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We show that proper Dupin hypersurfaces Mn for n ≥ 4 in Rn+1 with n dis-
tinct principal curvatures and constant Möbius curvature cannot be param-
etrized by lines of curvature. For n = 3, up to Möbius transformations,
there is a unique proper Dupin hypersurface, parametrized by lines of cur-
vature, with three distinct principal curvatures and constant Möbius cur-
vature. Moreover, these hypersurfaces are the only conformally flat proper
Dupin hypersurfaces M3 ⊂ R4 with three distinct principal curvatures and
constant Möbius curvature.

1. Introduction

Dupin surfaces were first studied by Dupin in 1822. In the last three decades,
several aspects of Dupin hypersurfaces were studied by many authors [Cecil and
Chern 1989; Cecil et al. 2007; Cecil and Jensen 1998; 2000; 1980; Miyaoka
1984; 1989; Niebergall 1991; 1992; Pinkall 1981; 1985b; 1985a; Pinkall and
Thorbergsson 1989; Riveros and Tenenblat 2005; Stolz 1999; Thorbergsson 1983].
A hypersurface is said to be Dupin if each principal curvature is constant along its
corresponding surface of curvature. A Dupin submanifold M is said to be proper
if the number g of distinct principal curvatures is constant on M .

The simplest Dupin submanifolds are the isoparametric hypersurfaces, that is,
those whose principal curvatures are constant. Such a hypersurface in Euclidean
space is an open subset of Rn , of the sphere Sn , or of Sk

×Rn−k , and hence g ≤ 2.
Cartan classified the isoparametric hypersurfaces of the sphere with g ≤ 3. Besides
isoparametric hypersurfaces, other special Dupin hypersurfaces are those that have
constant Möbius curvature or constant Lie curvature.

In this paper, we consider those proper Dupin hypersurfaces of Euclidean space
having distinct principal curvatures and constant Möbius curvature.
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The property of being a proper Dupin hypersurface is invariant under Lie trans-
formations. Therefore the classification of Dupin hypersurfaces is considered up to
these transformations. The Möbius (conformal) transformations form a subgroup
of the Lie sphere group, and it preserves Möbius curvatures.

Thorbergsson [1983] proved that if M is a proper, Dupin, compact embedded
hypersurface then g = 1, 2, 3, 4, or 6. Pinkall [1985a] showed that there are no
restrictions on g if M is not compact. By using basic constructions, namely, tubes,
cylinders, and rotational submanifolds, he provided hypersurfaces of the Euclidean
space for any g. A proper Dupin hypersurface is said to be reducible if it is Lie
equivalent to a proper Dupin hypersurface obtained by those basic constructions.

The local classification of Dupin surfaces in R3 says that such a surface is either
totally umbilic or it is a Dupin cyclide. Pinkall [1985a] proved that if Mn is a
Dupin hypersurface of Rn+1 and g = 2, then M is conformally equivalent to an
isoparametric hypersurface in Sn+1. Pinkall [1985b] also gave a complete classifi-
cation, up to Lie equivalence, for Dupin hypersurfaces M3

⊂ R4 with three distinct
principal curvatures. In particular, he showed that if M is irreducible, then it is
locally Lie equivalent to an isoparametric hypersurface of S4.

Niebergall [1991; 1992] and more recently Cecil and Jensen [2000] (see also
[Cecil et al. 2007]) studied irreducible, proper, Dupin hypersurfaces M4

⊂ R5

with four distinct principal curvatures. Pinkall [1981] proved that proper Dupin
hypersurfaces Mn with g ≥3 that are Lie equivalent to isoparametric hypersurfaces
cannot be parametrized by lines of curvature.

We will show that those proper Dupin hypersurfaces Mn in Rn+1 for n ≥ 4
having n distinct principal curvatures and constant Möbius curvature cannot be
parametrized by lines of curvature. For n = 3, up to Möbius transformations, there
is a unique proper Dupin hypersurfaces in R4, parametrized by lines of curvature,
having three distinct principal curvatures and constant Möbius curvature.

