
Pacific
Journal of
Mathematics

CROSS CURVATURE FLOW ON
LOCALLY HOMOGENOUS THREE-MANIFOLDS, I

XIAODONG CAO, YILONG NI AND LAURENT SALOFF-COSTE

Volume 236 No. 2 June 2008



PACIFIC JOURNAL OF MATHEMATICS
Vol. 236, No. 2, 2008

CROSS CURVATURE FLOW ON
LOCALLY HOMOGENOUS THREE-MANIFOLDS, I

XIAODONG CAO, YILONG NI AND LAURENT SALOFF-COSTE

Chow and Hamilton introduced the cross curvature flows on closed three-
manifolds with negative or positive sectional curvature. We study the neg-
ative cross curvature flow in the case of locally homogeneous metrics on
three-manifolds. In each case, we describe the long time behavior of the
solutions of the corresponding ODE system.

1. Introduction

1.1. Homogeneous evolution equations. Hamilton’s Ricci flow [Hamilton 1982]
is the seminal and most successful example of the idea of deforming a Riemann-
ian structure using a geometric evolution equation. Special cases arise when the
metric is invariant under a group of transformations and this property is preserved
by the flow. In particular, if the group of isometries of the original Riemannian
structure is transitive, then the geometric evolution equation reduces to an ODE
in the tangent space of an arbitrary fixed origin. In this spirit, the Ricci flow on
locally homogeneous 3-manifolds was analyzed by Isenberg and Jackson [1992],
quasiconvergence of model geometries under the Ricci flow was studied by Knopf
and McLeod [2001], and the case of the Ricci flow on locally homogeneous closed
4-manifolds was analyzed by Isenberg, Jackson and Lu [2006]. Lott [2007] inter-
prets these results using the notion of groupoids and solitons.

This paper studies the asymptotic behavior of the (negative) cross curvature
flow on locally homogeneous metrics in dimension 3. This flow was introduced
by Chow and Hamilton [2004] and is (so far) specific to dimension 3. It depends
on a sign choice; see Section 1.3 below. Chow and Hamilton conjectured that for
any compact 3-manifold that admits a metric with negative sectional curvature, the
(positive) cross curvature flow exists for all time and converges to a hyperbolic
metric. Because of the structure of the cross curvature flow equation, no gen-
eral existence results are expected when sectional curvatures take different signs,
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which is the case for most homogeneous geometries. However, in the case of
homogeneous geometries, there are no difficulties in defining, say, the negative
curvature flow since the equations reduce to a system of ODEs. The choice of the
sign mentioned above can then be interpreted simply as running the flow either
forward of backward (although one should observe that it is not clear, a priori,
which direction should be considered the forward direction).

These remarks prompted us to study the asymptotic forward and backward be-
haviors of the maximal two-sided solutions of the cross curvature flow on homo-
geneous 3-manifolds. The present paper deals with the (forward) behavior of the
negative cross curvature flow. The companion paper [Cao and Saloff-Coste 2007]
deals with the backward behavior of the negative cross curvature flow (that is, the
forward behavior of the positive cross curvature flow). The backward behavior
of the Ricci flow will be considered elsewhere. One interesting discovery is that,
generically, the backward behavior of these flows is described by convergence (of
the distance functions) to nondegenerate sub-Riemannian geometries. See [Cao
and Saloff-Coste 2007].

Concerning the forward direction studied in this paper, it is interesting to com-
pare the behavior of the Ricci flow to that of the negative cross curvature flow.
Let us briefly describe the similarities and differences. In the case of geometries
modeled on SU(2) and the Heisenberg group, the behavior of the Ricci flow and
cross curvature flow are similar. On SU(2), both flows (in their normalized ver-
sion) have solutions that exist for all positive time and converge towards round
metrics. On closed manifolds with Heisenberg-type geometries, both normalized
flows exist for all positive time, and as t tends to infinity, they produce almost flat
metrics. On closed manifolds of type E(2), both normalized flows exist for all
positive time. The normalized Ricci flow converges to a flat metric, whereas the
normalized negative cross curvature flow produces almost flat metrics but develops
a cigar degeneracy. On E(1, 1)-type closed manifolds (that is, Sol geometries), the
normalized Ricci flow exists for all positive time and presents a cigar degeneracy,
whereas the normalized cross curvature flow exists only for a finite time, and there
is a dimensional collapse with the sectional curvatures blowing up. The case of
compact quotients of SL(2,R) is the most difficult and perhaps the most interest-
ing. The normalized Ricci flow exists for all time and presents a pancake-type
degeneracy. For the normalized negative cross curvature flow, two different types
of behavior are possible. For metrics with a specific symmetry, the flow exists for
all time and develops a pancake degeneracy. For generic (homogeneous) metrics,
the flow exists for a finite time, there is a dimensional collapse and the curvatures
blow up (to plus and minus infinity).

In the rest of this introduction, we quickly review the necessary material on
locally homogeneous 3-manifolds as well as the definition of the cross curvature
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flow. Sections 2 through 6 are devoted to the different examples: Heisenberg,
E(1, 1) (that is, Sol), SU(2), SL(2,R) and E(2).

1.2. The cross curvature tensor on 3-manifolds. On a 3-dimensional Riemannian
manifold (M, g), let Rc be the Ricci tensor and R be the scalar curvature. The
Einstein tensor is defined by E = Rc −

1
2 Rg, and its local components are Ei j =

Ri j −
1
2 Rgi j . Raising the indices, define P i j

= gik g jl Rkl −
1
2 Rgi j , where gi j is the

inverse of gi j . Let Vi j be the inverse of P i j (if it exists). The cross curvature tensor
is

hi j =

(det Pkl

det gkl

)
Vi j .

