t defines a vector
field V on X by the formula

V (p)=
d
dt

∣∣∣∣
t=0

exp(tV ) · p.

Define �∗

T (X) to be the ring of differential forms on X which are annihilated by
LV for every V ∈ t. If we let dt = d +

∑`
α=1 uαieα , then dt defines an operator

on �∗

T (X)⊗ C[u1, . . . , u`] and satisfies d2
t = 0. The Cartan model for equivariant

cohomology is defined to be

H∗

T (X)Cartan =
ker dt

im dt
.

It is well known that H∗

T (X)Cartan ∼= H∗

T (X). See [Atiyah and Bott 1984] for details.
Throughout, we will switch freely between the two descriptions.
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3.2. Equivariant Chern class of a divisor. Let X be a smooth compact simply
connected complex manifold with a T-action. For simplicity of notation, assume
that T = S1. We also omit the equivariant parameters in this section, since they
clutter the notation and play no role in the proofs. Let D ⊂ X be a T-invariant irre-
ducible Cartier divisor with associated line bundle O(D). Let ω be a representative
of the Thom class of the normal bundle, ND , of D. By averaging over T , we may
assume that ω is T-invariant.

Let V be the vector field on X induced by the T-action. We are presented with
two natural procedures for extending ω to an equivariant cohomology class, i.e.,
a T-invariant class in the kernel of d + iV . First, since ω is invariant and closed,
LVω= diVω= 0, so iVω defines a class in H 1(X). Since X is simply connected,
iVω=d f . If we require that f have compact support in ND , then the above moment
map equation defines f uniquely, and ω− f defines an equivariant extension of ω.
Second, since X is simply connected and T is abelian, we may lift the action of T
to O(D). The equivariant first Chern class of O(D) then defines another equivariant
extension of ω.

In this section, we show that both extensions represent the same equivariant
class provided we choose an “appropriate” lift of the action of T to O(D). By
appropriate, we mean that the action of T on O(D) extends the natural action of
T on O(D)|p for any fixed point p. Note that for dimensionality reasons, the two
equivariant extensions can differ by at most a constant. The goal in this section is
to prove that this constant is zero.

Lemma 3.3. Let ω and f be defined as above. Let p ∈ D be a fixed point of the T-
action and let a = a(p) be the infinitesimal weight of the character O(D)|p. Then
f (p)= −a.

Proof. Let U ={(z1, . . . , zn)} be a coordinate system centered at p, with D defined
by {zn = 0}. We can choose this coordinate system so that ei t

· (z1, . . . , zn) =

(eim1t z1, . . . , eimn−1t zn−1, eiat zn). Let dθ be the T-invariant angular form in the
zn-coordinate plane. Call this plane Un . Let r be the distance function on Un and
ρ(r) a bump function which integrates to 1 over Un and is identically equal to 1 in a
neighborhood of the origin. Then the Thom class corresponding to the hyperplane
zn = 0 is represented by the T-invariant form d(ρ(r)dθ) in this neighborhood. It
follows that ω|U = d(ρ(r)dθ)+ dψ , where ψ is a form with compact support in
the zn-direction. Since all the forms involved are T-invariant, we may assume that
ψ is T-invariant. In this coordinate system, the vector field V takes the form a ∂

∂θ

in the Un plane. Thus iV d(ρdθ) = −d(iVρdθ) = −d(aρ(r)). We therefore have
that iVω=−d(aρ)−d(iVψ). Since aρ+iVψ have compact support in the vertical
direction and satisfy d(aρ + iVψ) = −d f , we must have f = −aρ − iVψ . Since
V (p)= 0, this implies that f (p)= −a. �
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We next prove that we can always adjust the action of T on O(D) so that it
coincides with the natural action of O(D)|p for any fixed point p ∈ D. The ensuing
discussion follows closely the ideas of section 8 of [Atiyah and Bott 1984]. Let
∇ be a T-invariant connection on O(D) with corresponding connection 1-form θ .
View the vector field V as an operator acting on 0(X,O(D)). If s is a local frame,
then V s = L(s)s for some smooth function L which depends on s. The statement
that ∇ is T-invariant means that ∇V = V ∇. Fix a local frame s satisfying ds = 0 in
local coordinates. Then ∇V s =∇Ls =d Ls+Lθs and V ∇s = V θs = LV θs+θLs.
It follows that

d L(s)= LV θ = iV dθ + diV θ.

Now dθ =−2π iω+dη for some T-invariant 1-form η. Thus, iV dθ =−2π id f −

d(iV η). Thus, the above equation implies L(s) = −2π i f + iV θ − iV η + 2π ic,
where c is a constant. It is easy to check that this constant is independent of
the section s. It follows that the infinitesimal action of T on O(D)|p is given by
−2π i f (p)+ 2π ic. Thus, the infinitesimal weight attached to every fixed point p
is a(p)+ c. If c 6= 0, we can replace O(D) with O(D)⊗ Oc, where the action of
T on Oc takes the global section 1 to e−2π ic. Thus, we have proven that we can
always lift the action of T so that it coincides with the natural action on O(D)|p

for fixed points p. Whenever we speak of O(D) as an equivariant bundle, we will
assume this choice of a lifted action.

Finally, we prove that the equivariant first Chern class of O(D) coincides with
ω− f . By localization, it suffices to prove that cT

1 (O(D)) = ω− f at every fixed
point. But this follows from the well-known observation that cT

1 (O(D))|p = a(p).

4. Toric varieties and equivariant cohomology

For a good reference on toric varieties, see [Fulton 1993]. Let X be a smooth
complete toric variety of dimension n. We denote the fan of X by 6X , the lattice
of X by NX , and the big torus by TX . Let Y be a smooth complete toric variety
such that

(1) NX ⊂ NY is a finite-index sublattice, and

(2) 6X is a refinement of 6Y obtained by adding finitely many one-dimensional
rays.

There is an obvious map of fans ν : 6X → 6Y which induces a smooth map
µ : X → Y . We call a map induced by such a morphism of fans a toric morphism. It
is easy to verify that µ : TX → TY is a covering map with covering group NY /NX .
Thus, we may regard Y as a TX -space. Our goal in this section is to obtain a
convenient description of the equivariant pushforward µ∗ : H∗

T (X) → H∗

T (Y ) in
terms of the combinatorics of 6X and 6Y . Here T = TX .
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We first note that fixed points F of X are in 1 − 1 correspondence with n-
dimensional cones CF ⊂ 6X . Furthermore, the infinitesimal weights of the T-
action on NF correspond to linear forms in Hom(NX ,Z) which are dual to the
generators of CF in NX . With this in mind, we have the following theorem: Let
C[6X ] denote the ring of piecewise polynomial functions on the fan of X . Then:

Theorem 4.1. H∗

T (X)∼= C[6X ].

Proof. The map H∗

T (X) → C[6X ] is defined by ω 7→ {ω|F }F∈X T . That the
polynomial functions ω|F piece together into a well-defined piecewise polynomial
function follows from the fact that ω is a globally defined cohomology class. To
define the reverse arrow, it suffices to describe it for piecewise linear functions.
If f ∈ C[6X ] is piecewise linear, then it is well-known in toric geometry that f
defines a T-Cartier divisor div( f ). Let f 7→ div( f )#, where div( f )# denotes the
equivariant extension whose restriction to a fixed point F is f |F . �

Via the identification H∗

T (X) ∼= C[6X ], we define ν∗ : C[6X ] → C[6Y ] to be
the map that makes the diagram

C[6X ]
ν∗- C[6Y ]

H∗

T (X)

wwww
µ∗- H∗

T (Y )

wwww
commute. Here we understand C[6Y ] to be the ring of piecewise polynomial func-
tions on 6Y with respect to the lattice NX .

We now describe ν∗ more explicitly. For f ∈ C[6X ], ν∗ f is given by viewing
f |F as the zero degree part of an equivariant cohomology class ω ∈ H∗

T (X), push-
ing ω forward by µ∗, and then forming the piecewise polynomial function defined
by the zero degree part of µ∗ω. Thus, let C ⊂ 6Y be an n-dimensional cone. Let
ν−1C be the fan 6C ⊂ 6X which is the union of n-dimensional cones Ci . Let
xCi

1 , . . . , xCi
n be the linear forms dual to Ci and xC

1 , . . . , xC
n the linear forms in

Hom(NY ,Z)⊂ Hom(NX ,Z) dual to C . By functorial localization we have

(ν∗ f )C =

∑
Ci ⊂6X

fCi

∏n
j=1 xC

j∏n
j=1 xCi

j

.

Similarly, we define ν∗
: C[6Y ] → C[6X ] as the map that makes the following

diagram commute:

C[6Y ]
ν∗

- C[6X ]

H∗

T (Y )

wwww
µ∗

- H∗

T (X)

wwww
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Proposition 4.2. ν∗( f )= f ◦ ν.

