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GENERALIZED COMPLEX SUBMANIFOLDS

JAMES BARTON AND MATHIEU STIÉNON

We introduce the notion of twisted generalized complex submanifolds and
describe an equivalent characterization in terms of Poisson–Dirac submani-
folds. Our characterization recovers a result of Vaisman (2007). An equiva-
lent characterization is also given in terms of spinors. As a consequence, we
show that the fixed locus of an involution preserving a twisted generalized
complex structure is a twisted generalized complex submanifold. We also
prove that a twisted generalized complex manifold has a natural Poisson
structure. We also discuss generalized Kähler submanifolds.

1. Introduction

Throughout this paper M will denote a smooth manifold. Generalized complex
structures were originally defined by Hitchin [2003], and further studied by Gual-
tieri [2003]. Examples of generalized complex structures include symplectic and
complex manifolds. In order to define generalized complex structures we will recall
some structures on TM⊕T ∗M . The Courant bracket was defined in [Courant 1990]
as

(1-1) JX + ξ, Y + η K= [X, Y ]+LXη−LY ξ −
1
2 d(η(X)− ξ(Y ))

for all X, Y ∈ X(M) and ξ, η ∈ �(M). There also exist smoothly varying nonde-
generate symmetric bilinear forms on each fibre of TM⊕T ∗M . These are defined
as

〈X + ξ, Y + η〉 = 1
2(ξ(Y )+ η(X))

for all X, Y ∈ Tm M , ξ, η ∈ T ∗m M and m ∈ M .
A generalized complex structure is a smooth map J : TM⊕T ∗M→ TM⊕T ∗M

such that J 2
= −Id, J J ∗ = Id, and the +i-eigenbundle of J is involutive with

respect to the Courant bracket.
The primary objects of study in this paper are twisted manifolds. A manifold

M endowed with a closed 3-form � will be called twisted. A twisted manifold has
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another well known bracket on X(M)⊕�(M): the twisted Courant bracket. This
bracket was defined in [Ševera and Weinstein 2001] as

(1-2) JX + ξ, Y + η K� = [X, Y ]+LXη−LY ξ −
1
2 d(η(X)− ξ(Y ))+ iY iX�.

A twisted generalized complex structure is a smooth map J : TM ⊕ T ∗M →
TM ⊕ T ∗M such that J 2

= −Id, J J ∗ = Id and the +i-eigenbundle of J is invo-
lutive with respect to (1-2), rather than (1-1). The triple (M, �, J ) will be called
a twisted generalized complex manifold. Indeed, generalized complex manifolds
can be defined for arbitrary Courant algebroids. See [Barton 2007] for details.

The aim of this work is to characterize when a submanifold of a twisted gen-
eralized complex manifold is also a twisted generalized complex manifold. In the
untwisted case, several notions of generalized complex submanifolds have been
recently introduced. The notion defined here is similar to the one in [Ben-Bassat
and Boyarchenko 2004] and [Vaisman 2007]. A different notion of generalized
complex submanifolds appears in [Gualtieri 2003].

Definition 1.1. A twisted immersion, from one twisted manifold (N , ϒ) to another
(M, �), is defined as a smooth immersion h : N → M with ϒ = h∗�. A twisted
generalized complex immersion from (N , ϒ, J ′) to (M, �, J ) is a twisted immer-
sion h : (N , ϒ)→ (M, �) such that the pullback of the +i-eigenbundle of J is
the +i-eigenbundle of J ′. In this case, N is called a twisted generalized complex
submanifold of M .

By splitting vectors and covectors, a twisted generalized complex structure can
be written as

(1-3) J =
(
φ π ]

σ[ −φ
∗

)
.

Here φ is an endomorphism of TM , π ] : T ∗M→ TM is the bundle map induced
by a bivector field π , and σ[ : TM→ T ∗M is the bundle map induced by a 2-form
σ . The fact that J 2

=−Id also leads to the following formulas:

φ2
+π ]σ[ =−Id, φπ ] = π ]φ∗, and φ∗σ[ = σ[φ.

These facts, and others, were first noted in [Crainic 2004]. These results were also
described using Poisson quasi-Nijenhuis manifolds in [Stiénon and Xu 2007]. The
conditions for a submanifold to be twisted generalized complex will be expressed
in terms of this splitting. Using the theory of Lie bialgebroids we also show that π
from (1-3) is a Poisson bivector field, which, for the untwisted case, is a standard
result [Abouzaid and Boyarchenko 2006; Crainic 2004].
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Our work was inspired by [Stiénon and Xu 2008], where the reduction of gen-
eralized complex structures is studied. The main result was also independently
obtained by Vaisman [2007].

This paper is organized as follows. In Section 2, we recall some of the basic facts
of Dirac structures. In particular we describe the pull back. In Section 3, we prove
that a twisted generalized complex manifold carries a natural Poisson structure. In
Section 4, we define the induced generalized complex structure, and characterize
when it has the required properties. In Section 5, we prove the main theorem of
this paper, and provide examples. Twisted generalized complex involutions are
also introduced in this section. In Section 6, we determine when a submanifold of
a holomorphic Poisson manifold is itself endowed with an induced holomorphic
Poisson structure. Section 7 is a restatement of our main result in terms of spinors.
The last section discusses generalized Kähler submanifolds.

2. Dirac structures

The aim of this section is to recall Dirac structures, and their pull backs. Before
considering bundles, we will consider a vector space V . In this case a Dirac struc-
ture is nothing more than a maximal isotropic subspace of V ⊕ V ∗. Let q1 denote
the projection of V ⊕ V ∗ onto V , and q2 the projection onto V ∗.

If L is a Dirac structure then there exists a natural skew-symmetric bilinear form
3 on L defined by

3(X + ξ, Y + η)= ξ(Y )=−η(X) for all X + ξ, Y + η ∈ L .

It is easy to see that

3(X + ξ1, Y + η1)=3(X + ξ2, Y + η2) for all X + ξ1,2, Y + η1,2 ∈ L ,

and

3(X1+ ξ, Y1+ η)=3(X2+ ξ, Y2+ η) for all X1,2+ ξ, Y1,2+ η ∈ L .

Hence, there exists a 2-form ε on q1(L) defined by

ε(X, Y )=3(X + ξ, Y + η) for all X + ξ, Y + η ∈ L ,

and a 2-form θ on q2(L) defined by

θ(ξ, η)=−3(X + ξ, Y + η) for all X + ξ, Y + η ∈ L .

