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Let K be a knot in a closed orientable irreducible 3-manifold M and let P be
a Heegaard splitting of the knot complement of genus at least two. Suppose
Q is a bridge surface for K and let N(K ) denote a regular neighborhood of
K . Then either d(P)≤ 2−χ( Q−N(K )), or K can be isotoped to be disjoint
from Q so that after the isotopy Q is a Heegaard surface for M − N(K ) that
is isotopic to a possibly stabilized copy of P .

1. Introduction

A Heegaard splitting of a compact 3-manifold M is a decomposition of the man-
ifold into two compression bodies, A and B. If the manifold is closed, A and B
are handlebodies. The common boundary of A and B is called a Heegaard surface
which we denote by P . We will write M = A ∪P B.

The distance between any two essential simple closed curves α and β in a Hee-
gaard surface P is the smallest integer n ≥ 0 so there is a sequence of essential
simple closed curves α = α0, . . . , αn = β in P such that for each 1 ≤ i ≤ n, αi−1

and αi can be isotoped to be disjoint in P . The distance of a Heegaard splitting
A ∪P B, d(P), defined by Hempel [2001], is the smallest integer n so that there
is an essential curve α in P which bounds a disk in A and an essential curve β

which bounds a disk in B and d(α, β) = n. If d(P) = 0 then we say that the
Heegaard splitting A ∪P B is reducible, if d(P) = 1 then we say that A ∪P B is
weakly reducible and if d(P) ≥ 2 then we say that A ∪P B is strongly irreducible.

Obtaining bounds on the distance of a Heegaard splitting M = A∪P B is an inter-
esting problem and much progress has been made recently. The first such bound
is due to Hartshorn [2002], who used a closed essential surface in the manifold
to give a bound on d(P). This result was extended by Scharlemann to allow for
possible boundary components of the essential surface.

Theorem 1.1 [Scharlemann 2006, Theorem 3.1]. Suppose P is a Heegaard surface
for a compact orientable manifold M and (Q, ∂ Q) ⊂ (M, ∂M) is a connected
essential surface. Then d(P) ≤ 2 − χ(Q).
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Here is a bound on d(P) using a second Heegaard surface:

Theorem 1.2 [Scharlemann and Tomova 2006a, Corollary 3.5]. Suppose P and
Q are distinct Heegaard splittings for the compact orientable 3-manifold M. Then
either d(P) ≤ 2 − χ(Q) or Q is isotopic to a stabilization of P.

Suppose a manifold M contains a knot K and let MK be the knot complement.
We say that a surface Q is a bridge surface for K if Q is a Heegaard surface for
M = X ∪Q Y and K intersects each of the compression bodies X and Y in arcs that
are simultaneously parallel to Q. In this paper we obtain a bound on the distance
of Heegaard splittings of MK using a bridge surface for the knot.

Johnson and Thompson [2006, Theorem 1] used Theorem 1.2 to show that if a
knot K ⊂ M with bridge surface Q is such that K cannot be isotoped to lie in Q,
then the distance of any Heegaard splitting of the knot complement is bounded by
χ(Q−N (K )) where N (K ) is a regular neighborhood of K . They used this theorem
to obtain tunnel number one knots that have arbitrarily high bridge number with
respect to any bridge surfaces of genus 1. Kobayashi and Rieck [2007, Proposition
2.6] extended this result to obtain the same bound on the distance of a Heegaard
splitting in the case when the genus of the bridge surface Q is strictly less than the
minimum genus of any Heegaard splitting of the knot complement. Their result
allows for the knot to be isotopic to an embedded curve in Q. They used this
distance bound to prove the existence of counterexamples to Morimoto’s conjecture
[2000, Conjecture 1.5].

In this paper we remove the restriction on the genus of Q as well as restrictions
on whether the knot is isotopic into Q. More precisely:

Theorem 1.3. Let K be a knot in a closed oriented irreducible 3-manifold M and
let P be a Heegaard splitting of the knot complement of genus at least two. Suppose
Q is a bridge surface for K and let N (K ) denote a regular neighborhood of K .
Then either

• d(P) ≤ 2 − χ(Q − N (K )), or

• K can be isotoped off Q so that after the isotopy Q is a Heegaard surface for
the knot complement, isotopic to a possibly stabilized copy of P.

In some sense this theorem completes the solution to the problem as it is clear
that a stabilized copy of P will not carry any information about d(P) and these
are the only bridge surfaces which we exclude. This result was used by Minsky,
Moriah and Schleimer [Minsky et al. 2006] to show that for any pair of integers t
and b there is a knot with tunnel number t such that every bridge surface of genus
t for the knot intersects the knot in at least 2b + 2 points. The proof of Theorem
1.3 uses different methods than those used in [Johnson and Thompson 2006] and
[Kobayashi and Rieck 2007] and is independent of them.
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2. Definitions and notation

In this paper, unless otherwise specified, we will consider a closed irreducible
orientable 3-manifold M containing a knot K . If X is any subset of M we will
denote by X K the set X − N (K ), where N (K ) is an open tubular neighborhood
of K . In particular the knot exterior M − N (K ) will be denoted by MK . Note
that MK is a compact orientable manifold with a single torus boundary component.
Throughout this paper P will be a surface splitting M into handlebodies A and B so
that K is entirely contained in A. We will further assume that AK is a compression
body, that is P is also a Heegaard surface for MK and MK = AK ∪P B. We will
further assume that P has genus at least 2 as otherwise distance is always infinite
with our definition.

Recall that a simple closed curve in a compact surface S is essential if it does
not bound a disk in the surface and it is not parallel to a boundary component of the
surface. Suppose M is a closed manifold containing a knot K and S is a surface in
M transverse to K . A disk D ⊂ MK is a compressing disk for SK if D ∩ S = ∂ D
and ∂ D is an essential simple closed curve in SK . A disk Dc in M is a cut disk
for SK if Dc

∩ SK = ∂ Dc, ∂ Dc is essential in SK and Dc intersects K in a single
point. A c-disk is a cut or a compressing disk.

A properly embedded surface F in a 3-manifold M is essential if it is incom-
pressible and has at least one component that is not parallel to ∂ M .

