Pacific Journal of Mathematics

A PRESENTATION FOR THE AUTOMORPHISMS OF THE 3-SPHERE THAT PRESERVE A GENUS TWO HEEGAARD SPLITTING

EROL AKBAS

Volume 236 No. 2

June 2008

A PRESENTATION FOR THE AUTOMORPHISMS OF THE 3-SPHERE THAT PRESERVE A GENUS TWO HEEGAARD SPLITTING

EROL AKBAS

Scharlemann constructed a connected simplicial 2-complex Γ with an action by the group \mathcal{H}_2 of isotopy classes of orientation-preserving homeomorphisms of S^3 that preserve the isotopy class of an unknotted genus 2 handlebody V. In this paper we prove that the 2-complex Γ is contractible. Therefore we get a finite presentation of \mathcal{H}_2 .

1. Introduction

Let \mathcal{H}_g be the group of isotopy classes of orientation-preserving homeomorphisms of S^3 that preserve the isotopy class of an unknotted genus g handlebody V. In [1933], Goeritz proved that \mathcal{H}_2 is finitely generated. In 1977, Goeritz's theorem was generalized to arbitrary genus $g \ge 2$ by Jerome Powell [1980]. In 2003, Martin Scharlemann noticed that Powell's proof contains a serious gap. Scharlemann [2004] gave a modern proof of Goeritz's theorem by introducing a simplicial 2complex Γ , with an action by \mathcal{H}_2 , that deformation retracts onto a graph $\tilde{\Gamma}$. Given any two distinct vertices v, \tilde{v} of Γ , Scharlemann constructed a vertex u in Γ that is adjacent to v and "closer" to \tilde{v} (by "closer" we mean the intersection number of uand \tilde{v} ; see Definition 1). Hence \mathcal{H}_2 acts on the connected graph $\tilde{\Gamma}$ and is generated by the isotopy classes of elements denoted by α , β , γ , and δ (see Section 2 for a complete description). In this paper we study the geometry of Γ by showing that u is essentially unique (for a precise statement see Proposition 2). We derive the following theorem.

Theorem 1. The graph $\tilde{\Gamma}$ is a tree, and shortest paths can be calculated algorithmically.

Note that $\tilde{\Gamma}$ is locally infinite. So calculating paths is not trivial. We also get

Theorem 2. (i) \mathcal{H}_2 has generators $[\alpha]$, $[\beta]$, $[\gamma]$, and $[\delta]$ and relations $[\alpha]^2 = [\gamma]^2 = [\delta]^3 = [\alpha\gamma]^2 = [\alpha\delta\alpha\delta^{-1}] = [\alpha\beta\alpha\beta^{-1}] = 1$, $[\gamma\beta\gamma] = [\alpha\beta]$, and $[\delta] = [\gamma\delta^2\gamma]$.

MSC2000: primary 57M60; secondary 57M20.

Keywords: Heegaard, genus two handlebody, three-sphere.

(ii) $\mathscr{H}_2 \cong (\mathbb{Z} \oplus \mathbb{Z}_2) \rtimes \mathbb{Z}_2 \underset{\mathbb{Z}_2 \oplus \mathbb{Z}_2}{*} (\mathbb{Z}_3 \rtimes \mathbb{Z}_2) \oplus \mathbb{Z}_2$

2. Preliminaries

We give a description of the 2-complex Γ introduced in [Scharlemann 2004], to which we refer for details about Γ .

Let *V* be an unknotted handlebody of genus two in S^3 , and let *W* be the closure of its complement. Let *T* be the boundary of *V*. Then *T* is a genus two Heegaard surface for S^3 . Let \mathcal{H}_2 denote the group of isotopy classes of orientation-preserving homeomorphisms of S^3 that leave the genus two handlebody *V* invariant. A sphere *P* in S^3 is called a *reducing sphere* for *T* if *P* intersects *T* transversely in a simple closed curve which is homotopically nontrivial on *T*. For any reducing sphere *P* for *T*, let c_P denote $P \cap T$, and let v_P denote the isotopy class of c_P on *T*.

Definition 1. For any two reducing spheres R, Q for T, define the intersection number of v_R and v_Q as

$$v_R \cdot v_Q = \min_{\substack{c_{R'} \in v_R \\ c_{Q'} \in v_Q}} |c_{R'} \cap c_{Q'}|,$$

where $|c_{R'} \cap c_{Q'}|$ is the geometric intersection number of $c_{R'}$ with $c_{Q'}$.

Let Γ be a complex whose vertices are isotopy classes of reducing spheres for T. A collection P_0, \ldots, P_n of reducing spheres bounds an n-simplex in Γ if and only if $v_{P_i} \cdot v_{P_j} = 4$ for all $0 \le i \ne j \le n$. In fact $n \le 2$; see [Scharlemann and Thompson 2003, Lemma 2.5]. So Γ is a simplicial 2-complex. See Figure 1 for a local picture of Γ and a picture of three curves forming the vertices of a 2-simplex in Γ . Let \triangle be any 2-simplex of Γ . We denote by S_{\triangle} the "spine" of \triangle , which is the subcomplex of the barycentric subdivision consisting of all closed 1-simplices that contain the barycenter and a vertex of \triangle . Clearly \triangle deformation retracts onto S_{\triangle} . Let

$$\tilde{\Gamma} = \bigcup_{\bigtriangleup} S_{\bigtriangleup}$$

So $\tilde{\Gamma}$ is a graph. Since no two 2-simplices of Γ share an edge [Scharlemann and Thompson 2003, Lemma 2.5], the simplicial 2-complex Γ deformation retracts onto the graph $\tilde{\Gamma}$.

