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Formulae of Berezin and Karpelevič for the radial parts of invariant dif-
ferential operators and the spherical function on a complex Grassmann
manifold are generalized to the hypergeometric functions associated with
root systems of type BCn under the condition that the multiplicity of the
middle roots is zero or one.

Introduction

Berezin and Karpelevič [1958] gave an explicit expression for radial parts of invari-
ant differential operators and spherical functions on SU (p, q)/S(U (p) × U (q)),
without proofs; Hoogenboom [1982] gave proofs of these results. Explicit ex-
pressions of the Laplace–Beltrami operator and higher order invariant differential
operators allows us to construct eigenfunctions by the method of separation of
variables. The spherical function can be expressed using the determinant of a
matrix whose entries are the Gauss hypergeometric functions.

Heckman and Opdam developed the theory of the hypergeometric function as-
sociated with a root system, which is a generalization of the theory of spherical
functions on a symmetric space; see [Heckman and Schlichtkrull 1994]. Namely,
the radial part of the Laplace–Beltrami operator of a Riemannian symmetric space
of the noncompact type consists of data such as the restricted root system, mul-
tiplicities of roots. Heckman and Opdam allowed multiplicities of roots to take
arbitrary complex numbers (that coincide on every Weyl group orbit), and con-
structed a commuting family of differential operators and eigenfunctions. For the
rank one (single variable) case, their hypergeometric function is the Jacobi function
[Koornwinder 1984], which is essentially the same as the Gauss hypergeometric
function.

In this paper we prove that the results of Berezin and Karpelevič in [1958] are
valid for the hypergeometric function associated with the root system of the type
BCn under the condition that the multiplicity of the middle roots is 1. Though it is
an easy generalization of [Berezin and Karpelevič 1958], our results cover integral

MSC2000: primary 33C67; secondary 43A90.
Keywords: hypergeometric function, Berezin, Karpelevic, Heckman, Opdam, determinant.

105

http://pjm.berkeley.edu
http://dx.doi.org/10.2140/pjm.2008.236-1


106 NOBUKAZU SHIMENO

middle multiplicities in conjunction with the hypergeometric shift operator, and
include many cases of symmetric spaces.

1. Hypergeometric function associated with a root system

1A. Notation. In this section, we review the hypergeometric function associated
with a root system. See [Heckman and Schlichtkrull 1994] for details.

Let E be an n-dimensional Euclidean space with inner product ( · , · ). For α ∈ E
with α 6= 0, write

α∨
=

2α

(α, α)
.

Let R ⊂ E be a root system of rank n, and W its Weyl group. Let R+ ⊂ R be a fixed
set of positive roots and E+ ⊂ E be the corresponding positive Weyl chamber. Let

P = {λ ∈ E : (λ, α∨) ∈ Z ∀ α ∈ R}.

Let kα (α ∈ R) be complex numbers such that kwα = kα for all w ∈ W . We
call k = (kα)α∈R a multiplicity function on R. Let K denote the set of multiplicity
functions on R. We set

ρ(k) =
1
2

∑
α∈R+

kαα,

δ(k) =

∏
α∈R+

(
e

1
2 α

− e−
1
2 α

)2kα
.

1B. Commuting family of differential operators. Let ξ1, . . . , ξn be an orthonor-
mal basis of E and consider the differential operator

(1-1) L(k) =

n∑
j=1

∂2
ξ j

+

∑
α∈R+

kα

1 + e−α

1 − e−α
∂α

on E . Here ∂α denotes the directional derivative along α such that ∂α(eλ)= (α, λ)eλ

for α, λ ∈ E . We have

(1-2) δ(k)
1
2 ◦

(
L(k) + (ρ(k), ρ(k))

)
◦ δ(k)−

1
2

=

n∑
j=1

∂2
ξ j

+

∑
α∈R+

kα(1 − kα − 2k2α)(α, α)(
e

1
2 α

− e−
1
2 α

)2 .