A surface F in M is called a splitting surface if M can be written as the union of
two 3-manifolds U and V along F . If F is a splitting surface it is bicompressible if
it is compressible in both U and V and F is c-bicompressible if it has c-disks in both
U and V . If F is a splitting surface for M , we will call F c-weakly incompressible
if it is c-bicompressible and any pair of c-disks for F on opposite sides of the
surface intersect along their boundaries. If a c-bicompressible surface F is not
c-weakly incompressible, it is c-strongly compressible.

Suppose K is a knot in a closed orientable 3-manifold M . We say that a surface
Q is a bridge surface for K if Q is a Heegaard surface for M = X ∪Q Y and K
intersects each of the handlebodies X and Y in arcs that are simultaneously parallel
to Q. More generally, if the manifold M has boundary, we require that K intersect
each of the compression bodies X and Y in arcs that are simultaneously parallel
into Q. The arcs are called bridges and the disks of parallelism are called bridge
disks. A handlebody H intersecting a knot K in a collection of bridges will be
called a K -handlebody and will be denoted by (H, K ).

A spine 6H of a handlebody H is any graph that H retracts to. Removing a
neighborhood of a spine from a handlebody results in a manifold that is homeo-
morphic to sur f ace × I . More generally the spine 6C of a compression body C
is the union of ∂−C and a 1-complex 0 so that C collapses to 6C .
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Suppose (H, K ) is a K -handlebody and let κi , i = 1, . . . , n be the bridges. The
spine 6(H,K ) of (H, K ) is the union of a spine of the handlebody H , 6H , together
with a collection of straight arcs ti where one endpoint of each ti lies in κi and
the other endpoint lies in 6H . Note that HK − 6(H,K )

∼= (∂ H)K × I . As in the
handlebody case, spines of K -handlebodies are not unique.

A bridge surface Q for K is called stabilized if there is a pair of compressing
disks for Q, one in X and one in Y , that intersect in exactly one point. The surface
Q is called meridionally stabilized if there is a compressing disk for Q in X and
a cut disk for Q in Y (or vice versa) that intersect in exactly one point. Finally Q
is called perturbed if there is a pair of bridge disks, EX ⊂ X and EY ⊂ Y , such
that EX ∩ EY = p and p ∈ K . By [Scharlemann and Tomova 2006b], if Q is
stabilized, meridionally stabilized or perturbed, there is a bridge surfaces Q′ for K
such that χ(Q′

K ) > χ(QK ). Furthermore it is easy to see that if Q is stabilized,
meridionally stabilized or perturbed then it is c-strongly compressible, see [Tomova
2007, Proposition 7.4] for the stabilized and meridionally stabilized case.

Suppose Q is a bridge surface for a knot K ⊂ M . We say that K is removable
with respect to Q if it can be isotoped to lie in Q and there is a meridian disk for
one of the two handlebodies X and Y that intersects K ⊂ Q in a single point. In
this case, by Lemma 3.3 in [Scharlemann and Tomova 2006c], there is a Heegaard
splitting Q̃ for MK such that χ(Q̃K ) > χ(QK ).

We will also need the following result, shown in [Tomova 2006].

Theorem 2.1. Suppose M is a closed orientable irreducible 3-manifold containing
a knot K . If Q is a c-strongly compressible bridge surface for K then one of the
following is satisfied:

• Q is stabilized.

• Q is meridionally stabilized.

• Q is perturbed.

• K is removable.

• M contains an essential meridional surface F such that

2 − χ(FK ) ≤ 2 − χ(QK ).

3. Preliminary results

Recall that we are considering a Heegaard splitting AK ∪P B of a knot complement
MK where M is a closed manifold. How surfaces in a manifold restrict the distance
of a Heegaard splitting in various settings has been studied in several papers, in-
cluding [Bachman and Schleimer 2005; Scharlemann and Tomova 2006a; Tomova
2007]. We will take advantage of some of these results.
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Proposition 3.1 [Scharlemann 2006, Proposition 2.5]. Let M be an irreducible 3-
manifold, N a compressible boundary component of M and (F, ∂ F) ⊂ (M, ∂M)

a properly embedded essential surface containing no disk components and with at
least one essential component incident to N. Let V be the set of essential curves in
N that bound disks in M and let f be any component of ∂ F. Then either

d(V, f ) ≤ 1 − χ(F)

or f lies in the boundary of ∂-parallel annulus component of F.

We will use the proposition above in a very specific situation. The manifold
M will either be the handlebody B or the compression body AK and N will be
∂+ AK = ∂ B = P . Then the above proposition says roughly that the distance
between the boundary curves of an essential surface in a compression body and the
boundaries of the compressing disks for the compression body is bounded above
by the Euler characteristic of the essential surface.

The situation becomes considerably more complicated if we allow the surface
F to have compressing disks. However, if we restrict our attention to weakly
incompressible surfaces, useful information about d(V, f ) can still be obtained;
see [Scharlemann 2006; Tomova 2007]. First we recall the definition of a tube-
spanned recessed collar. Let S0, S1 be two connected compact subsurfaces in the
same component N of ∂ M , with each component ∂Si , i = 0, 1, essential in ∂ M
and S0 ⊂ interior(S1). Let Ti , i = 0, 1 be the properly embedded surface in M
obtained by pushing Si , rel ∂Si into the interior of M , so the region R lying between
T0 and T1 is naturally homeomorphic to S1 × I . The properly embedded surface
obtained by tubing T0 and T1 along an I -fiber of S1 × I that is incident to T0 is
called a tube-spanned recessed collar in M . The properties of these surfaces are
described in detail in [Scharlemann 2006]. It turns out that tube spanned recessed
collars are the only weakly incompressible surfaces that don’t carry information
about distance. More precisely:

Theorem 3.2 [Scharlemann 2006, Theorem 5.4]. Suppose M is an irreducible 3-
manifold, N is a compressible boundary component of M and (F, ∂ F)⊂ (M, ∂M)

is a bicompressible, weakly incompressible splitting surface with a bicompressible
component incident to N.