A *belt curve* on a genus two surface is a homotopically nontrivial separating simple closed curve. Let *P* denote a reducing sphere whose intersection with *T* is a belt curve, which we denote c_P . The reducing sphere *P* divides S^3 into two 3-balls B^{\pm} whose intersections with the genus two surface *T* are two genus one surfaces $T^{\pm} = T \cap B^{\pm}$, each having one boundary component. The surface T^- (respectively T^+) contains two simple closed curves *B*, *Z* (respectively *C*, *Y*)

Figure 1. Left: locally Γ . Right: three curves forming the vertices of a 2-simplex in Γ .

Figure 2. The curves c_P , A, B, C, X, Y, and Z.

meeting at one point. The curve B (respectively C) bounds a nonseparating disc in W which is homotopically nontrivial in V. The curve Z (respectively Y) bounds a nonseparating disc in V which is homotopically nontrivial in W. The genus two surface T contains two disjoint simple closed curves A and X. The curve A is homotopically nontrivial in V, disjoint from B and C, bounds a nonseparating disc in W, and intersects Z and Y at one point. The curve X is homotopically nontrivial in W, disjoint from Z, Y and A, bounds a nonseparating disc in V, and intersects B and C at one point. See Figure 2.

Throughout this paper, unless otherwise stated, whenever we choose a reducing sphere R for T such that $v_R \neq v_P$, we will assume that the curve c_R intersects c_P , B, C, Y, Z transversely and minimally and intersects A transversely.

Figure 3. Homeomorphisms α , β , γ and δ .

There exist three automorphisms α , β , γ of S^3 with the following properties. The automorphism α is an orientation-preserving homeomorphism of S^3 that preserves *V* and *P* and that maps the curves *A*, *B*, *C* to *A*, *B*, *C* respectively by an orientation-reversing map. The homeomorphism α is the hyperelliptic involution that preserves every simple closed curve (up to isotopy). The automorphism β is an orientation-preserving homeomorphism of S^3 that preserves *V* and *P*, fixes $T^$ pointwise, and maps *C* to *C* and *Y* to *Y* by an orientation-reversing map. Also $|A \cap \beta(X)| = 2$. The automorphism γ preserves *V* and *P* and maps the curves c_P to c_P and *A* to *A* by an orientation-reversing map. See Figure 3. Scharlemann [2004] showed that \mathcal{H}_2 is generated by the isotopy classes $[\alpha]$, $[\beta]$, $[\gamma]$, and $[\delta]$, where δ is any orientation-preserving homeomorphism of S^3 such that $\delta(V) = V$ and $v_P \cdot v_{\delta(P)} = 4$. In this paper we will take δ , as follows. Consider the genus two handlebody *V* as a regular neighborhood of a sphere, centered at the origin, with three holes. The homeomorphism δ is a $2\pi/3$ rotation of *V* about the vertical *z*-axis. See Figure 3.

3. Arc families of reducing spheres on T^{\pm}

Definition 2. Denote any oriented curve D on T by \vec{D} and the curve oriented in the direction opposite to \vec{D} by \vec{D} .

Orient the curves A, B, C, X, Y, Z in such a way that $\delta^2(\vec{A}) = \delta(\vec{B}) = \vec{C}$ and $\delta^2(\vec{X}) = \delta(\vec{Y}) = \vec{Z}$.

Definition 3. For any oriented properly embedded arc $\nu \subset T^{\pm}$, we may write $[\nu] \in H_1(T^{\pm}, \partial T^{\pm}; \mathbb{Z})$ as $a[\mu] + b[\lambda]$ where $\mu = \vec{Z}$ and $\lambda = \vec{B}$ if $\nu \subset T^-$, and $\mu = \vec{Y}$ and $\lambda = \vec{C}$ if $\nu \subset T^+$. The slope of ν is defined to be $|a/b| \in \mathbb{Q}^+ \cup \infty$.

Definition 4. For any reducing sphere Q such that $v_Q \neq v_P$, let $N(Q, T^{\pm}, a)$ denote the number of arcs in $Q \cap T^{\pm}$ of slope a.

Definition 5. Up to isotopy, there are natural homeomorphisms $\Omega, \Psi : S^3 \to S^3$, where Ω maps *V* to *W* and \vec{A} , \vec{B} , \vec{C} , \vec{X} , \vec{Y} , \vec{Z} to \vec{X} , \vec{Y} , \vec{Z} , \vec{A} , \vec{B} , \vec{C} , respectively, and Ψ maps *W* to *W* and \vec{A} , \vec{B} , \vec{C} , \vec{X} , \vec{Y} , \vec{Z} to \vec{A} , \vec{B} , \vec{C} , \vec{X} , \vec{Y} , \vec{Z} , respectively; see Figure 4. Let $\Theta = \Psi \Omega$.

Proposition 1. Let Q be a reducing sphere for T such that $v_Q \neq v_P$. Then $N(Q, T^-, a) = N(Q, T^+, 1/a)$.

Proof. Without loss of generality, we may assume that Q = w(P) where w is a word in α , β , γ and δ .

We claim $\Theta(c_0) = c_0$. The proof is as follows.

The hyperelliptic involution α preserves the isotopy class of any simple closed curve on *T*. After an isotopy, we may assume that $\alpha(c_Q) = c_Q$. Let us write w as $a_1a_2\cdots a_n$ where $a_i \in \{\alpha, \beta^{\pm 1}, \gamma, \delta^{\pm 1}\}$. The homeomorphism Θ satisfies $\Theta\alpha = \alpha\Theta, \ \Theta\beta = \alpha\beta\Theta, \ \Theta\gamma = \alpha\gamma\Theta, \ \Theta\delta = \delta\Theta, \text{ and } \Theta(c_P) = c_P$. Then $\Theta(c_Q) =$ $\Theta(w(c_P)) = \Theta(a_1a_2\cdots a_n(c_P)) = b_1b_2\cdots b_n\Theta(c_P)$, where b_i is α if $a_i = \alpha, \alpha\beta$ if $a_i = \beta, \alpha\gamma$ if $a_i = \gamma$, and δ if $a_i = \delta$. So $b_1b_2\cdots b_n\Theta(c_P) = b_1b_2\cdots b_n(c_P) =$ $a_1a_2\cdots a_n(c_P) = w(c_P) = c_Q$.