Let R denote the algebra generated by the functions

1
1 − e−α

(α ∈ R+),
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which are viewed as a subalgebra of the quotient field of R[P]. Let S(E) denote
the symmetric algebra of E . Let DR = R⊗ S(E) denote the algebra of differential
operators on E with coefficient in R and let DW

R be the subalgebra of W-invariants
in DR. Let γ (k) denote the algebra homomorphism

γ (k) : DR −→ S(E),

defined by

γ (k)
( 1

1 − e−α

)
= 1 (α ∈ R+).

Let

D(k) = {D ∈ DW
R : [L(k), P] = 0}

denote the commutator of L(k) in DW
R , and let S(E)W denote the set of W-invariants

in S(E).

Theorem 1.1. The map

γ (k) : D(k) −→ S(E)W

is an algebra isomorphism. In particular, D(k) is a commutative algebra. More-
over, if D ∈ DW

R is a differential operator of order N , then its principal symbol
σ(D) has constant coefficients and coincides with the homogeneous component of
γ (k)(D) of degree N.

1C. The hypergeometric function. Let Q be the root lattice

Q = {
∑

α∈R+
zαα : zα ∈ Z+}.

Set

h = EC = C ⊗R E, A = exp E, e = exp 0, A+ = exp E+.

For µ ∈ h∗ and a ∈ A, we write aµ
= exp(µ(log a)).

If λ ∈ h∗ satisfies the condition

(1-3) −2(λ, µ)+ (µ, µ) 6= 0 for all µ ∈ Q,

then the equation

(1-4) L(k)u =
(
(λ, λ)− (ρ(k), ρ(k))

)
u

has a unique solution on A+ of the form

(1-5) u(a) = 8(λ, k; a) =

∑
µ∈Q

0µaλ−ρ(k)−µ,
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with 00 = 1. The function 8(λ, k; a) is also a solution of the system of differential
equations

(1-6) Du = γ (k)(D)(λ)u, D ∈ D(k).

If
(λ, α∨) 6∈ Z for all α ∈ R,

then 8(wλ, k; a) (w ∈ W ) form a basis of the solution space of (1-6).
Define meromorphic functions c̃ and c on h × K by

(1-7) c̃(λ, k) =

∏
α∈R+

0
(
(λ, α∨) +

1
2 k 1

2 α

)
0

(
(λ, α∨) +

1
2 k 1

2 α + kα

)
and

(1-8) c(λ, k) =
c̃(λ, k)

c̃(ρ(k), k)
,

with the convention that k 1
2 α 6= 0 if 1

2α 6∈ R. We call the function

F(λ, k; a) =

∑
w∈W

c(wλ, k)8(wλ, k; a)

the hypergeometric function associated with R. Let S ⊂ K denote the set of zeros
of c̃(ρ(k), k).

Theorem 1.2. Assume that k ∈ K \ S. Then the system of differential equations
(1-6) has a unique solution that is regular at e, W-invariant, and

F(λ, k; e) = 1.

The function F is holomorphic for λ ∈ h, k ∈ K \ S, and analytic for a ∈ A.

Remark 1.3. Theorems 1.1 and 1.2 were proved by Heckman and Opdam in a
series of papers. See [Heckman and Schlichtkrull 1994] and references therein.

Let G/K be a Riemannian symmetric space of the noncompact type, 6 be the
restricted root system, and mα be the root multiplicity (dimension of the root space)
of α ∈ 6. Set

R = 26, k2α =
1
2 mα.

Then (1-1) is the radial part of the Laplace–Beltrami operator on G/K , D(k) is the
algebra of radial parts of invariant differential operators on G/K , and F(λ, k; a)

is the radial part of the spherical function on G/K . In this case, Theorem 1.1 and
Theorem 1.2 were previously proved by Harish-Chandra. See [Helgason 1984] for
theory of spherical functions on symmetric spaces.
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1D. Rank one case. For a root system of rank 1, the hypergeometric function is
given by the Jacobi function. We will review the Jacobi function; see [Koornwinder
1984] for details.