Moreover, we obtain all the conformally flat Dupin hypersurfaces of R4, with
constant Möbius curvature. We recall that for n ≥ 4, the classical Cartan–Schouten
theorem (see [Cartan 1917; Schouten 1921]) proves that Mn

⊂Rn+1 is conformally
flat if and only if at least n − 1 of the principal curvatures coincide at each point.
See Chen [1973] for characterizations of such hypersurfaces when n ≥ 4. For
compact conformally flat hypersurfaces, do Carmo, Dajczer, and Mercuri [1985]
characterized their topological types, while Pinkall [1988] classified them in the
conformal class. Cecil and Ryan [1980] classified conformally flat hypersurfaces
with n ≥ 4 and with the condition of being taut and hence complete. All these
results used the Cartan–Schouten theorem, which does not hold in dimension 3.
The classification of conformally flat hypersurfaces M3

⊂ R4 remains open. Such
a hypersurface is said to be generic if all the principal curvatures are pairwise



ON DUPIN HYPERSURFACES WITH CONSTANT MÖBIUS CURVATURE 91

distinct everywhere. Generic conformally flat hypersurfaces M3
⊂ R4 with ad-

ditional assumptions such as constant mean curvature, constant Gauss–Kronecker
curvature, or special conditions on the mean curvature vector or the metric were
studied by several authors; see [Defever 2000a; 2000b; Garay 1994; Lafontaine
1988; Suyama 2005]. In this paper, we characterize the three dimensional generic
conformally flat Dupin hypersurfaces with constant Möbius curvature.

In Section 3, we prove the following result.

Theorem A. Let Mn
⊂ Rn+1 for n ≥ 4 be a proper Dupin hypersurface with n

distinct principal curvatures and constant Möbius curvature. Then M cannot be
parametrized by lines of curvature.

Theorem A does not hold when we replace Möbius curvatures by Lie curvature.
We show in Remark 3.4 that there are Dupin hypersurfaces in Rn+1 for n ≥ 4,
parametrized by lines of curvature with n distinct principal curvatures and constant
Lie curvature. These hypersurfaces were obtained in [Corro et al. 1999] by using
Ribaucour transformations.

For n = 3, one has this result:

Theorem B. Up to Möbius transformations, there is a unique proper Dupin hy-
persurface M3 that is immersed in R4, parametrized by lines of curvature, and has
three distinct principal curvatures and constant Möbius curvature.

Theorem B follows from the classification of Möbius isoparametric hypersur-
faces in S4 obtained by Hu and Li [2005], since one can show that a Dupin hy-
persurface with constant Möbius curvature is precisely what is called a Möbius
isoparametric hypersurface in [Li et al. 2002] when there are at least three distinct
principal curvatures. However, Theorem B also follows directly from the funda-
mental theorem for hypersurfaces of the Euclidean space without using the theory
of Möbius first and second fundamental forms introduced in [Wang 1998]. This
theory was used in [Hu and Li 2005; Hu et al. 2007; Li et al. 2002] to study Möbius
isoparametric hypersurfaces of the sphere. Such hypersurfaces are not necessarily
Lie equivalent to isoparametric hypersurfaces of the sphere.

The surface of Theorem B is a cone over a flat torus contained on a sphere. It
can be parametrized by

(1) X (x1, x2, x3) =
1

√
c ex2

( sin x1
√

c−1
,
− cos x1
√

c−1
, sin x3, − cos x3

)
,

where c > 1 is a real constant. This is a reducible hypersurface, and it is not Lie
equivalent to an isoparametric hypersurface.

We observe that, for Dupin hypersurfaces parametrized by lines of curvature, the
condition of having constant Möbius curvature is equivalent to having all higher
dimensional Laplace invariants equal to zero; see Lemma 3.2. These invariants
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were introduced by Kamran and Tenenblat [1996; 1998], and they were used to
study a class of Dupin hypersurfaces of R5 in [Riveros and Tenenblat 2005].

According to Cartan’s theorem [Cartan 1917; Lafontaine 1988] and Hertrich-
Jeromin [1994], a conformally flat hypersurface M3

⊂ R4 with three distinct prin-
cipal curvatures admits a local coordinate system, called a Guichard net. This is a
parametrization by lines of curvature. As a consequence of Theorem B, one gets
the following result, which can also be obtained from [Hu and Li 2005].

Corollary C. Let M ⊂ R4 be a conformally flat hypersurface with three principal
curvatures that are pairwise distinct everywhere. Then M is a Dupin hypersurface
with constant Möbius curvature if and only if M is parametrized by φX , where φ

is a conformal transformation of R4 and X is the cone given by (1).