Figure 4. Homeomorphism $\Theta = \Psi \Omega$.

Since Θ maps the curves A, B, C, X, Y, Z to X, Y, Z, A, B, C, respectively, it takes the arcs of c_Q of slope a on T^- to the arcs of c_Q of slope 1/a on T^+ . \Box

Definition 6. For any reducing sphere Q for T such that $v_Q \neq v_P$, let $F_{Q,a}^{\pm}$ denote the arc family of c_Q on T^{\pm} of slope a.

Lemma 1. Suppose Q is any reducing sphere for T such that $v_Q \neq v_P$. Then $N(Q, T^-, 0) \neq N(Q, T^-, \infty)$.

Proof. Suppose that $N(Q, T^-, 0) = N(Q, T^-, \infty) = m$. The number *m* cannot be 0 because the curve c_Q must have an arc of slope 0 in either T^- or in T^+ by [Scharlemann and Thompson 2003, Lemma 4]. By Proposition 1, $N(Q, T^+, 0) = N(Q, T^+, \infty) = m$ and $N(Q, T^-, 1) = N(Q, T^+, 1)$. The curve c_Q bounds a disc in *V*. So c_Q must have a "wave" τ [Volodin et al. 1974] with respect to one of the curves *Y* or *Z*. Say it is *Y*, as illustrated below.

Then the arc τ of c_Q starts at Y, goes to T^- , and then comes back to Y on the same side without touching Z. So all the arcs of c_Q intersecting Z must intersect the arc on Y that is bounded by ends of τ . Then we get

$$N(Q, T^{-}, \infty) + N(Q, T^{-}, 1) + 2 \le N(Q, T^{+}, \infty) + N(Q, T^{+}, 1),$$

a contradiction.

Notation 1. Let Q be a reducing sphere for T.

- If N(Q, T⁻, 0) = n ≠ 0 then e₀₁, e₀₂, ..., e_{0n}, e_{1n}, e_{1n-1}, ..., e₁₁ will denote consecutive end points on c_P of the arcs in F⁻_{Q,0}, where e_{0j} and e_{1j} are end points of the same arc; h₀₁, h₀₂, ..., h_{0n}, h_{1n}, h_{1n-1}, ..., h₁₁ will denote consecutive end points on c_P of the arcs in F⁺_{Q,∞}, where h_{0j} and h_{1j} are end points of the same arc (the existence of h_{ij} is guaranteed by Proposition 1).
- If $N(Q, T^-, \infty) = m \neq 0$ then $g_{01}, g_{02}, \ldots, g_{0m}, g_{1m}, g_{1m-1}, \ldots, g_{11}$ will denote consecutive end points on c_P of the arcs in $F_{Q,\infty}^-$, where g_{0j} are g_{1j}

are end points of the same arc; f_{01} , f_{02} , ..., f_{0m} , f_{1m} , f_{1m-1} , ..., f_{11} will denote consecutive end points on c_P of the arcs in $F_{Q,0}^+$, where f_{0j} and f_{1j} are end points of the same arc.

If N(Q, T⁻, 1) = p ≠ 0 then k₀₁, k₀₂, ..., k_{0p}, k_{1p}, k_{1p-1}, ..., k₁₁ will denote consecutive end points on c_P of the arcs in F⁻_{Q,1} where k_{0j} and k_{1j} are end points of the same arc; l₀₁, l₀₂, ..., l_{0p}, l_{1p}, l_{1p-1}, ..., l₁₁ will denote end points on c_P of the arcs in F⁺_{Q,1}, where l_{0j} and l_{1j} are end points of the same arc.

Lemma 2. Let Q be a reducing sphere for T such that

 $N(Q, T^{-}, 0) = n > N(Q, T^{-}, \infty) = m > N(Q, T^{-}, 1) = 0.$

Then $\{f_{ij} \mid i = 0, 1 \text{ and } j = 1, m\} \subseteq \{e_{ij} \mid i = 0, 1 \text{ and } j = 2, ..., n - 1\}.$

Proof. Suppose the contrary, as illustrated below.

Then c_Q does not have a "wave" τ [Volodin et al. 1974] with respect to the curve *Y* or the curve *Z*. Therefore c_Q cannot bound a disc in *V*, a contradiction.

Proposition 2. Let v and \tilde{v} be any two distinct vertices of Γ such that $v \cdot \tilde{v} \neq 4$. Then there exists unique vertex u of Γ such that

- (i) $u \cdot v = 4$,
- (ii) $u \cdot \tilde{v} < v \cdot \tilde{v}$, and

(iii) $u \cdot \tilde{v} < v' \cdot \tilde{v}$ for any vertex v' of Γ such that $v' \neq u$ and $v' \cdot v = 4$.

Moreover, there is at most one vertex v'' of Γ satisfying $v \cdot v'' = 4$ and $u \cdot \tilde{v} < v'' \cdot \tilde{v} \le v \cdot \tilde{v}$. In this case $v'' \cdot u = 4$.

The proposition is illustrated below.