Proof. Let ω ∈ H∗

T (Y ) be the form such that ω|P = f |P for every fixed point P .
Let F ∈ µ−1(P). Then

H∗

T (Y )
µ∗

- H∗

T (X)

H∗

T (P)
? µ∗

F- H∗

T (F)
?

commutes. Hence (µ∗ω)|F = µ∗

F (ω|P)= µ∗

F ( fP)= fP . Thus ν∗( f ) is the piece-
wise polynomial function which is equal to fCP on every cone CF ∈ ν−1CP . This
is precisely the piecewise polynomial f ◦ ν. �

The map ν∗
: C[6Y ] → C[6X ] makes C[6X ] into a C[6Y ]-module. This being

so, we observe:

Proposition 4.3. ν∗ is a C[6Y ]-module homomorphism.

Proof. We wish to prove the projection formula ν∗( f ν∗g)= ν∗( f ) ·g. This follows
from identifying ν∗ with µ∗, ν∗ with µ∗ and invoking the projection formula from
equivariant cohomology. �

5. Push-forward formula for toroidal morphisms

5.1. Definitions. Let X be a compact complex manifold and DX =
∑

IX
DX

i a
divisor on X whose irreducible components are smooth normal crossing divisors.
For I ⊂ IX , let X I, j denote the j-th connected component of

⋂
I DX

i . Let Xo
I, j =

X I, j −
⋃

I c DX
i . The collection of subvarieties Xo

I, j form a stratification of X .
Associated to these data is a polyhedral complex with integral structure defined as
follows:

Corresponding to X I, j , define NI, j = Zei1, j + · · · + Zeik , j to be the free group
on the elements ei1, j , . . . , eik , j . Here i1, . . . ik are the elements of I . Define C I, j

to be the cone in the first orthant of this lattice. Whenever I ′
⊂ I and X I, j ⊂ X I ′, j ′

we have natural inclusion maps NI ′, j ′ ↪→ NI, j and C I ′, j ′ ↪→ C I, j . Define 6X to be
the polyhedral complex with integral structure obtained by gluing the cones C I, j

together according to these inclusion maps.
Let C[6X ] denote the ring of piecewise polynomial functions on 6X . Fix

C ⊂ 6X . Define f C to be the piecewise polynomial function which is equal to∏dim C
j=1 xC

j on every cone containing C , and equal to zero everywhere else. As
in the toric geometry case, there is a natural correspondence between piecewise
linear functions on 6X and Cartier divisors whose irreducible components are
components of DX . We denote the piecewise linear function corresponding to D
by f D .
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5.2. Toroidal morphisms. Our primary interest in this section is the study of tor-
oidal morphisms, which are maps µ : (X, DX , 6X )→ (Y, DY , 6Y ) satisfying:

(1) µ : X − DX → Y − DY is an unramified cover.

(2) µ maps the closure of a stratum in X to the closure of a stratum in Y .

(3) Let Uy be an analytic neighborhood of y ∈ Y such that the components of DY

passing through y correspond to coordinate hyperplanes. Then for x ∈µ−1(y),
there exists an analytic neighborhood Ux of x such that the components of DX

passing through x correspond to coordinate hyperplanes of Ux . Moreover, the
map Ux → Uy is given by monomial functions in the coordinates.

Corresponding toµ, we can define a map ν :6X →6Y as follows: Let C I,i ⊂6X

and let e1, . . . , ek ∈ NI,i be the generators of C I,i which correspond to the divisors
DX

1 , . . . , DX
k . We have that µ(X I,i )= YJ, j . Let v1, . . . , v` ∈ NJ, j be the generators

of CJ, j which correspond to the divisors DY
1 , . . . , DY

` . For 1 ≤ s ≤ k, 1 ≤ t ≤ `,
define ast to be the coefficient of DX

s of the divisor µ∗(DY
t ). Then we define

ν(es) =
∑

astvt . Note that if (X, 6X ) → (Y, 6Y ) is a smooth toric morphism of
toric varieties, then ν :6X →6Y is the natural morphism of polyhedral complexes.

Proposition 5.1. If C = CJ, j ⊂6Y , then ν−1C is the union of fans 6α ⊂6X with
the following properties:

(1) 6α is a refinement of C obtained by adding finitely many one-dimensional
rays.

(2) The lattice Nα of 6α is a finite-index sublattice of NC .

(3) The fans 6α are in 1 − 1 correspondence with connected components Uα of
µ−1(NY o

J, j
). The map Uα → NY o

J, j
is a fibration given by the smooth toric

morphism P6α,Nα → PC,NC along the fiber, and a dα = d(6α)-cover of Y o
J, j

along the base.

For a proof, see [Borisov and Libgober 2005]. In the examples studied in this
paper, it is easy to see that the proposition holds. For the purposes of this paper,
therefore, one may take Proposition 5.1 as an axiom.

5.3. Pushforward formula for polyhedral complexes. Motivated by the descrip-
tion of the push-forward ν∗ for toric morphisms, define ν∗ : C[6X ] → C[6Y ] as
follows. Let C ⊂6Y be an n-dimensional cone with dual linear forms xC

1 , . . . , xC
n .

Then for f ∈ C[6X ], we define

(ν∗ f )C =

∑
α

dα
∑

Ci ∈6α

fCi ·

∏n
j=1 xC

j∏n
j=1 xCi

j

.

The second sum is taken over the cones Ci ⊂6α with the same dimension as C .
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Let V be the toric variety
∐
α dα · P6α,Nα with polyhedral fan 6V . We have a

natural toric morphism V → Cn . We can compactify V and Cn to obtain a smooth
toric morphism V → Pn . If we view f as a piecewise polynomial function on the
fan of V , then the above formula simply corresponds to (ν∗ f )C where ν : 6V →

6Pn . This identification allows us to apply the tools of the previous section toward
the study of ν∗.

We first observe that (ν∗ f )C is indeed a polynomial function. This follows from
the above identification of ν∗ with the equivariant pushforward of a toric morphism.
Furthermore, if we define ν∗

: C[6Y ] → C[6X ] by the formula ν∗( f )= f ◦ν, then
the projection formula

ν∗( f ν∗g)C = ν∗( f )C · gC

follows from the projection formula in equivariant cohomology.

Proposition 5.2. ν∗( f ) is a piecewise polynomial function.

Proof. We first show that ν∗( f C) is piecewise polynomial.
Fix f = f C . Suppose ν(C) ⊂ C0 for some C0 ⊂ 6Y of dimension k = dim C .

Then ν∗( f )C0 = d(6C0)
∏k

j=1 xC0
j . Suppose C1 is a cone containing C0. We wish

to show (ν∗ f )C1 is an extension of (ν∗ f )C0 .
Consider the toric morphism σ : P6C1 ,N (6C1 )

→ Cdim C1 induced by the map ν :

6C1 → C1. Let D1, . . . , Dk be the divisors in P6C1 ,N (6C1 )
which correspond to the

generators of C . Then the piecewise polynomial function f ∈ C[6C1] represents
the equivariant Thom class of D1 ∩ · · · ∩ Dk . Since σ(D1 ∩ · · · ∩ Dk) is the affine
subspace of Cdim C1 corresponding to C0, we have that σ∗( f ) is the degree of σ
along D1∩· · ·∩ Dk times the polynomial function which represents the equivariant
Thom class of this subspace. But this implies that

ν∗( f )C1 = d(6C1)
[N (6C1) : N (C1)]

[N (6C0) : N (C0)]

k∏
j=1

xC0
j = d(6C0)

k∏
j=1

xC0
j .

We need to explain the last equality. If C0 corresponds to the strata Y o
I, j and

U → NY o
I, j

is the fibration in Proposition 5.1 corresponding to the subdivision6C0 ,
then d(6C0)[N (6C0) : N (C0)] and d(6C1)[N (6C1) : N (C1)] both give the number
of points in the preimage of a generic point in NY o

I, j
.

Next suppose that C is mapped to a cone C0 of strictly larger dimension. Con-
sider the toric morphism P6C0 ,N (6C0 )

→ PC0,N (C0) induced by the map ν : 6C0 →

C0. The polynomial function f ∈ C[6C0] represents the Thom class of an excep-
tional toric subvariety. Thus ν∗( f ) = 0, and it is easy to verify that ν∗( f ) = 0 on
every cone containing C0. Thus, ν∗ maps the elements f C to piecewise polynomial
functions. Since these functions generate C[6X ] as a C[6Y ]-module, the proposi-
tion follows from the projection formula. �
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In what follows we assume that µ : X → Y is an equivariant map of compact T-
spaces. Furthermore, we assume that the irreducible components of DX and DY are
invariant under the T-action. Define a map ρX : C[6X ] → H∗

T (X) as follows: Fix
a cone C = C I,i which corresponds to a connected component of the intersection
locus of the divisors D1, . . . , Dk . Define

ρX [ f C
· ( f D1)a1 . . . ( f Dk )ak ] =8X I,i ∧ Da1

1 ∧ · · · ∧ Dak
k .