The cone (1) is a conformally flat hypersurface of hyperbolic type in the class
given by Lafontaine [1988].

In Section 2, we include basic results on Dupin hypersurfaces parametrized by
lines of curvature and having distinct principal curvatures. In Section 3, we prove
Theorem A, and we show that this theorem does not hold if one replaces Möbius
curvature by Lie curvature.

2. Dupin hypersurfaces with distinct principal curvatures

Let � be a open set of Rn and x = (x1, x2, . . . , xn) ∈ �. Let X : � ⊂ Rn
→ Rn+1

be a proper Dupin hypersurface parametrized by lines of curvature with distinct
principal curvatures −λi for 1 ≤ i ≤ n and let N : � ⊂ Rn

→ Rn+1 be the unit
normal vector field of X . Then

〈X,i , X, j 〉 = δi j gi i ,(2)

N,i = λi X,i ,(3)

λi,i = 0,(4)

where 1 ≤ i, j ≤ n and the subscript “, i” denotes the derivative with respect to xi .
Moreover,

(5) X,i j − 0i
i j X,i − 0

j
i j X, j = 0 for 1 ≤ i 6= j ≤ n,

where 0k
i j are the Christoffel symbols. Taking the derivative of (3) with respect to

x j for i 6= j , we have Ni j = λi, j X,i + λi X,i j . Similarly, N j i = λ j,i X, j + λ j X, j i .
Subtracting these equations and substituting X,i j given by (5), it follows that

(6) 0i
i j =

λi, j

λ j − λi
for 1 ≤ i 6= j ≤ n.
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The Christoffel symbols in terms of the metric (2) are given by

(7) 0k
i j = 0, 0i

i i =
gi i,i

2gi i
, 0

j
i i = −

gi i, j

2g j j
, 0i

i j =
gi i, j

2gi i
,

where i, j, k are distinct.
For Dupin hypersurfaces with distinct principal curvatures, the Möbius curva-

ture is defined by

(8) C i jk
=

λi − λ j

λk − λ j
for distinct i, j, k.

Hence, for all distinct i, j, k , we have

(9) C i jk
= 1 − C ik j , C j ik

= 1 −
1

C ik j , C i jk
=

1
Ck ji .

When n ≥ 4, we also have

(10) C ik j
= C iksC sk j for distinct i, j, k, s.

The Lie curvature for Mn is a cross ratio of principal curvatures. It is a product
of Möbius curvatures defined in [Miyaoka 1989] by

(11) 9i jkl =
(λi − λk)(λ j − λl)

(λi − λl)(λ j − λk)
for distinct i, j, k, l.

For later use, we will obtain some of the properties of the Christoffel symbols
and its derivatives and the Gauss equation for Dupin hypersurfaces parametrized
by lines of curvature and having distinct principal curvatures.

It follows from (7) that

gi i, j = 20i
i j gi i(12)

0
j
i i = − 0i

i j
gi i

g j j
.(13)

for 1 ≤ i 6= j ≤ n. From (6) and (4), we obtain

(14) 0i
i j,i = 0

j
i j, j = 0i

i j0
j
i j for 1 ≤ i 6= j ≤ n.

From (3) and (13) we get

(15) X,i i = 0i
i i X,i −

∑
k 6=i

0i
ik

gi i

gkk
X,k − λi gi i N .

Using the expressions (7) and (12)–(14), we obtain for 1 ≤ i 6= j ≤ n that

(16) 0
j
i i, j =

gi i

g j j

(
−0i

i j, j + 20i
i j0

j
j j − 2(0i

i j )
2).
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Proposition 2.1. Let X :�⊂Rn
→Rn+1 for n ≥3 be a proper Dupin hypersurface

parametrized by lines of curvature whose principal curvatures −λi for 1 ≤ i ≤ n
are distinct. Then the Gauss equation for the immersion X is given by

(17) λiλ j +
L j i

gi i
+

L i j

g j j
+

∑
k 6=i 6= j

0i
ik0

j
jk

gkk
= 0,

where i 6= j and

(18) L j i = 0i
j i,i + 0

j
j i (0

j
j i − 0i

i i ).

Proof. For a hypersurface of Rn+1, we have the curvature tensor

Ri jlm =

∑
γ

giγ

(∑
k

(0k
mj0

γ

lk − 0k
jl0

γ

km) + 0
γ

mj,l − 0
γ

jl,m

)
.