This definition is taken from [Chow and Hamilton 2004].
Assume that computations are done in an orthonormal frame in which the Ricci

tensor is diagonal. Then the cross curvature tensor is diagonal. If the principal
sectional curvatures are k1, k2, k3 (that is, ki = K jk jk , cyclically) so that Ri i =k j+kl

(cyclically in i, j, l), then

(1-1) hi i = k j kl .

Notice that this definition works even when some of the sectional curvatures vanish;
this was also addressed in [Ma and Chen 2006].

1.3. The cross curvature flows. Chow and Hamilton [2004] define the cross cur-
vature flow on 3-manifolds having either positive sectional curvature or negative
sectional curvature. The local existence of the flow, under either of these two
circumstances, was proved by Buckland [2006]. More precisely, if ε = ±1 is the
sectional curvature sign of the metric g0, the cross curvature flow starting from g0

is the solution of
∂
∂t g = −2εh and g(0)= g0.

For the purpose of this paper, it should be noticed that locally homogeneous
manifolds seldom have sectional curvatures that are all of the same sign. In di-
mension 3, positive sectional curvature is only possible on locally homogeneous
manifolds covered by the sphere SU(2). Negative sectional curvature occurs only
on hyperbolic 3-manifolds. All other locally homogeneous closed Riemannian 3-
manifolds are either flat or have some positive sectional curvatures [Milnor 1976,
Theorem 1.6]. Thus the definition above is not really practical for our purpose. In
fact, at least in the case of locally homogeneous 3-manifolds, it seems very natural
to investigate both the positive and the negative cross curvature flows where the
positive cross curvature flow is defined by

(+XCF) ∂
∂t g = 2h and g(0)= g0,
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and the negative cross curvature flow is defined by

(−XCF) ∂
∂t g = −2h and g(0)= g0.

In this paper we consider the negative cross curvature flow (−XCF).
As in the Ricci flow, we can also consider the normalized cross curvature flow

(NXCF) on closed 3-manifolds. It preserves the volume of closed 3-manifolds and
is given by

(NXCF) ∂
∂t gi j = −2hi j +

2
3 h̄gi j ,

where h̄ =
∫

M3 gi j hi j du/
∫

M3 du. As for the Ricci flow, the flows (−XCF) and
(NXCF) only differ by a change of scale in space and a reparametrization of time
given by g̃(t̃ )= ψ(t)g(t) and t̃ =

∫
ψ2(t).

1.4. Locally homogeneous 3-manifolds. Following Isenberg and Jackson [1992]
(to which we refer for details concerning the following discussion), we take the
viewpoint that our original interest is in closed Riemannian 3-manifolds that are
locally homogeneous. By a result of Singer [1960], the universal cover of a locally
homogeneous manifold is homogeneous, that is, its isometry group acts transi-
tively. Now, since the cross curvature flow (just as the Ricci flow) commutes with
the projection map from the universal cover, we can as well study the flow on the
(often noncompact) universal cover.

In dimension 3, there are 9 possibilities for the universal cover, which can be
labeled by the minimal isometry group that acts transitively:

(a) H(3), where H(n) is the isometry group of hyperbolic n-space; SO(3)× R;
H(2)× R;

(b) R3; SU(2); SL(2,R); Heisenberg; E(1, 1) = Sol, the group of isometry of
plane with a flat Lorentz metric; E(2), the group of isometries of the Euclidean
plane.

The crucial difference between cases (a) and (b) above is that, in case (b), the
universal cover of the corresponding closed 3-manifold is (essentially) the minimal
transitive group of isometries itself (with the caveat that both SL(2,R) and E(2)
should be replaced by their universal cover), whereas in case (a) this minimal group
is of higher dimension. The cases (a) and (b) are studied separately. The case (b)
is called the Bianchi case in [Isenberg and Jackson 1992]. It corresponds exactly
to the classification of 3-dimensional simply connected unimodular Lie groups
(nonunimodular Lie groups cannot cover a closed manifold).

1.5. Real 3-dimensional unimodular Lie algebra. Our study is based on Milnor’s
description [1976, Section 4] of all three-dimensional real Lie algebras equipped
with an Euclidean structure (that is, a left-invariant metric g0 on the Lie group).
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Remember that the data here is the Lie algebra with a fixed Euclidean structure
(and, in fact, a fixed orientation). The crucial result is as follows. Assume that g is
a 3-dimensional real unimodular Lie algebra equipped with an oriented Euclidean
structure. Then there exists a (positively oriented) orthonormal basis (e1, e2, e3)

and reals λ1, λ2, λ3 such that the bracket operation of the Lie algebra has the form

[ei , e j ] = λkek (cyclically in i, j, k).

