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Let G be a connected reductive algebraic group acting on a scheme X . Let
R(G) denote the representation ring of G, and I ⊂ R(G) the ideal of vir-
tual representations of rank 0. Let G(X) (respectively, G(G, X)) denote
the Grothendieck group of coherent sheaves (respectively, G-equivariant
coherent sheaves) on X . Merkurjev proved that if π1(G) is torsion-free,
then the forgetful map G(G, X) → G(X) induces an isomorphism

G(G, X)/I G(G, X) → G(X).

Although this map need not be an isomorphism if π1(G) has torsion, we
prove that without the assumption on π1(G), the map G(G, X)/I G(G, X)⊗

Q → G(X) ⊗ Q is an isomorphism.

1. Introduction

Let G be a connected reductive algebraic group acting on a scheme X . The G-
equivariant coherent sheaves on X are central to the study of X . These sheaves
often have computable invariants, since the group action allows the use of tools
such as localization theorems. Also, equivariant sheaves are an important source
of sheaves on quotients by group actions, since if a quotient X → Y exists, then the
sheaf of invariant sections of an equivariant sheaf on X is a coherent sheaf on Y . It
is natural to ask which coherent sheaves on X admit G-actions. One positive result
is due to Mumford, who proved that if G is connected and X is normal, and L is
any invertible sheaf on X , then some power of L is G-linearizable [Mumford et al.
1994, Corollary 1.6]. On the other hand, it is easy to find examples of coherent
sheaves which do not admit G-actions. For example, PGL(2) acts on P1 but the
sheaf OP1(1) does not admit an action of PGL(2); see [Mumford et al. 1994, p. 33].

Merkurjev [1997] proved that from the point of view of K-theory, there is no
obstruction to equivariance, as long as the fundamental group of G is torsion-
free. Let G(X) and G(G, X) denote the Grothendieck groups of, respectively,
coherent sheaves and G-equivariant coherent sheaves on X . There is a forgetful
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map G(G, X) → G(X). Let R = R(G) denote the representation ring of G, and
I ⊂ R the augmentation ideal, that is, the ideal of virtual representations of rank
0. The Grothendieck group G(G, X) is an R-module. Merkurjev showed that if
π1(G) is torsion-free, then the forgetful map induces an isomorphism

G(G, X)/I G(G, X) → G(X).

If π1(G) is not torsion-free, this map can fail to be an isomorphism. For example,
the fundamental group of PGL(2) is Z/2Z, and the class v = [OP1(1)] ∈ G(P1) is
not in the image of G(PGL(2), P1). However, if we tensor with Q, this class is in
the image. Indeed, G(P1) = Z[v]/〈(v − 1)2

〉, so after tensoring with Q, we have
v =

1
2(v2

+ 1). This element is in the image of the forgetful map since v2 is the
class of OP1(2), which has a G-action.

This phenomenon holds more generally:

Theorem 1.1. Let G be a connected reductive algebraic group acting on a scheme
X. The forgetful map G(G, X) → G(X) induces an isomorphism

G(G, X)/I G(G, X) ⊗ Q → G(X) ⊗ Q.

Hence the map G(G, X) ⊗ Q → G(X) ⊗ Q is surjective.

Merkurjev proves his theorem by using a spectral sequence relating equivariant
and ordinary K-theory. The approach taken in this paper is different, and makes use
of Brion’s analogue of Theorem 1.1 for Chow groups, along with the equivariant
Riemann–Roch theorem proved by Edidin and the author. This use of Riemann–
Roch explains the rational coefficients in the statement of our theorem.

We remark that Theorem 1.1 remains true even if G is not reductive, provided
that G has a Levi factor L (which is automatic in characteristic 0), since then the
forgetful maps from G-equivariant K-theory and Chow groups to the corresponding
L-equivariant groups are isomorphisms. Also, we expect that a topological version
of Theorem 1.1 holds for equivariantly formal spaces (since for these spaces the
map from equivariant cohomology to ordinary cohomology is surjective). Finally,
the completion theorem of [Edidin and Graham 2007] should have implications in
this setting.

Conventions. We work over an algebraically closed field k. We will assume our
schemes admit closed equivariant embeddings into smooth schemes. This assump-
tion has the following consequences, which we will use in the paper. First, it
ensures that the mixed spaces we use exist as schemes; see [Edidin and Graham
1998, Proposition 23]. Second, it allows us to make use of functorial properties of
Riemann–Roch (see [Fulton 1984, Theorem 18.3(4)]). Third, it implies that the G-
actions are locally linear—that is, the schemes on which G acts can be covered by
G-invariant quasiprojective open subsets. Since this holds for normal schemes, it
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also holds for closed subschemes of normal schemes. Brion’s results are proved for
locally linear actions over algebraically closed fields, so we can apply his results.

