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The notion of a 0-symmetric space is a generalization of the classical notion
of a symmetric space, where a general finite abelian group 0 replaces the
group Z2. We approach the classification of 0-symmetric space in the case
0 = Z2 × Z2 using recent results on the classification of complex Z2 × Z2-
graded simple Lie algebras.

The notion of a 0-symmetric space, introduced by R. Lutz [1981], is a gen-
eralization of the classical notion of a symmetric space, where a general finite
abelian group 0 replaces the group Z2. The case 0 = Zk has also been studied,
from the algebraic point of view by V. Kac [1968] and from the point of view of
differential geometry by Ledger and Obata [1968], by Kowalski [1980] or by Wolf
and Gray [1968] in terms of k-symmetric spaces. In this case, a k-manifold is a
homogeneous reductive space and the classification of these varieties is given by the
corresponding classification of graded Lie algebras. We approach the classification
of 0-symmetric spaces in the case 0 =Z2×Z2 in a similar way, using recent results
(see [Bahturin et al. 2005]) on the classification of complex Z2 ×Z2-graded simple
Lie algebras.

1. Introduction

A symmetric space is a homogeneous space M = G/H , where G is a connected
Lie group with an involutive automorphism σ and H is a closed subgroup that
lies between the subgroup of all fixed points of σ and its identity component.
This automorphism σ induces an involutive diffeomorphism σ0 of M such that
σ0(π(x)) = π(σ(x)) for every x ∈ G, where π : G → G/H is the canonical
projection. It also induces an automorphism γ on the Lie algebra g of G. This
automorphism satisfies γ 2

= Id; hence it is diagonalizable, and the Lie algebra
g of G admits a Z2-grading g = g0 ⊕ g1, where g0 and g1 are the eigenspaces
of σ corresponding to the eigenvalues 1 and −1. Conversely, every Z2-grading
g = g0 ⊕ g1 on a Lie algebra g makes it into a symmetric Lie algebra, that is, a
triple (g, g0, g), where γ is an involutive automorphism of g such that γ (X) = X
if and only if X ∈ g0 and γ (X) = −X for all X ∈ g1. If G is a connected simply
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connected Lie group with Lie algebra g, then γ induces an automorphism σ of
G, and for any subgroup H lying between Gσ

= {x ∈ G | σ(x) = x} and its
identity component, (G/H, σ ) is a symmetric space. In the Riemannian case, H
is compact and g admits an orthogonal symmetric decomposition, that is, the Lie
group of linear transformations of g generated by adg H is compact. As a result,
the study is reduced to the effective irreducible case, and g is semisimple.

In this paper we will look at more general 0-symmetric homogeneous spaces.
They were first introduced by R. Lutz [1981] and by A. Tsagas at a workshop
in Bucharest. We propose here to develop the corresponding algebraic structures
and to give — using the results on complex simple Lie algebras graded by finite
abelian groups [Bahturin et al. 2005; Bahturin and Zaicev 2007; 2006] (see also
[Havlı́ček et al. 1998; 2000]) — the algebraic classification of Z2 × Z2-symmetric
spaces G/H whose associated Lie algebra g is simple of classical type.

2. Group graded Lie algebras

Definition 1. Let P be a group with identity element 1. A Lie algebra g over a
field F is graded by P if g =

⊕
p∈P gp [gp, gq ] ⊂ gpq for all p, q ∈ P .

Definition 2. Given two P-gradings g=
⊕

p∈P gp and g=
⊕

p∈P g′
p of an algebra

g by a group P , we call them equivalent if there exists an automorphism θ of g

such that g′
p = θ(gp) for all p ∈ P .

An important subset of the grading group is defined as follows.

Definition 3. Given a grading as above, the set Supp g = {p ∈ P | gp 6= {0}} is
called the support of the grading.

It has been established in [Patera and Zassenhaus 1989] (see also [Bahturin and
Zaicev 2006]) that if g is complex simple then any two elements in the support
of the grading commute. So one can always restrict oneself to the case of abelian
groups. In this paper we restrict ourselves to finite abelian grading groups P .

2.1. Action of the dual group. Let 0 = P̂ be the dual group associated to P , that
is, the group of characters γ : P → C? of P . If we assume that a Lie algebra g is
P-graded, then we obtain a natural action of 0 by linear transformations on g⊗ C

if, for any homogeneous elements X ∈ gp, we set γ (X)= γ (p)X . Since for X ∈ gp

and Y ∈ gq we have [X, Y ] ∈ gpq , it follows that

(1) γ ([X, Y ]) = γ (pq)[X, Y ] = [γ (p)X, γ (q)Y ] = [γ (X), γ (Y )],

that is, 0 acts by Lie automorphisms on g. In this case, there is a canonical homo-
morphism

(2) α : 0 → Aut(g⊗ C) given by α(γ )(X) = γ (X).
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If p2
= 1 for any p ∈ Supp g, then the action is defined even on g itself, and the

above homomorphism maps 0 onto a subgroup of Aut g.
Conversely, suppose there is a homomorphism α : 0 → Aut g for a finite abelian

group 0. Then 0 acts on g, and hence on g ⊗ C by automorphisms, if one sets
γ (X) = α(γ )(X). This action extends to g ⊗ C and yields a P-grading 0 = P̂ of
g⊗ C by subspaces (g⊗ C)p for each p ∈ P , defined as

(g⊗ C)p = {X | γ (X) = γ (p)X}.

That [gp, gq ] ⊂ gpq easily follows from (1). Now the vector space decomposi-
tion g =

⊕
p∈P gp is just a standard weight decomposition under the action of an

abelian semisimple group of linear transformations over an algebraically closed
field. Again, if α(γ )2

= 1 for any γ ∈ 0, then we have a P-grading on g itself.
Explicitly, let us assume that g is a complex Lie algebra and that K is a finite

abelian subgroup of Aut(g). One can write K as K = K1 × · · · × K p, where Ki

is a cyclic group of order ri . Let κi be a generator of Ki . The automorphisms κi

satisfy κ
ri
i = Id and κi ◦ κ j = κ j ◦ κi for all i, j = 1, . . . , p. These automorphisms

are simultaneously diagonalizable. If ξi is a primitive root of order ri of the unity,
then the eigenspaces

gs1,...,sp = {X ∈ g | κi (X) = ξ
si
i X for i = 1, . . . , p}

give the following grading of g by P = Zr1 × · · · × Zrp :

g =

⊕
(s1,...,sp)∈Zr1×···×Zr p

gs1,...,sp .

We can summarize some of what was said above as follows.

Proposition 4. Let P be a finite abelian group, and let 0 = P̂ be the group of
complex characters of P.

(a) A complex Lie algebra g is P-graded if and only if the dual group 0 maps
homomorphically onto a finite abelian subgroup of Aut(g) by the canonical
homomorphism α described in (2).

(b) A real Lie algebra g is P-graded, with p2
= 1 for each p ∈ Supp g, if and only

if there is a homomorphism α : 0 → Aut(g) such that α(γ )2
= idg for any

γ ∈ 0.