Milnor shows that such a basis diagonalizes the Ricci tensor and thus also the cross
curvature tensor. If fi = a j akei with nonzero ai , a j , ak ∈ R, then [ fi , f j ] = λka2

k fk

(cyclically in i, j, k). Using the choice of orientation, we may assume that at most
one of the λi is negative, and then the Lie algebra structure is entirely determined
by the signs (in {−1, 0,+1}) of λ1, λ2, λ3 as follows:

+ + + SU(2)
+ + − SL(2,R)

+ + 0 E(2) (Euclidean motions in 2D)
+ 0 − E(1, 1) (also called Sol)
+ 0 0 Heisenberg group
0 0 0 R3

In each case, let ε = (ε1, ε2, ε3) ∈ {−1, 0,+1}
3 be the corresponding choice of

signs. Then, given ε and an Euclidean metric g0 on the corresponding Lie algebra,
we can choose a basis f1, f2, f3 (with fi collinear to ei above) such that

(1-2) [ fi , f j ] = 2εk fk (cyclically in i, j, k).

As mentioned above, the metric, the Ricci tensor and the cross curvature tensor
are diagonalized in this basis and this property is obviously maintained throughout
either the Ricci flow or cross curvature flow. We call ( fi )

3
1 a Milnor frame for g0.

If we let ( f i )31 be the dual frame of ( fi )
3
1, the metric g0 is diagonalized by this

frame and has the form

(1-3) g0 = A0 f 1
⊗ f 1

+ B0 f 2
⊗ f 2

+ C0 f 3
⊗ f 3.

Assuming existence of the flow g(t) starting from g0, under either the Ricci flow
or the cross curvature flow (positive or negative), the original frame ( fi )

3
1 stays a

Milnor frame for g(t) along the flow. Thus, g(t) has the form

(1-4) g(t)= A(t) f 1
⊗ f 1

+ B(t) f 2
⊗ f 2

+ C(t) f 3
⊗ f 3.

It follows that these flows reduce to ODEs in (A, B,C). Given a flow, the explicit
form of the ODE depends on the underlying Lie algebra structure. With the help of
the curvature computations done by Milnor [1976], one can find the explicit form
of the equations for each Lie algebra structure. The Ricci flow case was treated
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in [Isenberg and Jackson 1992]. The case of the negative cross curvature flow is
treated below.

1.6. The trivial cases. The three non-Bianchi cases and the flat case R3 all lead
to essentially trivial behaviors. For R3, this is obvious.

In the hyperbolic case H(3), the only homogeneous metrics are constant multiple
of the standard hyperbolic metric. They all have constant negative curvature. The
cross curvature tensor is a multiple of the identity. So each metric is a fixed point
under the NXCF in this case.

In the case of SO(3)× R, the homogeneous metrics must have a product form
corresponding to a metric on R and a round metric on the 2 sphere. In a proper
frame, two of the principal sectional curvatures vanish, and thus h = 0. The cross
curvature flow is trivial.

Finally, for H(2)× R, the metrics again have a product form, so that two of the
three sectional curvatures vanish and h = 0. The cross curvature flow is trivial.

2. The negative XCF on the Heisenberg group (nil geometries)

Given a left-invariant metric g0 on the Heisenberg group, fix a Milnor frame { fi }
3
1

such that
[ f2, f3] = 2 f1, [ f3, f1] = 0, [ f1, f2] = 0

and (1-3) (hence (1-4)) holds. Using [Milnor 1976], the sectional curvatures are

K ( f2 ∧ f3)= −
3A
BC

, K ( f3 ∧ f1)=
A

BC
, K ( f1 ∧ f2)=

A
BC

.

The scalar curvature is R = −2A/(BC). The computation of the cross curvature
tensor easily follows by (1-1). In the dual frame ( f i )31, the cross curvature tensor
is given by

h =
A3

B2C2 f 1
⊗ f 1

− 3 A2

BC2 f 2
⊗ f 2

− 3 A2

B2C
f 3

⊗ f 3.

Hence the negative cross curvature flow (−XCF) reduces to the ODE system

d A
dt

= −
2A3

B2C2 ,
d B
dt

=
6A2

BC2 ,
dC
dt

=
6A2

B2C
.

Observe that
d A
Adt

= − 2 A2

B2C2 = −
1
3

d B
Bdt

= −
1
3

dC
Cdt

.

Hence B/C , A3 B and A3C stay constant under the flow, and

d A
dt

= − 2 A3

B2C2 = − 2A3
·

A6

A6
0 B2

0
·

A6

A6
0C2

0
= −

2
A12

0 B2
0 C2

0
A15.
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As R0 = −2A0/(B0C0), we arrive at

A(t)= A0(1 + 7R2
0 t)−1/14, B(t)= B0(1 + 7R2

0 t)3/14,

C(t)= C0(1 + 7R2
0 t)3/14.

This shows that the solution of the flow exists for all time t ≥ 0. The sectional
curvatures are

K ( f2 ∧ f3)=
3
2 R0(1 + 7R2

0 t)−1/2,

K ( f1 ∧ f2)= K ( f3 ∧ f1)= −
1
2 R0(1 + 7R2

0 t)−1/2.

Hence we have the following result.

Theorem 1. On the Heisenberg group, for any initial data A0, B0, C0 > 0, the
solution of (−XCF) on [0,∞) is given by

A(t)= A0(1+7R2
0 t)−1/14, B(t)= B0(1+7R2

0 t)3/14, C(t)=C0(1+7R2
0 t)3/14,

where R0 = −2A0/(B0C0). The sectional curvatures decay as t−1/2.

A closed manifold is a nilmanifold if it is the quotient of a nilpotent Lie group by
a discrete subgroup. A closed Riemannian manifold (M, g) is ε-flat (ε > 0 fixed) if
it admits a metric such that all sectional curvatures are bounded above in absolute
value by εd−2, where d is the diameter of (M, g). A manifold is almost flat if it
admits ε-flat metrics for all small ε > 0. By a theorem of M. Gromov [1978] (see
also [Buser and Karcher 1981]), in any dimension, a manifolds is almost flat if and
only if it is covered by a nilmanifold.