We remark that Merkurjev does not assume that k is algebraically closed; if k is
not algebraically closed then he assumes that G is split.

2. Equivariant K-theory, Chow groups, and Riemann–Roch

In this section we recall some basic facts about K-theory, Chow groups, and Rie-
mann–Roch, in the equivariant and nonequivariant settings. We prove a result
comparing topologies on equivariant Chow groups, and also prove a compatibility
result between Riemann–Roch and forgetful maps. Both of these results are used in
the proof of the main theorem. Our main references for equivariant Chow groups
and equivariant Riemann–Roch will be [Edidin and Graham 1998] and [Edidin
and Graham 2000], where more details can be found. If M is an abelian group, we
write MQ = M ⊗Z Q. Because we want to index Chow groups by codimension,
we will assume all schemes and algebraic spaces considered are equidimensional;
our results are valid without this assumption, but we would have to index Chow
groups by dimension.

We begin with some definitions. Let G be a linear algebraic group acting on
an algebraic space X . Let G(G, X) (respectively, G(X)) denote the Grothendieck
group of G-equivariant coherent sheaves (respectively, coherent sheaves). There
is a forgetful map

For : G(G, X) → G(X)

which takes the class of a G-equivariant coherent sheaf to the class of the same
sheaf, viewed nonequivariantly. If we need to keep track of the space involved,
we will denote this by ForX . Note that G(G, X) is a module for the representation
ring R = R(G) of G. Let I ⊂ R denote the augmentation ideal (the ideal of
virtual representations of rank 0). Let ̂G(G, X)Q denote the I -adic completion of
G(G, X)Q (not the tensor product with Q of the I -adic completion of G(G, X)).

Let CH i (X) denote the codimension i Chow group of X ; if X has pure dimen-
sion d , then CH i (X) = Ad−i (X). Write CH∗(X) =

⊕
i CH i (X). Similarly, let

CH i
G(X) = AG

d−i (X) denote the “codimension i” equivariant Chow group of X ,
and CH∗

G(X) =
⊕

CH i
G(X). By definition, if V is a representation of G and U

an open subset of V on which G acts freely, then CH i
G(X) = CH i ((X × U )/G).

This definition is independent of the choice of V and U (see [Edidin and Graham
1998]). We will denote the mixed space (X × U )/G by X ×

G U or XG . Now,
X is embedded in XG as a fiber of the map XG → U/G, and pullback along this
embedding gives a map

For : CH i
G(X) → CH i (X).



48 WILLIAM GRAHAM

Note that CH∗

G(X) is a module for the graded ring S = CH∗

G(pt). Let J ⊂ S be the
ideal spanned by the homogeneous elements of S of positive degree.

The following proposition is similar to [Edidin and Graham 2000, Proposition
2.1], which dealt with the case where G is a subgroup of the group of upper trian-
gular matrices. The proof is a minor modification of that proof.

Proposition 2.1. Let G be a connected reductive algebraic group acting on a
scheme X. Let N = CH∗

G(X)
Q

. The topologies on N induced by the two filtrations
{J n N } and {

⊕
i≥n N i

} coincide.

Proof. We must show two things. First, given any n, there exists an r such that
J r N ⊂

⊕
i≥n N i . For this we may take n = r , since N is nonnegatively graded and

J N i
⊆ N i+1. Second, given any n, there exists an r such that

⊕
i≥r N i

⊆ J n N .
Indeed, Brion proved that N/J N 'CH∗(X)Q. Thus, N/J N is 0 in degrees greater
than d = dim X , so N p

= J N p−1 for p > d . Thus, for p ≥ n + d , we have
N p

= J n N p−n , so for r = n + d , we have
⊕

i≥r N i
⊆ J n N , as desired. �

Corollary 2.2. Let G be a connected reductive algebraic group acting on a scheme
X. Then the J -adic completion of CH∗

G(X)
Q

is isomorphic to the direct product∏
∞

i=0 CH i
G(X)

Q
.

Proof. Since the completion of CH∗

G(X)
Q

with respect to the topology induced by
the second filtration above is the direct product

∏
∞

i=0 CH i
G(X)

Q
, this follows from

the preceding proposition. �

Edidin and Graham [2000] constructed an equivariant Riemann–Roch map

τ G
X : G(G, X) →

∏
i

CH i
G(X)Q,

with the same functorial properties as the nonequivariant Riemann–Roch map

τX : G(X) → CH∗(X)Q

of [Fulton 1984]. The equivariant Riemann–Roch map induces an isomorphism

τ̂ G
X : ̂G(G, X)Q →

∏
i

CH i
G(X)Q.