On the other hand, Ri j i j = λiλ j gi i g j j . From the last two equalities, using the fact
that the immersion X is a Dupin hypersurface parametrized by lines of curvature,
we get

λiλ j gi i =

∑
k

(0k
ii0

j
jk − 0k

i j0
j
ik) + 0

j
i i, j − 0

j
i j,i .

Now it follows from (13) and (16) that

λiλ j +
1

gi i
(0

j
i j,i +0

j
i j (0

j
i j −0i

i i ))+
1

g j j
(0i

i j, j +0i
i j (0

i
i j −0

j
j j ))+

∑
k 6=i 6= j

0i
ik0

j
jk

gkk
= 0.

Therefore we obtain the Gauss equation given by (17). �

3. Dupin hypersurfaces with constant Möbius curvature

In this section, we prove Theorem A, namely, that proper Dupin hypersurfaces
Mn in Rn+1 for n ≥ 4 with n distinct principal curvatures and constant Möbius
curvature cannot be parametrized by lines of curvature. We also show that this is
not true if we replace constant Möbius curvature by constant Lie curvature; see
Remark 3.4. We start proving some lemmas.

Lemma 3.1. Suppose Mn
⊂ Rn+1 for n ≥ 3 is a proper Dupin hypersurface that

is parametrized by lines of curvature and that has n distinct principal curvatures
−λi . The Möbius curvatures are constant if and only if , up to a reordering of the
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indices, the principal curvatures are given by

(19)

λ1 = −(C − 1)h2 + h3 +

∑
r≥4

(
1 −

1
Cr

)
hr ,

λ2 =

(
1 −

1
C

)
h1 +

1
C

h3 +

∑
r≥4

hr ,

λ3 = h1 + h2 +

∑
r≥4

(
1 +

1
Cr (C−1)

)
hr ,

λs = Csλ1 + (1 − Cs)λ2 for s ≥ 4,

where C, Cs ∈ R\{0, 1} for s ≥ 4 are constants such that Cs 6= 1/(1−C), Cr 6= Cs

for r 6= s, and hi (xi ) for i = 1, . . . , n are arbitrary differentiable functions.

Proof. We will first show that each λi is a sum of functions of separated variables.
By hypothesis, all Möbius curvatures C ik j are constant, and from (8), we have

(20) λi +
(
C ik j

− 1
)
λk − C ik jλ j = 0 for all distinct i, j, k.

Differentiating this equation with respect to xk, x j , we obtain λi,k j = 0. Therefore

(21) λi =

∑
r 6=i

fir (xr ) for all i = 1, . . . , n.

We fix indices i = 1, j = 2, and k = 3, and we let C = C132. Then it follows from
(20) and (21) that∑

r 6=1

f1r (xr ) + (C − 1)
∑
s 6=3

f3s(xs) − C
∑
t 6=2

f2t(xt) = 0.

Considering this expression as a sum of functions of distinct variables we have

a1 = (C − 1) f31 − C f21,

a2 = f12 + (C − 1) f32,

a3 = f13 − C f23,

ar = f1r + (C − 1) f3r − C f2r for r ≥ 4.

and
∑n

s=1 as = 0. Therefore

f12 = a2 − (C − 1) f32,

f13 = a3 + C f23,

f1r = ar − (C − 1) f3r + C f2r for r ≥ 4,

f21 = (1/C)((C − 1) f31 − a1).
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Letting a1 = a in the expression above, it follows from (21) that

(22)

λ1 = −(C − 1) f32 + C f23 − a + C
∑
r≥4

f2r − (C − 1)
∑
r≥4

f3r ,

λ2 =
C−1

C
f31 +

1
C

(C f23 − a) +

∑
r≥4

f2r ,

λ3 = f31 + f32 +

∑
r≥4

f3r ,

λs = Csλ1 + (1 − Cs)λ2, s ≥ 4,

where Cs = C s21
= (λs −λ2)/(λ1 −λ2). Since all principal curvatures are distinct,

it follows that C, Cs ∈ R \ {0, 1}, for all s ≥ 4, Cs 6= 1/(1 − C), and Cr 6= Cs for
r ≥ 4 with r 6= s.