The closed locally homogeneous 3-manifolds associated to the Heisenberg group
are nilmanifolds and thus are almost flat. Let d(t) be the diameter of such a man-
ifold under the negative XCF g(t) considered above. Obviously, d(t)2 is of order
t3/14 and the sectional curvatures are bounded in absolute value by a constant times
t−1/2. This shows that, as t tends to infinity, the negative XCF yields ε-flat metric
(with ε(t) of order t−2/7). The normalized flow, (NXCF), has a similar behavior
with a slightly different numerology.

3. The negative XCF on Sol geometry (E(1, 1))

Given a left-invariant metric g0 on E(1, 1), fix a Milnor frame { fi }
3
1 such that

[ f2, f3] = 2 f1, [ f3, f1] = 0, [ f1, f2] = −2 f3.

The sectional curvatures are

K ( f2 ∧ f3)= −
(3A−C)(A+C)

ABC
, K ( f3 ∧ f1)=

(A+C)2

ABC
,

K ( f1 ∧ f2)=
(A−3C)(A+C)

ABC
.
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In the frame { f1, f2, f3}, we have

(hi j )= diag
(
−

A(A+C)3(3C−A)
(ABC)2 , B(3A−C)(3C−A)(A+C)2

(ABC)2 , −
C(A+C)3(3A−C)

(ABC)2
)
,

and the negative cross curvature flow equations are

(3-1)

d A
dt

= 2 A(A+C)3(3C− A)
(ABC)2

,
d B
dt

= − 2 B(3A−C)(3C− A)(A+C)2

(ABC)2
,

dC
dt

= 2C(A+C)3(3A−C)
(ABC)2

.

If A = C at t = 0, then A(t)≡ C(t) as long as the solution exists. Moreover,

d B
dt

= − 24A2
·4A2

A2 A2 B
= −

32
B
,

so B2
= B2

0 − 64t , that is, B = (B2
0 − 64t)1/2. Also, we have

d ln A
dt

=
32

B2
0 −64t

.

Hence
A(t)= C(t)=

A0 B0

(B2
0 −64t)1/2

.

For the case A0 6= C0, we may assume without loss of generality that A0 > C0.
Then we immediately have that C is increasing. Observing that

d(A−C)
dt

= − 2(A+C)4

(ABC)2
(A − C),

d ln(A/C)
dt

= − 8(A+C)3

(ABC)2
(A − C),

d(A−3C)
dt

= − 2(A+C)3

(ABC)2
(A2

+ 6AC − 3C2),

we find that A > C and that A − C , A/C and A − 3C are decreasing.
Let us further assume that 3C0 > A0. Then we have 1< A/C < A0/C0 < 3 and

B d B
dt

= − 2(A+C)2

(AC)2
(3A − C)(3C − A) ∈ (−128,−E0),

where E0 := 16(3C0 − A0)/A0 > 0. Therefore there exists a first T0 ∈ (0,∞) such
that B(T0) = 0. Furthermore, 2E0(T0 − t) < B2 < 256(T0 − t) when t ∈ [0, T0).
Hence

1
C

dC
dt

= 2(A+C)3

(ABC)2
(3A − C) > 16

B2 >
1

16(T0−t)
,

which implies that C and A go to ∞ as t → T0. It follows that, as t → T0,

B ∼

√
64(T0 − t), A,C ∼

E1
√

T0 − t
, A − C ∼ E2

√
T0 − t,
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where E1 and E2 are positive constants.
If 3C0 ≤ A0, then we claim that there exists t1 ≥ 0 such that 3C(t1) > A(t1)

(and thus 3C(t) > A(t) for all t > t1 as long as the solution exists, since A −3C is
decreasing). Supposing on the contrary that 3C ≤ A as long as the solution exists,
then we have that B is increasing, A is decreasing and

B d B
dt

= 2(A+C)2

(AC)2
(3A − C)(A − 3C) < 6(A+C)2

C2

= 6 (1 + A/C)2 < 6 (1 + A0/C0)
2
:= E3.

Therefore the solution exists for all t ∈ [0,∞) and B2 < 2E3t + B2
0 . Furthermore,

d(A−3C)
dt

= − 2(A+C)3

(ABC)2
(A2

+ 6AC − 3C2) < −
16C3

·4C2

(ABC)2

= −
64C3

A2 B2 < −
64C3

0
A2

0
·

1
2E3t+B2

0
.

Integrating the above inequality from 0 to ∞ yields a contradiction. Hence, we
have the following theorem.

Theorem 2. On E(1, 1), for any initial data A0, B0, C0 > 0, there exists a time
T0 > 0 such that the solution of the negative cross curvature flow exists for all
0 ≤ t < T0. As t → T0,

B ∼

√
64(T0 − t), A,C ∼

E1
√

T0−t
, A − C ∼ E2

√
T0 − t,

where E1 and E2 are constants. The sectional curvatures approach ±∞ at a rate
of (T0 − t)−1/2 as t → T0.

Remark. Under the normalized flow, the solution also only exists up to a finite
time T1, and

B ∼ E ′

1(T1 − t)1/2, A,C ∼
E ′

2
4
√

T1 − t
.