Assume that R = {±e1, ±2e1} with (e1, e1) = 1, and set

(1-9) ks = ke1, kl = k2e1, α = ks + kl − 1/2, β = kl − 1/2.

We identify λ ∈ a∗

C
with (λ, 2e1) ∈ C and let t = e1(log a)/2 be a coordinate on

A ' R. Then

ρ(k) = ks + 2kl = α + β + 1.

The hypergeometric system (1-6) turns out to be the differential equation

(1-10) L(k)F = (λ2
− ρ(k)2)F,

where

(1-11) L(k) =
d2

dt2 + 2(ks coth t + 2kl coth 2t)
d
dt

,

and the hypergeometric function F(λ, k; at) of type BC1 is given by the Jacobi
function

F(λ, k; at) = ϕ
(α,β)
√

−1 λ
(t) = 2 F1

(1
2(ρ(k) − λ), 1

2(ρ(k) + λ); α + 1; − sinh2 t
)
.

Here 2 F1 is the Gauss hypergeometric function. For λ 6= 1, 2, . . . , there is another
solution (1-5) of (1-10) on (0, ∞) given by

(1-12) 8
(α,β)

−
√

−1 λ
(t) =

(2 cosh t)λ−ρ(k)
2 F1

( 1
2(ρ(k) − λ), 1

2(α − β + 1 − λ); 1 − λ; cosh−2 t
)
,

which satisfies

(1-13) 8
(α,β)

−
√

−1 λ
(t) = e(λ−ρ)t(1 + o(t)) as t → ∞.

For λ 6∈ Z we have

ϕ
(α,β)
√

−1 λ
(t) = cα,β(−

√
−1 λ) 8

(α,β)

−
√

−1 λ
(t) + cα,β(

√
−1λ) 8

(α,β)
√

−1 λ
(t),

where

cα,β(−
√

−1 λ) = c(λ, k) =
2ρ(k)−λ0(α + 1)0(λ)

0
( 1

2(λ + ρ(k))
)
0(1

2(λ + α − β + 1))
.
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2. Hypergeometric function of type BCn

2A. Commuting family of differential operators. Let n be a positive integer grea-
ter than 1 and R be the root system of type BCn ,

R+ = {ep, 2ep, ei ± e j : 1 ≤ p ≤ n, 1 ≤ i < j ≤ n},

where {e1, . . . , en} is the standard orthonormal basis of E ' Rn . We call

±ep, ±(ei ± e j ), ±2ep,

short, middle, and long roots, respectively. We define

kep = ks, kei +e j = km, k2ep = kl,

for the multiplicities of short, middle, and long roots, respectively. Hereafter we
assume that km = 0 or 1. Then the terms corresponding to the roots ei ± e j vanish
in (1-2) and we have

(2-1) δ(k)
1
2 ◦

(
L(k) + (ρ(k), ρ(k))

)
◦ δ(k)−

1
2

=

n∑
j=1

(
∂2

e j
+

ks(1 − ks − 2kl)

(e
1
2 e j − e−

1
2 e j )2

+
4kl(1 − kl)

(ee j − e−e j )2

)
.

Let t j = e j (log a)/2 ( j = 1, . . . , n) be coordinates of A ' Rn , and

at = exp(
∑n

j=1 2t j e j ).

For λ ∈ h∗ set λ j = (λ, 2e j ). Then we have

ρ(k) j = ks + 2kl + 2(n − j)km .

Let 1m be the Weyl denominator associated with middle roots:

1m(at) =

∏
α∈R+,middle roots

(
e

1
2 α

− e−
1
2 α

)
=2

1
2 n(n−1)

∏
1≤i< j≤n

(cosh 2ti − cosh 2t j ).