Let V be the set of essential curves in N that bound disks in M and let f be any
component of ∂ F ∩ N. Then either

• d(V, f ) ≤ 1 − χ(F), or

• f lies in the boundary of ∂-parallel annulus component of F , or

• one component of F is a tube spanned recessed collar; all other components
of F incident to N are incompressible and ∂-parallel.
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Again, we will only be considering the situation when M is the handlebody B
or the compression body AK . Note that in these cases, if the surface F consists
of a single component which is a tube-spanned recessed collar with boundary in
∂+ AK or in ∂ B, then there is a spine for AK or B that is entirely disjoint from F
and F has a compressing disk (a meridional disk for the tube) that lies on the same
side of F as the spine and is disjoint from the spine.

The above two results tell us that if there is a surface with certain properties in
a compression body, then the boundary curves are “not far” from the boundaries
of the compressing disks for the compression body. Thus if U ∪R V is a Heegaard
splitting for a manifold, U and V are the collections of simple closed curves in R
that bound disks on sides U and V respectively and S is a surface that intersects
R in a particular way, then we can hope to obtain a bound on the distance of R by
summing d(U, R ∩ S) and d(R ∩ S, V). The next lemma makes this idea precise.

Lemma 3.3 [Scharlemann and Tomova 2006a, Lemma 2.6]. Suppose R is a Hee-
gaard splitting for a compact manifold M , dividing M into compression bodies U
and V . Let U and V be the collections of simple closed curves in R that bound
disks in sides U and V respectively. Let S ⊂ M be a properly embedded connected
surface transverse to R, let SU

= S ∩ U and let SV
= S ∩ V . Suppose that

• all curves of S ∩ R are essential in S and in R;

• there is at least one curve u ∈ S ∩ R such that d(u, U) ≤ 1 − χ(SU ) and any
curve in S ∩ R for which the inequality does not hold is the boundary of an
annulus component of SU that is parallel into R;

• there is at least one curve v ∈ S ∩ R such that d(v, V) ≤ 1 − χ(SV ) and any
curve in S ∩ R for which the inequality does not hold is the boundary of an
annulus component of SV that is parallel into R.

Then d(R) ≤ 2 − χ(S).

The following lemma is similar to Lemma 3.6 in [Tomova 2007] where the
result was proven in the context of a K -handlebody. We will need the result for a
compression body so some modifications in the proof are needed.

Lemma 3.4. Let M be a closed orientable irreducible 3-manifold containing a
knot K . Suppose P and Q are Heegaard surfaces for M = A ∪P B = X ∪Q Y . In
addition, suppose that P is also a Heegaard surface for MK = AK ∪P B and Q is
a bridge surface for K . If there is a spine 6B for B lying in Y and QK has a c-disk
D∗ in YK − P that is disjoint from 6B then either

• Q is c-strongly compressible, or

• K is removable with respect to Q, or

• M = S3 and K is the unknot.
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Proof. As already noted, B −6B has a natural product structure. Use this structure
to push QK and D∗ to lie entirely in AK . As X ⊂ AK , QK always compresses
in X ∩ AK and thus we may assume that (QK , ∂ QK ) ⊂ (AK , ∂ AK ) is a c-weakly
incompressible surface.

Case 1: Suppose first that D∗ is a disk. In this case QK is a weakly incompressible
surface lying in the compression body AK . Maximally compress QK in YK ∩ AK

and let Q′

K be the resulting surface. Note that by the construction, Q′

K separates P
and QK . It is a classical result that maximally compressing a weakly incompress-
ible surface results in an incompressible surface, see for example [Scharlemann
2006, Lemma 5.5]. As Q′

K is an incompressible surface in a compression body
and ∂ QK ⊂ ∂− AK , each component of Q′

K must be parallel to ∂ AK , that is, each
component is an annulus or a torus. As Q′

K separates P and QK some component
Q0

K of Q′

K also separates QK and P .

Subcase 1A: Suppose first that Q0
K is an annulus. Then the corresponding closed

component Q0 of Q′ bounds a ball in A containing Q. As Q′

K is parallel to
Fr(N (K )), K intersects this ball in a trivial arc. Now consider Q0

K as a surface in
the K -handlebody Y . As handlebodies are irreducible, Q0

K must also bound a ball
in Y and by Lemma 3.2 of [Scharlemann and Tomova 2006b], the knot intersects
this ball in a trivial arc. Thus M is the three sphere and K is a one bridge knot
with respect to the bridge sphere Q0, thus K is the unknot.

Subcase 1B: Suppose then that Q0 is a torus bounding a solid torus V in A which is
a regular neighborhood of K . As Q′

K is obtained from QK by compressing along
a collection of disks, the original surface QK can be recovered from Q′

K by tubing
along a graph 0 with edges dual to these disks.

If g(Q) = 1, Q0 is the only torus component of Q′

K and all edges of 0 have
endpoints on two different components of Q′

K . Pick a meridional disk F for Q0

that intersect K exactly once. Isotope K to lie in Q0 using the parallelism of Q0

and Fr(N (K )), this isotopy is not proper. After the isotopy of K each edge of 0

has at least one endpoint on a sphere that bounds a ball in V . By shrinking 0 we
can guarantee that the graph is disjoint from F . Thus F is also a compressing disk
for Q that intersects K in a single point along its boundary, i.e., K is removable
with respect to Q.

If g(Q) > 1, consider the two components of V − QK . One component is X K

and so it is a handlebody intersecting the knot in trivial arcs. The other component
can be obtained by attaching 1-handles corresponding to the edges of 0 to a collar
of Q′

K . The result is a compression body Y ′ which intersects K in arcs that are
parallel into ∂+Y ′. Thus X ∪Q Y ′ is a bridge surface for K lying in the manifold
V . As g(QK ) ≥ 2, by [Hayashi and Shimokawa 2001] this implies that X ∪Q Y ′

is stabilized or perturbed. Thus QK is c-strongly compressible in M as desired.
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Case 2: Suppose now that D∗ is a cut disk. As AK is a compression body, there
is a spanning annulus 3 in A with one boundary component in Fr(N (K )) and the
other in P . As Q∩K 6= ∅, it follows that Q∩3 6= ∅ and in particular Q intersects
3 in at least one arc. As Q∩ P = ∅ any such arc must have both of its endpoints in
K . As D∗ is a cut disk there is an arc γ in D∗

∩3 with one boundary component
in Fr(N (K )) and the other in some component of Q ∩ 3, as in the figure:

K

Q    Λ

γ

D*   Λ

Choose 3 and D∗ such that the tuple (|D∗
∩ 3|, |Q ∩ 3|) is minimal in the lexi-

cographic order.