The sectional curvatures approach ±∞ at a rate of (T1 − t)−1/2 as t → T1. The
diameter d(t) increases like (T1 − t)−1/4, so the absolute values of the sectional
curvature are not o(d(t)−2) (compare with the case of the nil geometry). Recall
that the solution to the normalized Ricci flow exists for all time and approaches a
cigar degeneracy (see [Isenberg and Jackson 1992]), that is, two directions shrink
to zero while the other one expands to ∞, and the sectional curvatures decay at a
rate of t−1. The Ricci flow and cross curvature flows behave quite differently in
this case.
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4. The negative XCF on SU(2)

Given a left-invariant metric g0 on SU(2), fix a Milnor frame with [ fi , f j ] = 2 fk

cyclically. We have

K ( f2 ∧ f3)=
(B−C)2

ABC
−

3A
BC

+
2
B

+
2
C
,

and the other sectional curvatures are obtained by cyclic permutation. The cross
curvature tensor is diagonal under the associated orthogonal frame { fi }

3
1 with h11 =

(ABC)−2 AY Z , and the other entries obtained again by cyclic permutation with

X = 3A2
− (B − C)2 − 2AB − 2AC,

Y = 3B2
− (A − C)2 − 2AB − 2BC,

Z = 3C2
− (A − B)2 − 2BC − 2AC.

Therefore, under (−XCF), A, B,C satisfy the equations

(4-1) d A
dt

= − 2 AY Z
(ABC)2

,
d B
dt

= − 2 B Z X
(ABC)2

,
dC
dt

= − 2 C XY
(ABC)2

.

Without loss of generality, we may assume that A0 ≥ B0 ≥ C0. Then we know that
A ≥ B ≥ C as long as a solution exists. Observing that

Y = (B − A)(A + B + 2B − 2C)− C2
≤ −C2 < 0,

Z = −(A − B)2 + 3C2
− 2AC − 2BC ≤ −C2 < 0,

we have
d(A−B)

dt
=

2Z
(ABC)2

(A − B)(A2
+ A(6B − 2C)+ (B − C)2)≤ 0,

d(A−C)
dt

=
2Y

(ABC)2
(A − C)((A − B)2 + 6AC − 2BC + C2)≤ 0,

d ln(A/B)
dt

=
8Z

(ABC)2
(A − B)(A + B − C)≤ 0,

d ln(A/C)
dt

=
8Y

(ABC)2
(A − C)(A + C − B)≤ 0.

It follows that A, A − B, A − C , ln(A/B) and ln(A/C) are decreasing. Also,

−
d A
dt

=
2AY Z
(ABC)2

≥
2AC4

(A2C)2
=

2C2

A3 ≥
C2

0

A2
0

2
A
,

which implies d
dt A2

≤ −4C2
0 A−2

0 . Therefore there exists T0 ∈ (0,∞) such that
A(T0)= B(T0)= C(T0)= 0. On the other hand

−
d A
dt

=
2AY Z
(ABC)2

≤
2A

(AC2)2
(3A2)(4A2)=

24A3

C4 ≤
24A4

0

C4
0

1
A
.
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It follows that on [0, T0),

(4-2)
√

48(T0 − t)
A2

0

C2
0

≥ A(t)≥ 2
√

T0 − t
C0

A0
.

Since A/C is decreasing and bounded below by 1, we may assume limT0 A/C = p.
We claim that p = 1. Suppose instead that p > 1. Then we have

−
d ln(A/C)

dt
=

−4Y
(ABC)2

(A−C)(A+C − B)≥ 4C2(A−C)C
(A2C)2

≥ (1− p−1)
C0
A0

4
A2 .

Integrating from 0 to T0 and using (4-2), we get a contradiction, and limT0 A/C =1.
It follows easily from (4-1) that A, B,C ∼ 2

√
T0 − t as t → T0.

Theorem 3. For any choice of initial data A0, B0, C0>0, there exists a time T0>0
such that the solution of the cross curvature flow on SU(2) exists for all 0 ≤ t < T0.
As t → T0,

A, B,C ∼ 2
√

T0 − t .

Remark. If we consider the normalized XCF, we find that solutions of (NXCF)
exist for all time. As t → ∞, A, B and C approach a constant and the sectional
curvatures also become constant, so the metric becomes round. Since the sec-
tional curvatures become positive for t large enough, according to B. Chow and R.
Hamilton, the negative XCF is the more natural choice in this case.

5. The negative XCF on SL(2, R)

Given a left-invariant metric g0 on SL(2,R), fix a Milnor frame { fi }
3
1 such that

[ f2, f3] = −2 f1, [ f3, f1] = 2 f2, [ f1, f2] = 2 f3.

The sectional curvatures are

K ( f2 ∧ f3)=
1

ABC
(−3A2

+ B2
+ C2

− 2BC − 2AC − 2AB),

K ( f3 ∧ f1)=
1

ABC
(−3B2

+ A2
+ C2

+ 2BC + 2AC − 2AB),

K ( f1 ∧ f2)=
1

ABC
(−3C2

+ A2
+ B2

+ 2BC − 2AC + 2AB),

and the cross curvature tensor under the associate frame ( fi )
3
1 is

(hi j )=
1

(ABC)2
diag(AF2 F3, B F3 F1,C F1 F2),
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where
F1 = − 3A2

+ B2
+ C2

− 2BC − 2AC − 2AB,

F2 = − 3B2
+ A2

+ C2
+ 2BC + 2AC − 2AB,

F3 = − 3C2
+ A2

+ B2
+ 2BC − 2AC + 2AB.