(In [Edidin and Graham 2000], τ̂ G
X was denoted simply by τ G

X .) Also, there is an
equivariant Chern character map chG : R → S which takes I to J and induces an
isomorphism of the I -adic completion R̂ of R with the J -adic completion Ŝ of S.
Using chG to identify R̂ with Ŝ, the functorial properties of τ̂ G

X (see [Edidin and
Graham 2000, Theorem 3.1(c)]) imply that is an isomorphism of R̂ = Ŝ-modules.

The forgetful maps in K-theory and Chow groups are compatible with the Rie-
mann–Roch maps, by the following proposition. Let

τ
G,i
X : G(G, X) → CH i

G(X)Q (respectively, τ i
X : G(X) → CH i (X)Q)
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be the composition of the map τ G
X (respectively, τX ) with the projection to the

component of degree i .

Proposition 2.3. Let G be a linear algebraic group acting on a scheme X. The
following diagram commutes:

G(G, X)
τ

G,i
X

−−−→
∏

i CH i
G(X)

Q

For

y yFor

G(X)
τ i

X
−−−→ CH∗(X)

Q
.

Proof. This can be proved using a change of groups argument along the lines of
[Edidin and Graham 2000, Lemma 4.3]. Here we give a more direct proof. Let V
be a representation of G and U an open subset of V on which G acts freely, such
that the codimension of V − U is greater than i . By definition,

CH i
G(X) = CH i (XG),

where XG = X ×
G U . Let

π : X × U → X

denote the projection, and let

q : X × U → XG

denote the quotient map. If F is a coherent sheaf on XG , then the pullback sheaf
q∗F on X × U has a natural G-action. The assignment F → q∗F gives an
equivalence of categories between the category of coherent sheaves on X ×

G U
and the category of G-equivariant coherent sheaves on X × U (this follows from
Thomason’s work in [1987]; see [Edidin and Graham 2000] for a discussion). This
equivalence yields an isomorphism G(XG) → G(G, X × U ), denoted by q∗.

Let u ∈ U and let v ∈ U/G be the image of u. Let j : X → X × U take X to
X × {u}, and let k = q ◦ j : X → XG . Then k is the inclusion of X as the fiber of
XG → U/G over v. The normal bundle Nk to k is pulled back from the normal
bundle to the inclusion of v in U/G, so Nk is trivial, and hence by [Fulton 1984,
Theorem 18.3],

(1) τX ◦ k!
= k∗

◦ τXG

as maps G(XG) → CH∗(X)
Q

.
Let V denote the vector bundle X ×

G (U × V ) → XG . Define

ρU : G(XG) → CH∗(XG)
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by

(2) ρU (β) =
τXG (β)

Td(V)
.

Let ρi
U be the composition of ρU with the projection onto the i-th component. Then

by the definition of the equivariant Riemann–Roch map (see [Edidin and Graham
2000]), τ

G,i
X is the top row of the following diagram:

G(G, X)
π !

−−−→ G(G, X × U )
(q∗)−1

−−−→ G(XG)
ρi

U
−−−→ CH i (XG) = CH i

G(X)

k!

y yk∗
=For

G(X)
τ i

X
−−−→ CH∗(X).

Here π ! is the flat pullback in equivariant K-theory; if E is an equivariant coherent
sheaf on X then π !

[E]= [π∗E], where π∗E is the pullback of the sheaf E. Also, k!

and k∗ are the Gysin morphisms associated to the regular embedding k (see [Fulton
1984]). The pullback along k of the vector bundle V is trivial, so k∗(Td(V)) = 1.
Hence (1) and (2) imply that the diagram commutes. To complete the proof of the
proposition, it suffices to show that

(3) k!
◦ (q∗)−1

◦ π !
= ForX

as maps G(G, X) → G(X). Now, k!
= j !q !, so the left hand side of (3) is

(4) j !q !(q∗)−1π !.

By definition, (q∗)−1 takes the class of an equivariant coherent sheaf F to the
class of a nonequivariant sheaf E with q∗E = F. On the other hand, q !

[E] is the
class of q∗E (viewed as a nonequivariant coherent sheaf) in G(X × U ). Thus, the
composition q !(q∗)−1 is ForX×U : G(G, X ×U ) → G(X ×U ). Since the forgetful
map commutes with flat pullback, (4) equals

j !
◦ ForX×U ◦π !