Now λs does not depend on xs ; hence (C −1) f3s = (C −1+1/Cs) f2s −bs for
all s ≥ 4, where bs is a constant. Introducing the functions

h1(x1) = f31(x1),

h2(x2) = f32(x2) −

∑
s≥4

bs/(C − 1),

h3(x3) = C f23(x3) − a,

hr (xr ) = f2r (xr ) for r ≥ 4,

it follows from (22) that the principal curvatures are given by (19).
Conversely, if the principal curvatures are given by (19) then one can see that

λ1 − λ2 = −
C−1

C
H, λ1 − λs =

(Cs −1)(C−1)

C
H,

λ1 − λ3 = −H, λ2 − λs =
Cs(C−1)

C
H,

λ2 − λ3 = −
1
C

H, λ3 − λs =
1+CsC−Cs

C
H,

and λs − λt = −((Cs − Ct)(C − 1)/C)H , where

H = h1 + Ch2 − h3 +

∑
r≥4

C
Cr (C−1)

hr .

We conclude that all Möbius curvatures are constant. �

The following lemma characterizes Dupin hypersurfaces with constant Möbius
curvature in terms of the Christoffel symbols.

Lemma 3.2. Let Mn
⊂ Rn+1 for n ≥ 3 be a proper Dupin hypersurface that is

parametrized by lines of curvature and that has n distinct principal curvatures.
The Möbius curvature is constant if and only if

(23) 0i
ik = 0

j
jk for all distinct i, j, k.

Moreover, the Möbius curvature is distinct from 0 and 1.
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Proof. If the Möbius curvature is constant then 0
j
jk −0i

ik = (log C ik j ),k = 0. Con-
versely, if (23) holds, then for all distinct i, j, k, we have (C i jk), j =0, (C ik j ),k =0,
and (C j ik),i = 0. It follows from (9) that C ik j does not depend on xi , xk , and x j .
If n = 3 the theorem is proved. If n ≥ 4, let s be any index distinct from i, j, k;
then it follows from (10) that C ik j

= C iksC sk j . Since C iks and C sk j do not depend
on xs , we conclude that C ik j does not depend on xs for all s distinct from i, j, k.
Therefore C ik j is constant. Since all λi are distinct, we conclude that C ik j

6= 0 and
C ik j

6= 1. �

We observe that the previous lemma shows that constant Möbius curvature is
equivalent to having all higher dimensional Laplace invariants equal to zero; see
[Kamran and Tenenblat 1996, [1998]] for the definition of these invariants.

We will need the following lemma to prove the main result of this section.

Lemma 3.3. Let X : � ⊂ Rn
→ Rn+1 for n ≥ 3 be a proper Dupin hypersurface

parametrized by lines of curvature such that all the principal curvatures −λr for
1 ≤ r ≤ n, are distinct. If all Möbius curvatures are constant then

(24)
√

gi i (λ j − λi ) = F j i (xi ) = C j ik Fki (xi ) for distinct i, j, k,

where F j i (xi ) is a nonvanishing differentiable function of xi . Moreover,

(25) 0i
i i = 0

j
j i + F ′

j i/F j i for i 6= j ,

and the Gauss equation for i 6= j is given by

(26) λiλ j +
λi − λ j

F2
j i

L̃ j i +
λ j − λi

F2
i j

L̃ i j +

∑
k 6=i 6= j

(λi,k)
2

F2
ik

= 0,

where

(27) L̃ j i = λ j,i i +
(λ j,i )

2

λi − λ j
− λ j,i

F ′

j i

F j i
.

Proof. It follows from the last equality of (7), that

∂

∂x j
log

(√
gi i |λ j − λi |

)
= 0 for all i 6= j.

Hence
√

gi i (λ j − λi ) = F j i (x̂ j ), where F j i (x̂ j ) is independent of x j . It follows
that

F j i (x̂ j )

λ j − λi
=

Fki (x̂k)

λk − λi
for all distinct i, j, k.

Therefore F j i (x̂ j ) = C j ik Fki (x̂k). Since all Möbius curvatures are constant, it
follows that F j i depends only on xi , and (24) holds. From (7) we conclude that
(25) holds.
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The Gauss equation for Dupin hypersurfaces with distinct principal curvatures
is given by (17). Observe that

0
j
j i,i =

λ j,i i

λi − λ j
+

(λ j,i )
2

(λi − λ j )2 .