If X ∈ q1(L) then there exists some ξ ∈ V ∗ with X + ξ ∈ L; furthermore
ε(X, Y )= ξ(Y ) for all Y ∈ q1(L). Thus iXε = ξ |q1(L), and

X + ξ ∈ L ⇐⇒ X ∈ q1(L) and iXε = ξ |q1(L).
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Thus knowing the Dirac structure L is exactly the same as knowing the subspace
q1(L) and the 2-form ε. Similarly, L is equivalent to the pair (q2(L), θ). Thus any
subspace R ⊆ V endowed with a 2-form ε on R defines a Dirac structure L(R, ε):

L(R, ε)=
{

X + ξ ∈ R⊕ V ∗ : iXε = ξ |R
}
,

and any subspace S ⊆ V ∗ endowed with a 2-form π on S defines a Dirac structure
L(S, θ):

L(S, θ)= {X + ξ ∈ V ⊕ S : θ(ξ, η)=−η(X) for all η ∈ S} .

Details of these constructions can be found in [Courant 1990]. Let W be another
vector space and ϕ : V → W a linear map. The map ϕ can be used to both pull
Dirac structures back from W to V , and push Dirac structures forward from V to
W . Let (R, ε) be a Dirac structure on W , with R ⊆W and ε ∈ 0(

∧2 R∗). A Dirac
structure on V is defined by (ϕ−1 R, ϕ∗ε). This Dirac structure is called the pull
back of (R, ε) under ϕ. Similarly if (S, θ) is a Dirac structure on V , with S ⊆ V ∗

and θ defined on S, then ((ϕ∗)−1S, ϕ∗θ) defines a Dirac structure on W . This
Dirac structure is called the push forward of (S, θ) under ϕ. These two maps of
Dirac structures are denoted by Fϕ and Bϕ . It is very easy to see that for a Dirac
structure L on W

Bϕ(L)=
{

X +ϕ∗ξ : X ∈ V, ξ ∈W ∗ such that ϕX + ξ ∈ L ′
}
,

and for a Dirac structure L ′ on V

Fϕ(L ′)=
{
ϕX + ξ : X ∈ V, ξ ∈W ∗ such that X +ϕ∗ξ ∈ L

}
.

Dirac structures can also be defined for a twisted manifold (M, �). A Dirac
structure is a smooth subbundle L ⊆ TM ⊕ T ∗M for which each fibre is a Dirac
structure of the corresponding fibre of TM ⊕ T ∗M , and whose space of sections
is closed under the twisted Courant bracket (1-2). The restriction of the twisted
Courant bracket to a Dirac structure is a Lie bracket; thus a Dirac structure is
naturally a Lie algebroid.

The definitions of push forward and pull back can be reformulated for Dirac
structures on manifolds. We will only consider the pull back of a Dirac structure,
but more on the push forward can be found in [Bursztyn and Radko 2003] and
[Stiénon and Xu 2008]. We note that the pull back of a Dirac structure is automat-
ically a maximal isotropic, but it need not be smooth or involutive.

The last lemma of this section will be used to characterize when the pullback
bundle is involutive. Let (M, �) and (N , ϒ) be two twisted manifolds with an
immersion ϕ : N → M . Two sections

σN = X + ξ ∈ X(N )⊕�(N ) and σM = Y + η ∈ X(M)⊕�(M)
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are said to be ϕ-related, denoted by σN
ϕ
 σM , if Y = ϕ∗X and ξ = ϕ∗η. The

following lemma is an extension of [Stiénon and Xu 2008, Lemma 2.2]. This
lemma is also true for complex sections, which is when it will be applied.

Lemma 2.1. Assume that σ i
N ∈ 0(TN ⊕ T ∗N ) and σ i

M ∈ 0(TM ⊕ T ∗M) satisfy
σ i

N
ϕ
 σ i

M , for i = 1, 2. Then, if ϕ is a twisted immersion,
q
σ 1

N , σ
2
N
y
ϒ

ϕ
 

q
σ 1

M , σ
2
M

y
�
.

Proof. Write σ i
N = X i

+ ξ i and σ i
M = Y i

+ηi , where X i
+ ξ i
∈X(N )⊕�(N ) and

Y i
+ηi
∈X(M)⊕�(M), for i = 1, 2. Since σ i

N
ϕ
 σ i

M , for i = 1, 2, then ϕ∗X i
= Y i

and ϕ∗ηi
= ξ i . By definition

q
σ 1

N , σ
2
N
y
ϒ
=

[
X1, X2]

+LX1ξ 2
−LX2ξ 1

+
1
2 d(ξ 1(X2)− ξ 2(X1))+ iX2 iX1ϒ,

and
q
σ 1

M , σ
2
M

y
�
=

[
Y 1, Y 2]

+LY 1η2
−LY 2η1

+
1
2 d(η1(Y 2)− η2(Y 1))+ iY 2 iY 1�.

Now
ϕ∗

[
X1, X2]

=
[
ϕ∗X1, ϕ∗X2]

=
[
Y 1, Y 2] ,

and

ϕ∗(LY 1η2)= ϕ∗(iY 1dη2
+ diY 1η2)= ϕ∗iϕ∗X1dη2

+ϕ∗d(η2(Y 1))

= iX1ϕ∗dη2
+ d(ξ 2(X1))= iX1dξ 2

+ diX1ξ 2
= LX1ξ 2.

Similarly,
ϕ∗(LY 2η1)= LX2ξ 1.

The second last term becomes

ϕ∗d(η1(Y 2)− η2(Y 1))= d(ξ 1(X2)− ξ 2(X1)),

since
ϕ∗(η1(Y 2))= ϕ∗(η1(ϕ∗X2))= (ϕ∗η1)(X2)= ξ 1(X2).

Finally, because ϕ is a twisted immersion, the following holds.

ϕ∗iY 2 iY 1ϒ = ϕ∗iϕ∗X2 iϕ∗X1ϒ = iX2 iX1ϕ∗ϒ = iX2 iX1�. �

3. The Poisson bivector field associated to a generalized complex structure

For the usual Courant bracket it is well known that the existence of a generalized
complex structure leads to a Poisson bivector [Abouzaid and Boyarchenko 2006;
Crainic 2004; Lindström et al. 2005; Hu 2005]. In this chapter we will obtain the
same result for arbitrary Courant algebroids and also give a new way of expressing
the Poisson bivector.
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A Courant algebroid [Liu et al. 1997] is a triple consisting of a vector bundle
E → M equipped with a nondegenerate symmetric bilinear form 〈 · , · 〉, a skew-
symmetric bracket J · , · K on 0(E), and a smooth bundle map E

ρ
−→TM called the

anchor. These induce a natural differential operator D : C∞(M)→ 0(E) defined
by

(3-1) 〈D f, a〉 = 1
2ρ(a) f,

for all f ∈ C∞(M) and a ∈ 0(E). These structures must obey the following
formulas for all a, b, c ∈ 0(E) and f, g ∈ C∞(M):

ρ(Ja, bK)= [ρ(a), ρ(b)] ,(3-2)

J Ja, bK , cK+ J Jb, cK , aK+ J Jc, aK , bK(3-3)

=
1
3 D

(〈
Ja, bK , c

〉
+

〈
Jb, cK , a

〉
+

〈
Jc, aK , b

〉)
,

Ja, f bK= f Ja, bK+ (ρ(a) f )b−〈a, b〉D f,(3-4)

ρ ◦D= 0, that is, 〈D f,Dg〉 = 0,(3-5)

ρ(a) 〈b, c〉 =
〈
Ja, bK+D 〈a, b〉 , c

〉
+

〈
b, Ja, cK+D 〈a, c〉

〉
.(3-6)

The relation

(3-7) JD f, aK+D 〈D f, a〉 = 0

is a consequence of these conditions [Roytenberg 1999].
A smooth subbundle L of a Courant algebroid is called a Dirac subbundle if

it is a maximal isotropic, with respect to 〈 · , · 〉, and its space of sections 0(L) is
closed under J · , · K. While not all Courant algebroids are Lie algebroids (since the
Jacobi identity is not satisfied), their Dirac subbundles are Lie algebroids.