It is easy to see from (2-1) that

(2-2) 1km
m ◦

(
L(k) + (ρ(k), ρ(k))

)
◦ 1−km

m =

n∑
j=1

L j + n(ks + 2kl)
2,

where

(2-3) L j =
∂2

∂t2
j
+ 2(ks coth t j + 2kl coth 2t j )

∂

∂t j
.
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Theorem 2.1. If km = 0 or 1, then

D(k) = {Dp = 1−km
m ◦ p(L1, . . . , Ln) ◦ 1km

m : p ∈ R[E]
W

}.

In particular, D(k) is generated by Dp j ( j = 1, . . . , n), where p j is the j-th ele-
mentary symmetric function and

Dp1 = L(k) + (ρ(k), ρ(k)).

Proof. Since L1, . . . , Ln mutually commute and

γ (k)
(
1−km

m ◦ L j ◦ 1km
m

)
= ∂2

e j
− (ks + 2kl)

2,

the theorem follows from Theorem 1.1. �

Remark 2.2. The right hand side of (1-2) has the form of a Schrödinger operator
and Theorem 1.1 states that it defines a completely integrable system. Oshima
proved, in [1998], the complete integrability of the Schrödinger operator

P = −
1
2

n∑
j=1

∂2
e j

+

∑
1≤i< j≤n

(u(ti − t j ) + u(ti + t j )) +

∑
1≤ j≤n

v(t j ),

with

u(x) = C1P(x) + C2

v(x) =
C3P(x)2

+ C4P(x)3
+ C5P(x)2

+ C6P(x) + C7

P′(x)2 .

If C1 = 0, then a result analogous to Theorem 2.1 holds.

Remark 2.3. If R is an arbitrary reduced root system and kα = 0 or 1 for all
α ∈ R, then the right hand side of (1-2) is just the Laplacian on the Euclidean
space E . In this case, D(k) (taking the conjugate by 1

km
m ) consists of constant

coefficient differential operators, and the hypergeometric function is expressed by
exponential functions. The case in which all multiplicities are equal to 1 is the case
of complex semisimple Lie groups in the sense of Remark 1.3. Theorem 2.1 gives
another case in which D(k) has a simple expression.

2B. The hypergeometric function. If km = 0 or 1, then the Harish–Chandra series
(1-5) is given by a product of the Harish–Chandra series’ of the form (1-12) for
the root system R = BC1.

Proposition 2.4. Assume that km = 0 or 1 and let α = ks +kl −1/2, β = kl −1/2.
If λ satisfies condition (1-3), then

(2-4) 8(λ, k; a) = 1m(at)
−km

n∏
j=1

8
(α,β)

−
√

−1 λ j
(t j ).
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Proof. In view of (1-11), (1-12), (2-2), and (2-3), the right hand side of (2-4) is
a solution of (1-4), where α and β are given by (1-9). We can see by elementary
computations of power series that the right hand side of (2-4) has a series expansion
of the form (1-5), analogous to the form used in the proof of [Hoogenboom 1982,
Theorem 1]. By the uniqueness of the Harish–Chandra series, (2-4) follows. �

By virtue of Proposition 2.4, the hypergeometric function has a simple expres-
sion.

Theorem 2.5. Let
α = ks + kl −

1
2 , β = kl −

1
2 ,

and assume that α 6= 0, −1, −2, . . . .
If km = 1, then

(2-5) F(λ, k; at) =
B∏

1≤i< j≤n(λ
2
i − λ2

j )
·

det
(
ϕ

(α,β)
√

−1 λi
(t j )

)
1≤i, j≤n

1m(at)
,

where B is given by

(2-6) B = (−1)
1
2 n(n−1)22n(n−1)

n−1∏
i=1

(
(α + i)n−i i !

)
.

If km = 0, then

(2-7) F(λ, k; at) =
1
n!

perm
(
ϕ

(α,β)
√

−1 λi
(t j )

)
1≤i, j≤n,

where perm(M) denotes the permanent∑
σ∈Sn

m1σ(1) · · · mnσ(n)

of matrix M = (mi j )1≤i, j≤n .

