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SUPERCONNECTIONS AND PARALLEL TRANSPORT
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This note addresses the construction of a notion of parallel transport along
superpaths arising from the concept of a superconnection on a vector bun-
dle over a manifold M. A superpath in M is, loosely speaking, a path in
M together with an odd vector field in M along the path. We also develop
a notion of parallel transport associated with a connection (also know as
covariant derivative) on a vector bundle over a supermanifold, which is a
direct generalization of the classical notion of parallel transport for connec-
tions over manifolds.

1. Introduction

The problem of understanding geometrically superconnections arose in an attempt
to give examples of supersymmetric 1|1-field theories à la Stolz–Teichner [2004]
over a manifold. Such field theories are expected to constitute cocycles for a dif-
ferential version of topological K-theory [Hopkins and Singer 2005; Bunke and
Schick 2007], providing the appropriate frame to formulate, for example, local
family versions of the celebrated index theorems. Though these problems are re-
lated, it is not clear at this point how to formulate this connection.

Recall the classical parallel transport of a connection on a vector bundle over a
manifold. Let E be a vector bundle over a manifold M , and ∇ a connection on E .
Given a path γ : [0, 1] → M joining two points x and y in M , the connection
allows to identify linearly the fiber Ex over x with the fiber Ey over y, via parallel
sections along the path, that is, sections that are constant along the path with respect
to the pullback connection. These identifications are compatible with gluing paths
and invariant under reparametrization. This independence of metric allows us to
refer to connections as examples of topological 1-dimensional field theories over
a manifold.

An analogous construction carries over to the category of vector bundles over
supermanifolds. The peculiar feature of a supermanifold is that its functions can
also anticommute. Locally, a supermanifold of dimension (p, q) looks like Rp|q ,
the space whose functions are smooth functions on Rp tensored with an exterior
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algebra in q odd generators. A supermanifold is represented by its (Z/2-graded)
algebra of functions. For example, given a vector bundle E over a manifold, the
supermanifold 5E has as functions the sections of the exterior bundle 3E∗. In
particular, the “odd tangent bundle” 5TM of a manifold M has as functions the
sections of the bundle 3T ∗M , that is, differential forms on M .

A connection ∇ on a vector bundle E over a supermanifold M is defined by
the usual Leibniz property: ∇( f s) = d f ⊗ s ± f ∇s for functions f on M and
sections s of E . Geometrically, such a connection gives rise to parallel transport
along superpaths α : R1|1

→ M . Namely, a section along α is parallel if it is
constant in the direction of the odd vector field D = ∂θ+θ∂t on R1|1. The resulting
parallel transport by parallel sections along superpaths is compatible under gluing
of superpaths and (conformal — see Section 3.2) reparametrizations of superpaths.

Next, we want to interpret superconnections geometrically (as parallel trans-
port). Recall [Quillen 1985; Berline et al. 1992] that a superconnection on a Z/2-
graded vector bundle E over a manifold M is an odd degree first order differential
operator defined on the space�∗(M, E) of sections of the bundle3T ∗M ⊗ E over
M , with A :�∗(M, E)→�∗(M, E) satisfying the (graded) Leibniz rule. A can be
written A = A0 + A1 + A2 +· · · , with A1 a grading-preserving connection on E ,
and Ai for i 6= 1 is given by multiplication by some form ωi ∈�i (M,End E).

We begin with a notion of parallel transport associated to a grading preserving
connection ∇ on a Z/2-graded vector bundle E over a manifold M and an End E-
valued form A ∈ �∗(M,End E)odd on M . Then A can be viewed as a section
of the endomorphism bundle Endπ∗E , where π : 5TM → M is the map that
on functions is the inclusion of 0-forms into the space of differential forms. Let
c : R1|1

→ M be a superpath in M . (We think, as is customary, in families of
superpaths — see [Witten 1999; Freed 1999].) Then c lifts naturally (see Section
4.1) to a superpath c̃ : R1|1

→5TM. A section ψ along c is parallel if

(c∗
∇)Dψ − (c̃∗ A)ψ = 0.

The resulting parallel transport is compatible under gluing of superpaths and con-
verges (by an inverse adiabatic limit process) to the parallel transport associated
to the connection ∇. As a corollary to this construction we obtain a parallel trans-
port corresponding to a superconnection A = A1 + A, by viewing A1 as a graded
connection and A ∈�∗(M,End E)odd as above.