Example 3.1 ([Courant 1990]). Given a smooth manifold M , the bundle TM→M
carries a natural Courant algebroid structure, where the anchor is the identity map
and the pairing and bracket are given, respectively, by

〈X + ξ, Y + η〉 = 1
2(ξ(Y )+ η(X)),

JX + ξ, Y + ηK= [X, Y ]+LXη−LY ξ +
1
2 d(ξ(Y )− η(X)),

for all X, Y ∈ X•(M), and for all ξ, η ∈�1(M).

Let E be a Courant algebroid on a smooth manifold M . And let

E

��

J // E

��
M

Id
// M
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be a vector bundle map such that J 2
= −Id. Then the complexification EC :=

E ⊗ C — with the extended C-linear Courant algebroid structure — decomposes
as the direct sum L ⊕ L of the eigenbundles of J . Here L is associated to the
eigenvalue +i and its complex conjugate L to −i . The bundle map J is called a
generalized complex structure if J is orthogonal with respect to 〈 · , · 〉— this forces
L and L to be isotropic — and the spaces of sections 0(L) and 0(L) are closed
under the Courant bracket, or equivalently, J is “integrable”:

JJ x, J yK− Jx, yK− J (JJ x, yK+ Jx, J yK)= 0, for all x, y ∈ 0(E).

Since the pairing is nondegenerate, the map

4 : E
iso
−→ E∗, e 7→ 〈e, · 〉

is an isomorphism of vector bundles. One has 4∗ = 4 (modulo the canonical
isomorphism (E∗)∗ = E) and 4 ◦ J + J ∗ ◦4= 0.

Proposition 3.2. The bracket

(3-8) { f, g} = 2 〈JD f,Dg〉 , f, g ∈ C∞(M)

is a Poisson structure on the manifold M.

Gualtieri [2007] proved a formula similar to (but slightly less general than) (3-8).

Proof. It is easy to see that this bracket is a skew-symmetric derivation of C∞(M).
It remains to check that the Jacobi identity is satisfied. Since J is integrable, we
have

JJD f, JDgK− JD f,DgK− J (JJD f,DgK+ JD f, JDgK)= 0,

for all f, g ∈ C∞(M). Pairing with Dh, we obtain
(3-9)〈
JJD f, JDgK ,Dh

〉
−

〈
JD f,DgK ,Dh

〉
−

〈
J (JJD f,DgK+ JD f, JDgK),Dh

〉
= 0.

We compute the first term of (3-9):〈
JJD f, JDgK ,Dh

〉
=

〈
JJD f, JDgK+D 〈JD f, JDg〉 ,Dh

〉
by (3-5)

= ρ(JD f ) 〈JDg,Dh〉−
〈
JDg, JJD f,DhK+D 〈JD f,Dh〉

〉
by (3-6)

= 2 〈D〈JDg,Dh〉 , JD f 〉−〈JDg,D〈Dh, JD f 〉+D〈JD f,Dh〉〉 by (3-1), (3-7)

= 2 { f, {g, h}}− 2 {g, { f, h}} by (3-8)

= 2 { f, {g, h}}+ 2 {g, {h, f }} .

By (3-1), (3-2) and (3-5), the second term of (3-9) vanishes. Finally, the third term
of (3-9) gives
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−
〈
J (JJD f,DgK+ JD f, JDgK),Dh

〉
=−〈J (D 〈Dg, JD f 〉−D 〈D f, JDg〉),Dh〉 by (3-7)

=−{{ f, g} , h}+ {{g, f } , h} by (3-8)

= 2 {h, { f, g}} �

Proposition 3.3. Let 5 denote the bivector field on M associated to the Poisson
bracket (3-8). We have

5]
=

1
2ρ ◦ J ◦4−1

◦ ρ∗,

where5]
: T ∗M→ TM is the vector bundle map equivalent to5∈0(∧2T ∗M) via

5(α, β)= β(5]α), for all α, β ∈�1(M). The Hamiltonian vector field associated
to the function f ∈ C∞(M) is

X f =5
]d f = ρ ◦ J ◦D f.

And the characteristic distribution is

5](T ∗M)= ρ J (ker ρ)⊥,

where (ker ρ)⊥ refers to the subbundle of E orthogonal to ker ρ with respect to
〈 · , · 〉.

Proof. One has

X f (g)= { f, g} = 2 〈JD f,Dg〉 = ρ(JD f )(g)

and
5](d f )= X f = ρ JD f = 1

2ρ J4−1ρ∗(d f )

since (3-1) can be reinterpreted as 〈D f, · 〉 = 1
24
−1ρ∗d f . �

Proposition 3.4. If E = TM is the standard Courant algebroid of Example 3.1
and the matrix representation of J relative to the above direct sum decomposition
is shown in (1-3), then 5= π .

Proof. Here D coincides with the de Rham differential d . Thus

{ f, g}5 = 2 〈JD f,Dg〉 = 2
〈
π ]d f −φ∗d f, dg

〉
= dg(π ]d f )= { f, g}π . �

Recall that the complexification of E decomposes as the direct sum EC= L+⊕
L−, where L± are Dirac structures (with anchor maps ρ±). Thus (L+, L−) is a
complex Lie bialgebroid [Mackenzie and Xu 1994], where L∗

±
is identified with

L∓ via4. As shown in [Mackenzie and Xu 1994, Proposition 3.6], to any complex
Lie bialgebroid is associated a complex bivector field $ on M given by

i$ ]
= ρ− ◦4

−1
◦ ρ∗
+
=−ρ+ ◦4

−1
◦ ρ∗
−
.
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Lemma 3.5. The Poisson bivector $ coming from the Lie bialgebroid structure
(L+, L−) is real and coincides with 5.