Therefore, under the negative XCF, A, B,C satisfy the equations

(5-1) d A
dt

= −
2AF2 F3
(ABC)2

,
d B
dt

= −
2B F3 F1
(ABC)2

,
dC
dt

= −
2C F1 F2
(ABC)2

.

If B0 = C0, then B = C as long as a solution exists, and A and B satisfy

d A
dt

= −
2A3

B4 and d B
dt

= 23A2
+4AB
B3 .

Then A is decreasing and B is increasing. We have

d A−2

dt
= −2A−3 d A

dt
≤ 4B−4

0 and d B3

dt
≤ 6

3A2
0+4A0 B

B
≤ C1,

where C1 = 24A0 +18A2
0 B−1

0 is a constant. Integrating from 0 to t , we obtain that

A ≥ (4B−4
0 t + A−2

0 )−1/2 and B ≤ (C1t + B3
0 )

1/3.

It follows that a solution exists on [0,∞). Next,

(5-2)

d(4A−1
+B−1)

dt
= −4A−2 d A

dt
− B−2 d B

dt
= −6 A2

B5 ,

d(A9 B3)

dt
= 9A8 B3 d A

dt
+ 3A9 B2 d B

dt
= 24A10.

Hence 4A−1
+ B−1 is decreasing, which implies limt→∞ A := A∞> 0. Integrating

(5-2) we obtain that A9 B3
→ ∞ as t → ∞. Hence limt→∞ B = ∞. It is not hard

to show that, as t → ∞,

A ∼ A∞ +
1

8 3
√

3
A5/3

∞
t−1/3 and B ∼ (24A∞t)1/3.

For the case B0 6= C0, we may assume without loss of generality that B0 > C0.
Then B > C as long as a solution exists. It follows that

F3 = (B − C)(2A + B + 3C)+ A2 > A2 > 0.

Let a = AB−1 and c = C B−1.

Lemma 1. Suppose that, at t = 0, a and c satisfy

(5-3) a < 1 − c + 2
√

1 − c

and

(5-4) a > 1
3(2

√
1 − c + c2 − 1 − c).
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Then a and c satisfy (5-3) and (5-4) as long as a solution exists.

Proof. Because

F2 = (A − (B − C + 2
√
(B − C)B))(A − (B − C − 2

√
(B − C)B)),

F1 = (B − (A + C + 2
√
(A + C)A))(B − (A + C − 2

√
(A + C)A)).

we see that (5-4) is equivalent to F1 < 0, and (5-3) is equivalent to F2 < 0. Since

d A
dt

∣∣∣
F2=0

= 0, d B
dt

∣∣∣
F2=0

> 0, dC
dt

∣∣∣
F2=0

= 0,

we obtain that

(5-5) d F2
dt

∣∣∣
F2=0

< 0.

To prove that F2(t) < 0, we argue by contradiction. Suppose t0 is the first time
such that F2(t0)= 0. Since F2(0) < 0, we know that F ′

2(t0)≥ 0, which contradicts
(5-5). Therefore F2(t) < 0, which is equivalent to (5-3). Similarly d F1

dt

∣∣
F1=0 < 0

and F1(t) < 0. This completes the proof of the lemma. �

Lemma 2. Suppose a and c satisfy

(5-6) a ≥ 1 − c + 2
√

1 − c

at t = 0. Then eventually a and c will satisfy (5-3) and (5-4).

Proof. Suppose on the contrary that a ≥ 1−c+2
√

1 − c always holds; then F2 ≥ 0
and thus F1 < 0. Hence A is decreasing and B and C are increasing as long as a
solution exists. Note that

d ln(C/B)
dt

=
8(B−C)
(ABC)2

(A + B + C)F1 < 0.

Therefore c = C/B is decreasing, which implies that

A = aB ≥ (1 − c + 2
√

1 − c)B ≥ (1 − c0 + 2
√

1 − c0)B0.

On the other hand
d B2

dt
=

−4F1
A2 ·

F3
C2 .

Since
F3/C2

≥ 3((B/C)− 1)≥ 3((B0/C0)− 1)

and

−F1 = F2 + 2((A + B)2 − C2)≥ 2(B2
− C2)≥ 2C2

0((B0/C0)
2
− 1),

it follows that (B2)′ > η for some positive constant η.
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Therefore, either B goes to ∞ in finite time, or the solution exists on [0,∞)

and limt→∞ B = ∞. In either case, we have

F2 = −(B − C)(2A + C + 3B)+ A2
≤ −3BC(B/C − 1)+ A2

→ −∞.

This contradicts F2 > 0. �

Lemma 3. Suppose a and c satisfy

(5-7) a ≤
1
3(2

√
1 − c + c2 − 1 − c)

at t = 0. Then eventually a and c will satisfy (5-3) and (5-4).

Proof. Suppose on the contrary that a ≤
1
3(2

√
1 − c + c2 − 1 − c) always holds.

Then F1 > 0, and thus F2 < 0. It follows that A and C are increasing and B is
decreasing as long as a solution exists. Since

−F2 = F1 + 2((A + B)2 − C2)≥ 2A2
+ 4AB and F3 ≥ A2,

we obtain that A′
≥ 4A3(BC)−2

≥ 4A3
0 B−4

0 . If A stays finite for all t , then the
solution exists on [0,∞) and limt→∞ A = ∞. Therefore, as t → ∞,

F1 = (B − C)2 − A(3A + 2C + 2B)≤ (B0 − C0)
2
− 3A2

→ −∞.