Claim 1. D∗
∩ 3 does not contain any simple closed curves.

Suppose σ is a simple closed curve in D∗
∩ 3 that is innermost in D∗. As σ is

disjoint from γ , the disk E σ bounds in D∗ is disjoint from K . If σ is inessential
in 3 then replace the disk σ bounds on 3 with E reducing D∗

∩3. If σ is parallel
to the core of 3, then σ ∪ K cobound a subannulus of 3. The union of this
subannulus and E is then a compressing disk for ∂− AK . As the negative boundary
of a compression body is incompressible, we have reached a contradiction.
�

Claim 2. D∗
∩ 3 does not contain any arcs with both endpoints in Q ∩ 3.

Choose σ to be an outermost such arc on D∗. As |D∗
∩ K | = 1 we can choose

σ so that it cuts off a disk E in D∗ that is disjoint from K . The boundary of E
consists of σ and an arc α ⊂ Q. The disk E can be used to guide an isotopy of
Q isotoping a small neighborhood of α in Q across 3. This decreases |D∗

∩ 3|

contradicting our choice of D∗. �

Claim 3. It suffices to consider the case that every component of Q ∩3 is either a
circle parallel to the core of 3 or is adjacent to γ .

Suppose Q ∩ 3 contains either an inessential circle in 3 or an arc with both
endpoints of K . In either case assume that this curve is disjoint from γ . Pick δ to
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be either an innermost such circle or an outermost such arc and let G be the disk
in 3 that δ bounds. By minimality of Q ∩ 3 if δ is a circle, G is a compressing
disk for Q. If δ is an arc, then G is a bridge disk and so there is a compressing
disk for Q contained in the boundary of a regular neighborhood of G. In either
case we have found a compressing disk for Q contained in AK and disjoint from
D∗. If this disk is contained in X , then QK is c-strongly compressible as the disk
is disjoint from D∗. If the disk is contained in Y , the result follows by Case 1. �

By Claims 1 and 2 we may assume that D∗
∩ 3 = γ and by Claim 3 we may

assume that every component of Q ∩ 3 is either a circle parallel to the core of 3

or is adjacent to γ . Let σ be the arc of Q ∩3 that is adjacent to γ . There are three
cases to consider:

Subcase A: σ is circle parallel to the core of 3. As Q ∩ K 6= ∅, there must be
some arc δ of Q ∩3 with both endpoints in K . But then δ is an arc of Q ∩3 that
is disjoint from γ contradicting our assumption.

Subcase B: σ is a circle that is inessential in 3. Let E be the disk in 3 that σ

bounds. By our assumptions the interior of E is disjoint from D∗ and also from
Q. Then E is a compressing disk for QK lying in X that intersects D∗ in exactly
one point. By Theorem 2.1 of [Tomova 2006] QK is c-strongly compressible.

Subcase C: σ is an arc:

m
m'

a

K

GE

Let G be the disk that σ cuts from 3. As before the boundary of a regular
neighborhood of G contains a compressing disk for Q in AK . If this disk lies in Y ,
Case 1 can be applied so we may assume G lies in X . Thus the arc γ lies outside
of G. Let E be the disk cobounded by γ , a subarc σ ′ of σ and a subarc of K . Then
the boundary of a regular neighborhood of D∗

∪ E contains a cut disk parallel to
D∗ and a disk F ⊂ Y :

E

m'

K

aD*

Q

F
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If ∂ F bounds a disk in Q, then ∂ D∗ bounds a once punctured disk contradicting
the fact that D∗ is a cut disk. If ∂ F bounds a punctured disk D′ in Q, the F ∪ D′

is a sphere that intersects the knot once, a contradiction. Thus ∂ F is essential in
QK and so F ⊂ Y is a compressing disk for QK in AK ; therefore we can apply
Case 1. �

Finally, the following easy proposition will be used repeatedly in the proofs to
follow.

Proposition 3.5. Suppose P is a Heegaard surface for MK = AK ∪P B with genus
at least 2 and Dc is a cut disk for P in AK . Then there is a compressing disk D for
P in AK such that d(∂ Dc, ∂ D) = 1.

Proof. Consider cut-compressing AK along Dc, i.e., remove a small open neigh-
borhood of Dc from AK . The resulting 3-manifold is a K -handlebody containing
a single bridge - the result of cutting the closed loop K . As g(P) ≥ 2, the K -
handlebody has genus at least 1 and thus there is a compressing disk D which can
be taken to be disjoint from the bridge. This disk is the desired compressing disk
for P in AK . �

4. Configurations of P and Q

Let K be any knot in any manifold M except the unknot in S3 and consider how P
(a Heegaard surface of MK = AK ∪P B) and Q (a Heegaard surface for M = X∪Q Y
that is also a bridge surface for K ) intersect in M . Let Q A

= Q ∩ A, Q B
= Q ∩ B,

P X
= P ∩ X and PY

= P ∩ Y and let A and B be the collections of curves in P
that bound compressing disks in A and B respectively.

Definition 4.1. Suppose S and T are two properly embedded surfaces in a 3-
manifold M containing a knot K and assume S and T intersect the knot trans-
versely. Let c ∈ SK ∩ TK be a simple closed curve bounding possibly punctured
disks D∗

⊂ SK and E∗
⊂ TK . If D∗ intersects TK only in curves that are inessential

in TK and E∗ intersects SK only in curves that are inessential in SK we say that c
is removable.

Remark 4.2. Consider the curves of intersection between P and QK .

(1) All removable curves can be removed via an isotopy of the surfaces that does
not affect any essential curves of intersection.

(2) If all curves of intersection between P and QK are either essential in both
surfaces or inessential in both surfaces then all inessential curves are remov-
able.

Isotope P and Q so as to remove all removable curves of intersection. We will
associate to a position of P and Q one or more of the following labels.
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• Label A (resp. B) if some component of QK ∩ P is the boundary of a com-
pressing disk for P lying in AK (resp. B).