Hence it follows from (24), (25), and (18) that L̃ j i = L j i (λi − λ j ) is given by
(27). From Lemma 3.2, we have 0

j
jk = 0i

ik for all distinct i, j, k. Using (6) and
the equalities above, we conclude that the Gauss equation is given by (26). �

We now prove our main result.

Proof of Theorem A. Assume that Mn admits a parametrization X (x1, . . . , xn) by
lines of curvature. Then the principal curvatures −λi satisfy

(28) (λiλ j ),rs = 0 for all distinct i, j, r, s.

In fact, we consider Gauss Equation (26) and take its mixed derivative with respect
to xr and xs for r 6= s and distinct from i and j . Since from Lemma 3.1, we know
that λi, jk = 0 for all distinct i, j, k. We conclude that (28) holds.

Case: n ≥ 5. We will first show a contradiction in this case. Without loss of gener-
ality we can consider λi as in Lemma 3.1 and given by (19) in terms of n functions
of one variable h j (x j ). We will prove that the product h′

Ah′

B equals zero for any
pair 1 ≤ A 6= B ≤ n by considering three cases. The first case is h′

r h′
s = 0 for any

r 6= s with r, s ≥ 4. The second is h′

i h
′

j = 0 for any i 6= j with i, j ≤ 3. The third
is h′

i h
′
s = 0 for any i ≤ 3 with s ≥ 4.

Assume that h′
r h′

s 6= 0 for some r 6= s with r, s ≥ 4. By considering (λ1λ2),rs = 0
and (λ1λ3),rs = 0, we get λ2,sλ3,r − λ2,rλ3,s = 0, which is a contradiction since
C, Cs ∈ R \ {0, 1} for s ≥ 4, Cs 6= 1/(1 − C), and Cr 6= Cs for r 6= s.

Similarly, if h′

i h
′

j 6= 0 for i 6= j and i, j ≤ 3, then by considering (λkλs),i j = 0
and (λkλr ),i j = 0 where k ≤ 3 is such that i, j, k are distinct and r 6= s ≥ 4, we
obtain a contradiction.

Finally, if h′

i h
′
s 6= 0 for i ≤ 3 and s ≥ 4, then by considering (λ jλk),is = 0 and

(λrλk),is = 0 where j, k ≤ 3 are such that i, j, k are distinct and r 6= s ≥ 4, we get
again a contradiction.

Hence if n ≥ 5, at most one function h j0 is not constant, that is, h′

i = 0 for all
i 6= j0 with 1 ≤ i ≤ n. Considering Gauss Equation (26) for the pairs (i, `) and
(i, k) such that i, `, k, j0 are distinct, we conclude that

λiλ` = λiλk = −
(λi, j0)

2

F2
i j0

,

which is a contradiction since all principal curvatures are pairwise distinct.
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Therefore if n ≥ 5, then all functions h j are constant, that is, all principal
curvatures are constant. This is a contradiction, since we know that there are no
isoparametric hypersurfaces in Euclidean space with n distinct principal curvatures
when n ≥ 3.

Case: n = 4. This follows from [Hu et al. 2007] and [Pinkall 1981]. However, for
the sake of completeness, we will provide a different, simple and direct proof. For
n = 4, since λi are given by (19) in terms of h j (x j ), it follows from (28) that

(29)

[(C + 1)C4 − 1]h′

1h′

2 = 0,

[(C − 2)C4 + 2]h′

1h′

3 = 0,

[(2C − 1)C4 + 1]h′

1h′

4 = 0,

[(2C − 1)C4 + 1]h′

2h′

3 = 0,

[(C − 2)C4 + 2]h′

2h′

4 = 0,

[(C + 1)C4 − 1]h′

3h′

4 = 0.

If h′

1h′

2 6= 0, then it follows from the left three equations that C4 = 1/(C + 1),
C +1 6= 0, and h′

3 = h′

4 = 0. Now considering the Gauss equation as in (26) for the
pairs of indices i = 3, j = 4 and i = 1, j = 3, we obtain the system of equations

λ3λ4 +
(λ3,1)

2

(F31(x1))2 +
(λ3,2)

2

(F32(x2))2 = 0,(30)

λ1λ3 +
λ1−λ3

(F31(x1))2 L̃31 +
(λ3,2)

2

(F32(x2))2 = 0.(31)

From (19), we have

λ1 = −(C − 1)h2 + h3 − Ch4,

λ2 =

(
1 −

1
C

)
h1 +

1
C

h3 + h4,

λ3 = h1 + h2 +
2C

C−1
h4,

λ4 =
C−1
C+1

(
h1 − h2 −

2
C−1

h3

)
.