= j !π !
◦ ForX = (π ◦ j)! ◦ ForX = ForX ,

as desired. �

3. Completions

The purpose of this section is to prove a simple result (Lemma 3.1) about comple-
tions. This lemma is certainly known (compare [Bourbaki 1972, p. 247] for finitely
generated modules), but because of a lack of a reference for nonfinitely generated
modules, a proof is included.

Let R be a Noetherian ring and I an ideal of R. Let M̂ denote the I -adic
completion of the R-module M . We view M̂ as the set of coherent sequences
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(m1, m2, . . .); here mk ∈ M/I k M , and coherent means that for all k, the natural map
M/I k+1 M → M/I k M takes mk+1 to mk . Since Î = I R̂ [Atiyah and Macdonald
1969, Proposition 10.15], we have Î M̂ = I R̂ M̂ = I M̂ . The composition M →

M̂ → M/I M̂ induces a map f : M/I M → M̂/I M̂ .

Lemma 3.1. Let R be a Noetherian ring and I an ideal of R. For any R-module
M , the map f : M/I M → M̂/I M̂ is an isomorphism.

Proof. The exact sequence 0 → I M → M
π
→ M/I M → 0 yields an exact sequence

of completions

0 → Î M → M̂
π̂
→ M̂/I M = M/I M → 0

(see [Atiyah and Macdonald 1969, Cor. 10.3, 10.4]). The map π̂ : M̂ → M/I M
takes the coherent sequence µ = (m1, m2, . . .) to m1. We claim that the subspaces
Î M and I M̂ of M̂ are equal. This suffices, for then the map p : M̂/I M̂ → M/I M
(induced from π̂ ) is an isomorphism. Indeed, the map f : M/I M → M̂/I M̂
is induced from the map M → M̂/I M̂ taking m to (m1, m2, . . .), where we set
mk = m mod I k M . Since p ◦ f is the identity map of M/I M , the claim implies
that f is an isomorphism.

It remains to prove the claim. As noted above, ker π̂ = Î M . Clearly I M̂ ⊆ker π̂ ,
so we must show the reverse inclusion.

Given an element µ = (m1, m2, . . .) ∈ M̂ , let pk(µ) = mk ∈ M/I k M . Let
a1, . . . , an generate I . Suppose that µ ∈ ker π̂ . We want to show that µ ∈ I M̂ .
Now, p1(µ) = 0, and p2(µ) ∈ I M/I 2 M . Let µ1, . . . , µn be elements of M such
that

∑
aiµ

i mod I 2 M = p2(µ). Let µ̂i be the image of µi under M → M̂ , and let

µ(2) = µ −

∑
ai µ̂

i .

Then p1(µ(2)) = p2(µ(2)) = 0, so p3(µ(2)) ∈ I 2 M/I 3 M . Let µi j be elements of
M such that

∑
ai a jµ

i j mod I 3 M = p3(µ(2)). Let µ̂i j be the image of µi j under
M → M̂ , and let

µ(3) = µ(2) −

∑
ai a j µ̂

i j .

Then pi (µ(3)) = 0 for i ≤ 3. Proceeding inductively, suppose we have µ(k) ∈ M̂
with pi (µ(k)) = 0 for i ≤ k. Then we can find elements µJ

∈ M , where J runs
over the collection of all k-element multisets with elements in {1, 2, . . . , n}, such
that if we define

µ(k + 1) = µ(k) −

∑
|J |=k

a J µ̂J ,

then we have p j (µ(k +1)) = 0 for j ≤ k +1. (Here |J | is the number of elements
in J , counted with multiplicity; a J

=
∏

j∈J a j , where each a j occurs with its
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multiplicity in J ; and µ̂J is the image of µJ under M → M̂ .) Then

µ =

∑
k

∑
|J |=k

a J µJ
;

that is, the right hand side converges to the element µ∈ M̂ . Let Si be the collection
of multisets whose smallest element is i . We can rewrite the preceding equation as

µ = a1
∑
J∈S1

a J−{1}µJ
+ a2

∑
J∈S2

a J−{2}µJ
+ · · · + an

∑
J∈Sn

a J−{n}µJ .

Each of the series
∑

J∈Si
a J−{i}µJ converges to an element of M̂ , so we conclude

that µ ∈ I M̂ , as desired. �

Remark 3.2. In the proof of the lemma, the claim that Î M = I M̂ admits a simpler
proof if M is finitely generated. Indeed, by [Atiyah and Macdonald 1969, Proposi-
tion 10.13], in this case the horizontal maps in the following commutative diagram
are isomorphisms:

R̂ ⊗R I M → Î M
↓ ↓

R̂ ⊗R M → M̂ .

The image in M of R̂ ⊗R I M under the upper (respectively, lower) composition is
Î M (respectively, I M̂), so Î M = I M̂ as desired.