Here8X I,i denotes the (extension by zero) equivariant Thom class of X I,i ⊂ X and,
by abuse of notation, D j denote the (extensions by zero) equivariant Thom classes
of the divisors D j .

Lemma 5.3. ρX is a ring homomorphism.

Proof. Fix cones C1 = C I1,i1 and C2 = C I2,i2 . It suffices to prove the theorem for
the polynomials f C1 and f C2 . Let I = I1 ∪ I2. Let C I,i denote the cones which
correspond to components of the intersection X I1,i1 ∩ X I2,i2 . Clearly

f C1 f C2 =

∑
I,i

f C I,i
∏
I1∩I2

f D j .

Thus ρX ( f C1 f C2)=
∑

I,i 8X I,i

∏
I1∩I2

D j . But by the equivariant version of the
excess intersection formula, this is precisely the formula for ρX ( f C1)ρX ( f C2). �

Lemma 5.4. ρXν
∗
= µ∗ρY .

Proof. It suffices to check this for polynomials f C I,k . If D is a divisor on Y
whose irreducible components are components of DY , then ν∗ f D is the piece-
wise linear function corresponding to µ∗D. It follows that ρXν

∗ f D
= µ∗ρY f D .

Since all the maps are ring homomorphisms, this implies that ρXν
∗
∏

j∈I f D j =

µ∗ρY
∏

j∈I f D j . Let µ∗Di =
∑

j ai j E j as Cartier divisors. As in the lemma in
the Appendix, choose equivariant Thom forms 8E j and 8Di with support in small
tubular neighborhoods of their respective divisors so that

µ∗8Di =

∑
j

ai j8E j + dψi

as forms. Here ψi are equivariant forms with compact support in µ−1 NDi . Let
{I, k} index the connected components of

⋂
I Di . If we choose NDi sufficiently

small, then ∏
I

8Di =

∑
I,k

(
∏

I

8Di )I,k

where (
∏

I 8Di )I,k is the extension by zero of the form
∏

I 8Di |NI,k .
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Now
∏

I f Di =
∑

f C I,k and clearly (
∏

I 8Di )I,k is a representative of ρY ( f C I,k ).
We have that

µ∗

(∏
I

8Di

)
I,k

=

(∏
I

(∑
j

ai j8E j + dψi

))
µ−1 NI,k

,

where the subscript µ−1 NI,k means the extension by zero of the form restricted to
this open set. Since the ψi forms have compact support in µ−1 NDi , this form is
cohomologous to (∏

I

∑
j

ai j8E j

)
µ−1 NI,k

.

But this is in turn a representative of ρXν
∗ f C I,k . �

Lemma 5.5. µ∗ρX = ρY ν∗.

Proof. Since ρXν
∗

= µ∗ρY and the polynomials f C generate C[6X ] as a C[6Y ]-
module, by the projection formula it suffices to check µ∗ρX f C

= ρY ν∗ f C .

Case 1: C I,i is mapped by ν to a cone CJ, j of the same dimension. From the proof
of Proposition 5.2, ν∗ f C I,i = d f CJ, j where d is the degree of µ : X I,i → YJ, j . Thus,
ρY ν∗ f C I,i = d8YJ, j = µ∗ν∗ f C I,i .

Case 2: C I,i is mapped by ν into a cone of strictly larger dimension. As shown in
Proposition 5.2, ν∗ f C I,i = 0, so ρY ν∗ f C I,i = 0 = µ∗8X I,i = µ∗ρX f C I,i . �

Remark 5.6. It is clear that these lemmas relating µ to ν extend without difficulty
to the ring C[[6X ]] of piecewise convergent power series.

6. A rigidity theorem for elliptic genera on toric varieties

For X a toric variety and D ⊂ X a T-Cartier divisor, the equivariant elliptic genus
of the pair (X, D) may be interpreted as the equivariant index of an associated
differential operator. In this section we prove that the equivariant index of this
operator is actually zero whenever (X, D) satisfies the Calabi–Yau condition K X +

D =0. This rigidity result closely resembles results by Hattori on the elliptic genera
of multifans [Hattori 2006]. As we will see, this rigidity theorem is actually closely
related to the change of variable formula for the elliptic genus. We first define the
operator and prove its rigidity.

Let X be a smooth complete toric variety of dimension n. Let T = (S1)n . We can
think of T as sitting inside the big-torus of X ; as such, it induces a natural action
on X with isolated fixed points. Let D1, . . . , D` be the T-invariant divisors corre-
sponding to the one-dimensional cones on the fan of X . Suppose K X +

∑
i δi Di =0

for integers δi 6= 1. Call such a pair (X,
∑

i δi Di ) a toric Calabi–Yau pair. Define
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ELL(
∑

i δi Di ) to be the following vector bundle over X :

⊗
i

(
θ ′(0)

∞⊗
n=1

3−y−δi +1qn−1O(−Di )⊗3−yδi −1qn O(Di )⊗ Sqn O(−Di )⊗ Sqn O(Di )

)
.

The modular properties of the ordinary index of this operator were discussed by
Borisov and Gunnells [2001]. However, they did not prove the rigidity of the
equivariant index.

Theorem 6.1. The equivariant index of ELL is identically zero.

Proof. We use a modularity argument similar to the one in [Liu 1996]. It suffices to
prove that ELL is rigid under the action of a generic 1-parameter subgroup S1

⊂ T .
We may further assume that this S1 action has isolated fixed points. If p is a fixed
point of this action, we must have p = Di1 ∩ · · · ∩ Din for some choice of indices
ik depending on p. Take Ip = {Di1, . . . , Din } and let I c

p consist of the remaining
T-invariant divisors on X . Tp X splits as Tp X = O(Di1)⊕ · · · ⊕ O(Din )|p.

Thus, if the exponents of the S1 action on O(Di ) are mi , then the exponents of
the action on Tp X are mi1, . . . ,min . By the fixed point formula, the equivariant
index of ELL is given, up to a normalization factor which is independent of t and
the fixed points {p}, by∑

p

∏
Ip

θ(mi t − (−δi + 1)z, τ )
θ(mi t, τ )

∏
I c

p

θ(−(−δ j + 1)z, τ ).

Call this function F(t, z, τ ). Here τ ∈ H is the lattice parameter defining the
Jacobi theta function θ(t, τ ).

Since F(t, z, τ ), for t ∈ R, is the index of an elliptic operator, F(t, z, τ ) is
holomorphic for (t, z, τ ) ∈ R × C × H. We first examine the modular properties of
F . Define an action of SL(2,Z) on C × C × H by(

a b
c d

)
· (t, z, τ )=

(
t

cτ + d
,

z
cτ + d

,
aτ + b
cτ + d

)
.

If g ∈ SL(2,Z) and F is a function on C × C × H, we define (g · F)(t, z, τ ) =

F(g−1(t, z, τ )). Let F be the function given by the fixed point formula above.
From the relations

θ

(
t

cτ + d
,

aτ + b
cτ + d

)
= ζ(cτ + d)1/2eπ ict2/(cτ+d) θ(t, τ )

we conclude that

F
(

t
cτ + d

,
z

cτ + d
,

aτ + b
cτ + d

)
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is equal to

∑
p

(∏
Ip

exp
π ic

(
mi t−(−δi+1)z

)2

cτ + d
· exp

cτ + d
π ic(mi t)2

·
θ(mi t − (−δi + 1)z, τ )

θ(mi t, τ )

×

∏
I c

p

exp
π ic((−δ j + 1)z)2

cτ + d
ζ(cτ + d)1/2θ

(
−(−δ j + 1)z, τ

))
.

This expression simplifies to

ζ `−n(cτ + d)(`−n)/2 exp
π ic

∑`
i=1(−δi + 1)2z2

cτ + d∑
p

(
exp

−2π ic
∑

Ip
mi (−δi + 1)zt

cτ + d

×

∏
Ip

θ(mi t − (−δi + 1)z, τ )
θ(mi t, τ )

∏
I c

p

θ(−(−δ j + 1)z, τ )
)
.

Since K X +
∑

i δi Di = 0 and K X = −
∑

i Di , we have
∑

i (−δi + 1)Di = 0.
Thus, the weights at every fixed point for this trivial line bundle must be the same.
But the weight at a fixed point p is given by

∑
Ip
(−δi + 1)mi . Since this sum is

independent of p, we can pull the terms

exp
−2π ic

∑
Ip
(−δi + 1)mi t z

cτ + d

outside of the summation over the fixed points. We therefore have F(g(t, z, τ ))=

Kg(t, z, τ )F(t, z, τ ) for some holomorphic nowhere zero function Kg(t, z, τ ). In
particular, F(g(t, z, τ )) has no poles for (t, z, τ ) ∈ R × C × H.