Proof. First notice that the Weyl group of type BCn is given by

W = {w = (ε, σ ) ∈ {−1}
n
× Sn : w(t1, . . . , tn) = (ε1tσ(1), . . . , εntσ(n))}.

Assume that km = 1. The c-function for the middle roots (the product being
taken over the middle roots in (1-7)) is given by

c̃m(λ, k) =

∏
1≤i< j≤n

0
( 1

2(λi + λ j )
)
0

( 1
2(λi − λ j )

)
0

( 1
2(λi + λ j ) + 1

)
0

( 1
2(λi − λ j ) + 1

)
=

2n(n−1)∏
1≤i< j≤n(λ

2
i − λ2

j )
.
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The c-function for e j and 2e j is given by

c̃e j (λ, k) c̃2e j (λ, k) =
2−λ j −ks+10(λ j )

0
( 1

2(λ j + ks + 1)
)
0

( 1
2(λ j + ks + 2kl)

)
= 2−2ks−2kl+10

(
ks + kl +

1
2

)−1cα,β(−
√

−1 λ j ).

We now have

c̃(λ, k) = c̃m(λ, k)

n∏
j=1

c̃e j (λ, k) c̃2e j (λ, k)

=
2n(n−2ks−2kl )

0
(
ks + kl +

1
2

)n ∏
1≤i< j≤n(λ

2
i − λ2

j )

n∏
j=1

cα,β(λ j ).

The hypergeometric function is given by

1m(at)F(λ, k; at)

= c̃(ρ(k), k)−1
∑
w∈W

c̃(wλ, k)1m(at)8(wλ, k, at)

= B
∑

σ∈Sn, ε∈{−1}n

1∏
i< j (λ

2
σ(i) − λ2

σ( j))

n∏
l=1

cα,β(−
√

−1εlλσ(l))8
(α,β)

−
√

−1εlλσ(l)
(tl)

= B
1∏

i< j (λ
2
i − λ2

j )

∑
σ∈Sn

sgn σ

n∏
l=1

ϕ
(α,β)
√

−1 λσ(l)
(tl) = B

det
(
ϕ

(α,β)
√

−1 λi
(t j )

)
i, j∏

i< j (λ
2
i − λ2

j )
,

where

B =
2n(n−1)

c̃(ρ(k), k)
(
22ks+2kl−10

(
ks + kl +

1
2

))n .

The formula for B can be obtained by explicit computations.
Next suppose km = 0. Then

cm(λ, k) = lim
km→0

c̃(λ, k)

c̃(ρ(k), k)
=

1
n!

.

Here cm(λ, k) is the c-function for the middle roots (the product is taken over the
middle roots in (1-7)). (2-7) follows by direct computation, similar to the method
used in deriving (2-5). �

Remark 2.6. Let p and q (p ≤ q) be positive integers and set ks = q − p, km = 1,
and kl = 1/2. Then the hypergeometric function F(λ, k; at) is the radial part of
the spherical function on SU (p, q)/S(U (p) × U (q)). In this case Theorem 2.1,
Proposition 2.4, and Theorem 2.5 were given in [Berezin and Karpelevič 1958]
without proof and a complete proof appeared in [Hoogenboom 1982].



114 NOBUKAZU SHIMENO

We give two corollaries of our results.
First we give a limiting case of the hypergeometric function. We replace (t, λ)

by (εt, ε−1λ) and let ε ↘ 0. Then the hypergeometric equation (1-10) of type BC1

becomes

(2-8)
d2u
dt2 +

2α + 1
t

d2u
dt2 = λ2u.

Here we set α = ks + kl + 1/2. There exists a unique even solution of (2-8) that is
regular at 0 and u(0) = 1, which is given by

Jα(
√

−1λt) = 2α0(α + 1)(
√

−1λt)−α Jα(
√

−1λt),

where Jα denotes the usual Bessel function. Then it is known [Koornwinder 1984,
§ 2.3] that

(2-9) lim
ε↘0

ϕ
(α,β)
√

−1ε−1λ
(εt) = Jα(

√
−1λt).