• Label Ac if some component of QK ∩ P is the boundary of a cut disk for P
lying in AK . (As B ∩ K = ∅, no label Bc can occur).

• Label X (resp. Y ) if there is a compressing disk for QK lying in X K (resp.
YK ) that is disjoint from P and the configuration does not already have labels
A, Ac or B.

• X c (resp. Y c) if there is a cut disk for QK lying in X K (resp. YK ) that is
disjoint from P and the configuration does not already have labels A, Ac or
B.

• x (resp. y) if some spine 6AK or 6B lies entirely in YK (resp. X K ) and the
configuration does not already have labels A, Ac or B.

We will use the superscript ∗ to denote the possible presence of superscript c, for
example we will use A∗ if there is a label A, Ac or both.

Lemma 4.3. If a configuration of P and Q has no labels, then d(P) ≤ 2−χ(QK ).

Proof. Suppose a configuration has no labels. First note that this implies P ∩QK 6=

∅ as if P is entirely contained in X say, then the region would have a label y. If
there is a curve of P ∩ QK that is inessential in QK but essential in P an innermost
such curve in QK would give rise to a label A∗ or B. If there is a curve of P ∩ QK

that is inessential in P but essential in QK an innermost such curve in P would
give rise to a label X∗ or Y ∗. Thus all curves of P ∩ QK are either essential in
both surfaces or inessential in both. By Remark 4.2 we may assume all curves
of P ∩ QK are essential in both surfaces. Furthermore, as no labels X∗ or Y ∗ are
associated to this configuration, Q A

K and Q B are both c-incompressible and as there
are no labels x or y, they each have at least one component that is not parallel to
P . By Proposition 3.1 both Q A

K and Q B satisfy the hypothesis of Lemma 3.3 from
which we deduce that d(P) ≤ 2 − χ(QK ). �

Lemma 4.4. If a configuration of P and Q has labels A∗ and B, then d(P) ≤ 2.

Proof. If a configuration has labels A and B, there are curves of P ∩ QK , both
essential in P , that bound compressing disks for P in AK and B. As P and QK

are embedded surfaces, these two curves are disjoint and thus d(P) ≤ 1. If a
configuration has labels Ac and B, using the triangle inequality and Proposition
3.5, we deduce that d(P) ≤ 2. �

Lemma 4.5. If a configuration has labels x and Y ∗, we are in at least one of the
following situations: QK is c-strongly compressible; K is removable with respect
to Q; or d(P) ≤ 2 − χ(QK ).
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Proof. Assume QK is c-weakly incompressible and K is not removable. We will
show that d(P) ≤ 2 − χ(QK ). From the label x we may assume, with no loss of
generality, that there exists a spine for AK or B contained in YK . Note that the
spine of AK contains the frontier of an open neighborhood of K and K ∩ Q 6= ∅
thus we conclude that 6B ⊂ YK . From the label Y ∗ we know that QK has a c-disk
in YK − P , call this disk E . By Lemma 3.4, E ∩ 6B 6= ∅ so in particular E ⊂ B.
Note that this also implies QK ∩ P 6= ∅ as Y ∩ A 6= ∅.

As no label A∗ or B is present, any curve of intersection that is essential in P
must also be essential in QK . Suppose there is a curve that is essential in QK

and inessential in P . Let D be the disk in P an innermost such curve bounds. By
Lemma 3.4 the disk D cannot be in YK . If D is in X K , then it is disjoint from E
giving a c-strong compression for QK contrary to our assumption. Thus we may
assume that all curve of intersection are essential in both P and QK .

Consider first Q A
K . It is incompressible in AK because a compression into YK

would violate Lemma 3.4 and a compression into X K would provide a c-weak
compression of QK . If Q A

K is not essential in AK then every component of Q A
K

is parallel into P so in particular Q A
∩ K = ∅. As it is always the case that

Q B
∩ K = ∅ this implies that Q ∩ K = ∅. As Q is a bridge surface for K that

is not possible. We conclude that Q A
K is essential in AK so by Proposition 3.1 for

each component q of QK ∩ P that is not the boundary of a P-parallel annulus in
AK , the inequality d(q, A) ≤ 1 − χ(Q A

K ) holds, i.e., Q A
K satisfies the hypotheses

of Lemma 3.3.
By Lemma 3.4 Q B does not have compressing disks in YK ∩ (B − 6B) so it

either has no compressing disks in B − 6B at all or has a compressing disk lying
in X K . If Q B is incompressible in B − 6B ∼= P × I , then either it satisfies the
hypothesis of Proposition 3.1 or each component of Q B is parallel to a subset of P .
In the latter case the compressing disk E of Q B in YK − P can be extended via this
parallelism to give a compressing disk for P that is disjoint from all q ∈ QK ∩ P .
Hence

d(q, B) ≤ 2 ≤ 1 − χ(Q B)

as long as Q B is not a collection of P-parallel annuli. If that is the case, then
d(∂ E, q0)=0 for at least one q0 ∈ (P∩QK ) so d(q0, B)≤1≤1−χ(Q B) as desired.
Thus in this case Q B satisfies the hypothesis of Lemma 3.3 and we obtained the
desired distance bound.

If Q B is bicompressible in B, then Q B is weakly incompressible as every com-
pressing disk for Q B is also a compressing disk for Q. Because every compressing
disk for Q B in YK intersects 6B , Q B cannot be a tube-spanned recessed collar. By
Theorem 3.2 Q B again satisfies the hypothesis of Lemma 3.3 and we can deduce
the desired distance bound. �
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Lemma 4.6. If a configuration has labels X∗ and Y ∗, we are in at least one of the
following situations: QK is c-strongly compressible; K is removable with respect
to Q; or d(P) ≤ 2 − χ(QK ).

Proof. By the labelling we can conclude that QK has c-disks in both X and Y that
are disjoint from P . Again we will assume that QK is c-weakly incompressible
and K is not removable and show that the distance bound must hold. As before we
may assume that all curves of P ∩ QK are essential in both surfaces. A curve that
is essential in P but inessential in QK would lead to a label A∗ or B; a curve that is
inessential in P but essential in QK would lead to c-strong compression of QK as
QK has c-disks in both X and Y with boundaries disjoint from P . Thus all curves
are either essential or inessential in both surfaces and all curves of intersection
inessential in both surfaces have already been removed.