2. A short introduction to supermanifolds

We give in this section a brief introduction to the theory of supermanifolds. The
subject was introduced and developed by Leı̆tes [1980], Bernstein, and Manin
[1988]. A good expository reference is Deligne and Morgan [1999]. The reader
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can also consult Varadarajan [2004]. We spend here some time talking about in-
tegration of vector fields on supermanifolds, since we could not find a detailed
account on the topic in the literature.

Start with the ringed space Rp|q
= (Rp,C∞

Rp ⊗3[θ1, . . . , θq ]). A supermanifold
M of dimension p|q is a pair (|M |,OM) with |M | a topological space and OM a
sheaf on |M | of Z/2-graded algebras that locally is isomorphic to Rp|q . |M | is
called the underlying space of M and OM is the structure sheaf of M . The odd
functions generate a nilpotent ideal J of OM and (|M |,OM/J) is a smooth manifold
of dimension p, called the reduced manifold Mred of M .

A morphism of supermanifolds f : M → N is a pair f = (| f |, f ]) consisting
of a continuous map | f | : |M | → |N | and a map f ] : ON → | f |∗OM of sheaves of
Z/2-graded algebras. For example, there is a canonical morphism i : Mred ↪→ M ,
which on the underlying spaces is the identity; the map on sheaves is the projection
i] : OM → OM/J. A morphism f : M → N induces a morphism between the
corresponding reduced manifolds since it preserves the nilpotent ideal sheaves. A
morphism of supermanifolds is uniquely determined by the map induced on global
sections [Kostant 1977, p. 208]. So, instead of a map of sheaves, we will consider
just the map induced on their global sections. Supermanifolds are examples of
ringed spaces and the category SM of supermanifolds embeds fully faithfully in
the category of ringed spaces.

An important source of examples of supermanifolds comes from vector bundles.
To any vector bundle E over a manifold M0 one can associate a supermanifold
5E = (M0,O5E), where O5E is the sheaf of sections of 3E∗. This defines a
functor

S : VB −→ SM : E 7−→5E

from the category of vector bundles to the category of supermanifolds. There is
also a functor V going the other direction. Namely, let M = (M0,OM) be a su-
permanifold. Then (J/J2)∗ is a locally free sheaf on M0, where J is the nilpotent
ideal of OM , so it determines a vector bundle on M0. We have that V ◦ S = id and
S◦V = id on isomorphism classes of objects. This doesn’t assure an equivalence of
categories though, since SV fails to be the identity on morphisms (for instance, it
maps the automorphism (x, θ1, θ2) 7→ (x +θ1θ2, θ1, θ2) of R1|2 to id). The category
of supermanifolds is richer in morphisms. This relation between the categories
is analogous to the one between graded rings (vector bundles) and filtered rings
(supermanifolds).

2.1. The “functor of points” viewpoint. In the superworld one cannot talk prop-
erly about points on a supermanifold unless one refers to points on the reduced
manifold. A more suitable approach is the lingo of S-points. Consider a super-
manifold M . An S-point of M for an arbitrary supermanifold S is a map S → M ,
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and the S-points of M is the set M(S)=SM(S,M). This is the approach physicists
adopt in computations, which also resonates with our geometric intuition. One can
think of an S-point as a family of points of M parametrized by S. For example, as
sets,

M(R0|0)= SM(R0|0,M)= |M |.

If T
α

−→ S is a map in SM, there is a natural map M(S)→ M(T ) : m 7→ m ◦ α.
So M determines a contravariant functor

SMop
→ Sets : S 7→ M(S)

called the functor of points of M . A map f : M → N of supermanifolds determines
a natural transformation SM( · ,M)→SM( · , N ). The converse of this is also true,
and forms the content of Yoneda’s lemma. This means that to give a map M → N
amounts to giving maps of sets M(S)→ N (S), natural in S.

We can therefore think of a supermanifold M as a representable functor SMop
→

Sets, such a functor determining M uniquely up to isomorphism. For example,
if M, N are two supermanifolds, their product M × N can be interpreted as the
supermanifold representing the functor

S 7→ SM(S,M)× SM(S, N ).

An arbitrary contravariant functor SM → Sets will be called a generalized su-
permanifold. The category SM of supermanifolds embeds fully faithful into the
category GSM of generalized supermanifolds. Consider, for example, two super-
manifolds M, N , and define the generalized supermanifold

SM(M, N ) : SM → Sets : S 7−→ SM(S × M, N ).