We now show that F is in fact holomorphic for (t, z, τ ) ∈ C × C × H. Clearly,
the only poles for F are of the form

( n
`
(cτ0 +d), z0, τ0

)
, where we can assume that

(c, d) = 1. Choose integers a and b so that ad − bc = 1. Let g =
(a

b
c
d

)
. From the

above, we know that F is holomorphic at the point(
n
`
,

z0

cτ0 + d
,

aτ0 + b
cτ0 + d

)
= g ·

(
n
`
(cτ0 + d), z0, τ0

)
.

This implies that g−1 F is holomorphic at (n
`
(cτ0 +d), z0, τ0). But (g−1 F)(t, z, τ )

is equal to Kg−1(t, z, τ )F(t, z, τ ). Since Kg−1 is holomorphic and nowhere van-
ishing, we must have that F is holomorphic at

( n
`
(cτ0 + d), z0, τ0

)
. Therefore, F

is in fact holomorphic on C × C × H.
Next we prove that F(t, z, τ ) is constant in the variable t . Let z =

1
N for N an

integer. It is easy to verify that F(t +1, 1
N , τ )= F(t, 1

N , τ ) and F(t + Nτ, 1
N , τ )=
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F(t, 1
N , τ ). Thus, F(t, 1

N , τ ) is a holomorphic function on a torus, and therefore
constant. Hence, for every N ,

∂

∂t
F
(

t, 1
N
, τ
)

= 0.

Hence, we must have ∂
∂t F(t, z, τ )= 0. In other words, F is constant in t .

Finally, since the coefficients δi 6= 1, for a generic S1 action the summation∑
Ip
(−δi + 1)mi 6= 0. As in Hattori’s proof [2006] of vanishing theorems for the

elliptic genus of multifans, we get F(t + τ, z, τ ) = e2π i
∑
(−δi +1)mi z F(t, z, τ ) =

F(t, z, τ ), which implies that F ≡ 0. �

If {Di }
`
i=1 are the T-Cartier divisors on a toric variety X , then TX is stably equiv-

alent to
⊕`

i=1 O(Di ). By the Atiyah–Bott–Lefschetz fixed point formula, this im-
plies that the equivariant index of ELL(

∑
δi Di ) corresponds to the equivariant

elliptic genus
∫

X EllT (
∑
δi Di ), up to a normalization factor.

With this in mind, we turn our attention to the blow-up of Cn at the origin. Let
T = (S1)n act on Cn as (t1x1, . . . , tnxn). This induces a natural action on C̃n . The
fixed points of C̃n are the points pi = [0 : · · · : 1 : · · · : 0] in the exceptional divisor
which have 1 in the i-th homogeneous coordinate and zero everywhere else. Set
ti = e2π iui . Then the infinitesimal weights at pi are u1 − ui , . . . , un − ui , ui .

For i = 1, . . . , n, let αi < 1 be the coefficients of the coordinate hyperplanes
Di . Let α0 =

∑n
i=1 αi + (1 − n). For this simple blow-up, the change of variable

formula for the equivariant elliptic genus of (Cn,
∑
αi Di ) takes on the form

Lemma 6.2.
n∑

i=1

n∏
j 6=i

θ
(
u j − ui − (−α j + 1)z

)
θ(u j − ui )θ

(
−(−α j + 1)z

) ·
θ
(
ui − (−α0 + 1)z

)
θ(ui )θ

(
−(−α0 + 1)z

)
=

n∏
j=1

θ
(
u j − (−α j + 1)z

)
θ(u j )θ

(
−(−α j + 1)z

) .
More generally, let µ : X → Y be a composition of toric blow-ups of a smooth

complete toric variety Y with associated simplicial map ν : 6X → 6Y . Since the
map has degree 1, X and Y share the same lattice N . For i = 1, . . . , k, let ai denote
the 1-dimensional rays of6X and for j = 1, . . . , `, let b j denote the 1-dimensional
rays of 6Y . Any sequence α= {α1, . . . , αk} of rationals αi < 0 defines a piecewise
linear function fα ∈ C[6X ] given by fα(ai ) = αi . This linear function in turn
gives rise to the T-Cartier divisor α1 Da1 + · · ·+αk Dak , where Dai are the divisors
associated to the rays ai .

Clearly µ∗(α1 Da1 + · · · + αk Dak ) is the T-Cartier divisor on Y corresponding
to the linear function ν∗ fα. For each ray b j , let β j = fα(b j ). Then the sequence



EQUIVARIANT ELLIPTIC GENERA 363

β = {β1, . . . , β`} defines the piecewise linear function ν∗ fα and corresponds to the
divisor µ∗(α1 Da1 + · · · + αk Dak ). We call the sequence β = µ∗α the pull-back of
α by µ.

For each cone n-dimensional cone Ci ⊂ 6X , let xi j denote the linear forms
in Hom(N ,Z) dual to the generators of Ci . Let βi j ∈ β denote the coefficients
corresponding to the generators of Ci . For an n-dimensional cone C ′

i ⊂6Y , define
yi j and αi j similarly. Then:

Theorem 6.3. ∑
Ci ⊂6X

n∏
j=1

θ(xi j +βi j z)
θ(xi j )θ(βi j z)

=

∑
C ′

i ⊂6Y

n∏
j=1

θ(yi j +αi j z)
θ(yi j )θ(αi j z)

.

Proof. By the naturality property of the integer sequences α and β, if the formula
holds for a single blow-up, then it will hold for a composition of blow-ups. There-
fore, we can restrict our attention to the case of a single subdivision. Now the
divisor α1 D1 + · · · + αk Dk = KY +

∑k
i=1(αi + 1)Dai . Thus, the right-hand side

of the equation in the theorem is just (up to a normalization factor) the equivariant
elliptic genus of the pair (Y,

∑
i (αi + 1)Dai ). Since µ∗(α1 D1 + · · · + αk Dk) =

β1 Db1 +· · ·+β`Db` = K X +
∑

j (β j + 1)Db j , the left hand side of the equation is
the elliptic genus of (X, D) where K X + D = µ∗(KY +

∑
i (αi + 1)Dai ).

It clearly suffices to prove that for C ′

i ⊂ 6Y an n-dimensional cone, the con-
tributions to the RHS coming from C ′

i correspond to the contributions to the LHS
coming from the cones Ci ⊂6X mapping into C ′

i . Given the above identifications,
this amounts to proving the change of variable formula for the blow-up of Cn along
a T-invariant subspace, with the standard torus action. Since every such blow-up
may be viewed as a product of the identity map along Ck times the blow-up at the
origin of Cn−k , it suffices to prove Lemma 6.2

Compactify Cn be viewing it as a subset of Pn , and extend the torus action in
the obvious manner. We may similarly view C̃n as an open subset of the blow-
up of Pn at the origin. Both compactifications are toric varieties and the induced
actions are consistent with the action of the big torus. Let H ⊂ Pn denote the
hyperplane at infinity–that is, the hyperplane disjoint from the blow-up point p0 =

[0 : · · · : 0 : 1]. Since all the divisors Di corresponding to coordinate hyperplanes
passing through p0 are linearly equivalent to H and KPn = −(n + 1)H , the line
bundle L = KPn +

∑n
i=1 αi Di +((n+1)−

∑
i αi )H is trivial. Thus, the equivariant

elliptic genus
∫

Pn EllT (P
n, L −KPn ) is zero. Similarly, f ∗L = KP̃n +

∑n
i=1 αi D̃i +

α0 E+((n+1)−
∑

i αi ) f ∗H = 0, which implies that
∫

P̃n EllT (P̃n, f ∗L−KP̃n )= 0.
Thus ∫

P̃n
EllT (P̃n, f ∗L − KP̃n )=

∫
Pn

EllT (P
n, L − KPn ).
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It is easy to see that the contribution to the left-hand integral coming from the fixed
points mapping to p0 is the LHS of the equation in Lemma 6.2. Similarly, the
contribution to the right-hand integral which comes from the blow-up point p0 is
equal to the RHS of Lemma 6.2. Since Pn and P̃n are isomorphic away from these
points, the contributions to the two integrals coming from the other fixed points are
the same, and cancel from both sides of the equation. This proves Lemma 6.2 and
completes the proof. �

We will see shortly that the addition formula in Theorem 6.3 lies at the heart of
the change of variable formula.