(c) In both cases above, Supp g generates P if and only if the canonical mapping
α has trivial kernel, that is, if 0 is isomorphic to a (finite abelian) subgroup
of Aut(g).
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Proof. We need only to comment on (c). If 3⊂0, then we denote by 3⊥ the set of
all p ∈ P such that λ(p) = 1 for all λ ∈ 3. Similarly we define Q⊥ for any Q ⊂ P .
The sets 3⊥ and Q⊥ are always subgroups in P and 0, respectively. If 3 and Q
are subgroups then |3|·|3⊥

| = |Q|·|Q⊥
| = |0| = |P|. We claim that if 3= Ker α,

then the subgroup generated by Supp g is P = 3⊥. This follows because for any
p /∈ Q there is a λ ∈ 3 such that λ(p) 6= 1. If gp 6= {0} and 0 6= X ∈ gp, then
λ(X)=λ(p)X 6= X and λ /∈ Ker α. Conversely, let Supp g⊂ T , where T is a proper
subgroup of Q = Ker α⊥. Then T ⊥ properly contains 3 and for any γ ∈ T ⊥

\ 3

and any X ∈ gt for t ∈ T , we have γ (X) = γ (t)X = X . Since all such X span g,
we have γ ∈ Ker α = 3, a contradiction. Thus Supp g must generate the whole of
Q, proving (c). �

2.2. Examples. 1. The gradings of classical simple complex Lie algebras by finite
abelian groups have been described in [Bahturin et al. 2001; Bahturin et al. 2005;
Bahturin and Zaicev 2006], and [Draper and Viruel 2007] (see also [Havlı́ček et al.
1998; 2000]). We will use this classification in the case 0 = Z2 × Z2 to obtain
some classification-type results in the theory of Z2 × Z2-symmetric spaces.

2. In the nonsimple case, the study of gradings is more complicated. Consider, for
example, the nilpotent case. In contrast to the simple case, there is no classification
of these Lie algebras, except in dimensions up to 7 [Goze and Remm 2007]. Even
then, one has to distinguish between two classes of complex nilpotent Lie algebras:

(a) The noncharacteristically nilpotent Lie algebras. These Lie algebras admit a
nontrivial abelian subalgebra of the Lie algebra Der(g) of derivations whose
elements are semisimple. In this case g is graded by the roots.

(b) The characteristically nilpotent Lie algebras. Every derivation is nilpotent,
and we do not have root decompositions. Nevertheless, these nilpotent Lie
algebras can be graded by groups. For example, the following nilpotent Lie
algebra, denoted by (n3

7) in [Goze and Remm 2007] and given by

[X1, X i ] = X i+1 for i = 2, . . . , 6,

[X2, X3] = X5 + X7,

[X2, X4] = X6,

[X2, X5] = X7

is characteristically nilpotent and admits the grading n3
7 = g0 ⊕g1, where g0 is

the nilpotent subalgebra generated by {X2, X4, X6} and g1 is the g0-module
generated by {X1, X3, X5, X7}. On the other hand, the nilpotent Lie algebras
n4

7 and n5
7 do not admit nontrivial group gradings.
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3. 0-symmetric spaces

Definition 5. Let 0 be a finite abelian group. A homogeneous space M = G/H is
said to be 0-symmetric if

(1) the Lie group G is connected;

(2) the group G is effective on G/H (that is, the Lie algebra h of H does not
contain a nonzero proper ideal of the Lie algebra g of G);

(3) there is an injective homomorphism ρ : 0 → Aut G such that if G0 is the
closed subgroup of all elements of G fixed by ρ(0) and (G0)e is the identity
component of G0, then (G0)e ⊂ H ⊂ G0.

Obviously, in the case of 0 = Z2 we obtain ordinary symmetric spaces.
We denote by ργ the automorphism ρ(γ ) for any γ ∈ 0. If H is connected, we

have
ργ1 ◦ ργ2 = ργ1γ2,

ρε = Id,

ργ (g) = g for all γ ∈ 0 if and only if g ∈ H,

where ε is the identity element of 0. If 0 = Z2 then a Z2-symmetric space is a
symmetric space; if 0 = Zp we find again the p-manifolds in the sense of Ledger
and Obata [1968].

3.1. 0̂-grading of the Lie algebra of G. Let M = G/H be a 0-symmetric space.
Each automorphism ργ of G for γ ∈ 0 induces an automorphism τγ of g given by
τγ = (Tργ )e, where (T f )x is the tangent map of f at the point x .

Lemma 6. The map τ : 0 → Aut(g) given by τ(γ ) = (Tργ )e is an injective homo-
morphism.

Proof. Let γ1 and γ2 be in 0. Then ργ1 ◦ ργ2 = ργ1γ2 . It follows that (Tργ1)e ◦

(Tργ2)e = (Tργ1ργ1)e = (Tρ(γ1γ2))e, that is, τ(γ1γ2) = τ(γ1)τ (γ2). Now let us
assume that τ(γ )= Idg. Then (Tργ )e = Id= (Tρε)e. But ργ is uniquely determined
by the corresponding tangent automorphism of g. Then ργ = ρε and γ = ε. �

From this lemma we derive the following.

Proposition 7. If M = G/H is a 0-symmetric space, then the complex Lie algebra
gC = g ⊗ C, where g is the Lie algebra of G, is 0̂-graded, and if 0 = Zk

2, then the
real Lie algebra g of G is 0̂-graded. The subgroup of 0̂ generated by the support
of the grading is 0̂ itself.

Proof. Indeed, by Lemma 6, α : 0 → Aut g is an injective homomorphism, and so
all our claims follow by Proposition 4. �
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For convenience, recall that if a finite abelian group P satisfies 0̂ = P and if
α is the canonical homomorphism introduced in (2), then the components of the
grading are given by

(3) gp = {X ∈ g | α(γ )(X) = γ (p)X for all γ ∈ 0}.

3.2. 0-symmetric spaces and graded Lie algebras. To study 0-symmetric spaces,
we need to start with the study of P-graded Lie algebras where 0 = P̂ . But in a
general case, if G is a connected Lie group corresponding to g, the P-grading of
g or gC does not necessarily give a 0-symmetric space G/H . Some examples are
given in [Berger 1957], even in the symmetric case. Still, if G is simply connected,
Aut(G) is a Lie group isomorphic to Aut(g).

Proposition 8. Let P = Zk
2 with identity element ε, let 0̂ = P , and let g be a real

P-graded Lie algebra such that the subgroup generated by Supp g equals P and
such that the identity component h = gε of the grading does not contain a nonzero
ideal of g. If G is a connected simply connected Lie group with Lie algebra g and
if H is a Lie subgroup associated with h, then the homogeneous space M = G/H
is a 0-symmetric space.