If SM(M, N ) is an ordinary supermanifold, then we have the adjunction formula

SM(S, SM(M, N ))∼= SM(S × M, N ).

2.2. The tangent sheaf and tangent vectors. The analogue of the tangent bundle
in classical differential geometry is the tangent sheaf TM defined as the sheaf of
graded derivations of OM , that is, for U ⊆ |M |,

TM(U )={X :OM(U )→OM(U ) linear | X ( f g)= X ( f )g+(−1)p(X)p( f ) f X (g)}.

Here p(X)= 0 or 1 according to whether X is an even or, respectively, odd vector
field on U , and similarly p( f )= 0 or 1, for f an even or, respectively, odd function
on M . TM is then a locally free OM -module of rank (p, q), the dimension of the
supermanifold M . Sections of TM are the vector fields on M . For X and Y vector
fields on M , define as usual their Lie bracket [X, Y ] by

[X, Y ]( f )= X (Y ( f ))− (−1)p(X)p(Y )Y (X ( f )) for f ∈ C∞(M)= OM(|M |).
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For example, consider on R1|1 the vector field D = ∂θ + θ∂t . Then, one can check
that

D2
=

1
2 [D, D] = ∂t .

Similarly, if Q = ∂θ − θ∂t , then

Q2
=

1
2 [Q, Q] = −∂t .

For m ∈ M(S) an S-point of M , define the tangent space at m to M by

TMm = {v : C∞(M)→ C∞(S) | v( f g)= v( f )m](g)+ (−1)p(v)p( f )m]( f )v(g)}.

For m ∈ M an ordinary point, we get the usual definition of the tangent space at m.

2.3. Geometric structures on (1, 1)-supermanifolds. Suppose Y is a (1, 1)-super-
manifold. Then the tangent sheaf TY is a locally free OY -module of rank (1, 1): if
(t, θ) are local coordinates on Y then {∂t , ∂θ } forms a local basis for TY . A confor-
mal structure on Y is a rank (0, 1) distribution D, that is, a rank (0, 1) subsheaf of
the tangent sheaf TY , that fits into the following short exact sequence of sheaves:

0 → D −→ TY −→ D⊗2
→ 0.

A euclidean (metric) structure on Y is given by the choice of an odd vector field
D generating an odd distribution D as above. For example, on R1|1 consider the
vector field D = ∂θ + θ∂t . Then D defines a metric structure on R1|1, called the
standard metric structure on R1|1. Also D = 〈D〉, the distribution generated by D,
defines a conformal structure on R1|1: indeed, the square of D is D2

= ∂t , and the
pair {D, D2

} generates TR1|1 as an OR1|1-module. For an alternative definition of
metric structures see [Stolz and Teichner 2004, Section 3.2].

2.4. The super Lie group R1|1. Super Lie groups are the super analogue of Lie
groups in differential geometry. Let for example R1|1 be the super Lie group with
the multiplication map m : R1|1

× R1|1
→ R1|1, which defined on S-points by

(t, θ), (t ′, θ ′)
mS

7−→ (t + t ′
+ θθ ′, θ + θ ′).

Here t and t ′ are even functions on S, θ and θ ′ are odd functions on S, and so on.
Observe that θθ ′ is an even function on S. The map m defines a group multipli-
cation on R1|1, with identity given by (0, 0) ∈ R1|1 and the inverse map given by
(t, θ) 7→ (−t,−θ). This is the group structure on R1|1 that we will mostly use in
this paper; therefore we are going to call it the standard group structure on R1|1.

As in the classical theory of Lie groups, we can consider left (right) invari-
ant vector fields and identify them with the tangent space at the identity e ∈ G.
Let X be a vector field on a super Lie group G, that is, a graded derivation
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X : C∞(G)→ C∞(G). X is left-invariant if the diagram

C∞(G) m]
//

X
��

C∞(G)⊗ C∞(G)

1⊗X
��

C∞(G)
m]

// C∞(G)⊗ C∞(G)

commutes, that is, m]
◦ X = (1 ⊗ X) ◦ m]. The diagram expresses the fact that X

is an infinitesimal right translation.
Consider, for example, R1|1 with the standard group structure defined above. Let

Q be the vector field on R1|1 given by Q = ∂θ − θ∂t , in coordinates (t, θ) on R1|1.
Let us show that Q is left-invariant. We need to check the commutativity of the
diagram

C∞(R1|1)
m]

//

Q
��

C∞(R1|1)⊗ C∞(R1|1)

1⊗Q
��

C∞(R1|1)
m]

// C∞(R1|1)⊗ C∞(R1|1).