The c-disks for QK giving rise to the labels X∗ and Y ∗ must both be contained
in AK or B by c-weak incompressibility of QK . Suppose Q A

K is bicompressible
and Q B is incompressible, the other case is similar. We may assume that Q B

is essential as otherwise a label x or y would be present and Lemma 4.5 would
apply. Thus Q B satisfies the hypothesis of Lemma 3.3. On the other hand Q A

K is
a bicompressible c-weakly incompressible surface in a 3-manifold. By Theorem
3.2, Q A

K satisfies the hypothesis of Lemma 3.3 unless Q A
K has one component that

is a tube spanned recessed collar and all other components are boundary parallel.
In this case Q A

K would be disjoint from a spine of AK and thus the region would
have a small label. The result then follows by Lemma 4.5. �

Lemma 4.7. If a configuration has labels x and y, we are in at least one of the
following situations: QK is c-strongly compressible; K is removable with respect
to Q; or d(P) ≤ 2 − χ(QK ).

Proof. Again assume that QK is c-weakly incompressible and K is not removable.
We can also assume that the configuration does not have any capital labels as
otherwise we can apply Lemma 4.5. We may assume that all curves of intersection
are essential in both P and QK for a curve that is essential in P and inessential
in QK would give rise to a label A∗ or B and a curve that is essential in QK and
inessential in P would give rise to a label X∗ or Y ∗. Moreover, as labels X∗ or Y ∗

don’t occur, Q A
K and Q B are c-incompressible in MK − P .

Every spine of AK intersects Q so both labels x and y must be due to a spine
of B. Supposed there is a spine 6B ⊂ YK and a spine 6′

B ⊂ X K . Let Q0 be a
component of Q B that lies between the two spines. This implies that Q0 is parallel
into P on both its sides, i.e., that B ∼= Q0 × I . As g(P) ≥ 2, Q0 is not an annulus.

Let α be an essential arc in Q0 with endpoints in P . Then α × I ⊂ Q0 × I ∼= B
is a meridian disk D for B that intersects Q0 precisely in α. Consider the frontier
of a regular neighborhood of (Q0 ∪ D) ∩ P . As g(P) ≥ 2 the frontier contains
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at least one curve σ that is essential in P . We can conclude that for every curve
q ∈ B ∩ QK , d(B, q) ≤ d(B, σ ) + d(σ, q) ≤ 2 ≤ 1 − χ(Q B). Thus Q B always
satisfied the hypothesis of Lemma 3.3.

As we already saw Q A
K is essential so by Proposition 3.1 Q A

K also satisfies the
hypothesis of Lemma 3.3 and we are done by that lemma. �

Let A represent any subset of the labels A, Ac, B the label B, X any subset of
the labels X, X c, x and Y any subset of the labels Y, Y c, y. Then the lemmas in
this section can be summarized as follows.

Theorem 4.8. Suppose QK is a c-weakly incompressible bridge surface for a knot
K such that K is not removable with respect to Q and P is a Heegaard surface for
the knot exterior. Let labels A, B, X and Y be defined as above. Then either every
configuration of P and QK has exactly one of the labels A, B, X and Y associated
to it or d(P) ≤ 2 − χ(QK ).

Note that if K is the unknot in S3, then P is a Heegaard splitting of the solid
torus of genus at least 2. As Heegaard splittings of a handlebody are standard, P
must be stabilized and thus d(P) = 0.

5. Two-parameter sweep-outs and their graphics

Let 6(X,K ) and 6(Y,K ) continue to denote the spines for the K -handlebodies X and
Y . Then there is a map H : (Q, Q ∩ K ) × I → (M, K ) that is a homeomorphism
except over 6(X,K )∪6(Y,K ) and, near Q×∂ I , the map H gives a mapping cylinder
structure to a neighborhood of 6(X,K ) ∪ 6(Y,K ). Little is lost and some brevity
gained if we restrict H to QK × (I, ∂ I ) → (MK , 6(X,K ) ∪6(Y,K )). The map H is
then called a sweep-out associated to Q. Similarly there is a sweep-out associated
to the Heegaard surface P between the spines 6AK and 6B .

Consider simultaneous sweep-outs of P , between 6AK and 6B and of QK be-
tween 6(X,K ) and 6(Y,K ). This two-parameter sweep-out can be described by a
square where each point in the interior of the square represents a position of P
and QK . Inside the square is a graphic 0 which represents all points where the
intersection of the two surfaces is not generic. At each edge of 0 there is a single
tangency between P and QK and at each valence 4 vertex there are two tangencies.
Each component of the complement of 0 will be called a region and to each region
we can associate labels as defined in Section 4. Two regions are adjacent if they
share an edge. For the moment we will restrict our attention to the case when QK

is a c-weakly incompressible surface and K is not removable with respect to Q,
thus by Theorem 4.8 we may assume that either d(P)≤ 2−χ(QK ) or every region
has exactly one of the labels A, B, X and Y. In the former case we have achieved
the desired distance bound.
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Lemma 5.1. If two adjacent regions are labelled A and B, then d(P) ≤ 2.

Proof. As the two regions are adjacent, we can transform the configuration caring
the labels A into the configuration caring the label B by isotoping P through a
single tangency of QK . Notice that the curves of intersection of P and QK before
the isotopy are disjoint from the curves of intersection after the isotopy. Thus there
is a c-disk for AK , D∗

A and a compressing disk for B, DB such that D∗

A ∩ DB = ∅.
If D∗

A is actually a compressing disk, that would imply that d(P) ≤ 1. If D∗

A is a
cut disk, then we apply Proposition 3.5 and the triangle inequality to conclude that
d(P) ≤ 2. �

Lemma 5.2. Suppose a configuration is changed by passing through a saddle
point, and the bigon C defining the saddle tangency lies in X K ∩ AK (The case
when the bigon lies in the handlebody B is similar). Then

• No label x or X∗ is removed.

• No label y or Y ∗ is created.

• If there is no label x or X∗ before the move, but one is created after and if there
is a label y or Y ∗ before the move and none after, then d(P) ≤ 2 − χ(QK ).