Proof. By Proposition 4, there is an injective homomorphism α :0 →Aut g defined
by this grading. The subgroup α(0) of Aut g is isomorphic to 0. Choosing for each
α(γ ) a unique automorphism ρ(γ ) of G such that (T (ρ(γ ))e = τ(γ ), we obtain an
injective homomorphism ρ : 0 → Aut G, which makes G/H into a 0-symmetric
space. �

Motivated by Propositions 4, 7, and 8, we introduce the following.

Definition 9. Given a real or complex Lie algebra g, a subalgebra h of g, and a
finite abelian subgroup 0 ⊂ Aut g, we say that (g/h, 0) is a local 0-symmetric
space if h = g0, the set of all fixed points of g under the action of 0. We call h the
isotropy subalgebra of (g/h, 0).

Any 0-symmetric space gives rise to a local 0-symmetric space, and, in the case
of connected simply connected groups, the converse is also true. If 0 = Zk

2, then
(g/h, 0) is a local 0-symmetric space if and only if g is P-graded, where P = 0̂

and the isotropy subalgebra h is the identity component of the grading. If 0 is a
more general finite abelian group, then the grading by P = 0̂ arises only on the
complexification g⊗ C, and still h⊗ C is both the set of fixed points of 0 and the
identity component of the grading. Again, the study of local complex 0-symmetric
spaces amounts to the study of P-graded Lie algebras, where P = 0̂.

3.3. 0-symmetries on the homogeneous space M = G/H. Given a 0-symmetric
space (G/H, 0) it is easy to construct, for each point x of the homogeneous space
M = G/H , a subgroup of the group Diff(M) of diffeomorphisms of M that is
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isomorphic to 0 and has x as an isolated fixed point. We denote by g the class
of g ∈ G in M . If e is the identity of G and γ ∈ 0, we set s(γ,e)(g) = ργ (g). If
g satisfies s(γ,e)(g) = g, then ργ (g) = g, that is, ργ (g) = ghγ for hγ ∈ H . Thus
hγ = g−1ργ (g). But 0 ∼= 0̂ is a finite abelian group. If pγ is the order of γ , then
ργ pγ = Id. Then

h2
γ = g−1ργ (g)ργ (g−1)ργ 2(g) = g−1ργ 2(g).

Proceeding inductively, and considering hm
∈ H for any m, we have (hγ )m

=

g−1ργ m (g). For m = pγ we obtain (hγ )pγ = e. If g is near the identity element of
G, then hγ is also close to the identity, and h pγ

γ =e implies hγ =e. Then ργ (g)= g.
This is true for all γ ∈ 0, and thus g ∈ H . It follows that g = e and that the only
fixed point of s(γ,e) is e. In conclusion, the family {s(γ,e)}γ∈0 of diffeomorphisms
of M satisfy

s(γ1,e) ◦ s(γ2,e) = s(γ1γ2,e),

s(γ,e)(g) = g for all γ ∈ 0 implies g = e.

Thus, 0e = {s(γ,e) | γ ∈ 0} is a finite abelian subgroup of Diff(M) isomorphic to
0, for which e is an isolated fixed point.

In another point g0 of M we put s(γ,g0)(g) = g0(s(γ,ē))(g−1
0 g). As above, we

can see that

s(γ1,g0) ◦ s(γ2,g0) = s(γ1γ2,g0),

s(γ,g0)(g) = g for all γ ∈ 0 implies g = g0.

and 0g0 = {s(γ,g0) | γ ∈ 0} is a finite abelian subgroup of Diff(M) isomorphic to
0, for which g0 is an isolated fixed point.

Thus for each g ∈ M we have a finite abelian subgroup 0g of Diff(M) isomorphic
to 0, for which g is an isolated fixed point.

Definition 10. Let (G/H, 0) be a 0-symmetric space. For any point x ∈ M =G/H
the subgroup 0x ⊂ Diff(M) is called the group of symmetries of M at x .

Since for every x ∈ M and γ ∈ 0, the map s(γ,x) is a diffeomorphism of M
such that s(γ,x)(x) = x , the tangent linear map (T s(γ,x))x is in GL(Tx M). For
every x ∈ M , we obtain a linear representation Sx : 0 → GL(Tx M) defined by
Sx(γ ) = (T s(γ,x))x . Thus for every γ ∈ 0 the map S(γ ) : M → T (M) defined by
S(γ )(x) = Sx(γ ) is a (1, 1)-tensor on M satisfying these properties:

(1) the map S(γ ) is of class C∞;

(2) for every x ∈ M , {Xx ∈ Tx(M) | Sx(γ )(Xx) = Xx for all γ ∈ 0} = {0}. In fact,
this last remark is a consequence of the property that s(γ,x)(y) = y for every
γ implies y = x .
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Definition 11. Let M be a real differential manifold, and let 0 be a finite abelian
group. We denote by Tx M the tangent space to M at the point x .

A 0-symmetric structure on M is given for all x ∈ M by a linear representation
ρx of 0 on the vector space Tx M such that

(1) for every γ ∈ 0, the map x ∈ M → ρx(γ ) is of class C∞;

(2) for every x ∈ M , {Xx ∈ Tx(M) | ρx(γ )(Xx) = Xx for all γ } = {0}.

Proposition 12. If (G/H, 0) is a 0-symmetric space, the family {Sx}x∈M is a 0-
symmetric structure on the homogeneous space M = G/H.

3.4. Canonical connections on the homogeneous space G/H. Let (G/H, 0) be
a 0-symmetric space. As we learned, the compexified Lie algebra g ⊗ C of G is
then P-graded, P = 0̂, and g ⊗ C = ⊕p∈P (g ⊗ C)p. If ε is the identity element
of P , then the component h = (g ⊗ C)1 is a Lie subalgebra of g ⊗ C of the form
h⊗ C where h = g0, which is the set of fixed points of the action of 0 on g and is
also the Lie algebra of the subgroup H . Let us consider the subspace g′ of g given
by g′

=
⊕

p 6=1 gp. For every 1 6= p ∈ P , if p2
= 1 then (g⊗ C)p = gp ⊗ C, where

gp is given by (3); if p2
6= 1, then (g⊗C)p ⊕ (g⊗C)p−1 = g̃p ⊗C, where g̃p is the

subspace of g spanned by the real and imaginary parts of the vectors in (g⊗ C)p.
This simple claim follows because γ (u + vi)=γ (u + vi), where the action of 0

on g⊗C is given by γ (u+vi)=γ (u)+γ (v)i . Thus if p2
=1 and u+vi ∈ (g⊗C)p,

then γ (u + vi) = γ (p)(u −vi) and γ (u + vi) = γ (u)−γ (v)i . Since γ (p) is real,
γ (u)= γ (p)(u) and γ (v)= γ (p)(v), proving that u, v ∈ gp and (g⊗C)p = gp ⊗C.
But if p2

6= 1 and again u + vi ∈ (g⊗ C)p, then

γ (u + vi) = γ (p)(u − vi) = γ (p−1)u + vi = γ (u − vi),

showing that complex conjugation leaves invariant (g ⊗ C)p ⊕ (g ⊗ C)p−1 . Then,
of course, our claim follows.