This is verified by looking at the two commutative diagrams

t � m]
//

_

Q
��

t1 + t2 + θ1θ2_

1⊗Q
��

θ
� m]

//
_

Q
��

θ1 + θ2_

1⊗Q
��

−θ
�

m]

// −θ1 − θ2 1 �
m]

// 1.

Analogously, a vector field X on a supermanifold M is right-invariant if m]
◦X =

(X ⊗ 1) ◦ m]. One can check for example that the vector field D = ∂θ + θ∂t is a
right-invariant vector field on R1|1.

2.5. Some identifications.
Lemma 2.1. Let M be an ordinary manifold. Then, we can identify

SM(R0|1,M)∼=5TM,

where 5TM is the odd tangent bundle of M.

Proof. We want to show that we have isomorphisms

9S : SM(S × R0|1,M)→ SM(S,5TM),

natural in S, where S is an arbitrary supermanifold. The left hand side is the set of
grading-preserving maps of Z/2-algebras

ϕ : C∞(M)→ C∞(S × R0|1)= C∞(S)[θ ].
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If we write ϕ( f ) = ϕ1( f )+ θϕ1( f ), for f ∈ C∞(M), then the fact that ϕ( f g) =

ϕ( f )ϕ(g) is equivalent to the conditions

ϕ1( f g)= ϕ1( f )ϕ1(g) and ϕ2( f g)= ϕ2( f )ϕ1(g)+ (−1)p( f )ϕ1( f )ϕ2(g).

The first condition is equivalent to ϕ1 = a] for some a : S → M . The second
tells us that ϕ2 is an odd tangent vector at a ∈ M(S), that is, ϕ2 = Xa ∈ TMa .
Therefore the left hand side is

SM(S × R0|1,M)= { pairs (a, Xa) | a ∈ M(S), Xa ∈ TMa, Xa odd }.

SM(S,5TM), at right, is the set of Z/2-graded algebra maps �∗(M)→ C∞(S).
Such maps are determined by their restriction to 0-forms (functions) and 1-forms
(more specifically, 1-forms of the type d f for f ∈ C∞(M)). Define then9S(a, Xa)

to be the map S →5TM determined by defining it on functions f ∈ C∞(M) by
a]( f ) ∈ C∞(S) and on forms d f by Xa( f ). One can easily check that 9S is well-
defined, bijective, and natural in S. �

Let T : 5TM ×R0|1
→ 5TM be the map which on functions is given by

�∗(M) 3 ω 7→ ω+ θdω ∈�∗(M)[θ ]. Consider also the map

µ : SM(R0|1,M)× R0|1
→ SM(R0|1,M)

that is defined on S-points

SM(S × R0|1,M)× SM(S,R0|1)→ SM(S × R0|1,M)

by (ϕ, η) 7→ ϕ ◦ (1×m)◦ (1×η×1)◦ (1×1), where m is the group composition
map on R0|1. The maps T and µ define an action of R0|1 on the corresponding
spaces.

Lemma 2.2. The map defined in the previous lemma, 9 : SM(R0|1,M)→5TM,
is R0|1-equivariant.

Proof. We want to show the commutativity of

SM(R0|1,M)× R0|1

µ

��

9×1
// 5TM ×R0|1

T
��

SM(R0|1,M)
9

// 5TM .
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We need that, for each supermanifold S, natural in S, the commutativity of

SM(S × R0|1,M)× SM(S,R0|1)

µS

��

9S×1
// SM(S,5TM)× SM(S,R0|1)

TS

��
SM(S × R0|1,M)

9S

// SM(S,5TM),

or, in terms of functions, we need to have

Alg(C∞(M),C∞(S)[θ ])× C∞(S)odd

µS

��

9S×1
// Alg(�∗(M),C∞(S))× C∞(S)odd

TS

��
Alg(C∞(M),C∞(S)[θ ])

9S

// Alg(�∗(M),C∞(S)).