4. Proof of Theorem 1.1

In this section we work with rational coefficients and tensor all Grothendieck
groups and Chow groups with Q. For simplicity we will omit this from the notation
and simply write, for example, G(G, X) for G(G, X)Q, or R for RQ. If M is an R-
module we will write M/I for M/I M , and if N is an S-module we will write N/J
for N/J N . Recall that by Corollary 2.2 we can identify the J -adic completion of
CH∗

G(X) with the direct product
∏

∞

i=0 CH i
G(X).

By Proposition 2.3, we have a commutative diagram

G(G, X)
τ G

X
−−−→

∏
i CH i

G(X)

For

y yFor

G(X)
τX

−−−→
∏

i CH i (X).

Now, τ G
X takes I G(G, X) to J

∏
CH i

G(X). Also, the forgetful maps factor as

G(G, X) → G(G, X)/I → G(X)
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and ∏
i

CH i
G(X) →

(∏
i

CH i
G(X)

)
/J → CH∗(X).

Therefore, we obtain a commutative diagram

(5)

G(G, X)/I
τ̄ G

X
−−−→

(∏
i CH i

G(X)
)
/Jy y

G(X)
τX

−−−→
∏

i CH i (X),

where τ̄ G
X is induced from τ G

X . The map τX is an isomorphism (see [Fulton 1984,
Corollary 18.3.2]). We claim that τ̄ G

X is as well. Indeed, τ G
X factors as

G(G, X) → ̂G(G, X)
τ̂ G

X
→

∏
i

CH i
G(X).

and the map τ̂ G
X is an isomorphism. As observed in Section 2, if we use chG to

identify R̂ with Ŝ, then τ̂ G
X is an isomorphism of R̂ = Ŝ-modules. Hence τ̂ G

X induces
an isomorphism

̂G(G, X)/I →

(∏
i

CH i
G(X)

)
/J.

(Here we are using the fact that Î = I R̂, so ̂G(G, X)/ Î = ̂G(G, X)/I ; similarly,
(
∏

i CH i
G(X))/ Ĵ = (

∏
i CH i

G(X))/J ). We can write τ̄ G
X as the composition

G(G, X)/I → ̂G(G, X)/I →

(∏
i

CH i
G(X)

)
/J.

Since the second map is an isomorphism, and by Lemma 3.1 the first map is an
isomorphism as well, we conclude that τ̄ G

X is an isomorphism, proving the claim.
Now, we have a commutative diagram

CH∗

G(X) −−−→
∏

i CH i
G(X)

For

y yFor

CH∗(X)
∏

i CH i (X)

(the bottom equality is because CH i (X) is zero for i < 0 or i > dim X ). From this
we obtain a commutative diagram

(6)

CH∗

G(X)/J −−−→
(∏

i CH i
G(X)

)
/Jy y

CH∗(X)
∏

i CH i (X).
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The top map is an isomorphism by Corollary 2.2 and Lemma 3.1, and Brion proved
that the left vertical map is an isomorphism. Hence, combining diagrams (5) and
(6), we obtain a commutative diagram

G(G, X)/I −−−→ CH∗

G(X)/Jy y
G(X)

τX
−−−→ CH∗(X).

Since the top, bottom, and right vertical maps are isomorphisms, we conclude that
the left vertical map is an isomorphism as well. This completes the proof.

Example 4.1. We return to the example of G = PGL(2) acting on P1, considered
in the introduction. Let B denote the stabilizer in G of the point [1 : 0] and let T
denote the maximal torus which is the image of the diagonal matrices in GL(2)

under the quotient map GL(2) → PGL(2). Then P1 can be identified with G/B,
and a standard change of groups argument (see for example [Edidin and Graham
2000, Proposition 3.2]) implies

G(G, G/B) = G(B, pt) = R(B) = R(T ).

Since we are working with rational coefficients, R(T )'Q[u, u−1
] and this isomor-

phism can be chosen so that u corresponds to [OP1(2)] in G(G, P1). We may view
R(G) as the subring Q[u +u−1

] of R(T ); then the ideal I ⊂ R(G) is generated by
u+u−1

−2, so G(G, P1)/I = Q[u, u−1
]/〈(u−1)2

〉. Also, if v =[OP1(1)] ∈ G(P1),
then G(P1)=Q[v]/〈(v−1)2

〉. The forgetful map G(G, P1)→G(P1) takes u to v2,
and induces an isomorphism G(G, P1)/I ' G(P1). However, if we were working
with integer coefficients, the forgetful map would not be surjective, since in that
case v is not in the image.
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