If we set m to the sum of all gp and g̃p for p 6=1, then g⊗C =g1⊗C⊕m⊗C and
g = g1 ⊕m. We also have [g1, m] ⊂ m, and so m is an ad g1-invariant subspace. If
H is a connected Lie group, then [g1, m] ⊂ m is equivalent to (ad H)(m) ⊂ m, that
is, m is an ad H -invariant subspace. This property is true without any conditions
on H .

Lemma 13. Any 0-symmetric space (G/H, 0) is reductive.

Proof. Let us consider the associated local 0-symmetric space (g/h, 0). We need
to find a decomposition g = h⊕m such that m is invariant under the adjoint action
of the isotropy subgroup H or, which is the same, under the action of the isotropy
subalgebra h. Now since h ⊗ C = (g ⊗ C)1 and m ⊗ C = ⊕p 6=1(g ⊗ C)p, we have
[h ⊗ C, m⊗ C] ⊂ m⊗ C]. Then, of course, also [h, m] ⊂ m. �
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We now deduce from [Kobayashi and Nomizu 1996, Chapter X] that M = G/H
admits two G-invariant canonical connections denoted by ∇ and ∇. The first
canonical connection, ∇, satisfies, for all X, Y ∈ m,

R(X, Y ) = − ad([X, Y ]h),

∇ R = 0,

T (X, Y )e = −[X, Y ]m,

∇T = 0,

where T and R are the torsion and the curvature tensors of ∇. The tensor T is trivial
if and only if [X, Y ]m = 0 for all X, Y ∈ m. This means that [X, Y ] ∈ h, that is,
[m, m]⊂h. Then the Lie algebra g is Z2-graded, and the homogeneous space G/H
is symmetric. If the grading of g is given by 0, where 0 is not isomorphic to Z2,
then [m, m] need not be a subset of in h, and then the torsion T need not vanish. In
this case another connection, ∇, will be defined if one sets ∇X Y =∇X Y −T (X, Y ).
This is an affine invariant torsion-free connection on G/H which has the same
geodesics as ∇. This connection is called the second canonical connection or
the torsion-free canonical connection. For example, if 0 = Z2 × Z2 then these
connections can be distinct, as one can see from several examples in Section 4.

Remark. Actually, there is another way of writing the canonical affine connection
of a 0-symmetric space without any reference to Lie algebras. This is done by an
intrinsic construction of 0-symmetric spaces proposed by Lutz [1981].

4. Classification of local Z2 × Z2-symmetric complex spaces

We have seen that the classification of 0-symmetric spaces (G/H, 0), when G is
connected and simply connected, corresponds to the classification of Lie algebras
graded by P = 0̂. Below we establish the classification of local Z2×Z2-symmetric
spaces (g, 0) in the case where the corresponding Lie algebra g is simple complex
and classical.

We recall Definition 2 that, given two P-gradings g = ⊕p∈Pgp and g = ⊕p∈Pg′
p

of an algebra g by a group P , we call them equivalent if there exists an automor-
phism α of g such that g′

p = α(gp). To make the classification even more compact
we will use another equivalence relation on the gradings. We will call two P-
gradings g = ⊕p∈Pgp and g = ⊕p∈Pg′

a of an algebra g by a group P weakly
equivalent if there exists an automorphism π of g and an automorphism ω of P
such that g′

p = π(gω(p)). So the classification we are about to produce will be up
to the weak equivalence.

4.1. Introductory remarks about the Z2×Z2-gradings. In this section we let P =

{e, a, b, c} be the group Z2 ×Z2 with identity e and the relations a2
= b2

= c2
= e

and ab = c. We will consider the Z2×Z2-grading on a complex simple Lie algebra
g to be one of the types Al for l ≥ 1, Bl for l ≥ 2, Cl for l ≥ 3, and Dl for l ≥ 4. We
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will use some results from [Bahturin et al. 2005; Bahturin and Zaicev 2007]. That
is why in the rest of the paper we denote by e the identity of the grading group P .

Note that in those papers we did not consider the case of so(8). All fine group
gradings on this algebra have been described in [Draper and Viruel 2007]. We
thank the referee for pointing out that one can use this classification to construct
all Z2 × Z2-gradings on D4 by [Draper and Martı́n 2006, Proposition 2]. At the
same time, we note that if one considers the P-gradings of g= so(8), where P is an
elementary abelian 2-group, then each grading is equivalent to a grading induced
from a grading of the matrix algebra M8. This quickly follows from the description
of the outer automorphisms of order 2. If we fix a canonical realization of D4 in
M8 and a basis of the root system for D4, then one of the three diagram automor-
phisms of order 2 can be given as the conjugation by an appropriate nonsingular
matrix in M8, while the others are the conjugates of this fixed one by the diagram
automorphisms of order 3; see for example [Jacobson 1962, Chapter III].

4.1.1. According to [Bahturin et al. 2005], any P-grading of a simple Lie algebra
g = so(2l +1) for l ≥ 2 , g = so(2l) for l > 4 and sp(2l) for l ≥ 3 is induced from a
P-grading of the respective associative matrix algebra R = M2l+1 in the first case,
or M2l in the second and the third case. As we just explained, this is also true for
so(8) provided that P = Z2×Z2. Two kinds of P-grading on the associative matrix
algebra Mn = R = ⊕p∈P Ra are of special importance:

Elementary gradings. Each such grading is defined by an n-tuple (p1, . . . , pn)

of elements of P in such a way that all matrix units Ei j are homogeneous with
Ei j ∈ Rp if and only if p = p−1

i p j .

Fine gradings. These gradings are characterized by the property that dim Rp = 1
for every p ∈ Supp(R), where Supp(R) = {p ∈ P | dim Rp 6= 0}. In the case
P = Z2 ×Z2, each fine grading is either trivial or weakly equivalent to the grading
on R ∼= M2 given by the Pauli matrices

Xe = I =

(
1 0
0 1

)
, Xa =

(
−1 0

0 1

)
, Xb =

(
0 1
1 0

)
, Xc =

(
0 −1
1 0

)
in such a way that the graded component of degree p is spanned by X p for p =

e, a, b, c. Notice [Bahturin et al. 2001] that the support of a fine grading of a simple
associative algebra is always a subgroup of P .

According to [Bahturin et al. 2001; Bahturin and Zaicev 2003] any P-grading
of R = Mn can be written as the tensor product of two graded matrix subalgebras
R = A⊗B, where A ∼= Mk and its grading is (equivalent to) an elementary grading,
and the grading of B ∼= Ml is fine with Supp A ∩ Supp B = {e} for kl = n. Thus
the only cases possible, when P = Z2 × Z2, are
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(1) B = C and R = A ⊗ C = A;

(2) B = M2 and the grading on A is trivial.