For a ∈ M(S) and Xa ∈ TMa , denote by (a, Xa)∈ Alg(�∗(M),C∞(S)) the map
determined by f 7→ a]( f ) and d f 7→ Xa( f ). (Compare the proof of the previous
lemma.) Via the identification

Alg(�∗(M),C∞(S))× C∞(S)odd
= Alg(�∗(M)[θ ],C∞(S)),

the map

TS : Alg(�∗(M),C∞(S))× C∞(S)odd
→ Alg(�∗(M),C∞(S))

evaluated at ϕ= ((a, Xa), θ̃ )∈ Alg(�∗(M),C∞(S))×C∞(S)odd is determined by
saying that

f
T ]

7−→ f + θd f
ϕ]

7−→ a]( f )+ θ̃Xa( f )=: b]( f ),

d f
T ]

7−→ d f
ϕ]

7−→ Xa( f )=: Xb( f ),

where b ∈ M(S) is defined by b]( f )= a]( f )+ θ̃Xa( f ) for f ∈ C∞(M).
On the other hand,

µS : SM(S × R0|1,M)× SM(S,R0|1)→ SM(S × R0|1,M)

is defined by (α= (a, Xa), η) 7→α◦(1×m)◦(1×η×1)◦(1×1), or, on functions,
µS((a, Xa), θ̃ ) is given by

f
α]

7−→ a]( f )+ θXa( f )

p1⊗m]

−−−→ a]( f )+ (θ1 + θ2)Xa( f )

p
1⊗ν]⊗1
−−−−→ a]( f )+ (θ1 + θ̃ )Xa( f )

p
1]⊗1
−−−→ a]( f )+ θ̃Xa( f )+ θXa( f )= b]( f )+ θXb( f ).
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Therefore we have

((a, Xa), θ̃ )

µS

��

9S×1
//
{
( f, d f, θ) � // (a]( f ), Xa( f ), θ̃ )

}
TS

��
(b, Xb)

9S

// (b, Xb)=
{
( f, d f ) � // (a]( f )+ θ̃Xa( f ), Xa( f ))

}
,

which verifies the commutativity of the above diagram. The lemma is proved. �

2.6. Differential equations on supermanifolds. In what follows we will show that
vector fields (even or odd) on supermanifolds can be integrated. We consider first
the even case.

Lemma 2.3. Let X be an even vector field on a compact supermanifold M (that is,
the underlying manifold is compact). Then there exists a unique map c :R×M → M
satisfying the conditions

∂t ◦ c] = c] ◦ X and c |0×M = idM .

The map c is called the flow of the vector field X .

Proof. The existence and uniqueness of a global solution follows from the existence
and uniqueness of a local solution, since M is compact. To solve the local problem,
we can assume without loss of generality that M = Rp|q . Let x1, . . . , x p+q be the
coordinate functions on Rp|q , with the first p coordinates even and the last q odd.
We also write θ1, . . . , θq for the last q odd coordinates. Let ci be the image of x i

under the map c]. Let us write

ci
=

∑
ci

J θ
J with ci

J ∈ C∞(R × Rp).

The vector field X can be written X =
∑p+q

1 ai∂x i , where ai are even functions
on Rp|q for i = 1, . . . , p and odd functions on Rp|q for i = p + 1, . . . , p + q . We
further write

ai =

∑
ai

J θ
J with ai

J ∈ C∞(Rp)

and with some of the ai
J possibly zero. The first condition above holds for a map

c : I × M → M , with I a small neighborhood of 0, if and only if it holds when
evaluated on the coordinate functions x i on Rp|q . Consequently, we must have
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∂t ci
= c](ai ). Equivalently, we have∑ dci

J

dt
(t, x)θ J

= ai (c(t, x, θ))

= ai (
∑

J cJ (t, x)θ J )

= ai (c0(t, x)+
∑

J 6=0 cJ (t, x)θ J )

= ai (c0(t, x))+
∑ ∂ai

∂x j (c0(t, x))c j
J (t, x)θ J

+ · · ·

= ai (c0(t, x))+
∑

f i
J

(
∂Lai
∂x L (c0(t, x)), cK (t, x)

)
θ J ,

where f i
J are polynomial functions on some large euclidean space, |L| ≤ p, and

|K | ≤ q . The fourth equality comes from the Taylor expansion for the function
ai around c0(t, x). Equating the coefficients of the above relation, we obtain the
system

dci
0

dt
(t, x)= ai (c0(t, x)) for i = 1, . . . , p,

dci
J

dt
(t, x)=

∑
f i

J

(
∂Lai
∂x L (c0(t, x)), cK (t, x)

)
for 0 6= |J | ≤ q
and i = 1, . . . , p + q.