• *v*

Proof. Let v and \tilde{v} be any two vertices of Γ such that $v \neq \tilde{v}$ and $v \cdot \tilde{v} \neq 4$. Since the group \mathcal{H}_2 is transitive on the vertices of Γ , we may assume that $v = v_P$ and \tilde{v} is a vertex of Γ such that $\tilde{v} \neq v_P$ and $v_P \cdot \tilde{v} \neq 4$. Then some word w in α, γ, β and δ has $w(c_P) \in \tilde{v}$. Let Q denote the reducing sphere w(P). Since Q is not isotopic to P there must be some arcs in $c_Q \cap T^{\pm}$. By [Scharlemann 2004, Lemma 4] there is an arc of c_Q of slope 0 either on T^- or on T^+ . Suppose it is on T^- . Let e_{ij} , $g_{dq}, k_{rs}, f_{tu}, h_{yv}, l_{wz}$ denote the end points of the arcs of $c_Q \cap T^{\pm}$ as in Notation 1. Possible cases for the arc families in $c_Q \cap T^{\pm}$ and their configurations, up to the action of a power of β , are the following:

Case I. If

$$N(Q, T^{-}, 0) = m, \qquad N(Q, T^{-}, 1/k) = a,$$

$$N(Q, T^{-}, \infty) = 0, \qquad N(Q, T^{-}, 1/(k+1)) = b,$$

where $k \ge 1$, then

$$N(Q, T^+, \infty) = m,$$
 $N(Q, T^+, k) = a,$
 $N(Q, T^+, 0) = 0,$ $N(Q, T^+, k+1) = b$

by Proposition 1. Scharlemann in [2004, Lemma 5] constructs a reducing sphere *R* satisfying (i) and (ii) (that is, $v_R \cdot v_P = 4$ and $v_R \cdot v_Q < v_P \cdot v_Q$). We will show that up to isotopy the reducing sphere *R* also satisfies (iii). Scharlemann's reducing sphere will be given explicitly in the various cases of the proof. Let n = a + b.

Case I.A: $n \neq 0$. Let us label end points of the arcs in $c_Q \cap T^+$ of slope different from ∞ as d_1, d_2, \ldots, d_{2n} . Then it is not hard to show $\{e_{ij}\} \not\subseteq \{d_i\}$ by an argument similar to the proof of Lemma 2.

Case I.A.1: $\{d_i\} \not\subseteq \{e_{ij}\}$. See the figure below. Set $p = |\{e_{ij}\} \cap \{h_{ij}\}|/2$ then $1 \le p < m$. Consider the curve ξ shown in the figure. It is easy to see that ξ bounds a disc in *V* and a disc in *W*. So ξ is the intersection of a reducing sphere *S* with *T*. Denote ξ by c_S . The reducing sphere *S* satisfies $v_S \cdot v_Q \le |c_S \cap c_Q| = 2(n-m+2p) < 2(n+m) = v_P \cdot v_Q$ and $v_S \cdot v_P = 4$.

Claim 1. $v_S \cdot v_Q = |c_S \cap c_Q|$. Claim 2. $v_{\beta^i(S)} \cdot v_Q$, $v_{\beta^i\gamma(S)} \cdot v_Q > 2(n+m)$ for $i \neq 0$.

Proof of Claim 1. It suffices to show that there is no bigon on T formed by the curves c_S and c_Q . We may assume that c_S intersects c_Q in a neighborhood $N \subseteq T$ of c_P where $N \cap (B \cup Z \cup C \cup Y) = \emptyset$. The neighborhood N has two boundary components N^- and N^+ . Say $N^{\pm} \subset T^{\pm}$. The set $c_S \cap N$ consists of four arcs v_1 , v_2 , v_3 , v_4 . Assume that end points of the arcs v_1 , v_2 , v_3 , and v_4 on N^- are lined up consecutively as $N^- \cap v_1$, $N^- \cap v_2$, $N^- \cap v_3$, and $N^- \cap v_4$. The curve c_S has two arcs a_1 and a_2 on T^- of slope 0 and two arcs b_1 and b_2 on T^+ of slope ∞ . Assume that $v_i \cap a_1 \neq \emptyset$ for i = 1, 2 and $v_1 \cap b_1 \neq \emptyset$. See Figure 5. There are eight regions D_1, \ldots, D_8 on N that can contain a vertex of a bigon. The regions D_1, \ldots, D_8 are shown in Figure 5. Any bigon should contain two of them. After an isotopy, we may assume that $\alpha(c_Q) = c_Q$ and $\alpha(c_S) = c_S$. Then $\alpha(D_i) = D_{i+2}$ for i = 1, 2, and $\Theta(\{D_i \mid i = 1, \ldots, 4\}) = \{D_i \mid i = 5, \ldots, 8\}$ (see Definition 5 for Θ). So it is enough to check if D_i is a part of a bigon for i = 1, 2.

- *D*₁: The region *D*₁ is part of a region \widetilde{D}_1 in *T* whose four consecutive sides are *x*, a_1 , *y*, and *x'*, where $y \in F_{Q,0}^-$ and $x, x' \in F_{Q,k}^+ \cup F_{Q,k+1}^+$. See Figure 6(a). If \widetilde{D}_1 is a bigon then $v_Q \cdot v_P < 2(n+m)$, a contradiction.
- *D*₂: If b = 0 then $a \neq 0$. Then D_2 is part of a region \widetilde{D}_2 whose five sides are x, a_1, y, y', x' where $x, x' \in F_{Q,\infty}^+$ and $y, y' \in F_{Q,1/k}^-$. See Figure 6(b). If \widetilde{D}_2 is a bigon then $v_Q \cdot v_P < 2(n+m)$, a contradiction.
 - If $a, b \neq 0$ then D_2 is part of a region \widetilde{D}_2 whose five sides are x, a_1, y, y', x' where $x, x' \in F_{Q,\infty}^+$, $y \in F_{Q,1/(k+1)}^-$ and $y' \in F_{Q,1/k}^-$. See Figure 6(c). If \widetilde{D}_2 is a bigon then $v_Q \cdot v_P < 2(n+m)$, a contradiction.

By the cases above, $v_S \cdot v_Q = |c_S \cap c_Q|$.