If R is graded by P as above, then an involution ∗ of R = Mn is said to be
graded if (Rp)

∗
= Rp for any p ∈ P . In the case of such involution, the spaces

K (R, ∗)={X ∈ R | X∗
=−X} of elements skew-symmetric under ∗ and H(R, ∗)=

{X ∈ R | X∗
= X} of elements symmetric under ∗ are graded, and the first is a simple

Lie algebra of one of the types B, C , D under the bracket [X, Y ] = XY − Y X .
It is proved in [Bahturin et al. 2005] that g as a P-graded algebra is isomorphic

to K (R, ∗) = {X ∈ R | X∗
= −X} for an appropriate graded involution ∗.

In general the involution does not need to respect A and B. But this is definitely
the case when P = Z2 × Z2. In fact, since the grading of B is fine, using the
support conditions, we see that either B = C and R = A ⊗ C = A is respected by
∗ or B = M2 and the grading of A is trivial. Since B is the centralizer of A in R,
it follows that B is also invariant under the involution. For the details of the above
claims see [Bahturin and Zaicev 2007].

Now any involution has the form ∗ : X → X∗
= 8−1 X t8 for a nonsingular

matrix 8 which is either symmetric in the orthogonal case and skew-symmetric in
the symplectic case. Since the elementary and fine components are invariant under
the involution, 8 = 81 ⊗ 82, where 81 defines a graded involution on A and 82

on B.
First we recall the description of the graded involutions for the elementary grad-

ings. Given an element p of a group P and a natural number n we denote by p(n)

the n-tuple p, . . . , p. Using the argument of [Bahturin and Zaicev 2007], one may
assume that this grading is given by an n-tuple

ν = (p(k1)
1 , p(k2)

2 , . . . , p(ks+2t )

s+2t ) where n = k1 + · · · + ks+2t ,

pi ∈ 0 are pairwise different, ks+2i−1 = ks+2i for i = 1, . . . , t , and there is p0

such that p0 = p2
1 = · · · = p2

s = ps+1 ps+2 = · · · = ps+2t−1 ps+2t . However, since
p2

= e for the elements of Z2 ×Z2, we have p0 = e. If st 6= 0, then ps+1 ps+2 = e;
this implies ps+1 = ps+2, a contradiction. Then in this case either t = 0 and the
Z2 × Z2-elementary grading corresponds to e = a2

= b2
= c2 and is given by the

p-tuple (e(k1), a(k2), b(k3), c(k4)) or s = 0, and the Z2 × Z2-grading corresponds to
a = ae = bc with k1 = k2 and k3 = k4.

In the general case, let Ik be the identity matrix of order k, and let

S2l =

(
0 Il

−Il 0

)
.
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Then the matrix 8 defining the involution has the form

8 = diag
(

Ik1, . . . , Iks ,

(
0 Iks+1

Iks+1 0

)
, . . . ,

(
0 Iks+2t−1

Iks+2t−1 0

))
if ∗ is a transpose involution, that is, 8 is symmetric. In the case of a skew-
symmetric 8,

8 = diag
(

Sk1, . . . , Skp ,

(
0 Ikp+1

−Ikp+1 0

)
, . . . ,

(
0 Ikp+2s−1

−Ikp+2s−1 0

))
.

If 0 = Z2 ×Z2, when we consider the case t = 0, the matrices of 8 are the identity
in the symmetric case and 8 = diag(Sk1, . . . , Sk4) in the skew-symmetric case, and
if s = 0, then

8 =

((
0 Ik1

Ik1 0

)
,

(
0 Ik3

Ik3 0

))
if 8 is symmetric and

8 = diag
((

0 Ik1

−Ik1 0

)
,

(
0 Ik3

−Ik3 0

)
,

)
if 8 is skew-symmetric.

If R = A ⊗ B and B 6= C, then Supp(A) = {e}. We have 8 = 81 ⊗ 82,
and the involution on R defines involutions on A and B. It follows that 8 is
symmetric if and only if either 81 and 82 are both symmetric or they are both skew-
symmetric. Similarly, 8 is skew-symmetric if one of 81 and 82 is symmetric, and
the other is skew-symmetric. It was proved in [Bahturin et al. 2005] that M2 with
graded involution is isomorphic to M2 with 0-graded basis {Xe, Xa, Xb, Xc} and
the graded involution is given by one of 8 = Xe, Xa, Xb, Xc.

4.1.2. Now let g be a simple Lie algebra of type Al . We view g as the set g= sl(n)

of all matrices of trace zero in the matrix algebra R = Mn(C), where n = l + 1.
In this case any P-grading of g belongs to one of the following two classes; see
[Bahturin and Zaicev 2007].

• For Class I gradings, any grading of g is induced from a P-grading of R =⊕
p∈P Rp, and one simply has to set gp = Rp for p 6= e and ge = Re ∩g otherwise.

For P = Z2 ×Z2 we still have to distinguish between the cases R = A⊗C with an
elementary grading on A = Mn or R = A ⊗ B with trivial grading on A and fine
Z2 × Z2-grading on B = M2.

• For Class II gradings, we have to fix an element q of order 2 in P and an
involution P-grading R =

⊕
p∈P Rp. Then for any p ∈ P one has

gp = K (Rp, ∗) ⊕ H(Rpq , ∗) ∩ g.
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The involution grading on Mn have been discussed just before in Section 4.1.1. It
should be noted that in the case where B 6= C in R = A ⊗ B we have

K (Rp, ∗) = K (A, ∗) ⊗ H(Bp, ∗) ⊕ H(A, ∗) ⊗ K (Bp, ∗),

H(Rp, ∗) = H(A, ∗) ⊗ H(Bp, ∗) ⊕ K (A, ∗) ⊗ K (Bp, ∗).

As noted above, 8 = 81 ⊗82 with 82 = X p for p = e, a, b, c. If X p is symmetric
with respect to 82, then the last two equations become

K (Rp, ∗) = K (A, ∗) ⊗ X p and H(Rp, ∗) = H(A, ∗) ⊗ X p.

On the other hand, if X p is skew-symmetric with respect to 82, then they become

K (Rp, ∗) = H(A, ∗) ⊗ X p and H(Rp, ∗) = K (A, ∗) ⊗ X p.

All these remarks allow us to determine up to the weak equivalence the pairs
(g, ge) inside the respective matrix algebra Mn . This gives a local classification
of Z2 × Z2-symmetric homogeneous spaces G/H , where G is simple classical
connected Lie group.

4.2. Classification: Bl , Cl , Dl cases. We have that g = K (Mn, 8), where 8 is
symmetric for the cases Bl and Dl and 8 is skew-symmetric for Cl . In the case
Bl , we have n = 2l + 1. In the case of Cl and Dl we have n = 2l.

4.2.1. Lie gradings corresponding to the elementary grading of Mn . Since we are
interested in the gradings only up to the weak equivalence, it is sufficient to consider
the following tuples defining the elementary gradings:

ν1 = (e(k1), a(k2)), ν2 = (e(k1), a(k2), b(k3)), ν3 = (e(k1), a(k2), b(k3), c(k4)).