The limit of operator (1-1) becomes

(2-10) L(k)rat
=

n∑
j=1

∂2
ξ j

+

∑
α∈R+

2kα

α
∂α,

and we have

lim
ε↘0

ε−n(n−1)1m(aεt) =

∏
α∈R+,middle roots

α(log at).

We denote the right hand side of the above equation by 1m,rat(at). Set

L rat
j =

∂2

∂t2
j
+

2ks + 2kl + 2
t j

∂

∂t j
.

Then we have the following explicit expression of a commuting family of differ-
ential operators including L(k)rat.

Corollary 2.7. If km = 0 or 1, then

{Drat
p = 1

−km
m,rat ◦ p(L1, . . . , Ln) ◦ 1

km
m,rat : p ∈ R[E]

W
}

forms a commutative algebra of differential operators, which is generated by

1
−km
m,rat ◦ p j (L1, . . . , Ln) ◦ 1

km
m,rat, ( j = 1, . . . , n),

where p j is the j-th elementary symmetric function. Drat
p1

= L(k)rat and the princi-
pal symbol of Drat

p j
is p j for j = 1, . . . , n.

By Theorem 2.5 and (2-9), we have the following limit behavior.
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Corollary 2.8. Let α = ks + kl − 1/2, and assume that α 6= 0, −1, −2, . . . and
λ j 6= 0, t j 6= 0, for j = 1, . . . , n.

If km = 1, then

(2-11) lim
ε↘0

F(ε−1λ, k; aεt) =
B∏

1≤i< j≤n(λ
2
i − λ2

j )
·

det
(
Jα(

√
−1 λi t j )

)
1≤i, j≤n

1m,rat(at)
,

where B is given by (2-6). If km = 0, then

(2-12) lim
ε↘0

F(ε−1λ, k; aεt) =
1
n!

perm
(
Jα(

√
−1 λi t j )

)
1≤i, j≤n.

Remark 2.9. In the group case that we mentioned in Remark 2.6, (2-11) was
proved by Meaney in [1986]. It gives contraction of spherical functions between
symmetric spaces of the noncompact type and the Euclidean type.

The right-hand sides of (2-11) and (2-12) give explicit expressions for the Bessel
function of type BCn from [Opdam 1993, Definition 6.9]. The Bessel function of
type BCn for km =0 or 1 is a W-invariant C∞ joint-eigenfunction of the commuting
family of differential operators, given in Corollary 2.7, being equal to 1 at the
origin.

The type of limit transition in Corollary 2.8 was given also by Ben Saı̈d and
Ørsted in [2005a; 2005b], and by de Jeu in [2006].

Finally, we give a formula for a 2-spherical function. Let 9 denote the set of
simple roots in R+,

9 = {e1 − e2, . . . , en−1 − en, en}.

For a subset 2 ⊂ 9, let
〈2〉 = R ∩

∑
α∈2

Zα,

and define c̃2(λ, k) by the product of the form (1-7), where the product is taken
over R+ ∩ 〈2〉, and let

c2(λ, k) =
c̃2(λ, k)

c̃2(ρ(k), k)
.

We make a sum

(2-13) F2(λ, k; a) =

∑
w∈W2

c2(wλ, k) 8(wλ, k; a).

The sum of the form (2-13) is important in harmonic analysis of the spherical
function on symmetric spaces; see [Ólafsson and Pasquale 2002; Schlichtkrull
1984, Chapter 6; Shimeno 1994].

By Proposition 2.4, we can derive formulae for F2(λ, k; a). For

2 = 9 \ {e1 − e2, . . . , e j−1 − e j } (2 ≤ j ≤ n),
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we have a formula for F2(λ, k; at) that is similar to the formula for F(λ, k; at) in
Theorem 2.5.