Figure 5

Figure 7 shows the intersection of a reducing sphere R' with the surface T. Notice that $R' \in v_{\gamma S}$ and $v_S \cdot v_{\gamma S} = 4$. By an argument similar to the proof of Claim 1 we can show that $v_{R'} \cdot v_Q = |c_{R'} \cap c_Q| = 4kb + 4(k-1)a + 2m + 2n = v_{\gamma S} \cdot v_Q \ge 2m + 2n$.

Proof of Claim 2. We will do the calculation for $i = \pm 1$. The general case is similar. We may assume that $\beta^i(c_S)$ and $\beta^i\gamma(c_S)$ intersect c_Q in a neighborhood *N* described in the proof of Claim 1. By an argument similar to the proof of Claim 1, we get

•
$$v_{\beta(S)} \cdot v_Q = 4p + 2m + 6n > 2(n+m)$$
. See Figure 8(a).

•
$$v_{\beta^{-1}(S)} \cdot v_Q = 6m + 2n - 4p > 2(n+m)$$
. See Figure 8(b).

- $v_{\beta\gamma(S)} \cdot v_Q = 4kb + 4(k-1)a + 4m + 2n + 2p > 2(n+m)$. See Figure 9(a).
- $v_{\beta^{-1}\gamma(S)} \cdot v_Q = 4kb + 4(k-1)a + 6m + 6n 4p > 2(n+m)$. See Figure 9(b).

This implies that the vertex $v_R = v_S$ and satisfies the conditions of Proposition 2.

Case I.A.2: $\{d_i\} \subseteq \{e_{ij}\}$. See Figure 10. Set $p = |\{e_{0j}\} \cap \{h_{0j}\}|$. Then 0 .Either <math>p < m - n - p or m - n - p < p. Assume p < m - n - p. Consider the curve ξ shown in Figure 10. The curve ξ is an intersection of a reducing sphere *S* with *T*. Denote ξ by c_S . Notice that $v_S \cdot v_P = 4$.

By an argument similar to the proof of Case I.A.1, we get

Figure 6

Figure 7

(a)

(a)

- $v_S \cdot v_Q = |c_S \cap c_Q| = 2(m n 2p) < v_P \cdot v_Q = 2(n + m);$
- $v_S \cdot v_{\gamma(S)} = 4;$
- $v_{\gamma(S)} \cdot v_Q = 4kb + 4(k-1)a + 2(m+n) \ge 2(m+n)$ (see Figure 11);
- $v_{\beta^i(S)} \cdot v_Q$, $v_{\beta^i \gamma(S)} \cdot v_Q > 2(n+m)$ for $i \neq 0$.

This implies that the vertex $v_R = v_S$ and satisfies the conditions of Proposition 2. Case I.B: n = 0. This is a special case of Case I.A.2.

Case II: $N(Q, T^{-}, 0) = m$ and $N(Q, T^{-}, \infty) = n \neq 0 = N(Q, T^{-}, 1)$. In this case, $N(Q, T^+, 0) = n$ and $N(Q, T^+, \infty) = m \neq 0 = N(Q, T^+, 1)$ by Proposition 1.

Figure 11. The curve $c_{R'}$ in the figure is $R' \cap T$ for some reducing sphere R' for T satisfying $R' \in v_{\gamma S}$.

By Lemma 1, $m \neq n$. Suppose m < n. By Lemma 2,

 $\{e_{ij} \mid i = 0, 1 \text{ and } j = 1, \dots, m\} \subseteq \{f_{ij} \mid i = 0, 1 \text{ and } j = 2, \dots, n-1\}.$

By the argument in [Scharlemann 2004, Lemma 5], we get two nonisotopic reducing spheres for T that satisfy (i) and (ii). Let us call S the one having an arc on

Figure 12

 T^- of slope 0 and S' the one having an arc on T^+ of slope 0. Figure 12 shows the intersections of two reducing spheres R and R' with T. It is easy to see that $R \in v_S$ and $R' \in v_{S'}$.

Let $p = |\{g_{0j}\} \cap \{f_{0j}\}|$. Then 0 . Either <math>p < m-n-p or m-n-p < p. Assume p < m-n-p. Then by an argument similar to the proof of Case I.A.1, we can show that $2n+2m = v_P \cdot v_Q > v_R \cdot v_Q = 2n-2m > v_{R'} \cdot v_Q = 2(n-m-2p)$, $v_R \cdot v_{R'} = 4$ and $v_{\beta^i(R)} \cdot v_Q$, $v_{\beta^i(R')} \cdot v_Q > 2n+2m$ for $i \ne 0$.

Case III: $N(Q, T^-, 0) = m$, $N(Q, T^-, \infty) = n$, and $N(Q, T^-, 1) = p$ where $m, n, p \neq 0$. In this case, $N(Q, T^+, 0) = n$, $N(Q, T^+, \infty) = m$, $N(Q, T^+, 1) = p$ by Proposition 1. By Lemma 1, $m \neq n$. Say m > n.

The curves A, B, C, and c_P divide T into four punctured discs T_f^-, T_b^-, T_f^+ , and T_b^+ , where $T_f^- \cup T_b^- = T^-$ and $T_f^+ \cup T_b^+ = T^+$. This division also gives two pairs of pants $T_f^- \cup T_f^+ = P_f$ and $T_b^- \cup T_b^+ = P_b$. Let $c_f = P_f \cap c_P$ and $c_b = P_b \cap c_P$.

Let *K* be a reducing sphere intersecting the interior of T^- in a simple closed curve parallel to c_P . The reducing sphere *K* divides *T* into two parts. Denote the one containing the curve *B* by t^- and the one containing the curve *C* by t^+ . Let $c_K^f = T_f^- \cap K$ and $c_K^b = T_b^- \cap K$.