This is a contradiction. If, on the other hand, A goes to ∞ in finite time, then
F1 → −∞ in finite time, another contradiction. �

From the three lemmas above, we can assume without loss of generality that (5-3)
and (5-4) hold at t = 0. Then F1 < 0, F2 < 0, A and B are increasing, and C is
decreasing as long as a solution exists.

Lemma 4. Suppose that in addition A0 + C0 ≤ B0. Then there exists T > 0 such
that

(5-8) A, B ∼ E(T − t)−1/2 and C ∼ 8
√

T − t as t → T,

where E is a positive constant.

Proof. We first claim that A + C ≤ B holds for all t . In fact,

(5-9) d ln(A/B)
dt

= −
8(A+B)
(ABC)2

F3(A + C − B),

which implies d(A/B)
dt

∣∣
A+C−B=0 = 0. On the other hand d(C/B)

dt

∣∣
A+C−B=0 < 0. It

follows that
d(A+C−B)

dt

∣∣∣
A+C−B=0

< 0,
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which implies A + C ≤ B as long as a solution exists. Therefore a = AB−1 is
increasing, and −F2 ≥ (A + B)2 − C2

≥ A(A + B + C). It follows that

d ln A
dt

=
2(−F2)F3
(ABC)2

>
2AB · A2

(ABC)2
=

2A
BC2 ≥

2A0

B0C2
0
.

If the solution exists on [0,∞), integrating the above inequality from 0 to ∞ yields
limt→∞ A = ∞. Since A + C ≤ B, we also obtain that limt→∞ B = ∞. Let
p := limt→∞ A/B. Then p must be 1; otherwise, integrating (5-9) from 0 to ∞, we
get a contradiction. Since limt→∞ A/B =1 as t →∞, we have F1, F2 ∼−(A+B)2.
It follows from

dC2

dt
= −4 F1 F2

A2 B2 ,

that C goes to 0 in finite time. This contradicts the assumption that a solution
exists on [0,∞). Therefore any solution blows up in finite time. Suppose [0, T )
is the maximal time interval of a solution. Let CT = limt→T C . If CT > 0, then
it follows easily from (5-1) that A and B stay bounded on [0, T ). Therefore we
may extend the solution beyond T , which contradicts the maximality of the time
interval [0, T ). Hence limt→T C = 0. From

d(AC)
dt

= −F2
4AC
(ABC)2

(B2
− (A + C)2)≥ 0,

we obtain that A → ∞ and B ≥ A + C → ∞ as t → T . Let p := limt→T AB−1.
Since A + C ≤ B, we have p ≤ 1. If p < 1, then, as t → T ,

d(A−B)
dt

=
2F3

(ABC)2
(B F1−AF2)=

2F3
(ABC)2

((A+B)2(B−A−2C)+(B−A)C2),

which is greater than zero. However, this is impossible since A − B ∼ −(1− p)B.
Therefore limt→T AB−1

= 1, and

lim
t→T

A−2 F1 = lim
t→T

A−2 F2 = −4 and lim
t→T

A−2 F3 = 4.

Then (5-8) follows easily from (5-1). �

The only case left now is that A, B,C satisfy A0 +C0 > B0 and F1(0), F2(0) < 0.
If there is a time T ∗ such that A(T ∗)+ C(T ∗) = B(T ∗), then from Lemma 4 we
know the behavior of the solution. On the other hand, if A + C > B for all t , then
−F1 ≥ (A + B)2 − C2 and (5-9) implies that AB−1 is decreasing. It follows that

−F2 = (B − C + 2
√

B(B − C)− A)(A − (B − C − 2
√

B(B − C)))≥ C1 AB,

where C1 is some constant depending only on A0, B0 and C0. Using the above two
inequalities and (5-1) we obtain that

dC2

dt
= −4 F1 F2

(AB)2
≤ −4C1((A+B)2−C2)

AB
≤ −8C1.
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Therefore, there exists a finite T > 0 such that C(T )= 0. From

d(BC)
dt

= −F1
4BC
(ABC)2

(A2
− (B − C)2)≥ 0,

we obtain that B →∞ and A> B−C →∞ as t →T . Again let p := limt→T AB−1.
Since A + C > B, we have p ≥ 1. If p > 1, then as t → T ,

d(A−B)
dt

=
2F3

(ABC)2
(B F1−AF2)=

2F3
(ABC)2

((A+B)2(B−A−2C)+(B−A)C2),

which is less than zero. However, this is impossible since A − B ∼ (p − 1)B.
Therefore limt→T AB−1

= 1,

lim
t→T

A−2 F1 = lim
t→T

A−2 F2 = −4 and lim
t→T

A−2 F3 = 4,

and we have (5-8). Hence we have the following theorem.