Proof. Much of the argument here parallels the argument in the proof of Lemma
4.1 in [Scharlemann and Tomova 2006a].

We first show that no label x or X∗ is removed. If there is a c-disk for X K that
lies in AK , a standard innermost disk, outermost arc argument on its intersection
with C shows that there is a c-disk for X K in AK that is disjoint from C . The
saddle move has no effect on such a disk (nor, clearly, on a c-disk for X K that lies
in B). If there is a spine of AK or of B lying entirely in YK then that spine, too, is
unaffected by the saddle move.

Dually, no label y or Y ∗ is created: the inverse saddle move, restoring the orig-
inal configuration, is via a bigon that lies in B ∩ YK .

To prove the third item position QK so that it is exactly tangent to P at the
saddle. A bicollar of QK then has ends that correspond to the position of QK

just before the move and just after. Let Qa
K denote QK ∩ AK after the move and

Qb
K denote QK ∩ B before the move. The bicollar description shows that Qa

K and
Qb

K have disjoint boundaries in P . Moreover the complement of Qa
K ∪ Qb

K in
QK is a regular neighborhood of the singular component of P ∩ QK , with Euler
characteristic −1. It follows that χ(Qa

K ) + χ(Qb
K ) = χ(QK ) + 1.

With QK positioned as described, tangent to P at the saddle point but otherwise
in general position, consider the closed (nonsingular) curves of intersection.

Claim 1. It suffices to consider the case in which all nonsingular curves of inter-
section are essential in P.
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First note that any curve of intersection that is inessential in QK must be inessen-
tial in P as no labels A∗ or B are present. To prove the claim, suppose a nonsingular
curve is inessential in P and consider an innermost one. Assume first that the disk
D that it bounds in P does not contain the singular curve s. If ∂ D is essential in
QK , then it would give rise to a label X or a label Y that persists from before the
move until after the move, contradicting the hypothesis. Thus any inessential curve
in P that doesn’t bound a disk containing the singular curve s is also inessential in
QK and can be removed without affecting the label of the region.

Suppose then that the disk D ⊂ P contains the singular component s. By the
above, s is the only component of QK ∩ P in the interior of D. When the saddle
is pushed through, the number of components in s switches from one, s0, to two,
s±, or vice versa. All three curves are inessential in P since they lie in D. The
curve s0 and at least one of s± bound disks in P whose interiors are disjoint from
QK . If one of these curves was essential in QK that would give rise to a label X
or Y that persists through the isotopy. As no such label exists, both of these curves
are inessential in QK , i.e., bound a possibly one-punctured disks in QK . As no
sphere in M can intersect K exactly once, s0 and one of s± bound disks in QK .
Because the three curve cobound a pair of pants in QK , all three curves s0 and s±

are inessential in QK . This means that all three curves are removable so passing
through this saddle cannot have an effect on the labelling.

Claim 2. It suffices to consider the case in which also all three curves s0, s± are
essential in P .

The case in which all three curves are inessential in P is covered in the proof of
Claim 1. If two are inessential in P so is the third. Thus the only remaining case
is that exactly one of the curves s0, s± is inessential in P and by Claim 1, the disk
it bounds in P is disjoint from Q. As before the curve cannot be essential in QK

as otherwise it will give rise to a label X or Y that persists through the isotopy.
Thus the curve is inessential in QK also (in fact it must bound a disk there) so it
is removable. If this curve is s±, passing through the saddle can have no effect
on the labelling. If the removable curve is s0, then the curves s± are parallel in
both surfaces. Passing through the saddle has the same effect on the labelling as
passing an annulus component of P X across a parallel annulus component Q0 of
Q A

K . This move can have no effect on labels x or y. As there is a label Y ∗ before
the move, there is a meridian, possibly punctured disk E∗ for YK that is disjoint
from P . This disk would persist after the move, unless ∂ E∗ is in fact the core
curve of the annulus Q0. But then the union of E∗ and half of Q0 would be a
possibly punctured meridian disk of AK bounded by a component of ∂ Q0

⊂ P .
In other words, there would have to have been a label A∗ before the move, a final
contradiction establishing Claim 2.
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The above two claims allow us to assume that all curves of intersection before
and after the move are essential in both surfaces. Note that Qa

K and Qb
K are c-

incompressible (as there are no labels X∗ or Y ∗ persisting through the move) and
have at least one component that is not parallel to P (as there are no labels x or
y persisting through the move). Now apply Proposition 3.1 to both sides: Let qa

(resp. qb) be a boundary component of an essential component of Qa
K (resp. Qb

K ).
Then

d(P) = d(A, B) ≤ d(qa, A) + d(qa, qb) + d(qb, B)

≤ 3 − χ(Qa
K ) − χ(Qb

K ) = 2 − χ(QK )

as required. �

Lemma 5.3. If some vertex of 0 is surrounded by regions labelled with all four
labels A, B, X and Y, we are in at least one of the following situations: QK is
c-strongly compressible; K is removable with respect to Q; or d(P) ≤ 2−χ(QK ).

Proof. Suppose there is such a vertex of 0 and assume that QK is c-weakly incom-
pressible and K is not removable with respect to Q. As we have already established
the desired distance bound if any region has more than one label or if two adjacent
regions are labelled A and B or X and Y we may assume that going around the vertex
the regions are labelled in the order A, X, B and Y. Note then that only two saddle
moves are needed to move from a configuration labelled A∗ to one labelled B. The
former configuration includes a c-disk for P in AK and the latter a compressing
disk for P in B. Recall that all curves of intersection before a saddle move are
disjoint from all curves of intersection after the saddle move. Using Proposition
3.5 and the triangle inequality, it follows that d(K , P) ≤ 3 ≤ 2 − χ(QK ), as long
as at least one of the regions labelled X and Y contains at least one essential curve.