Proof. It suffices to observe that the following two compositions are both equal to
$ ]:

TC M
ρ−
←−− L−

−i ·
←− L−

4−1

←−− L∗
+

ρ∗+
←−− T ∗C M

TC M
ρ+
←−− L+

+i ·
←− L+

4−1

←−− L∗
−

ρ∗−
←−− T ∗C M

and that their sum

TC M
ρ
←− EC

J
←− EC

4−1

←−− E∗C
ρ∗

←− T ∗C M

is equal to 25]. �

Proposition 3.6. ρ(L+)∩ ρ(L−)=1⊗C with 1= ρ(J ker ρ)

Proof. If v ∈ ρ(L+) ∩ ρ(L−), then v ∈ ρ(L−) ∩ ρ(L+). Hence there exists a
subbundle 1 of TM such that ρ(L+) ∩ ρ(L−) = 1⊗ C. For all k ∈ ker ρ, one
has ρ(L+) 3 ρ( 1+i J

2 k) = i
2ρ(Jk). Therefore, ρ(J ker ρ) ⊂ ρ(L+). Since J is

real, ρ(J ker ρ)⊂ ρ(L+)∩ρ(E)=1. It remains to prove the converse inclusion:
1⊂ ρ(J ker ρ). Since 1= ρ(L+)∩ρ(E), given δ ∈1, there exists l+ ∈ L+ such
that ρ(l+)= δ = ρ(l+). Thus δ = ρ

( l++l+
2

)
= ρ

(
J
( l+−l+

2i

))
with l+−l+

2i ∈ ker ρ. �

Remark 3.7. If E = TM is the standard Courant algebroid of Example 3.1, then
(ker ρ)⊥ = T ∗M = ker ρ. Therefore, in this particular case, 5](T ∗

C
M)= ρ(L+)∩

ρ(L−), recovering Gualtieri’s result Gualtieri [2003].
It would be interesting to explore when the symplectic foliation 5](T ∗

C
M) co-

incides with ρ(L+)∩ ρ(L−) for arbitrary Courant algebroids.

4. The induced generalized complex structure

Consider two twisted manifolds (M, �) and (N , ϒ)with an immersion h :N→M .
Also, assume that there is a generalized complex structure J on M with eigenbun-
dles L+ and L−. The goal of this section is to characterize when the pull backs of
L+ and L− give a generalized complex structure on N . The pull backs of L+ and
L− will be called the induced bundles, and are given by

L ′
±
=Bh(L±)=

{
X + h∗ξ : X ∈ TC N , ξ ∈ T ∗C M such that h∗X + ξ ∈ L±

}
.

By definition, both L ′
+

and L ′
−

are maximal isotropics, but they need not be smooth
or involutive subbundles. The bundles may also have nontrivial intersection. The
rest of this section is devoted to characterizing when the induced bundles have
the desired properties. The first of these properties to be addressed will be the
intersection property.
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Because L ′
+

and L ′
−

are both maximal isotropics, it suffices to check that they
span T

C
N ⊕ T ∗

C
N . Consider the subbundle B = TN ⊕ T ∗M |N of TM ⊕ T ∗M . Its

orthogonal, B⊥ = TN o, is the kernel of the natural projection s : B→ TN ⊕T ∗N ,
which maps X + ξ 7→ X + h∗ξ . It is not hard to see that s((B ∩ J B) ⊗ C) =

L ′
+
+ L ′

−
. Thus the decomposition, T

C
N ⊕ T ∗

C
N = L ′

+
⊕ L ′

−
, holds if and only if

B= B∩ J B+B⊥. The preceding can be summarized in the following proposition.

Proposition 4.1. The following assertions are equivalent.

(1) The subbundle L ′
+

is the +i -eigenbundle of a — not necessarily smooth —
automorphism J ′ of TN ⊕ T ∗N such that J ′2 =−Id and J ′ J ′∗ = Id.

(2) B = B ∩ J B+ B⊥. (3) J B ⊆ B+ J B⊥. (4) J B⊥ ∩ B ⊆ B⊥.

Conditions (3) and (4) follow from elementary calculations. In the sequel we
will assume that the assertions of Proposition 4.1 are satisfied. Consider the re-
striction of J and s to the J -invariant subspace B ∩ J B; the latter map will be
denoted by s ′. The kernel of s ′ is B⊥ ∩ J B. Under J , this kernel is mapped to
J B⊥ ∩ B. This must be in J B ∩ B and also, by Proposition 4.1, in B⊥, however
B⊥ ⊆ B. So the image of the kernel of s ′ is in B⊥∩ J B∩ B = B⊥∩ J B. Thus the
kernel of s ′ is J -invariant and J |B∩J B induces an automorphism of TN ⊕ T ∗N :

(4-1)

B ∩ J B

s
��

J // B ∩ J B

s
��

TN ⊕ T ∗N
J ′

// TN ⊕ T ∗N .

The induced automorphism is nothing but J ′ from Proposition 4.1. Indeed, the
complexification of the above commutative diagram gives

(L+ ∩ BC)⊕ (L− ∩ BC)

��

(+i)Id⊕(−i)Id // (L+ ∩ BC)⊕ (L− ∩ BC)

��
L ′
+
⊕ L ′

−
(+i)Id⊕(−i)Id

// L ′
+
⊕ L ′

−
.

The next lemma relates condition (4) of Proposition 4.1 to the splitting of J :(
φ π ]

σ[ −φ
∗

)
.

Lemma 4.2. The following assertions are equivalent.

(1) J B⊥ ∩ B ⊆ B⊥.

(2) TN ∩π ](TN o)= 0 and φ(TN )⊆ TN +π ](TN o).
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Proof. The inclusion J (TN o)∩ (TN ⊕ T ∗M |N )⊆ TN o is true if, and only if,{
ξ ∈ TN o

Jξ ∈ TN ⊕ T ∗M |N

}
H⇒ Jξ ∈ TN o

if, and only if, {
ξ ∈ TN o

π ]ξ ∈ TN

}
H⇒

{
π ]ξ = 0
φ∗ξ ∈ TN o

}
if, and only if,

ξ ∈ TN o
∩ (π ])−1(TN ) H⇒

{
π ]ξ = 0
ξ ∈ (φ(TN ))o

}
if, and only if,

π ](TN o)∩ TN = 0 and TN o
∩ (π ])−1(TN )⊆ (φ(TN ))o.

Since π is skew-symmetric (π ])−1(TN )= (π ](TN o))o, and

TN o
∩ (π ](TN o))o ⊆ (φ(TN ))o

TN +π ](TN o)⊇ φ(TN ). �

According to this lemma, the sum TN +π ](TN o) must be direct. In the sequel
pr will denote the projection TN⊕π ](TN o)→ TN . If π is degenerate then neither
the bundle TN ⊕π ](TN o), nor the map pr is necessarily smooth.

For any ξ ∈ T ∗N we claim that if η, η′ ∈ B ∩ J B such that ξ = h∗η = h∗η′

then π ]η = π ]η′. Because η and η′ are preimages of ξ they differ by some ele-
ment of TN o, and as B ∩ J B is J -stable both π ]η and π ]η′ are in TN . However
TN ∩ π ](TN o) = {0}, and the difference of the two preimages is zero. Thus the
assignment ξ 7→ π ]η defines a skew-symmetric vector bundle map from T ∗N to
TN . Its associated bivector field on N will be denoted by π ′.