7. Equivariant change of variables formula

7.1. Preliminaries. Let (X, D =
∑

IX
αi Di ,G) be a G-normal pair with αi < 1

and with a T-action commuting with G and acting invariantly on D. Assume that
every component X g,h

γ of X g,h is a complete intersection of components of D.
Let f : X̃ → X be the blow-up of X along a smooth G-invariant subvariety whose
components are complete intersections of components of D. Define D̃ =

∑
I X̃
δ j D̃ j

so that K X̃ + D̃ = f ∗(K X + D). Note that since αi < 1, the coefficient in front of E
is less than 1. Our goal in this section is to prove an equivariant change of variable
formula for the orbifold elliptic genus:

Theorem 7.1. With the above notation, fix a component X g,h
γ and let X̃ g,h

µ be the
components of X̃ g,h which map to X g,h

γ . Then

f∗
∑
µ

EllT
orb(D̃, X̃ g,h

µ )= EllT
orb(D, X g,h

γ ).

Let IX index the irreducible components of D. Let I X̃ index the proper trans-
forms of these components, plus the exceptional divisors. Let6X be the polyhedral
complex associated to {Di }IX and let 6X̃ be the polyhedral complex associated to
{D̃ j }I X̃

. Note that if X Ik ,ik are the components of the blow-up locus, then 6X̃ is
obtained from 6X by adding the ray through the point (1, . . . , 1) in each of the
cones C Ik ,ik . The map (X̃ , 6X̃ , D̃)→ (X, 6X , D) clearly satisfies the axioms of a
toroidal morphism. Before proceeding with the proof, we need to establish some
cohomological properties of this toroidal morphism:

For any variety X with normal crossing divisors {Di }IX , let �(log D) be the
locally-free sheaf defined as follows: Let U = {(x1, . . . , xk, xk+1, . . . , xn)} be
a local coordinate system centered at p whose coordinate hyperplanes xk+1 =

0, . . . , xn = 0 correspond to the divisors Dk+1, . . . , Dn ∈ {Di } passing through
p. Then �(log D)(U ) is the OX -module generated by the forms dx1, . . . , dxk ,
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dxk+1/xk+1, . . . , dxn/xn . We have the exact sequence of sheaves

0 →�1
→�(log D)→

⊕
ODi → 0.

The first map is the obvious inclusion. The second arrow is the residue map which
takes a section ω =

∑
i fi

dxi
xi

to
⊕

i fi |Di . It is clear that this map is zero precisely
when ω defines a local holomorphic section of T ∗X . From the exact sequence of
sheaves

0 → O(−Di )→ OX → ODi → 0

we get that�(log D)−T ∗X =−
∑

O(−Di ) as stable vector bundles. Applying the
dual of this formula to the varieties (X, D) and (X̃ , D̃) defined above and observing
that f ∗�(log D)=�(log D̃), we arrive at the K -theoretic relation

T X̃ − f ∗TX =

∑
I X̃

O(D̃ j )−
∑

IX

f ∗O(Di ).

The equality is on the level of stable equivalence. We claim that the equality holds
in KT (X̃). To prove this, we verify the equality at every fixed component F ⊂ X̃ .
Let F ∈ f −1(P) be a fixed component which maps to P . Denote by iF and iP

the inclusions of F and P in X̃ and X . Let D̃1, . . . , D̃` be the divisors on X̃
which contain F , and D1, . . . , Dr the divisors on X containing P . Then i∗

P TX =

T P ⊕ N ⊕
⊕r

i=1 i∗

P O(Di ). Here if Z is the connected component of
⋂r

i=1 Di

containing P , then N is the normal bundle of P in Z . Similarly, i∗

F T X̃ = T F⊕ Ñ ⊕⊕`
j=1 i∗

F O(D̃ j ), with Ñ defined similarly. A computation in coordinates reveals
that f ∗N = Ñ . Since i∗

F f ∗
= f ∗i∗

P , we have

i∗

F T X̃ − i∗

F f ∗TX = T F +

∑̀
j=1

i∗

F O(D̃ j )− f ∗T P −

r∑
i=1

i∗

F f ∗O(Di ).

However, by the nonequivariant formula for T X̃ − f ∗TX derived from the log
complex, we have that

T F − f ∗T P =

∑
E j ∩F<F

i∗

F O(D̃ j )−
∑

Di ∩P<P

i∗

F f ∗O(Di )

where the sums are taken over the divisors which intersect properly with the fixed
components. Since these bundles all carry trivial T-actions, the above formula
holds in the equivariant category. Finally, observe that if D̃ j is disjoint from F
(resp. Di is disjoint from P) then i∗

F O(D̃ j ) (resp. i∗

P O(Di )) is equivariantly trivial.
Hence

i∗

F T X̃ − i∗

F f ∗TX =

∑
I X̃

i∗

F O(D̃ j )−
∑

IX

i∗

F f ∗O(Di ).
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From this we deduce an important formula relating the equivariant Chern roots of
X̃ to X :

Lemma 7.2. Let f : X̃ → X , {D̃ j }, and {Di } be as above. Then

cT (T X̃)
f ∗cT (TX)

=

∏
I X̃
(1 + cT

1 (D̃ j ))∏
IX
(1 + f ∗cT

1 (Di ))
.

7.2. Proof of the change of variables formula. The method of proof used here is
adapted from Borisov and Libgober’s calculation of the pushforward of the orbifold
elliptic genus by a toroidal morphism [Borisov and Libgober 2005].

By Lemma 7.2, EllT
orb(D̃, X̃ g,h

µ ) is equal to

8T
X̃ g,h
µ

f ∗

(∏
TX

x j (t)
2π i θ

( x j (t)
2π i − z

)
θ ′(0)

θ
( x j (t)

2π i

)
θ(−z)

∏
IX

θ
( Di (t)

2π i

)
θ(−z)

Di (t)
2π i θ

( Di (t)
2π i − z

)
θ ′(0)

)

×

∏
I g,h
µ

θ
( D̃i (t)

2π i + εi (g)− εi (h)τ − (−δi + 1)z
)
θ ′(0)

θ( D̃i (t)
2π i + εi (g)− εi (h)τ )θ

(
−(−δi + 1)z

) e2π i(−δi +1)εi (h)z

×

∏
I X̃ −I g,h

µ

D̃k(t)
2π i θ

( D̃k(t)
2π i − (−δk + 1)z

)
θ ′(0)

θ( D̃k(t)
2π i )θ(−(−δk + 1)z)

(
2π iθ(−z)
θ ′(0)

)n

.

Thus, in order to prove the change of variables formula, we are reduced to prov-
ing that

f∗

(∑
X̃ g,h
µ

∏
I g,h
µ

θ
( D̃i (t)

2π i + εi (g)− εi (h)τ − (−δi + 1)z
)
θ ′(0)
2π i

θ
( D̃i (t)

2π i + εi (g)− εi (h)τ
)
θ
(
−(−δi + 1)z

) e2π i(−δi +1)εi (h)z

×

∏
I X̃ −I g,h

µ

D̃i (t)
2π i θ

( D̃i (t)
2π i − (−δi + 1)z

)
θ ′(0)

θ( D̃i (t)
2π i )θ(−(−δi + 1)z)

·8T
X̃ g,h
µ

)

=

∏
I g,h
γ

θ
( Di (t)

2π i + εi (g)− εi (h)τ − (−αi + 1)z
)
θ ′(0)
2π i

θ
( Di (t)

2π i + εi (g)− εi (h)τ
)
θ
(
−(−αi + 1)z

) e2π i(−αi +1)εi (h)z

×

∏
IX −I g,h

γ

Di (t)
2π i θ

( Di (t)
2π i − (−αi + 1)z

)
θ ′(0)

θ( Di (t)
2π i )θ(−(−αi + 1)z)

·8T
X g,h
γ

.

Call the expression in the large parentheses�g,h
γ . For each X g,h

γ , define a piecewise
convergent power series Fg,h

γ ∈ C[[6X ]] as follows: Let Cg,h
γ be the cone which
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corresponds to X g,h
γ . For C = C I, j a cone containing Cg,h

γ , define

Fg,h
γ |C =

∏
I

xC
i

2π i θ
( xC

i
2π i + εi (g)− εi (h)τ − (−αi + 1)z

)
θ ′(0)

θ
( xC

i
2π i + εi (g)− εi (h)τ

)
θ
(
−(−αi + 1)z

) e2π i(−αi +1)εi (h)z.

Here for i ∈ I , xC
i are the linear functions dual to the generators of C . If Di are

the divisors which correspond to the generators of C , then εi (g) and εi (h) are the
infinitesimal weights of the g and h action on O(Di )|X g,h

γ
. Finally, αi refer to the

coefficients of these Di in the divisor D defined in the statement of the theorem.
Finally, for C a cone not containing Cg,h

γ , we define Fg,h
γ |C = 0. It is easy to see

that Fg,h
γ is a well-defined piecewise convergent power series and that

ρX (Fg,h
γ )=

(
θ ′(0)

2π iθ(−z)

)n

�g,h
γ .