Suppose that

$$\begin{split} F^-_{Q,0} \cap t^- \cap A &= F^-_{Q,1} \cap t^- \cap A = \varnothing, \\ |F^-_{Q,\infty} \cap (c^f_K \setminus A)| &= |F^-_{Q,\infty} \cap (c^b_K \setminus A)| = |F^-_{Q,\infty} \cap t^- \cap A| = n \end{split}$$

and that $k'_{01}, k'_{02}, \ldots, k'_{0p}, e'_{01}, e'_{02}, \ldots, e'_{0m}$, and $g'_{01}, g'_{02}, \ldots, g'_{0n}$ are consecutive intersection points of the arcs in $F_{O,1}^-, F_{O,0}^-$ and $F_{O,\infty}^-$ with c_K^f , respectively. Locate

Figure 13

arcs of c_O on T^+ so that

$$|F_{Q,\infty}^{+} \cap (c_{P}^{f} \setminus A)| = |F_{Q,\infty}^{+} \cap (c_{P}^{b} \setminus A)| = |F_{Q,\infty}^{+} \cap A| = m,$$
$$|F_{Q,0}^{+} \cap A| = |F_{Q,1}^{+} \cap A| = 0.$$

Suppose that l_{01}, \ldots, l_{0p} , f_{01}, \ldots, f_{0n} , and h_{01}, \ldots, h_{0m} are consecutive intersection points of the arcs in $F_{Q,1}^+$, $F_{Q,0}^+$, and $F_{Q,\infty}^+$ with c_f , respectively. Suppose τ is an arc in $F_{Q,1}^-$ whose intersection with c_K^f is k'_{01} . Suppose $\tau \cap (t^+ \setminus T^+) \cap A \neq \emptyset$. See Figure 13. By applying a power of β , we can assume $2 \le |c_Q \cap A \cap (t^+ \setminus T^+)| < 2(p + n + m)$. By the argument in [Scharlemann 2004, Lemma 5], we get two nonisotopic reducing spheres for T that satisfy (i) and (ii). Let us call S the one having an arc on T^- of slope 0 and S' the one having an arc on T^+ of slope 0.

The figures below show intersections of two reducing spheres R, R' with T. It is easy to see that $R \in v_S$ and $R' \in v_{S'}$.

Case III.A: $\{g_{ij}\} \subseteq \{h_{ij}\}$. See Figure 14. Let $x = |\{h_{ij}\} \cap \{k_{ij}\}|/2$. Arguing as in Case I.A.1, we get $2(n + m + p) = v_P \cdot v_Q > v_{R'} \cdot v_Q = 2(m + p - n) > v_R \cdot v_Q = 2(m + p - n - 2x), v_R \cdot v_{R'} = 4$ and $v_{\beta^i(R)} \cdot v_Q, v_{\beta^i(R')} \cdot v_Q > v_P \cdot v_Q$ for $i \neq 0$. Case III.B: $\{g_{ij}\} \cap \{h_{ij}\} \neq \emptyset$ and $\{g_{ij}\} \cap \{f_{ij}\} \neq \emptyset, \{e_{ij}\} \cap \{h_{ij}\} = \emptyset$. See Figure 15. Let $x = |\{k_{ij}\} \cap \{h_{ij}\}|/2$. Arguing as in Case I.A.1, we get 2(n + m + p) = 0

Figure 14

 $v_P \cdot v_Q > v_{R'} \cdot v_Q = 2(p+n-m+2x) > v_R \cdot v_Q = 2(p+n-m), \ v_R \cdot v_{R'} = 4,$ and $v_{\beta^i(R)} \cdot v_Q, \ v_{\beta^i(R')} \cdot v_Q > v_P \cdot v_Q$ for $i \neq 0.$

Case III.C: $\{g_{ij}\} \cap \{h_{ij}\} \neq \emptyset$, $\{g_{ij}\} \cap \{f_{ij}\} \neq \emptyset$, and $\{e_{ij}\} \cap \{h_{ij}\} \neq \emptyset$. See Figure 16. Let $x = |\{f_{ij}\} \cap \{g_{ij}\}|/2$. Arguing as in Case I.A.1, we get $2(n + m + p) = v_P \cdot v_Q > v_{R'} \cdot v_Q = 2(m - n + 2x + p) > v_R \cdot v_Q = 2(m - n - p + 2x), v_R \cdot v_{R'} = 4$, and $v_{\beta^i(R)} \cdot v_Q$, $v_{\beta^i(R')} \cdot v_Q > v_P \cdot v_Q$ for $i \neq 0$.

Case III.D: $\{g_{ij}\} \cap \{f_{ij}\} \neq \emptyset$, $\{g_{ij}\} \cap \{l_{ij}\} \neq \emptyset$, $\{e_{ij}\} \cap \{l_{ij}\} \neq \emptyset$, and $\{e_{ij}\} \cap \{h_{ij}\} = \emptyset$. See Figure 17. Let $x = |\{g_{ij}\} \cap \{l_{ij}\}|/2$. Arguing as in Case I.A.1, we get $2(n+m+p) = v_P \cdot v_Q > v_{R'} \cdot v_Q = 2(p+n+m-2x) > v_R \cdot v_Q = 2(p+n-m)$, $v_R \cdot v_{R'} = 4$, and $v_{\beta^i(R)} \cdot v_Q$, $v_{\beta^i(R')} \cdot v_Q > v_P \cdot v_Q$ for $i \neq 0$.