Theorem 4. On SL(2, R), for given initial data A0, B0, C0 > 0, if B0 = C0, then
B(t) = C(t), and the solution of the negative cross curvature flow exists for all
t ∈ [0,∞). As functions of t , A is decreasing and limt→∞ A = A∞ > 0, whereas
B and C are increasing and go to ∞. As t → ∞,

A ∼ A∞ +
1

8 3
√

3
A5/3

∞
t−1/3 and B = C ∼ (24A∞t)1/3,

and the sectional curvatures all approach to 0 as t → ∞; that is, K ( f2 ∧ f3) ∼

−4/B ∼ −E1t−1/3 and K ( f3 ∧ f1)= K ( f1 ∧ f2)= A/(BC)∼ E2t−2/3, where E1

and E2 are some constants.
If B0 > C0, then there exists a time T0 > 0 such that the solution of the cross

curvature flow on SL(2,R) exists for all 0 ≤ t < T0. As t → T0

A, B ∼ E(T0 − t)−1/2 and C ∼ 8
√

T0 − t,

where E is some constant, and all sectional curvatures go to ±∞ at the rate of
(T0 − t)−1/2 as t → T0.

Remark. The asymptotic behavior of the solution depends on the initial data in
this case. The condition B = C corresponds to a bundle structure over H2. It
is preserved but not “attractive”, that is, when B 6= C , the solution flows away
from it. In contrast, the Ricci flow does prefer this structure. If we consider the
normalized cross curvature flow, then for the case of B = C , we have A ∼ E1t−2/5

and B = C ∼ E2t1/5, where E1 and E2 are some constants. Then one sectional
curvature decays at rate of t−1/5, and the other two sectional curvatures decay at
rate of t−4/5: we have a pancake degeneracy. For the case of B 6=C under (NXCF),
A, B ∼ E1(T1 − t)−1/4 and C ∼ E2

√
T1 − t , and all sectional curvatures go to ±∞

at the rate of (T1−t)−1/2 as t → T1, where T1 is the maximal existence time for the
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solution. Recall that the solution of the Ricci flow in this case exists for all time
and develops a pancake degeneracy.

6. The negative XCF on E(2)

Given a left-invariant metric g0, fix a Milnor frame { fi }
3
1 such that

[ f2, f3] = 2 f1, [ f3, f1] = 2 f2, [ f1, f2] = 0.

The sectional curvatures are

K ( f2 ∧ f3)=
1

ABC
(B − A)(B + 3A), K ( f3 ∧ f1)=

1
ABC

(A − B)(A + 3B),

K ( f1 ∧ f2)=
1

ABC
(A − B)2,

and the cross curvature tensor (hi j ) in the frame { fi }
3
1 is

(A−B)2

(ABC)2
diag(A(A− B)(A+3B),−B(A− B)(3A+ B),−C(3A+ B)(A+3B)),

Therefore, under the negative XCF, A, B,C satisfy the equations

(6-1)

d A
dt

= −
2A(3B+ A)(A−B)3

(ABC)2
,

d B
dt

=
2B(3A+B)(A−B)3

(ABC)2
,

dC
dt

=
2C(3A+B)(3B+ A)(A−B)2

(ABC)2
.

If A0 = B0, then the geometry stays flat for all time. Without loss of generality,
we assume that A0 > B0. Then we have B0 ≤ B(t) < A(t) ≤ A0 as long as the
solution exists. Since C ′(t)> 0, we know C(t) is increasing. It follows easily from
(6-1) that a solution exists for all t ∈ [0,∞). We first claim that limt→∞ C = ∞.
In fact, suppose that limt→∞ C = C∞ <∞. Then

d(A−B)
dt

= −2(A−B)3

(ABC)2
(A2

+ 6AB + B2)

implies ((A−B)−2)′ ∼ E1 as t →∞, where E1 is a nonzero constant. It follows that
A − B ∼ E−1/2

1 t−1/2. Then, from dC2/dt = 4(3A+ B)(3B + A)(A− B)2/(AB)2,
we obtain that C → ∞ as t → ∞. This is a contradiction. Now,

d ln((A−B)2C)
dt

= 2d ln(A−B)
dt

+
d ln C

dt
=

2(A−B)4

(ABC)2
.

Therefore (A − B)2C is increasing. Since d ln((A − B)2C)/dt ≤ E2d ln B/dt
for some positive constant E2 and since B is bounded from above, (A − B)2C
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approaches some finite number as t → ∞. Hence

C2 dC
dt

= 2(3A+B)(3B+ A)
(AB)2

(A − B)2C ∼ E3,

as t → ∞. It follows that C ∼ E4t1/3, A − B ∼ E5t−1/6 and

d(A+B)
dt

= −2(A−B)4(A+B)
(ABC)2

∼ E6t−4/3.

Therefore we have the following theorem.

Theorem 5. On E(2), for any initial data A0, B0, C0 > 0, if A0 = B0, then the
solution of (−XCF) exists for all time, and A(t) = B(t) = A0 and C(t) = C0 for
all time (the geometry stays flat).

If A0 > B0, then the solution exists for all t ∈ [0,∞) and, as t → ∞,

A ∼ E1 + E2t−1/6, B ∼ E1 − E2t−1/6 and C ∼ (8E2/E1)
√

6t1/3,

where E1 and E2 are positive constants. Two of the sectional curvatures decay like
t−1/2, while the other one decays like t−2/3.

Remark. Under the Ricci flow, the geometry converges to a flat metric. If we
consider the solution to the normalized cross curvature flow, in the case that A0 =

B0, we still have flat metric. For the case of A0 6= B0, we have A ∼ E1t−1/7,
B ∼ E1t−1/7, and C ∼ E2t2/7. Two of the sectional curvatures decay like t−1/2,
and the other one decays like t−5/7; hence the solution of (NXCF) develops a cigar
degeneracy, that is, two directions shrink to zero, the other one expands without
bound, and the sectional curvature dies off.
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