We define the piecewise convergent power series F̃g,h
µ ∈ C[[6X̃ ]] similarly. By

Lemma 5.4, we have reduced the problem to proving that

ν∗
∑
µ

F̃g,h
µ = Fg,h

γ .

For each cone C containing Cg,h
γ , 6C = ν−1C is a subdivision of C obtained by

adding no more than one ray through the point (1, . . . , 1) in each subcone. It is
clear that the cones Cg,h

µ must be cones inside the fan6C . Moreover, every cone in
6C with the same dimension as C will contain exactly one Cg,h

µ as a subcone. (If it
contained more than one, that would contradict the fact that the X̃ g,h

µ s are disjoint.)
Thus, to prove the formula, we may restrict all our attention to the morphisms
ν : 6C → C for C ⊃ Cg,h

γ . For C j ⊂ 6C (dim C j = dim C), let xi j = xC j
i and

similarly define εi j , δi j in the obvious manner. Let xi = xC
i . By the pushforward

formula for ν∗, we are reduced to proving that

∑
C j ⊂6C

∏
i

θ
( xi j

2π i + εi j (g)− εi j (h)τ − (−δi j + 1)z
)
θ ′(0)
2π i

θ
( xi j

2π i + εi j (g)− εi j (h)τ
)
θ
(
−(−δi j + 1)z

) e2π i(−δi j +1)εi j (h)z

=

∏
i

θ
( xi

2π i + εi (g)− εi (h)τ − (−αi + 1)z
)
θ ′(0)
2π i

θ
( xi

2π i + εi (g)− εi (h)τ
)
θ
(
−(−αi + 1)z

) e2π i(−αi +1)εi (h)z.

To prove this, view ν : 6C → C as a toric morphism. Let N be the lattice corre-
sponding to the toric varieties defined by the fans6C and C . The elements g and h
act on PC,N and P6C ,N as elements of the big torus. As such, we may view g and
h as elements of a sup-lattice N ′

⊃ N of finite index. Under this identification, and
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using the transformation properties of the Jacobi theta function, we may assume
εi (g)= xi (g) and εi j (g)= xi j (g).

Following the notation in the proof of Theorem 6.3, let α = {αi − 1} and δ =

{δ j − 1}, where the indices range over all one-dimensional rays in C and 6C .
Clearly δ = ν∗α. Let fα be the linear function on C induced by the multiindex α.
Then

∑
i (αi −1)εi (h)= fα(h). Similarly,

∑
j (δi j −1)εi j (h)= fδ(h)= fν∗α(h)=

ν∗ fα(h) = fα(h). Thus, all the exponentials on both sides of the above equation
are the same. Now the equation follows from Theorem 6.3 after substituting xi

with xi + εi (g)− εi (h)τ . This completes the proof.

7.3. Localization change of variable formula. Suppose now that f : X̃ → X is
a T × G invariant blow-up of open varieties with compact T-fixed components.
Assume further that f : (X̃ , D̃)→ (X, D) admits a smooth equivariant compacti-
fication f ′

: (X̃ ′, D̃′)→ (X ′, D′) so that the compactified pairs remain G-normal,
and f ′ is again an equivariant blow-up. Let P be a fixed component of X and {F}

the collection of fixed components mapping to P . Then by the change of vari-
able formula for the orbifold elliptic genus of the compactification, plus functorial
localization, we get the following localized version of Theorem 7.1:

Corollary 7.3.
∑
F,µ

∫
F

i∗

F EllT
orb(D̃, X̃ g,h

µ )

e(F)
=

∫
P

i∗

P EllT
orb(D, X g,h

γ )

e(P)
.

8. Equivariant indices of ALE spaces

In this section we prove an equivariant elliptic genus analogue of the McKay cor-
respondence for ALE spaces. Let G ⊂ SU(2) be a finite subgroup. Let T = S1

act on C2 by the diagonal action. T clearly commutes with G. Our first goal is to
construct an equivariant resolution of singularities for C2/G.

Let g, h ∈ G be commuting pairs. Assume one of g or h is nontrivial so that
(C2)g,h = (0, 0). Since g and h commute, they have a simultaneous eigenbasis
(a, b) and (−b, a). Let `= C(a, b) and `⊥ = C(−b, a). Let D` = {−bx +ay = 0}

and D`⊥ = {ax + by = 0}. Then D`, D`⊥ are (g, h)× T -invariant normal crossing
divisors and D` ∩ D`⊥ = (C2)g,h .

Let f : C̃2 → C2 be the blow-up of C2 at the origin with exceptional divisor E .
Let D̃` and D̃`⊥ denote the proper transforms of D` and D`⊥ . The collection of
divisors {D̃`, D̃`⊥} over all commuting pairs (g, h) plus the exceptional divisor E
form a system of T-invariant normal crossing divisors. Moreover, this system of
divisors is G-invariant. This just follows from the fact that if ` is an eigenvector
for g, then h · ` is an eigenvector for hgh−1. Let X = C̃2, and label this system of
divisors {D j }IX . The following lemma demonstrates that (X,

∑
D j ,G) is, in the

words of Batyrev [1999], a canonical abelianization of (C2, 0,G):
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Lemma 8.1.
(
X,
∑

j D j ,G
)

is G-normal with abelian stabilizers.

Proof. We first prove G-normality. Suppose g · x = x and x ∈ D j , for some g 6= e.
Then x = ` ∈ E , since G acts freely on X − E . Identifying ` with a line in C2,
we see that ` is an eigenspace for g, and therefore, that D j = D̃`. It follows that
g · D j = D j , which proves G-normality.

Next, let g, h be two elements which fix `. Then ` and `⊥ are orthogonal
eigenspaces for g and h. It follows that g and h are simultaneously diagonalizable,
and therefore commute. This completes the proof. �

Note that the above proof also implies that X g
=
⋂

J D j for some indexing set
J ⊂ IX .

Consider the map f : X → X/G. Let p ∈ X have a nontrivial stabilizer G p.
Notice that p ∈ X T and p = Dp ∩ E for some divisor Dp ∈ {D j }IX . Let Up =

{(x, y)} be a coordinate system centered at p such that {x = 0} = E ∩ Up and
{y = 0} = Dp ∩ Up. Then f (Up) ∼= Up/G p. Since

(
X,
∑

j D j ,G
)

is G-normal,
we may identify G p as a finite subgroup of S1

× S1 acting on Up in the obvious
manner. Thus, let

(∗) Ũp/G p

be a toric resolution of the singularity at the origin of Up/G p. Repeat this pro-
cedure for every singular point f (p) ∈ X/G. We get a resolution of singularities
Y → X/G. Since all the p are fixed points of T , Y → X/G is T-equivariant.
The regular map Y → X/G → C2/G gives us our desired T-equivariant resolution
π : Y → C2/G. Let {Di }IY denote the set of divisors on Y containing the excep-
tional curves of π plus the proper transforms of the divisors f (D j ) for j ∈ IX .
Then {Di }IY is a system of T-invariant normal crossing divisors on Y .

Since the techniques of Section 5.3 pertain to compact varieties, we now de-
scribe some natural compactifications of X and Y . We may view C2

= {(x, y)} as
sitting inside P2

= {[x : y : z]} with the actions of G and T extending to P2 in the
obvious manner. Let X ⊃ X be the blow-up of P2 at the origin. Notice that X/G is
smooth along the hyperplane at infinity. Thus, let Y be the resolution of X/G that
is equal to X/G at infinity and coincides with Y everywhere else. Let {D j }IX and
{Di }IY denote the closures of the corresponding divisors on X and Y . Note that
the compactified divisors {D j }IX and {Di }IY do not contain any new points in their
intersection loci. Finally let 6X and 6Y be the polyhedral complexes associated to
the above T-invariant normal crossing divisors.

We now describe the relationship between the polyhedral complexes of X and
Y . We first set up some notation. As above, let f : X → X/G be the global
quotient. Let p ∈ D p ∩ E . Then p corresponds to a 2-dimensional cone C p ⊂ 6X
with lattice Np. Let Cg·p be the corresponding 2-dim cone for each point g · p in the
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G-orbit of p. We have an obvious identification Ng·p ∼= Np. Let 6 f (p) be the fan
that corresponds to the toric desingularization (∗). Let N f (p) denote the refinement
of the lattice Np which induces the toric quotient map C2

→ C2/G p. Next, if
D is a divisor in {D j }IX , let CD denote the corresponding ray in 6X , with lattice
ND ∼= Z. We define N f (D) to be the superlattice of ND whose index is equal to the
ramification index of f along D. Given these data, we obtain the lattice 6Y from
6X as follows: First identify all the cones (Cg·p, Np) for every point g · p in the
G-orbit of p. Next replace their representative with the toric fan (6 f (p), N f (p)).
Finally, replace the rays (CD, ND) with the rays (C f (D), N f (D)).