The following technical lemmas will be used to show when J ′ is smooth.

Lemma 4.3. Let X ∈ TN and ξ ∈ TN o. If φX + π ]ξ ∈ TN then φX + π ]ξ =
(pr ◦φ)X.

Proof. For any X ∈ TN the second assertion of Lemma 4.2 gives φX = Y +π ]η,
where Y ∈ TN and η ∈ TN o. By definition Y = (pr ◦φ)X , and φX + π ]ξ =
Y +π ](η+ ξ). Both Y and φX +π ]ξ are elements of TN ; thus π ](η+ ξ) is also
an element of TN . But TN∩π ](TN o)={0}, and η+ξ ∈ TN o. Thus π ](η+ξ)=0.

�

Lemma 4.4. Let p1 : TN ⊕ T ∗N → TN and p2 : TN ⊕ T ∗N → T ∗N be the
projections. If X ∈ TN , then

(4-2) (p1 J ′)X = (pr ◦φ)X = φX +π ]ζ
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and

(4-3) (p2 J ′)X = h∗(σ[X −φ∗ζ ),

where ζ is some element of TN o such that X + ζ ∈ B ∩ J B.
If ξ ∈ T ∗N , then

(p1 J ′)ξ = π ′]ξ = π ]η(4-4)

and

(p2 J ′)ξ =−(h∗φ∗)η,(4-5)

where η is some element of T ∗M |N ∩ B ∩ J B such that h∗η = ξ .

Proof. Consider X ∈ TN . Since s is surjective there exists some ζ ∈ TN o such that
X+ζ ∈ B∩ J B and s(X+ζ )= X . Now J (X+ζ )= (φX+π ]ζ )+(σ[X−φ∗ζ )∈ B.
Therefore φX+π ]ζ ∈ TN and, by Lemma 4.3, φX+π ]ζ = (pr ◦φ)X . Both (4-2)
and (4-3) follow from (4-1).

Now take ξ ∈ T ∗N . Again, since s is surjective there exists some η ∈ T ∗M such
that η ∈ B ∩ J B and s(η)= ξ . Now J (ξ)= π ]η−φ∗η = π ′]ξ −φ∗η, which is in
B. Both (4-4) and (4-5) follow from (4-1). �

For the remainder of this section, if L is a smooth vector bundle then 0(L) will
denote the space of all — not necessarily smooth — sections of L , and 0∞(L) the
subspace of smooth sections.

Lemma 4.5. Let ξ ∈ 0(TN o). If π ]ξ ∈ 0∞(TM |N ), then (h∗φ∗)ξ ∈ 0∞(T ∗N ).

Proof. As noted previously, if X ∈0∞(TN ) then φX =Y+π ]η, where Y ∈0(TN )
and η∈0∞(TN o). Now (φ∗ξ)(X)=ξ(φX)=ξ(Y )+ξ(π ]η)=ξ(π ]η)=−η(π ]ξ).
This function and its restriction to TN are smooth because π ]ξ is. �

Lemma 4.6. Assume pr ◦φ is a smooth map and η∈0(T ∗M |N ). If h∗η∈0∞(TN )
and π ]η ∈ 0∞(TN ) then (h∗φ∗)η ∈ 0∞(T ∗N ).

Proof. Once again, if Y ∈ 0∞(TN ) then

φY = (pr ◦φ)Y +π ]ζ

for some ζ ∈ 0∞(TN o). Now

((h∗φ∗)η)(Y )= (h∗η)(φY )= (h∗η)((pr ◦φ)Y )+ (h∗η)(π ]ζ )

= (h∗η)((pr ◦φ)Y )− ζ(π ](h∗η)).

Thus ((h∗φ∗)η)(Y ) is a smooth function, and the lemma follows. �

We are now ready to give the conditions J ′ must satisfy in order to be smooth.
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Proposition 4.7. The vector bundle automorphism J ′ of TN ⊕ T ∗N is smooth if ,
and only if , pr ◦φ : TN → TN is smooth and π ′ is a smooth bivector field on N.

Proof. First assume that J ′ is smooth. Thus (p1 J ′)X ∈ 0∞(TN ) for all X ∈
0∞(TN ). It follows from (4-2) that (pr ◦φ) must be smooth. Also (p1 J ′)ξ ∈
0∞(T ∗N ) for all ξ ∈ 0∞(T ∗N ), and (4-4) shows that π ′] is smooth.

Now for the other implication. For every X ∈ 0∞(T ∗N ) there is some ζ ∈
0(TN o) such that (4-2) and (4-3) are satisfied. As J is smooth both σ[ and φ are
smooth. The smoothness of pr ◦φ and (4-2) show that π ]ζ ∈ 0∞(TM |N ). Thus,
according to Lemma 4.5, (h∗φ∗)ζ ∈ 0∞(T ∗N ), and the right hand sides of (4-2)
and (4-3) are smooth. Finally J ′X = (p1 J ′)X + (p2 J ′)X ∈ 0∞(TN ⊕ T ∗N ).

Now take ξ ∈ 0∞(T ∗N ). There must exist η ∈ 0(T ∗M |N ) such that (4-4)
holds, (4-5) holds, and h∗η = ξ . The smoothness of π ′ and (4-4) show that
π ]η ∈ 0∞(TN ). Now Lemma 4.6 gives (h∗φ∗)η ∈ 0∞(T ∗N ), and the right hand
sides of (4-4) and (4-5) are smooth. Finally,

J ′ξ = (p1 J ′)ξ + (p2 J ′)ξ ∈ 0∞(TN ⊕ T ∗N ). �

We finish this section by using Lemma 2.1 to show when J ′ is integrable.

Proposition 4.8. If J ′ is smooth then it is integrable.

Proof. First, observe that the vector bundles L± ∩ BC = (I ∓ i J )BC are smooth.
Since J ′ is smooth, its eigenbundles L ′

±
are also smooth. It is not hard to check

that any smooth section of L ′
+

is h-related to a smooth section of L+ ∩ BC.
Hence for any σ ′1, σ

′

2 ∈ 0
∞(L ′

+
) there exists σ1, σ2 ∈ 0

∞(L+ ∩ BC) such that
σ1

h
 σ ′1 and σ2

h
 σ ′2. Since L+ is integrable Jσ1, σ2K� ∈ 0

∞(L+), and it follows
from Lemma 2.1 that Jσ1, σ2K�

h
 

q
σ ′1, σ

′

2

y
ϒ

. Thus
q
σ ′1, σ

′

2

y
ϒ
∈0∞(L ′

+
), and L ′

+

is involutive with respect to the ϒ-twisted bracket. �

5. Main theorem

The following definition will be used to characterize when a twisted submanifold
is also generalized complex; see [Crainic and Fernandes 2004] for the motivation
of this definition.