Suppose all curves of P ∩ QK in the regions with labels X and Y are inessential.
Consider the region labelled X. Crossing the edge in the graphic from this region
to the region labelled A corresponds to attaching a band bA with both endpoints
in an inessential curve c ∈ P ∩ Q. Note that attaching this band must produce an
essential curve that gives rise to the label A, call this curve cA. Similarly crossing
the edge from the region X into the region B corresponds to attaching a band bB to
give a curve cB . The two bands must be attached to the same curve c otherwise cA

and cB would be disjoint curves giving rise to labels A and B. As we assumed that
in the region labelled Y all curves of intersection are inessential, attaching both
bands simultaneously results in an inessential curve cAB . But that can only occur
of P is a torus which we know not to be the case. �

Lemma 5.4. If a label B appears in the regions adjacent to the 6AK side of I × I ,
or a label A appears along the 6B side, or a label Y appears along the 6(X,K ) side,
or a label X appears along the 6(Y,K ) side, we are in at least one of the following
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situations: QK is c-strongly compressible; K is removable with respect to Q; or
d(P) ≤ 2 − χ(QK ).

Proof. Suppose QK is a c-weakly incompressible surface and K is not removable
with respect to Q. Consider first a region that is adjacent to the 6AK side of I × I .
In such a region P is the boundary of a small neighborhood of 6AK and Q either
intersects it in meridional circles or doesn’t intersect it at all. In the former case any
curve of intersection P ∩ QK would lead to a label A so if a label B also appears,
then d(P) ≤ 2 by Lemma 4.4. In the latter case no label B, or in fact label A, is
possible. Similarly if P is near 6B and the configuration carries a label A then
d(P) ≤ 2.

Suppose now that QK is near 6(X,K ). As P intersects 6(X,K ) transversely, all
but a finite number of points of 6(X,K ) will be disjoint from P . Thus a label X

necessarily occurs. If a label Y also occurs, then d(P) ≤ 2 − χ(QK ) by Lemma
4.6. Symmetrically the distance bound holds if some region adjacent to the 6(Y,K )

boundary of the square is labelled X. �

Finally we will make use of the following combinatorial result.

Theorem 5.5. [Sperner’s Lemma] Suppose a square I × I contains a graph 0 such
that all vertices of 0 in the interior of the square are valence 4 and all vertices
contained in the boundary of the square are valence 1. Suppose each component
of I × I −0 is labelled with exactly one of the labels N , E, S, or W in such a way
that

(1) no region on the East side of I × I is labelled W , no region on the West side
is labelled E , no region on the South side is labelled N and no region on the
North side is labelled S.

(2) no two adjacent regions are labelled E and W nor N and S.

Then some valence 4 vertex is surrounded by regions carrying all 4 labels.

Theorem 5.6. Let K be a knot in a closed irreducible 3-manifold M and let P be
a Heegaard splitting of the knot complement such that g(P) ≥ 2. Suppose Q is
a bridge surface for K . we are in at least one of the following situations: QK is
c-strongly compressible; K is removable with respect to Q; or d(P) ≤ 2−χ(QK ).

Proof. Suppose that QK is c-weakly incompressible and K is not removable with
respect to Q. Consider a 2-parameter sweep-out of P and QK and the associated
graphic 0 ∈ I × I . Label the regions of I × I −0 with the labels A, B, X and Y as
described before. By Theorem 4.8 we may assume that each region has a unique
label. By Lemmas 5.1 and 5.2 we may assume that no two adjacent regions are
labelled A and B or X and Y. Finally Lemma 5.4 shows that the labels of regions
adjacent to the boundaries of I × I satisfy the conditions that no label B appears
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in the regions adjacent to the 6AK side of I × I , no label A appears along the 6B

side, no label Y appears along the 6(X,K ) side, and no label X appears along the
6(Y,K ) side of the square. By Theorem 5.5 there is a valence 4 vertex of 0 that is
surrounded by regions carrying all four labels. The distance bound then follows
from Lemma 5.3. �

Now we can proof the main result in this paper. We recall the theorem for the
convenience of the reader.

Theorem 1.3. Let K be a knot in a closed oriented irreducible 3-manifold M and
let P be a Heegaard splitting of the knot complement of genus at least two. Suppose
Q is a bridge surface for K . Then either

• d(P) ≤ 2 − χ(Q − N (K )), or

• K can be isotoped to be disjoint from Q so that after the isotopy Q is a
Heegaard surface for MK that is isotopic to a possibly stabilized copy of P.

Proof. If QK is stabilized, meridionally stabilized or perturbed, as described in
Section 2, there is a bridge surface for K , Q′, such that χ(Q′

K ) ≥ χ(QK ). By
possibly replacing QK by Q′

K we may assume QK is not stabilized, meridionally
stabilized or perturbed. If QK is removable, then again by the results in Section 2
there is a Heegaard surface Q̃ for MK that is isotopic to Q in M . By hypothesis Q̃
is not isotopic to a possibly stabilized copy of P so the result follows by Theorem
1.2. If QK is c-weakly incompressible, the result follows by Theorem 5.6. The only
remaining case is that QK is a c-strongly compressible bridge surface for K that
is not stabilized, meridionally stabilized, perturbed or removable. By Theorem 2.1
in this case there is an essential surface F with χ(FK ) ≥ χ(QK ). Using Theorem
1.1 we deduce that d(P) ≤ 2 − χ(F) ≤ 2 − χ(QK ). �

In the case when the manifold is S3 we can also eliminate the restriction on the
genus of P by assuming that K is nontrivial as that implies that the genus of any
Heegaard splitting of S3

K is at least 2.

Corollary 5.7. Let K be a nontrivial knot in S3 and let P be a Heegaard splitting
of the knot complement. Suppose Q is a bridge surface for K . Then either

• d(P) ≤ 2 − χ(Q − N (K )), or

• K can be isotoped to be disjoint from Q so that after the isotopy Q is a
Heegaard surface for the knot exterior that is isotopic to a possibly stabilized
copy of P.

Notice that if K can be isotoped to be disjoint from Q so that Q is a Heegaard
surface for MK that is isotopic to a possibly stabilized copy of P , then g(Q) ≥

g(P). The following corollary then follows immediately from Theorem 1.3 if
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g(Q) ≥ 1 and from Corollary 5.7 if g(Q) = 0 as the only manifold with a genus 0
Heegaard splitting is S3.

Corollary 5.8. Let K be a knot in a closed irreducible 3-manifold M (except the
unknot in S3) and let P be a Heegaard splitting of the knot complement. Suppose Q
is a bridge surface for K such that g(Q) < g(P). Then d(P) ≤ 2−χ(Q − N (K )).
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