Unfortunately, the map X 99K Y is not regular. To remedy this, for every 2-
dimensional cone C p ⊂ 6X , let 6p be a subdivision of 6 f (p) such that the mor-
phism (6p, Np)→ (6 f (p), N f (p)) induces a smooth map of toric varieties. Modify
6X by replacing every cone C p with 6p. Naturally, we identify 6g·p = 6p for
every g ∈ G. Define X̂ to be the toroidal modification of X whose polyhedral
complex 6X̂ corresponds to the above described modification of 6X . It is easy to
see that X̂ → X factors into a sequence of G ×T -equivariant blow-ups at complete
intersection points. Moreover, the smooth T-mapµ : X̂ →Y is a toroidal morphism.
We have the commutative diagram

X̂
µ - Y

P2

φ
?

ψ- P2/G

π
?

Let {D̂ j } j∈I X̂
denote the T-invariant normal crossing divisors on X̂ which cor-

respond to the 1-dimensional rays of 6X̂ . We have that φ∗KP2 = K X̂ +
∑

I X̂
β j D̂ j

for some integers β j < 1.

Lemma 8.2. φ∗EllT
orb(X̂ ,

∑
β j D̂ j ,G)= EllT

orb(P
2, 0,G).

Proof. This follows almost directly from the change of variables formula for the
orbifold elliptic genus discussed in the previous section. The only point which
requires comment is the fact that the divisors {φ(D̂ j )}I X̂ −Iexcep (where Iexcep ranges
over the exceptional curves) have their base locus at [0 : 0 : 1] and therefore do
not form a system of normal crossing divisors. However, for any commuting pair
g, h, we can find a subset of {φ(D̂ j )}I X̂ −Iexcep which consists of normal crossing
divisors, and such that every component of (P2)g,h is inside the intersection locus
of this subset. Since the change of variables formula applies to every commuting
pair individually, this completes the proof. �

We also have π∗KP2/G = KY +
∑

IY
αi Di for rationals αi <1. Sinceψ∗KP2/G =

KP2 , we get µ∗(KY +
∑

IY
αi Di )= µ∗π∗KP2/G = φ∗KP2 = K X̂ +

∑
I X̂
β j D̂ j .
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Lemma 8.3. µ∗EllT
orb(X̂ ,

∑
β j D̂ j ,G)=

( 2π iθ(−z)
θ ′(0)

)2
EllT (Y ,

∑
αi Di ).

Proof. Since µ : X̂ → Y is a toroidal morphism, we have µ∗�
(
log

∑
αi Di

)
=

�
(
log

∑
β j D̂ j

)
. Therefore, by an argument analogous to the proof of Lemma 7.2,

cT (T X̂)

µ∗cT (T Y )
=

∏
I X̂
(1 + cT

1 (D̂ j ))∏
IY
(1 +µ∗cT

1 (Di ))
.

Following the same argument as in the proof of Theorem 7.1, we are reduced to
proving that

µ∗

1
|G|

∑
gh=hg

X̂ g,h
γ

(
8T

X̂ g,h
γ

∏
I X̂ −I g,h

γ

D̂ j
2π i θ

( D̂ j
2π i − (−β j + 1)z

)
θ ′(0)

θ
( D̂ j

2π i

)
θ
(
−(−β j + 1)z

)
∏
I g,h
γ

θ
( D̂ j

2π i + ε j (g)− ε j (h)τ − (−β j + 1)z
)
θ ′(0)
2π i

θ
( D̂ j

2π i + ε j (g)− ε j (h)τ
)
θ
(
−(−β j + 1)z

) e2π i(−β j +1)ε j (h)z

)

=

∏
IY

Di
2π i θ

( Di
2π i − (−αi + 1)z

)
θ ′(0)

θ
( Di

2π i

)
θ
(
−(−αi + 1)z

) .

Let H ∈ C[[6Y ]] be the piecewise convergent power series given by

H |C =

dim C∏
i=1

xC
i

2π i θ
( xC

i
2π i − (−αi + 1)z

)
θ ′(0)

θ
( xC

i
2π i

)
θ
(
−(−αi + 1)z

) .

Similarly, let Fg,h
γ ∈ C[[6X̂ ]] be defined as in the proof of Theorem 7.1. By

Lemma 5.5, we are reduced to proving that

ν∗
1

|G|

∑
gh=hg;γ

Fg,h
γ = H.

Let C ⊂6Y be a 2-dimensional cone with lattice NC . Let ν−1C be the collection
of fans {6k

C}k . From our construction of 6X̂ and 6Y , the 6k
C are isomorphic to

a fixed subdivision 6C with lattice N (6C). Let G = NC/N (6C) and d be the
cardinality of the set {6k

C}. We clearly have d ·|G(6C)| = |G|. By the pushforward
formula for toroidal morphisms,(

ν∗
1

|G|

∑
gh=hg;γ

Fg,h
γ

)
C
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is equal to

d
|G|

∑
Ci ⊂6C

∑
gh=hg;γ

(Fg,h
γ )Ci

∏2
j=1 xC

j∏2
j=1 xCi

j

=
1

|G(6C)|

∑
Ci ⊂6C

∑
g,h∈G(6C )

×

2∏
j=1

θ
( x

Ci
j

2π i + ε j (g)− ε j (h)τ − (−β j + 1)z
)
θ ′(0)
2π i

θ
( x

Ci
j

2π i + ε j (g)− ε j (h)τ
)
θ
(
−(−β j + 1)z

) e2π i(−β j +1)ε j (h)z
2∏

j=1

xC
j .

We wish to show that this last expression is equal to

2∏
j=1

xC
j

2π i θ
( xC

j
2π i − (−α j + 1)z

)
θ ′(0)

θ
( xC

j
2π i

)
θ
(
−(−α j + 1)z

) .

Since the coefficients {−β j +1} are the pullbacks of the coefficients {−αi +1}, this
identity follows from [Borisov and Libgober 2005, Lemma 8.1]. �

Now let p : V → C2/G be the T-equivariant crepant resolution, i.e., KV =

p∗KC2/G . By the equivariant factorization theorem for surfaces, we may connect
Y to V by a finite sequence of equivariant blow-ups and blow-downs. In other
words, we may form the commutative diagram

Ỹ
f - Y

V

g
? p - C2/G

π
?

Here f and g are sequences of T-equivariant blow-ups. Moreover, we may
assume that the blow-ups of f occur at complete intersection points. It is not
immediately clear that the same holds true for g. However, every blow-up point
for g will occur at a T-fixed point p ∈ D for some D ∼= P1, with D T-invariant.
From toric geometry, every such p may be represented as a complete intersection
of T-invariant divisors in a neighborhood of D. By functorial localization, we
may therefore assume that p is a complete intersection point when we calculate
pushforwards.

Define D̃i and α̃i so that f ∗(KY +
∑
αi Di )= KỸ +

∑
α̃i D̃i . Then

KỸ +

∑
α̃i D̃i = f ∗π∗KC2/G = g∗KV .

By the equivariant change of variables formula and functorial localization,
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∑
P⊂V

∫
P

EllT (V, 0)
e(P)

=

∑
F⊂Y

∫
F

EllT (Y,
∑
αi Di )

e(F)
.

Here {P} and {F} run over the fixed components of V and Y , respectively. The
above formula combined with the previous two lemmas imply the following equi-
variant elliptic genus analogue of the classical McKay correspondence:

Theorem 8.4. EllT
orb(C

2, 0,G)=

(
2π iθ(−z)
θ ′(0)

)2

EllT (V, 0).

Letting the parameter z go to 0 we get:

Corollary 8.5. The number of irreducible representations of G is
∑

P⊂V

∫
P e(T P).

In other words, eorb(C
2,G)= e(V ).

9. Relation to Batyrev’s stringy Euler number

Let X be a smooth quasiprojective variety and D =
∑

I ai Di an effective divisor
with simple normal crossings. Batyrev [1999] defined the stringy Euler number of
the pair (X, D) as

estr(X, D)=

∑
J⊂I

e(Do
J )
∏
j∈J

1
a j + 1

.

Here Do
J =

⋂
j∈J D j −

⋃
I−J Di . The definition is best understood from the point

of view of motivic integration.
Suppose that X has a T action with compact fixed components and that the

irreducible components of D are T-invariant. Then the equivariant elliptic genus
EllT (X,−D) is well-defined and it is natural to question how it relates to Batyrev’s
stringy Euler number. In this section we prove:

Theorem 9.1. Let X and D be as above. Then:

lim
y→1

lim
q→0

(
2π iθ(−z)
θ ′(0)

)dim X

EllT (X,−D)= estr(X, D).

Proof. We first note that we may rewrite estr(X, D) in the more convenient form

estr(X, D)=

∑
J⊂I

e(DJ )
∏
j∈J

(
1

a j + 1
− 1

)
.