Case III.E: $\{g_{ij}\} \cap \{f_{ij}\} \neq \emptyset$, $\{g_{ij}\} \cap \{l_{ij}\} \neq \emptyset$, $\{e_{ij}\} \cap \{l_{ij}\} \neq \emptyset$, and $\{e_{ij}\} \cap \{h_{ij}\} \neq \emptyset$. See Figure 18. Let $x = |\{g_{ij}\} \cap \{l_{ij}\}|/2$. Arguing as in Case I.A.1, we get $v_{R'} \cdot v_Q = 2(m + n + p - 2x)$, $v_R \cdot v_Q = 2(m + n - p + 2x)$ and $v_{\beta^i(R)} \cdot v_Q$, $v_{\beta^i(R')} \cdot v_Q > 2(n + m + p)$ for $i \neq 0$. So $v_{R'} \cdot v_Q = v_R \cdot v_Q$ if and only if p = 2x. If p is equal to 2x, then by an argument given in the proof of Lemma 2, we can show that c_Q does not bound a disc in V. Therefore either $v_{R'} \cdot v_Q > v_R \cdot v_Q$ or $v_{R'} \cdot v_Q < v_R \cdot v_Q$. Notice that $v_R \cdot v_{R'} = 4$.

Case III.F: $\{g_{ij}\} \cap \{f_{ij}\} \neq \emptyset$, $\{g_{ij}\} \cap \{l_{ij}\} \neq \emptyset$, and $\{g_{ij}\} \cap \{h_{ij}\} \neq \emptyset$. See Figure 19. Let $x = |\{g_{ij}\} \cap \{f_{ij}\}|/2$. Arguing as in Case I.A.1, we get 2(n + m + p) =

Figure 16

Figure 18

Figure 19

 $v_P \cdot v_Q > v_R \cdot v_Q = 2(m + x + 3p - n + x) > v_{R'} \cdot v_Q = 2(m + x + p - n + x),$ $v_R \cdot v_{R'} = 4$, and $v_{\beta^i(R)} \cdot v_Q$, $v_{\beta^i(R')} \cdot v_Q > v_P \cdot v_Q$ for $i \neq 0$.

Case III.G: $\{e_{ij}, g_{ij}\} \subseteq \{l_{ij}\}$. See Figure 20. Let $x = |\{k_{ij}\} \cap \{l_{ij}\}|/2$. Arguing as in Case I.A.1, we get $v_P \cdot v_Q > v_{R'} \cdot v_Q = 2(p+m-n) > v_R \cdot v_Q = 2(p-m+n)$, $v_R \cdot v_{R'} = 4$, and $v_{\beta^i(R)} \cdot v_Q$, $v_{\beta^i(R')} \cdot v_Q > v_P \cdot v_Q$ for $i \neq 0$.

Case III.H: $\{g_{ij}\} \subseteq \{l_{ij}\}$ and $\{e_{ij}\} \cap \{h_{ij}\} \neq \emptyset$. This case is eliminated by an argument given in proof of Lemma 2 (the curve c_Q does not bound a disc in *V*).

Case III.I: $\{g_{ij}\} \cap \{l_{ij}\} \neq \emptyset$ and $\{g_{ij}\} \cap \{h_{ij}\} \neq \emptyset$. After applying β^{-1} to c_Q we can assume that c_Q is as in Figure 21. Let $x = |\{k_{ij}\} \cap \{l_{ij}\}|/2$ then by arguing as in Case I.A.1, we have $2(n+m+p) = v_P \cdot v_Q > v_R \cdot v_Q = 2(m-n+3p-2x) > v_{R'} \cdot v_Q = 2(m-n+p), v_R \cdot v_{R'} = 4$, and $v_{\beta^i(R)} \cdot v_Q, v_{\beta^i(R')} \cdot v_Q > v_P \cdot v_Q$ for $i \neq 0$.

4. A presentation for \mathcal{H}_2

We will first prove Theorem 1. Then by using Bass–Serre theory we will prove Theorem 2.

Proof of Theorem 1. Suppose that $\tilde{\Gamma}$ is not a tree. Then there is a nontrivial loop in $\tilde{\Gamma}$. For any loop ξ in $\tilde{\Gamma}$, let $NV(\xi)$ denote the number of vertices of ξ . Then

Figure 21

 $\alpha_0 = \min\{NV(\xi) \mid \xi \text{ is a nontrivial loop in } \tilde{\Gamma} \} > 0$. Since each edge of Γ lies on a single 2-simplex, $\alpha_0 \ge 8$. Let ξ_0 be a nontrivial loop in $\tilde{\Gamma}$ such that $NV(\xi_0) = \alpha_0$. Since ξ_0 is of minimal length all its vertices are distinct. Let v_0 be any vertex of ξ_0 , and let $v_0, v_1, v_2, v_3, \ldots, v_{\alpha_0-1}$ be the consecutive vertices of ξ_0 . We may suppose that $v_0 \in \Gamma$. Then $v_0, v_2, v_4, \ldots, v_{\alpha_0-2}$ are vertices of Γ , and $v_k \cdot v_{k+2} = v_{\alpha_0-2} \cdot v_0 = 4$ for $k \in \{0, 2, 4, \ldots, \alpha_0 - 4\}$.

We claim $v_k \cdot v_0 < v_{k+2} \cdot v_0$ for $k \in \{0, 2, 4, \dots, \alpha_0 - 4\}$. The proof will be by induction on the index *k*, as follows.

If k = 0, then $v_0 \cdot v_0 = 0 < v_2 \cdot v_0 = 4$. Assume $v_k \cdot v_0 < v_{k+2} \cdot v_0$ for $k \in \{0, 2, \dots, \alpha_0 - 6\}$. If $v_{k+4} \cdot v_0 \le v_{k+2} \cdot v_0$, then $v_k \cdot v_{k+4} = 4$ by Proposition 2. Since $v_k \cdot v_{k+2} = v_{k+2} \cdot v_{k+4} = 4$, the vertices v_k, v_{k+2}, v_{k+4} form a 2-simplex Δ in Γ . Then we get a loop ξ in $\tilde{\Gamma}$ with vertices $v_0, v_1, \dots, v_k, u, v_{k+4}, v_{k+5}, \dots, v_{\alpha_0-2}, v_{\alpha_0-1}$, where u is the barycenter of Δ . This contradicts the minimality of α_0 .