Notice that the Z2 × Z2-gradings corresponding to ν1 coincide with Z2-gradings,
and thus the corresponding homogeneous spaces are symmetric in the classical
sense. The matrices defining the graded transpose involution in the case of ν1 are
81 = diag(Ik1, Ik2) and

8′

1 =

(
0 Ik1

Ik1 0

)
.

If the case is ν2, then 82 = diag(Ik1, Ik2, Ik3). Finally, in the case of ν3 we have

83 = diag(Ik1, Ik2, Ik3, Ik4) or 8′

3 = diag
((

0 Ik1

Ik1 0

)
,

(
0 Ik3

Ik3 0

))
.

If the involution is symplectic, then the respective matrices, in the case of ν1, are

81 = diag(Sk1, Sk2) and 8′

1 =

(
0 Ik1

−Ik1 0

)
.
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g ge

so(k1 + k2) so(k1) ⊕ so(k2)

so(k1 + k2 + k3) so(k1) ⊕ so(k2) ⊕ so(k3)

so(k1 + k2 + k3 + k4) so(k1) ⊕ so(k2) ⊕ so(k3) ⊕ so(k4)

sp(k1 + k2) sp(k1) ⊕ sp(k2)

sp(k1 + k2 + k3) sp(k1) ⊕ sp(k2) ⊕ sp(k3)

sp(k1 + k2 + k3 + k4) sp(k1) ⊕ sp(k2) ⊕ sp(k3) ⊕ sp(k4)

so(2m) gl(m)

so(2(k1 + k2)) gl(k1) ⊕ gl(k2)

sp(2m) gl(m)

sp(2(k1 + k2)) gl(k1) ⊕ gl(k2)

Table 1. Pairs (g, ge) giving Z2 × Z2-symmetric spaces for the
elementary gradings of Mn .

In the case of ν2, 82 = diag(Sk1, Sk2, Sk3), and in the case of ν3,

83 = diag(Sk1, Sk2, Sk3, Sk4) or 8′

3 = diag
((

0 Ik1

−Ik1 0

)
,

(
0 Ik3

−Ik3 0

))
.

In the cases (ν1, 81) and (ν2, 81) we have ge = so(k1)⊕so(k2) and ge = sp(k1)⊕

sp(k2), respectively.
In the cases (ν1, 8

′

1) and (ν3, 8
′

1), we have ge = {diag(U1, −U t
1) | U1 ∈ Mk1}.

So for both Dk1 and Ck1 cases, we will have ge = gl(k1).
In the cases (ν2, 82) and (ν2, 82), we have ge = so(k1) ⊕ so(k2) ⊕ so(k3) and

ge = sp(k1) ⊕ sp(k2) ⊕ sp(k3), respectively.
In the cases (ν3, 83) and (ν3, 83) we have ge = so(k1)⊕so(k2)⊕so(k3)⊕so(k4)

and ge = sp(k1) ⊕ sp(k2) ⊕ sp(k3) ⊕ sp(k4), respectively.
In the cases (ν3, 8

′

3) and (ν3, 8
′

3) we have ge = diag(U1, −U t
1, U2, −U t

2) for
U1 ∈ Mk1 and U2 ∈ Mk2 . So for both the case Dk1+k3 and Ck1+k3 , we have ge =

gl(k1) ⊕ gl(k3).
Table 1 lists those pairs (g, ge) considered so far that have corresponding Z2 ×

Z2-symmetric spaces.
In all the above cases the Z2 ×Z2-gradings of g are very easy to compute using

explicit matrices of the involutions. For example, the gradings of so(n) are given
in [Bouyakoub et al. 2006].

4.2.2. Gradings corresponding to R = A ⊗ B, with nontrivial B. The algebra B
is endowed with a fine grading given by the Pauli matrices Xe, Xa, Xb, Xc. Also
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g ge

so(2m) so(m)

so(4m) sp(2m)

sp(4m) sp(2m)

sp(2m) so(m)

Table 2. Pairs (g, ge) giving Z2 × Z2-symmetric spaces for grad-
ings with R = A ⊗ B, with nontrivial B.

A = Mm and 8 = 81 ⊗ 82. We have

g = K (R, 8) = K (A, 81) ⊗ H(B, 82) ⊕ H(A, 81) ⊗ K (B, 82).

In particular, ge = K (Re, 81)⊗ I2. If 81 is symmetric, then ge = so(m), and if 81

is skew symmetric, ge = sp(m).

We give the Z2 × Z2-symmetric spaces corresponding to the pairs (g, ge) given
in Table 2.

In these cases we will describe the components of the gradings explicitly. If
g = so(2m), then 8 is symmetric and is of one of the form

91 = Im ⊗ I2, 92 = Im ⊗ Xa, 93 = Im ⊗ Xb, 94 = Sm ⊗ Xc.

Then for 91, 92, 93, and 94, we respectively have

g = g(91) = K (A, Im)⊗ I ⊕ K (A, Im)⊗ Xa ⊕ K (A, Im)⊗ Xb ⊕ H(A, Im)⊗ Xc,

g = g(92) = K (A, Im)⊗ I ⊕ K (A, Im)⊗ Xa ⊕ H(A, Im)⊗ Xb ⊕ K (A, Im)⊗ Xc,

g = g(93) = K (A, Im)⊗ I ⊕ H(A, Im)⊗ Xa ⊕ K (A, Im)⊗ Xb ⊕ K (A, Im)⊗ Xc,

g = g(94) = K (A, Sm)⊗ I ⊕ H(A, Sm)⊗ Xa ⊕ H(A, Sm)⊗ Xb ⊕ H(A, Sm)⊗ Xc.

Conjugation by Im ⊗
( i

0
0
1

)
maps g(91) to g(92), while mapping K (A, Im) ⊗ I

and K (A, Im) ⊗ Xa into themselves, K (A, Im) ⊗ Xb into K (A, Im) ⊗ Xc and
H(A, Im) ⊗ Xc into H(A, Im) ⊗ Xb. If we apply an automorphism of Z2 × Z2

changing places of b and c, we will see that the first and the second gradings are
weakly equivalent. Quite similarly, the conjugation by Im ⊗ 1/

√
2
( 1

i
1
−i

)
maps

g(91) to g(93) while mapping K (A, Im) ⊗ I into itself, K (A, Im) ⊗ Xa into
K (A, Im) ⊗ Xb, K (A, Im) ⊗ Xb into K (A, Im) ⊗ Xc, and H(A, Im) ⊗ Xc into
H(A, Im) ⊗ Xa . It remains to apply an automorphism of Z2 × Z2 mapping a to
c, c to b, and b to a to make sure that the first and the third gradings are weakly
equivalent. Thus, the first three gradings are all weakly equivalent. None of them
is weakly equivalent to the fourth one because in these cases ge ∼= so(m), while in
the fourth case we have ge ∼= sp(m).

The matrix form of the first and the fourth gradings are given below.
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For 91 we have

g =

{(
U1 − U2 U3 − V
U3 + V U1 + U2

) ∣∣∣∣ U1, U2, U3 ∈ so(m), V t
= V

}
.