If 2 = {e1 −e2, . . . , en−1 −en}, then 〈2〉 is a root system of type An−1, and we
have the following result.

Corollary 2.10. Assume that km = 0 or 1 and let 2 = {e1 − e2, . . . , en−1 − en}

and α = ks + kl − 1/2, β = kl − 1/2. Then F2(λ, k; at) is holomorphic in λ in the
region Re λi > 0, where i = 1, . . . , n. Moreover, we have the following results.

(i) Suppose km = 1 and set π(x1, . . . , xn) =
∏

1≤i< j≤n(xi − x j ). Then we have

(2-14) F2(λ, k; at) =
π(ρ(k))

π(λ)
·

det
(
8

(α,β)
√

−1 λi
(t j )

)
1≤i, j≤n

1m(at)
.

Moreover, if Re λi > 0 (i = 1, . . . , n), then
(2-15)

lim
u→∞

e(ρ(k)−λ)(log a(u,...,u))F2(λ, k; a(t1+u,...,tn+u)) =
π(ρ(k))

π(λ)
·

det(eλi t j )1≤i, j≤n

π(e2t1, . . . , e2tn )
.

(ii) If km = 0, then

(2-16) F2(λ, k; at) =
1
n!

perm
(
8

(α,β)
√

−1 λi
(t j )

)
1≤i, j≤n.

Moreover, if Re λi > 0 (i = 1, . . . , n), then

(2-17) lim
u→∞

e(ρ(k)−λ)(log a(u,...,u))F2(λ, k; a(t1+u,...,tn+u)) =
1
n!

perm(eλi t j )1≤i, j≤n.

Proof. F2(λ, k; at) is holomorphic in the region Re λi > 0 (i = 1, . . . , n) by
[Ólafsson and Pasquale 2002, Theorem 8]. (2-14) and (2-16) follow by simple
computations. (2-15) and (2-17) follow from (1-13). �

Remark 2.11. (i) The right hand sides of (2-15) and (2-17) are hypergeometric
functions of type An−1 with the multiplicity 1 and 0 respectively. Namely, the
right hand side of (2-15) is the spherical function on SL(n, C)/SU (n) (see [Hel-
gason 1984, Chapter IV Theorem 5.7]) and (2-17) is the normalized average of the
exponential function e(λ,t) under the action of the symmetric group.

(ii) By [Shimeno 1994, Proposition 2.6, Remark 6.13], the spherical function for
a one-dimensional K -type (τ−`1, τ−`2) on SU (p, q) can be written as the hyper-
geometric function F(λ, k; at) with ks = m/2 − `2, km = 1, kl = 1/2 − `1 − `2.
Here, m = 1 and `1 = `2 if p 6= q , and m = 0 if p = q . Thus, spherical functions
for one-dimensional K -types on SU (p, q) are given by Theorem 2.1. Conversely,
by considering the universal covering group of SU (p, q), we can take `1, `2 arbi-
trary complex numbers; hence the hypergeometric function (2-5) for any ks and kl

corresponds to a spherical function on ˜SU (p, p).
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By the preceding observation, the Plancherel formula for the integral transform
with the kernel F(λ, k; a) with km = 1 is a special case of [Shimeno 1994, Theo-
rem 6.11]. Notice that low dimensional spectra including discrete spectra appear
in general. It seems to be possible to give an alternative proof of the Plancherel
formula by rank one reduction as in [Meaney 1986, Theorem 22].

(iii) In Theorem 2.1 we give an explicit formula for the hypergeometric function
of type BCn with km = 0, 1 and ks, kl arbitrary. We obtain a formula of the
hypergeometric function for km ∈ Z by applying Opdam’s hypergeometric shift
operator corresponding to the middle roots, which is a differential operator of order
n(n − 1)/2; see [Heckman and Schlichtkrull 1994, Definition 3.2.1].
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