Definition 5.1. Let (M, π) be a Poisson manifold. A smooth submanifold N of
M is a Poisson–Dirac submanifold of M if TN ∩π ](TN )o = {0}, and the induced
Poisson tensor π ′ on N is smooth.

The next theorem is the main result of this paper. The untwisted version of this
result was obtained independently, using a different method, by Vaisman [2007].

Theorem 5.2. Let (M, �, J ) be a twisted generalized complex manifold with J =(
φ π]

σ[ −φ
∗

)
. A twisted submanifold N of M inherits a twisted generalized complex
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structure J ′, making it a twisted generalized complex submanifold, if and only the
following conditions hold:

(1) N is a Poisson–Dirac submanifold of (M, π).

(2) φ(TN )⊆ TN +π ](TN o).

(3) pr ◦φ : TN → TN is smooth.

The generalized complex structure J ′ on N is given by

J ′ =
(
φ′ (π ′)]

σ ′[ −(φ
′)∗

)
.

Here φ′ = pr ◦φ|TN , π ′ is the induced Poisson tensor, and

σ ′[(X)= h∗(σ[X −φ∗ζ ),

where ζ ∈ (TN )o such that X + ζ ∈ B ∩ J B, as in Lemma 4.4.

Proof. This theorem is the construction and confirmation of the properties of J ′.
Proposition 4.1 combined with Lemma 4.2 shows that J ′2 = −Id and J ′∗ J ′ = Id.
The smoothness of J ′ follows from Proposition 4.7, and the integrability of its +i-
eigenbundle follows from Proposition 4.8. The form of the generalized complex
structure follows from Lemma 4.4. �

For the following examples let �= 0.

Example 5.3. Let (M, j) be a complex manifold, and let N be a smooth subman-
ifold of M . There is a generalized complex structure on M given by φ = j , σ = 0
and π = 0. Because the Poisson structure is zero, N is automatically a Poisson–
Dirac submanifold. Condition (2) of Theorem 5.2 becomes j (TN ) ⊆ TN , which
is exactly the requirement for N to be an immersed complex submanifold of M .
Now pr ◦ j = j |TN , which is a smooth map. Thus N is a generalized complex
submanifold if, and only if, it is an immersed complex submanifold.

Example 5.4. Let (M, ω) be a symplectic manifold and N a smooth submanifold
of M . The generalized complex structure on M arising from ω is given by φ = 0,
σ[ = ω[ and π ] = −ω[−1. Because φ = 0, conditions (2) and (3) of Theorem 5.2
are automatically satisfied. Now N will be a Poisson–Dirac submanifold of M if,
and only if, N is a symplectic submanifold of M . Thus N is a generalized complex
submanifold of M if, and only if, it is a symplectic submanifold.

The last result of this section is an application of Theorem 5.2 to the stable
locus of a twisted generalized complex involution. This result is similar to one for
Poisson involutions [Fernandes and Vanhaecke 2001; Xu 2003]. Let (M, �, J ) be



GENERALIZED COMPLEX SUBMANIFOLDS 37

a twisted generalized complex manifold. A twisted generalized complex involution
is a diffeomorphism 9 : M→ M such that 92

= Id and

(5-1) 9∗
∗
◦ J = J ◦9∗

∗
.

Here 9∗
∗

is the map from TM ⊕ T ∗M to TM ⊕ T ∗M defined by 9∗
∗
(X + ξ) =

9∗X +9∗ξ .

Corollary 5.5. Let (M, �, J ) be a twisted generalized complex manifold and let
9 be a twisted generalized complex involution of J . The fixed locus, N , of 9 is a
twisted generalized complex submanifold of M.

Proof. Let ξ be an arbitrary element of T ∗M . (5-1) implies that (9∗π ]9∗)ξ =
π ]ξ . Hence 9∗π = π , and 9∗ is a Poisson involution. Because 9∗ is a Poisson
involution, [Xu 2003, Proposition 4.1] implies that N is a Dirac submanifold. Thus
N is a Poisson–Dirac submanifold, and condition (1) of Theorem 5.2 is satisfied.

Take X ∈TN . Equation (5-1) implies that9∗(φX)+9∗(σ[X)=φX+σ[X . The
vector field component of this equality proves that φ(TN ) ⊆ TN , and condition
(2) of Theorem 5.2 is satisfied. Thus pr ◦φ=φ|TN , which is a smooth map. Hence
condition (3) of Theorem 5.2 is satisfied. �

6. Holomorphic Poisson submanifolds

Let (M, j, π) be a Poisson Nijenhuis manifold such that j : TM→ TM is an inte-
grable almost complex structure. Such a structure is equivalent to a holomorphic
Poisson structure The holomorphic Poisson tensor is given by 5= π j+ iπ , where
π
]
j = π

]
◦ j∗.

A generalized complex structure on M [Crainic 2004; Stiénon and Xu 2007] is
given by

(6-1) J =
(

j π ]

0 − j∗

)
.

In general, if N is a generalized complex submanifold then the induced generalized
complex need not have σ ′ = 0.

Recall that TN ∩π ](TN o) = {0} and φ(TN ) ⊆ TN +π ](TN o). Thus, we can
define the composition

TN
φ
−−→ TN ⊕π ](TN o)

pr2
−−−→ π ](TN o).

Proposition 6.1. Consider the generalized complex structure (6-1), and let N be a
generalized complex submanifold of M. Now, σ ′ = 0 if , and only if ,

φ(TN )⊆ π ]
(
(pr2 ◦φ(TN ))o

)
.
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Proof. Take X ∈ TN . Then
(

X
0

)
∈ TN⊕T ∗M |N = B. Since B= B∩ J B+B⊥ and

B⊥ = TN o there exists a ζ ∈ TN o such that
( X
ζ

)
∈ B ∩ J B. But then J

( X
ζ

)
∈ B

too, and so φX +π ]ζ ∈ TN .
In other words, given X ∈ TN there exists ζ ∈ TN o such that φX +π ]ζ ∈ TN .

Since φ(TN ) ⊆ TN ⊕ π ](TN o), this is equivalent to pr2 ◦φ(X) = −π
]ζ . Recall

that σ ′[(X)= h∗(σ[(X)−φ∗ζ ).
Now, assume σ = 0. Then σ ′ = 0 if, and only if σ ′[(X) = 0 for all X ∈ TN .

From the previous discussion, this will be true if, and only if h∗(φ∗ζ ) = 0 for all
ζ ∈ TN o such that π ]ζ ∈ pr2 ◦φ(TN ), which is equivalent to

(6-2) TN o
∩ (π ])−1(pr2 ◦φ(TN ))⊆ (φ∗)−1(TN o).

Let A = pr2 ◦φ(TN ). Now,

(π ])−1(A)= ((π ])∗)−1(A)= (π ](Ao))o,

and
(φ∗)−1(TN o)= (φ(TN ))o.

Hence, (6-2) becomes

(TN +π ](Ao))o ⊆ (φ(TN ))o,

which is equivalent to

(6-3) φ(TN )⊆ TN +π ](Ao).