By the claim above, we get $v_0 \cdot v_{\alpha_0-4} < v_0 \cdot v_{\alpha_0-2}$. But $4 < v_0 \cdot v_{\alpha_0-4}$ and $v_0 \cdot v_{\alpha_0-2} = 4$, a contradiction.

Proof of Theorem 2. Let v_M be a vertex of $\tilde{\Gamma}$ corresponding to the barycenter of the 2-simplex whose vertices are v_P , $v_{\delta(P)}$ and $v_{\delta^2(P)}$. Let *E* be the edge of $\tilde{\Gamma}$ whose vertices are v_P and v_M . Let H_P be the subgroup of \mathcal{H}_2 generated by the elements that stabilize v_P . Let H_M be the subgroup of \mathcal{H}_2 generated by the elements that preserve v_M . Let H_E be the group of elements of \mathcal{H}_2 that stabilize the edge *E*.

• Scharlemann in [2004, Lemma 2] presents H_P as

$$H_P = \langle [\alpha], [\beta], [\gamma] | [\alpha]^2 = [\gamma]^2 = [\alpha\gamma]^2 = [\alpha\beta\alpha\beta^{-1}] = 1, \ [\gamma\beta\gamma] = [\alpha\beta] \rangle$$
$$\cong (\mathbb{Z} \oplus \mathbb{Z}_2) \rtimes \mathbb{Z}_2.$$

• The subgroup H_M fixes the set $\{v_P, v_{\delta(P)}, v_{\delta^2(P)}\}$. Therefore

$$H_M = \langle [\delta], [\alpha], [\gamma] \mid [\delta]^3 = [\alpha]^2 = [\gamma]^2 = [\alpha \delta \alpha^{-1} \delta^{-1}] = [\alpha \gamma]^2 = 1,$$
$$[\delta] = [\gamma \delta^2 \gamma]$$

 \cong ($\mathbb{Z}_3 \rtimes \mathbb{Z}_2$) $\oplus \mathbb{Z}_2$.

• An element *h* of \mathcal{H}_2 fixes the sets $\{v_P\}$ and $\{v_{\delta(P)}, v_{\delta^2(P)}\}$ if and only if $h \in H_E$. Hence

$$H_E = \langle [\alpha], [\gamma] | [\alpha]^2 = [\gamma]^2 = [\alpha \gamma]^2 = 1 \rangle$$
$$\cong \mathbb{Z}_2 \oplus \mathbb{Z}_2.$$

The action of \mathcal{H}_2 on the 2-complex Γ induces an action of \mathcal{H}_2 on the tree Γ . The subgroups H_P and H_M are the isotropy subgroups of \mathcal{H}_2 fixing the vertices v_P and v_M , respectively. By the standard Bass–Serre theory [Serre 2003], the group \mathcal{H}_2 is thus a free product of the subgroups H_P and H_M amalgamated over the subgroup H_E :

$$\mathscr{H}_{2} \cong H_{P} \underset{H_{E}}{*} H_{M} \cong (\mathbb{Z} \oplus \mathbb{Z}_{2}) \rtimes \mathbb{Z}_{2} \underset{\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}}{*} (\mathbb{Z}_{3} \rtimes \mathbb{Z}_{2}) \oplus \mathbb{Z}_{2}.$$

Acknowledgment

This paper is a result of my thesis [Akbas 2006]. I am grateful to my advisor, Professor Marc Culler, for his kind supervision and support. I would like to thank Ian Agol for his suggestions for the proofs of Lemmas 1 and 2. I would also like to thank Yo'av Rieck for his helpful conversations.

References

- [Akbas 2006] E. Akbas, A presentation for the automorphisms of the 3-sphere that preserve a genus two Heegaard splitting, PhD thesis, University of Illinois at Chicago, 2006.
- [Goeritz 1933] L. Goeritz, "Die Abbildungen der Brezelfläche und der Volbrezel vom Gesschlect 2", *Abh. Math. Sem. Univ. Hamburg* **9** (1933), 244–259.
- [Powell 1980] J. Powell, "Homeomorphisms of S^3 leaving a Heegaard surface invariant", *Trans. Amer. Math. Soc.* **257**:1 (1980), 193–216. MR 80m:57005 Zbl 0445.57008
- [Scharlemann 2004] M. Scharlemann, "Automorphisms of the 3-sphere that preserve a genus two Heegaard splitting", *Bol. Soc. Mat. Mexicana* (3) **10**:Spec. Iss. (2004), 503–514. MR 2007c:57020 Zbl 1095.57017
- [Scharlemann and Thompson 2003] M. Scharlemann and A. Thompson, "Unknotting tunnels and Seifert surfaces", *Proc. London Math. Soc.* (3) **87**:2 (2003), 523–544. MR 2004e:57015 Zbl 1047. 57008
- [Serre 2003] J.-P. Serre, *Trees*, Springer Monographs in Mathematics, Springer, Berlin, 2003. MR 2003m:20032 Zbl 1013.20001
- [Volodin et al. 1974] I. A. Volodin, V. E. Kuznecov, and A. T. Fomenko, "The problem of discriminating algorithmically the standard three-dimensional sphere", *Russian Math. Surveys* **29**:5 (1974), 71–172. MR 53 #9219 Zbl 0311.57001

Received October 19, 2006. Revised February 13, 2008.

EROL AKBAS GEORGIA STATE UNIVERSITY DEPARTMENT OF MATHEMATICS AND STATISTICS 30 PRYOR STREET ATLANTA, GA 30303 UNITED STATES

matexa@langate.gsu.edu