Substituting these expressions for λ3 and λ4 into Equation (30) and separating
variables (recall that h1 and F31 depend on x1, that h2 and F32 depend on x2, and
that h3 and h4 are constant) we get

C−1
C+1

(
h2

1 +
2

C−1
(h3 + Ch4)h1 +

2C
(C−1)2 h3h4

)
+

(h′

1)
2

F2
31

=
A

C+1
,

C−1
C+1

(
−h2

2 −
2

C−1
(h3 − Ch4)h2 +

2C
(C−1)2 h3h4

)
+

(h′

2)
2

F2
32

= −
A

C+1
,

where A is a real constant. Therefore we conclude that

F2
31 = (C + 1)

(h′

1)
2

D31
and F2

32 = (C + 1)
(h′

2)
2

D32
,
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where

D31 = −(C − 1)h2
1 − 2(h3 + Ch4)h1 + A − 2Ch3h4/(C − 1),

D32 = (C − 1)h2
2 − 2(h3 − Ch4)h2 − A − 2Ch3h4/(C − 1),

and A is a constant. We substitute these expressions in L̃31, defined by (27) and
in (31) and then take the mixed derivative with respect to x1 and x2. We conclude
that (1 − C)h′

1h′

2 = 0, which is a contradiction.
Similarly, for each fixed pair of functions hi , h j with i 6= j such that h′

i h
′

j 6= 0,
we consider in the system (29) those equations that involve h′

i h
′

j , h′

i h
′

k and h′

i h
′
s

where i, j, k, s are distinct. Then we get the constant C4 given in terms of C and
h′

k = h′
s = 0. Now, considering Gauss Equation (26) for the pairs of indices (k, s)

and (i, k), we obtain two equations. The first equation will express the functions
Fki and Fk j in terms of hi and h j , and the second equation will give h′

i h
′

j = 0,
which is a contradiction. �

Remark 3.4. Theorem A does not hold when we replace Möbius curvature by
Lie curvature. We observe that there are Dupin hypersurfaces in Rn+1 for n ≥ 4
that are parametrized by lines of curvature and have n distinct principal curvatures
and constant Lie curvature. In what follows, we will exhibit such Dupin hyper-
surfaces in Rn+1. These hypersurfaces were obtained in [Corro et al. 1999] by
applying Ribaucour transformations to a hyperplane. Consider the hypersurface in
the Euclidean space Rn+1 parametrized by

X (x1, . . . , xn) = (x1, . . . , xn, 0) −
2

∑n
j=1 f j∑n

j=1( f ′

j )
2 + b2 ( f ′

1, . . . , f ′

n, −b).

Then X is a parametrized Dupin hypersurface, where (x1, . . . , xn) ∈ U ⊂ Rn and

(32) f j = b j2x2
j + b j1x j + b j0 for b 6= 0, b j2, b j1, b j0 ∈ R and 1 ≤ j ≤ n.

The principal curvatures of X are given by

(33) −λl =
4bbl2

Dl
for 1 ≤ l ≤ n,

where

Dl =

n∑
j 6=l

( f ′

j )
2
− 4bl2

n∑
j 6=l

f j + al,(34)

al = b2
+ b2

l1 − 4bl2bl0.(35)
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By introducing the notation

S1 =

n∑
r=1

( f ′

r )
2 and S =

n∑
r=1

fr ,

expression (34) reduces to Dl = S1 − ( f ′

l )
2
− 4bl2(S − fl) + al . Using (32) and

(35), we have −( f ′

l )
2
+ 4bl2 fl + al = b2. Hence for each l we have

Dl = S1 − 4bl2S + b2.

It follows from (33) that

λi − λk =
4b(bk2 − bi2)(S1 + b2)

Di Dk
.

If the coefficients b j2 are distinct for all j , the principal curvatures have multiplicity
one. The Möbius curvatures

C ikl
=

λi − λk

λl − λk
=

(bk2 − bi2)Dl
(bk2 − bl2)Di

are rational functions, and the Lie curvatures given by (11) are constant

9i jkl =
(bi2 − bk2)(b j2 − bl2)

(bi2 − bl2)(b j2 − bk2)
.
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70910-900, BRASÍLIA, DF
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