The components ge ⊕ ga ⊕ gb ⊕ gc are{(
U1 0
0 U1

)}
⊕

{(
−U2 0

0 U2

)}
⊕

{(
0 U3

U3 0

)}
⊕

{(
0 −V
V 0

)}
.

For 94 we have

g =

{(
P − Q1 Q2 − Q3

Q2 − Q3 P + Q1

) ∣∣∣∣ P ∈ sp(m), Q1, Q2, Q3 ∈ H(Mm, Sm)

}
.

The components ge ⊕ ga ⊕ gb ⊕ gc are{(
P 0
0 P

)}
⊕

{(
−Q1 0

0 Q1

)}
⊕

{(
0 Q2

Q2 0

)}
⊕

{(
0 −Q3

−Q3 0

)}
.

If g = sp(2m), then 8 is skew-symmetric and is of one of the form

91 = Sm ⊗ I2, 92 = Sm ⊗ Xa, 93 = Sm ⊗ Xb, 94 = Im ⊗ Xc.

For 91, 92, 93, 94, we respectively have

g = g(91) = K (A, Sm)⊗ I ⊕ K (A, Sm)⊗ Xa ⊕ K (A, Sm)⊗ Xb ⊕ H(A, Sm)⊗ Xc,

g = g(92) = K (A, Sm)⊗ I ⊕ K (A, Sm)⊗ Xa ⊕ H(A, Sm)⊗ Xb ⊕ K (A, Sm)⊗ Xc,

g = g(93) = K (A, Sm)⊗ I ⊕ H(A, Im)⊗ Xa ⊕ K (A, Im)⊗ Xb ⊕ K (A, Im)⊗ Xc,

g = g(94) = K (A, Sm)⊗ I ⊕ H(A, Sm)⊗ Xa ⊕ H(A, Sm)⊗ Xb ⊕ H(A, Sm)⊗ Xc.

The same argument as before shows that the first three gradings are weakly
equivalent and that none of them is weakly equivalent to the fourth one. In the first
three cases, we have ge ∼= sp(m), while in the fourth case we have ge ∼= so(m).

Again we give the matrix form of the first and the fourth gradings. If 8 is skew
symmetric, then g = sp(2m) and 8 is of one of the form

91 = Sm ⊗ I2, 92 = Sm ⊗ Xa, 93 = Sm ⊗ Xb, 94 = Im ⊗ Xc.

For 91 we have

g =

{(
U1 − U2 U3 − V
U3 + V U1 + U2

) ∣∣∣∣ U1, U2, U3 ∈ sp(m), V ∈ H(A, Sm)

}
.

The components ge ⊕ ga ⊕ gb ⊕ gc are{(
U1 0
0 U1

)}
⊕

{(
−U2 0

0 U2

)}
⊕

{(
0 U3

U3 0

)}
⊕

{(
0 −V
V 0

)}
.
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For 94 we have

g =

{(
P − Q1 Q2 − Q3

Q2 − Q3 P + Q1

) ∣∣∣∣ P ∈ so(m), Q1, Q2, Q3 ∈ H(Mm, Im)

}
.

The components ge ⊕ ga ⊕ gb ⊕ gc are{(
P 0
0 P

)}
⊕

{(
−Q1 0

0 Q1

)}
⊕

{(
0 Q2

Q2 0

)}
⊕

{(
0 −Q3

Q3 0

)}
.

4.3. Classification of Class I gradings on Al -type Lie algebras. If no fine com-
ponent is present in R = Mn ⊃ g = sl(n), where n = l + 1, then all is defined by
the n-tuples

ν1 = (e(k1), a(k2)), ν2 = (e(k1), a(k2), b(k3)), ν3 = (e(k1), a(k2), b(k3), c(k4)).

In the case of ν1, the gradings correspond to a symmetric decomposition; in fact
we obtain the symmetric pair (sl(n), sl(k1)⊕ sl(k2)⊕C) (or R if we are in the real
case).

In the case of ν2,

ge = diag{X, Y, Z | X ∈ Mk1, Y ∈ Mk2, Z ∈ Mk3, tr(X + Y + Z) = 0}

and ge = sl(k1) ⊕ sl(k2) ⊕ sl(k3) ⊕ C2.

In the case of ν3,

ge =diag{X, Y, Z , T | X ∈ Mk1, Y ∈ Mk2, Z ∈ Mk3, T ∈ Mk4, tr(X+Y+Z+T )=0}

and ge = sl(k1) ⊕ sl(k2) ⊕ sl(k3) ⊕ sl(k4) ⊕ C3.

In all these case the grading is obvious. If R = A⊗ B = Mn , A = Mm , n = 2m,
with a trivial grading on A, then ge = {diag(X, X) | X ∈ sl(m)} and the grading is
given by

g = ge ⊕ ga ⊕ gb ⊕ gc

= ge ⊕

{(
X 0
0 −X

) ∣∣∣∣ X ∈ Mm

}
⊕

{(
0 X
X 0

) ∣∣∣∣ X ∈ Mm

}
⊕

{(
0 −X
X 0

) ∣∣∣∣ X ∈ Mm)

}
.

We obtain Z2 × Z2-symmetric spaces for the pairs (g, ge) given in Table 3.

4.4. Classification of Class II gradings on Al -type Lie algebras. The general ap-
proach described in Section 4.1.2 enables one to classify the Class II gradings on
g= sl(n) for any n ≥2 and any grading group P . However, in the case P =Z2×Z2,
the amount of work can be significantly reduced if one uses the results of [Bahturin
and Zaicev 2006; 2007]. In the former paper, in the case of outer gradings of sl(n),
the authors showed that the dual 0 of the grading group P decomposes as the direct
product 〈ϕ〉×3, where ϕ is an antiautomorphism of order 2m and 3 acts by inner
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g ge

sl(2n) sl(n)

sl(k1 + k2) sl(k1) ⊕ sl(k2) ⊕ C

sl(k1 + k2 + k3) sl(k1) ⊕ sl(k2) ⊕ sl(k3) ⊕ C2

sl(k1 + k2 + k3 + k4) sl(k1) ⊕ sl(k2) ⊕ sl(k3) ⊕ sl(k4) ⊕ C3

Table 3. Pairs (g, ge) giving Z2 × Z2-symmetric spaces for Class
I gradings on Al-type Lie algebras.

matrix automorphisms. If H =3⊥, then H is a subgroup of order 2 and the induced
G/H -grading of sl(n) is induced from Mn . To obtain the G-grading of g, one has
to refine the G/H -grading by intersecting them with the eigenspaces of ϕ. In the
case P = Z2×Z2, ϕ is (the negative of) a graded involution of Mn , 3 is generated
by an automorphism λ of order 2, and the generators of P are a and b such that
λ(a) = −1, λ(b) = 1, ϕ(a) = 1, and ϕ(b) = −1. In the latter paper the authors
described all graded involutions on graded matrix algebras. In our particular case
the gradings by Z2 × Z2 on sl(n) correspond to Z2-graded eigenspaces of (the
negative of) a graded involution ϕ on a Z2-graded associative algebra R = Mn .
Any Z2-grading on R is elementary and given by a tuple ν1 = (e(k1), a(k2)), where
a is the generator of Z2 and k1+k2 = n. Now, as described in [Bahturin and Zaicev
2007, Theorem 3], any graded involution is graded equivalent to ω(X) = 8−1X t8

where 8 is one of the types

81 = diag(Ik1, Ik2),

8′

1 =

(
0 Ik1

Ik1 0

) 81 = diag(Sk1, Sk2),

8′

1 =

(
0 Ik1

−Ik1 0

)
.