Here DJ =
⋂

j∈J D j . For a quasiprojective T-space V with compact fixed compo-
nents, let χT

−y(V ) denote the equivariant χ−y-genus of V ; that is,

χT
−y(V )=

∑
F⊂V T

∫
F

∏
T F

fi (1 − ye− fi )

1 − e− fi

∏
νF

1 − ye−n j −w j

1 − e−n j −w j
.
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Here n j are the formal Chern roots of the normal bundle νF to F and w j are the
infinitesimal weights of the T action on the fibers of νF . It is easy to verify that

lim
y→1

∑
J⊂I

χT
−y(DJ )

∏
j∈J

(
y − 1

ya j +1 − 1
− 1

)
= estr(X, D).

The above equality essentially follows from the fact that e(V ) corresponds to∑
F⊂V T e(F), where {F} denotes the collection of fixed components of V (all of

which are compact). Thus, we are reduced to identifying∑
J⊂I

χT
−y(DJ )

∏
j∈J

(
y − 1

ya j +1 − 1
− 1

)
with a specialization of the equivariant elliptic genus.

Fix an indexing set J ⊂ I and a fixed component F of X which intersects DJ

nontrivially. Write {D j } j∈J as the disjoint union of collections {Dα}∪{Dβ}, where
Dβ denote the divisors which contain F . Note that since F ∩ DJ 6= ∅, for any of
the divisors Dα, Dα ∩ F is a proper subset of F .

The collection {DJ ∩ Fi }Fi ∈Fix(X) describes a partition of the collection of fixed
components of DJ . Let P = DJ ∩ F . From the preceding discussion we see that
νP/F =

⊕
α O(Dα)|P .

Consider the integral∫
F

∏
T F

fi (1 − ye− fi )

1 − e− fi

∏
νF/X

1 − ye−n`−w`

1 − e−n`−w`

∏
β

1 − e−Dβ−wβ

1 − ye−Dβ−wβ

∏
α

1 − e−Dα

1 − ye−Dα
.

Letting N = νF/X −
⊕

β O(Dβ), we may rewrite it as∫
F

∏
T F

fi (1 − ye− fi )

1 − e− fi

∏
N

1 − ye−n`−w`

1 − e−n`−w`

∏
α

1 − e−Dα

Dα(1 − ye−Dα )

∏
α

Dα

=

∫
P

∏
T P

pk(1 − ye−pk )

1 − e−pk

∏
νP/DJ

1 − ye−n`−w`

1 − e−n`−w`
.

Summing over all J ⊂ I , we therefore have∑
J⊂I

χT
−y(DJ )

∏
j∈J

(
y−1

ya j +1−1
−1
)

=

∑
J,F

∫
F

∏
T F

fi (1−ye− fi )

1−e− fi

∏
νF/X

1−ye−n`−w`

1−e−n`−w`

∏
J

1−e−D j −w j

1−ye−D j −w j

y−ya j +1

ya j +1−1

=

∑
F

∫
F

∏
T F

fi (1−ye− fi )

1−e− fi

∏
νF/X

1−ye−n`−w`

1−e−n`−w`

∏
I

1−e−Di −wi

1−ye−Di −wi

y−1
yai +1−1

.
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It is easy to see that this last expression equals lim
q→0

(
2π iθ(−z)
θ ′(0)

)dim X

EllT (X,−D).
This completes the proof. �

Appendix

Lemma A.1. Let f : X → Y be a T-map of smooth compact simply connected
complex manifolds. Let D ⊂ Y be a T-invariant divisor and let Ei be T-invariant
normal crossing divisors on X such that f ∗D =

∑
ai Ei as Cartier divisors. Then

for any ε-regular neighborhood Uε of D there exist generators2T
Ei

for cT
1 (Ei ) and

2T
D for cT

1 (D) with the following properties:

(1) 2T
D has compact support in Uε and 2T

Ei
have compact support in f −1(Uε).

(2) f ∗2T
D =

∑
ai2

T
Ei

+dT (η) on the level of forms, where η is a T-invariant form
with compact support in Uε.

(3) 2T
D and 2T

Ei
represent the extension by zero of the equivariant Thom classes

of the varieties D and Ei .

The only real issue above is to ensure that η has compact support in the desired
neighborhood.

Proof. We first solve this problem in the nonequivariant category. For V any Cartier
divisor, denote by LV the line bundle it induces. Let Uε be a T-invariant tubular
neighborhood of D of radius ε. Outside Uε/2, the constant function 1 is a section
of L D . Define a metric hfar in this region by hfar = ‖1‖

2
≡ 1. Let hnear be a metric

inside Uε. Piece the two metrics into a global metric h on L D using a partition of
unity. The first Chern class of L D is then represented by the form2D =

i
2π ∂∂ log h.

This form clearly has compact support in Uε.
Let Uεi be tubular neighborhoods of Ei . Choose εi small enough so that each of

these neighborhoods is contained in f −1Uε. Define metrics hi on Ei in a manner
analogous to the above construction of h. Clearly the forms 2Ei =

i
2π ∂∂ log hi

have compact support in Uεi and represent the first Chern classes of L Ei .
We have two natural choices for a metric on f ∗L D , namely f ∗h and ha1

1 · · · hak
k .

Choose a smooth nonzero function ϕ so that f ∗h = ϕha1
1 · · · hak

k . Notice that ϕ ≡ 1
outside f −1Uε. We have

∂∂ log f ∗h = ∂∂ logϕ+

∑
i

ai∂∂ log hi .

But this implies that f ∗2D =
∑

i ai2Ei +
i

2π ∂∂ logϕ. If we let dc
=

i
4π (∂ − ∂),

we may write this last equation as

f ∗2D =

∑
i

ai2Ei − ddc logϕ.
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The form η = −dc logϕ clearly has compact support in f −1Uε. It remains to
argue that 2D and 2Ei represent the Thom classes of D and Ei . It is a standard
fact that these classes are Poincaré duals to their respective divisors. If a divisor is
homologously nontrivial, then clearly its Thom classes coincides with its Poincaré
dual. If a divisor is homologously trivial, then it must follow that the extension
by zero of its Thom class is trivial. Either way this implies that the above classes
represent the extension by zero of the Thom classes of their respective divisors.
This completes the nonequivariant portion of the proof.

By averaging over the group T , we may assume that all the forms above are T-
invariant. For notational simplicity, let us assume that T = S1. Let V be the vector
field on X induced by the T-action. Let gi be the functions compactly supported in
f −1Uε which satisfy the moment map equation iV2Ei = dgi . Similarly, let W be
the vector field on Y defined by the T-action and define g so that it satisfies iV2D =

dg and has support inside Uε. Note that since f is T-equivariant, iV f ∗2D =

f ∗iW2D = f ∗dg. We then have d(g ◦ f )=
∑

i ai dgi + iV dη=
∑

i ai dgi −diV η.
Hence g ◦ f =

∑
i ai gi − iV η. But this implies that

f ∗(2D + g)=

∑
i

ai (2Ei + gi )+ (d − iV )η.

But this is precisely the relation we wish to in the equivariant cohomology. �

Lemma A.2 (Excess intersection formula). Let X be a smooth compact variety
with irreducible normal crossing divisors D1, . . . , Dk . For I ⊂ {1, . . . , k} denote
by X I, j the j-th connected component of

⋂
I Di and by8I, j its Thom class. Fix ir-

reducible subvarieties X I1, j1 and X I2, j2 . For I0 = I1∪ I2, let X I0, j be the irreducible
components of X I1, j1 ∩ X I2, j2 . Then

8I1, j1 ∧8I2, j2 =

∑
I0, j

8I0, j

∏
I1∩I2

8i .

Proof. Let NI, j be tubular neighborhoods of X I, j which are disjoint for each index-
ing set I and which satisfy NI, j ⊂ NI ′, j ′ for X I, j ⊂ X I ′, j ′ . If we choose8i to have
compact support in a sufficiently small tubular neighborhood of Di , then

∏
I 8i

will have compact support in
∐

j NI, j . The extension by zero of (
∏

I 8i )|NI, j will
represent the Thom class of X I, j (see [Bott and Tu 1982]). We may also ensure
that 8I1, j1 ∧8I2, j2 has compact support in

∐
j NI0, j .

8I1, j1 ∧8I2, j2 =

∑
I0, j

(∏
I1

8i

∏
I2

8i

)∣∣∣∣
NI0, j

=

∑
I0, j

(∏
I0

8i

∏
I1∩I2

8i

)∣∣∣∣
NI0, j

=

∑
I0, j

(∏
I0

8i

)∣∣∣∣
NI0, j

∏
I1∩I2

8i .
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This yields the desired formula. �

This proof clearly extends to the equivariant category.
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