So a generalized complex submanifold N , of a generalized complex manifold M
with generalized complex structure (6-1), will have a generalized complex structure
of the same form as (6-1) if and only if φ(TN ) ⊆ TN + π ](Ao). Now, consider
the following series of equivalent statements:

A ⊆ π ](TN o),

Ao
⊇ (π ](TN o))o,

Ao
⊇ (π ])−1(TN ),

π ](Ao)⊇ π ]
(
(π ])−1(TN )

)
= TN .

Thus (6-3) becomes
φ(TN )⊆ π ](Ao). �

If N is both a complex submanifold of (M, j), and a Poisson–Dirac submanifold
of (M, π) then this condition will automatically be satisfied and there will be a
generalized complex structure of the form (6-1) on N . Thus N will also be a
holomorphic Poisson manifold.
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7. Spinors and generalized complex submanifolds

Generalized complex structures may also be realized using Clifford algebras and
spinors. The aim of this section is to prove that generalized complex submanifolds
can also be realized using spinors. Details for the material in this section can be
found in [Gualtieri 2003] and the sections of [Chevalley 1997] cited therein.

Let V be a finite dimensional vector space and let Cl denote the Clifford algebra
of VC⊕ V ∗

C
. There is an action of Cl on

∧
•
(V ∗

C
) defined by

(X + ξ) ·µ= iXµ+ ξ ∧µ,

for all X + ξ ∈ VC ⊕ V ∗
C

and µ ∈
∧
•
(V ∗

C
). The elements of

∧
•
(V ∗

C
) are called

spinors. Each spinor µ has a null space:

Lµ =
{

X + ξ ∈ VC⊕ V ∗C : (X + ξ) ·µ= 0
}
.

This subspace is isotropic, and if it is also maximal isotropic then the spinor is
called pure. Using the notation of Section 2, every pure spinor can be written as

(7-1) µ= c(det(Ro))∧ exp(ε),

where c ∈ C is nonzero, R ⊆ VC, and ε ∈
∧2 R∗. It is known that pure spinors,

up to multiplication by a constant, are in one to one correspondence with maximal
isotropics. The maximal isotropics Lµ and Lµ = L µ̄ will have trivial intersection
if, and only if,

(µ, µ̄)muk 6= 0.

Here ( · , · )muk is the Mukai pairing.
For each m ∈ M the previous constructions can be applied to (Tm M ⊕ T ∗m M)C.

The bundle formed by these Clifford algebras is called the Clifford bundle. In this
context spinors are members of�•

C
(M), and their null spaces are maximal isotropic

subbundles of T
C

M ⊕ T ∗
C

M . The following proposition follows from [Alekseev
and Xu 2001, Theorem 6.4]. It is also proven in [Gualtieri 2003] for the untwisted
case.

Proposition 7.1. Generalized complex structures are in one to one correspondence
with pure spinor line bundles L⊆

∧
•T ∗

C
M such that the following hold.

(1) If µ ∈ L then (µ, µ̄)muk 6= 0.
(2) For any local nonzero section µ ∈0(L|U ) there exists a local section X+ξ ∈

XC(U )⊕�C(U ) such that d�(µ)= (X + ξ) ·µ. Here d� = d +�.

For each point m ∈ M the spinor line L|m is of the form (7-1)

Let h : N → M be a twisted submanifold with a generalized complex structure
defined by a spinor line bundle L ⊆

∧
•T ∗

C
M . This spinor line bundle naturally

induces a line bundle in �•
C
(N ) given by h∗L. This induced line bundle could
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potentially give a generalized complex structure on N . We will show that the
maximal isotropic defined by h∗L is in fact Bh(LL).

Proposition 7.2. Let (M, J, �) be a twisted generalized complex manifold and let
θ be the pure spinor line that also gives J . If h : N → M is a twisted generalized
complex submanifold of M , with generalized complex structure J ′, then the spinor
associated to J ′ is h∗θ .

Proof. Let L denote the Dirac structure associated to J . The spinor line bundle
associated to L is given by

L=
{
c(det(Ro))∧ exp(ε) : c ∈ C

}
.

Now,
h∗(c det(Ro)∧ exp(ε))= c det((h−1 R)o)∧ exp(h∗ε).

This line bundle is the same as the line bundle associated to Bh(L). �

With this proposition it is now a simple matter to give the conditions for a
twisted generalized complex submanifold in terms of spinors. The involutivity
is guaranteed by Lemma 2.1.

Corollary 7.3. Let M be a twisted generalized complex submanifold, with as-
sociated spinor line bundle L. A twisted submanifold h : N → M is a twisted
generalized complex submanifold if , and only if , h∗L is a pure spinor line bundle
and (h∗µ, h∗µ̄)muk 6= 0 for all µ ∈ L.

8. Generalized Kähler submanifolds

Finally we will consider submanifolds of generalized Kähler structures. A twisted
generalized Kähler structure on M is a pair of twisted generalized complex struc-
tures J1, J2 : TM ⊕ T ∗M→ TM ⊕ T ∗M such that

(1) J1 and J2 commute,
(2) 〈X + ξ, J1 J2(Y + η)〉 is a positive definite metric.

The first proposition of this section gives a condition, in terms of the eigenbun-
dles, for when two complex maps will commute.

Proposition 8.1. Let W be a real vector space with two maps ψ1, ψ2 : W → W
such that ψ2

1 =ψ
2
2 =−Id. Also, let Lk

+
denote the +i -eigenbundles of these maps,

and Lk
−

denote the −i -eigenbundles. Using this notation, ψ1 and ψ2 commute if ,
and only if

WC = (L1
+
∩ L2
+
)⊕ (L1

+
∩ L2
−
)⊕ (L1

−
∩ L2
+
)⊕ (L1

−
∩ L2
−
).
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Proof. First assume the two maps commute. Because of this fact, every w ∈ WC

can be written as

w = 1
4(Id− i J1)(Id− i J2)(w)+

1
4(Id− i J1)(Id+ i J2)(w)

+
1
4(Id+ i J1)(Id− i J2)(w)+

1
4(Id+ i J1)(Id+ i J2)(w)

:= w+
+
+w+

−
+w−

+
+w−

−
.

It is clear that w±
•
∈ L1

±
, and w•

±
∈ L2

±
. Now assume every w ∈ WC can be

written as w = w++ + w
+

− + w
−

+ + w
−

− , where w±
•
∈ L1

±
and w•

±
∈ L2

±
. Now

(ψ2 ◦ ψ1)(w) = ψ2(iw++ + iw+− − iw−+ − iw−+) = −w
+

− + w
+

− + w
−

+ − w
−

− , and
(ψ1 ◦ψ2)(w)=−w

+

+ +w
+

− +w
−

+ −w
−

− . �

Let J1, J2 : TM⊕T ∗M→ TM⊕T ∗M be two commuting bundle maps such that
J 2

1 = J 2
2 = −Id. Also, let Lk

±
denote the +i-eigenbundles and −i-eigenbundles

of Jk . We also use the notation of Section 4, in which B = TN ⊕ T ∗M |N , and
s : B → TN ⊕ T ∗N . The next two lemmas relate the condition above to our
conditions.