Now it remains to apply [Bahturin and Zaicev 2006, Corollary 5.6], where K =〈a〉,
to obtain that all Class II gradings of g have are drawn from the forms

ge = K (Re, 8), ga = K (Ra, 8), gb = H(Re, 8), gc = H(Ra, 8).

In all four cases, depending on the choice of 8, we have

R =

{(
U V
W T

) ∣∣∣∣ U ∈ Mk1, T ∈ Mk2

}
and g =

{(
U V
W T

) ∣∣∣∣ tr U + tr T = 0
}
,

and in the last two cases, we additionally have that k1 = k2. It easily follows that
for the Z-grading we have

Re =

{(
U 0
0 T

)}
⊂ R and Ra =

{(
0 V
W 0

)}
⊂ R.
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Now we can explicitly write all the gradings in this case. In what follows we
keep the following notation. For any X of size q× p, we denote by X∗ the ordinary
transpose of X , except in the case of 8′

1 where it means S−1
p X t Sq . We use the

symbol “U” and its adornments to denote matrices with the property that X∗
=−X .

Likewise V , V1, and so on denote matrices with X∗
= X . Finally, matrices with

“W ” are any matrices of appropriate size. All matrices must be in g.
In both cases 8 = 81 and 81, we then have

ge⊕ga ⊕gb⊕gc =

{(
U1 0
0 U2

)}
⊕

{(
0 W

−W ∗ 0

)}
⊕

{(
V1 0
0 V2

)}
⊕

{(
0 W

W ∗ 0

)}
.

However, because we have transpose involution in the 8=81 case, and symplectic
matrices in the other case, we obtain two inequivalent local symmetric spaces

sl(k1 + k2)/(so(k1) ⊕ so(k2)) and sl(k1 + k2)/(sp(k1) ⊕ sp(k2)).

It should be noted that k1 is always nonzero, while we could have k2 = 0. In
this case we actually have a Z2-grading rather than a Z2 × Z2-grading. It is well
known that the respective local symmetric spaces are

sl(n)/ so(n) and sl(2m)/ sp(2m).

In the case 8 = 8′

1, we have

ge ⊕ga ⊕gb ⊕gc =

{(
W 0
0 −W t

)}
⊕

{(
0 U1

U2 0

)}
⊕

{(
W 0
0 W t

)}
⊕

{(
0 V1

V2 0

)}
.

Finally, in the case 8 = 8′

1 we have

ge ⊕ga ⊕gb ⊕gc =

{(
W 0
0 −W t

)}
⊕

{(
0 V1

V2 0

)}
⊕

{(
W 0
0 W t

)}
⊕

{(
0 U1

U2 0

)}
.

Obviously, the latter two gradings are weakly equivalent, and the weak equiv-
alence is achieved by an automorphism of P that interchanges a and c. So, we
obtain the third local symmetric space sl(2k)/gl(k).

We obtain the Z2×Z2-symmetric spaces corresponding to the pairs (g, ge) given
in Table 4.

We summarize the results obtained in Section 4 as follows.

Theorem 14. All local complex Z2 × Z2-symmetric spaces in cases Al for l ≥ 1,
Bl for l ≥ 2, Cl for l ≥ 3 or Dl for l ≥ 4 are given in Tables 1, 2, 3, 4. Each space
g/ge is uniquely, defined by g and ge up to a weak equivalence of the respective
Z2 × Z2-grading.
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g ge

sl(2k) gl(k)

sl(n) so(n)

sl(2m) sp(2m)

sl(k1 + k2) so(k1) ⊕ so(k2)

sl(2(k1 + k2)) sp(2k1) ⊕ sp(2k2)

Table 4. Pairs (g, ge) giving Z2 × Z2-symmetric spaces for Class
II gradings on Al-type Lie algebras.

Acknowledgment

The authors are grateful to the referee for a number of valuable comments and a
correction in one case.

References

[Bahturin and Zaicev 2003] Y. A. Bahturin and M. V. Zaicev, “Graded algebras and graded identi-
ties”, pp. 101–139 in Polynomial identities and combinatorial methods (Pantelleria, 2001), edited
by A. Giambruno et al., Lecture Notes in Pure and Appl. Math. 235, Dekker, New York, 2003.
MR 2005a:16059 Zbl 1053.16032

[Bahturin and Zaicev 2006] Y. Bahturin and M. Zaicev, “Group gradings on simple Lie algebras of
type “A””, J. Lie Theory 16:4 (2006), 719–742. MR 2007i:17037 Zbl 05135324

[Bahturin and Zaicev 2007] Y. Bahturin and M. Zaicev, “Involutions on graded matrix algebras”, J.
Algebra 315:2 (2007), 527–540. MR 2351876 Zbl 05210033

[Bahturin et al. 2001] Y. A. Bahturin, S. K. Sehgal, and M. V. Zaicev, “Group gradings on associative
algebras”, J. Algebra 241:2 (2001), 677–698. MR 2002h:16067 Zbl 0988.16033

[Bahturin et al. 2005] Y. A. Bahturin, I. P. Shestakov, and M. V. Zaicev, “Gradings on simple Jordan
and Lie algebras”, J. Algebra 283:2 (2005), 849–868. MR 2005i:17038 Zbl 1066.17018

[Berger 1957] M. Berger, “Les espaces symétriques noncompacts”, Ann. Sci. École Norm. Sup. (3)

74 (1957), 85–177. MR 21 #3516 Zbl 0093.35602

[Bouyakoub et al. 2006] A. Bouyakoub, M. Goze, and E. Remm, “On Riemannian Z2×Z2-symmetric
spaces and flag manifolds”, Preprint, 2006. arXiv math.DG/0609790v1

[Draper and Martín 2006] C. Draper and C. Martín, “Gradings on g2”, Linear Algebra Appl. 418:1
(2006), 85–111. MR 2007e:17026 Zbl 05072853

[Draper and Viruel 2007] C. Draper and A. Viruel, “Gradings on o(8, C)”, Preprint, 2007. arXiv
0709.0194v1

[Goze and Remm 2007] M. Goze and E. Remm, “Classifications of nilpotent Lie algebras”, Web
page, Université de Haute Alsace, 2007, Available at http://www.math.uha.fr./~algebre/.
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FACULTÉ DES SCIENCES ET TECHNIQUES
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