Lemma 8.2. The following are equivalent.

(1) T
C

N ⊕ T ∗
C

N = s((L1
+
∩ L2
+
) ∩ BC)+ s((L1

+
∩ L2
−
) ∩ BC)+ s((L1

−
∩ L2
+
) ∩

BC)+ s((L1
−
∩ L2
−
)∩ BC).

(2) TN ⊕ T ∗N = s(B ∩ J1 B ∩ J2 B ∩ J1 J2 B).
(3) B = B ∩ J1 B ∩ J2 B ∩ J1 J2 B+ B⊥.
(4) J1 B⊥ ∩ B ⊆ B⊥, J2 B⊥ ∩ B ⊆ B⊥, and B ∩ J1 J2 B⊥ ⊆ B⊥.

Proof. (1) H⇒ (2): Every v ∈ T
C

N ⊕ T ∗
C

N can be written as v = s(ṽ++)+ s(ṽ+−)+
s(ṽ−+) + s(ṽ−−), where ṽ+± ∈ L1

+
∩ L2
±
∩ BC and ṽ−± ∈ L1

−
∩ L2
±
∩ BC. Now let

ṽ= ṽ+++ ṽ
+

−+ ṽ
−

++ ṽ
−

− , and so v= s(ṽ) and ṽ ∈ BC. Now J1(ṽ)∈ BC, J2(ṽ)∈ BC,
and J1 J2(ṽ)∈ BC. Thus ṽ ∈ J1(BC), ṽ ∈ J2(BC), and ṽ ∈ J1 J2(BC). Finally, taking
the real parts of each of these gives (2).

(2) H⇒ (1): Every v ∈ TN ⊕ T ∗N can be written as v = s(ṽ) for some ṽ ∈
B∩ J1 B∩ J2 B∩ J1 J2 B. Alternately v = s(ṽ) for some ṽ ∈ B such that J1(ṽ) ∈ B,
J2(ṽ) ∈ B, and J1 J2(ṽ) ∈ B. Now we can write

ṽ = 1
4

(
(Id− i J1) ◦ (Id− i J2)(ṽ)+ (Id− i J1) ◦ (Id+ i J2)(ṽ)

+ (Id+ i J1) ◦ (Id− J2)(ṽ)+ (Id+ i J1) ◦ (Id+ i J2)(ṽ)
)
.

By definition each of these components is in the intersection of the eigenbundles,
and the previous discussion shows that each of these terms is also in BC.

(2) ⇐⇒ (3): We know s(B) = T
C

N ⊕ T ∗
C

N , and ker(s) = B⊥. Thus these two
conditions are equivalent.
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(3)⇐⇒ (4): This equivalence is a fairly straightforward calculation:

B = B⊥+ B ∩ J1 B ∩ J2 B ∩ J1 J2 B ,

if, and only if
B ⊆ B⊥+ J1 B ∩ J2 B ∩ J1 J2 B ,

if, and only if
B ∩ (J1 B⊥+ J2 B⊥+ J1 J2 B⊥)⊆ B⊥ ,

if, and only if

B ∩ J1 B⊥+ B ∩ J2 B⊥+ B ∩ J1 J2 B⊥ ⊆ B⊥ ,

if, and only if

B ∩ J1 B⊥ ⊆ B⊥, B ∩ J2 B⊥ ⊆ B⊥, and B ∩ J1 J2 B⊥ ⊆ B⊥ . �

This last lemma strengthens the conclusions of the first statement in Lemma 8.2.

Lemma 8.3. If N is a twisted generalized complex submanifold of (M, J1) and
(M, J2) then the sums in expression (1), of the previous proposition, are direct.
Also, each of the components in this expression can be rewritten as

s
(
(L1
±
∩ L2
±
)∩ BC

)
= F1

±
∩ F2
±
,

where Fk
±
=Bi (Lk

±
).

Proof. The fact that J1 and J2 descend to generalized complex structures on N
implies that Fk

+
∩ Fk
−
= {0}, and the sums must be direct. Now, by definition

s(Lk
±
∩ BC)= Fk

±
and it is obvious that s((L1

±
∩ L2
±
)∩ BC)⊆ F1

±
∩ F2
±

. To see the
other inclusion, consider F1

+
∩ F2
+

. This subset will have zero intersection with F1
−

and F2
−

, and so it will not intersect with any of the other components. However,
F1
+
∩ F2
+
⊆ T

C
N ⊕ T ∗

C
N , and the fact that T

C
N ⊕ T ∗

C
N is made up of these four

components implies that F1
+
∩ F2
+
⊆ s((L1

±
∩ L2
±
)∩ BC). �

We are now ready to prove our last theorem, namely that these conditions are
guaranteed to be satisfied by a generalized Kähler structure and so our notion of
generalized complex submanifold preserves generalized Kähler structures.

Theorem 8.4. Let N be a twisted submanifold of a generalized Kähler submani-
fold (M, J1, J2). If N is a twisted generalized complex submanifold of (M, J1) and
(M, J2), then (N , J ′1, J ′2) is automatically a twisted generalized Kähler manifold.

Proof. All that we need to show is J ′1 J ′2 = J ′2 J ′1, and the metric induced by G ′ =
J ′1 J ′2 is positive definite. We start with the commutativity. By Lemma 8.3 and
Proposition 8.1, if one of the equivalent conditions in Lemma 8.2 is true then
J1 and J2 will commute. Consider condition (4) of this lemma. By assumption
J1 B⊥∩B⊆ B⊥ and J2 B⊥∩B⊆ B⊥. All that remains is to show B∩J1 J2 B⊥⊆ B⊥.
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Take v ∈ B∩ J1 J2 B⊥, so v ∈ B⊥ and J1 J2v ∈ B. Thus 〈v, J1 J2v〉= 0. However, by
assumption this metric is positive definite and so v = 0. Thus B ∩ J1 J2 B⊥ ⊆ {0},
and B ∩ J1 J2 B⊥ ⊆ B⊥ is always true. It remains to show that J ′1 J ′2 defines a
positive definite metric. Take v ∈ TM⊕T ∗M and ṽ ∈ B∩ J1 B∩ J2 B∩ J1 J2 B such
that s(ṽ)= v. Because s does not change the inner product〈

v, J ′1 J ′2(v)
〉
=

〈
s(ṽ), J ′1 J ′2s(ṽ)

〉
= 〈s(ṽ), s J1 J2(ṽ)〉 = 〈ṽ, J1 J2(ṽ)〉 ,

and the positive definiteness of J1 J2 implies the positive definiteness of J ′1 J ′2. �
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