We solve first the system of the first p equations to determine c0, and then the
first order system of differential equations determined by the last (p + q)(2q

− 1)
equations. The initial condition of the system is given by the relations

x i
=

∑
ci

J (0, x)θ J for i = 1, . . . , p + q,

which reflect the second condition in the statement of the lemma. By the general
theory of systems of differential equations, the above system admits a unique so-
lution. The lemma follows. �

More generally, given an even vector field X on a supermanifold M , and a
parametrizing supermanifold S, we have a unique solution α : R × S → M of the
system

∂t ◦α] = α] ◦ X and α|0×S = f

for some initial condition f : S → M . It is given by α = c ◦ (1 × f ), where c
is the flow determined by X . The map α gives us a family of integral curves,
parametrized by S, for the vector field X .

Next, we consider the odd case.

Lemma 2.4. Let M be a compact supermanifold and X be an odd vector field on
M. Then there exists a unique map α : R1|1

× S → M satisfying the two conditions

D ◦α] = α] ◦ X and α|0×S = f
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for some initial condition f : S → M. Here D = ∂θ + θ∂t is as usual.

Proof. Again, it is enough to solve the problem locally, for which we can assume
that M = Rp|q . Write X =

∑
ai∂x i . Then the first relation on arbitrary functions g

on Rp|q gives

(1)
∑(

∂g
∂x i ◦α

)
∂αi

∂θ
+

∑
θ
(
∂g
∂x i ◦α

)
∂αi

∂t
=

∑(
ai
∂g
∂x i

)
◦α.

Let us write α= G +θH with G, H ∈ C∞(I × S) for some I a neighborhood of 0.
Then, by Taylor’s expansion, we have

ai (α)= ai (G)+
∑

j
θ
∂ai
∂x j (G)H

j ,

and (1) becomes

H i
+ θ

(
∂Gi

∂t
+ θ

∂H i

∂t

)
= ai (G)+

∑
j
θ
∂ai
∂x j (G)H

j .

This is equivalent to the system

ai (G)= H i and ∂Gi

∂t
(s, t)=

∑
j

∂ai
∂x j (G(s, t))H j (s, t) ,

which gives rise to the system

(2) ∂Gi

∂t
(s, t)=

∑
j

∂ai
∂x j (G(s, t))a j (G(s, t)).

Now,
∑

j (∂a/∂x j )a j is an even vector field on Rp|q , so, by the previous lemma
and the ensuing remark, the system (2) admits a unique solution once we know
G(0, s), which is given by the initial condition f : S → M . �

Remark 2.5. The flow of an odd (even) vector field defines actually an R1|1-action
(respectively an R-action) on a (compact) supermanifold.

Let X be an odd vector field on a supermanifold M , and let α : R1|1
× M → M be

the flow of X . By definition, the following diagram is commutative:

C∞(M) α] //

X
��

C∞(R1|1
× M)

D
��

C∞(M) α] // C∞(R1|1
× M).

Let u : S → R1|1
× M be an S-point of R1|1

× M . Then u] ◦ D ◦α] = u] ◦α] ◦ X ,
which is to say that α∗u(Du)= Xα(u), where α∗ is the differential of α. If we denote
u = (t, θ, x), then the last equation can also be written ∂Dα(t, θ, x)= X (α(t, θ, x)).
This relation probably justifies our way of looking at a differential equation as a
commutative diagram. See also [Šander 1980].
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Again, let X be an odd vector field on a supermanifold M . By the lemma
above, X defines a flow α : R1|1

× M → M . Define the map α0 : R × M → M by
α0 = α ◦ (i × 1M), where i : R → R1|1 is the standard inclusion map; i is a group
homomorphism if R and R1|1 are endowed with the standard group structures.
Therefore α0 defines a flow map.

Lemma 2.6. The map α0 is the flow of the even vector field X2.

Proof. Indeed, by definition α] ◦ X = D ◦α]. Therefore

α] ◦ X2
= D ◦α] ◦ X = D ◦ D ◦α] = ∂t ◦α].

Since ∂t commutes with i] ⊗ 1, the claim follows. �

Example. Let D be the usual vector field on R1|1. Then the flow of D is given by
the group multiplication map m : R1|1

×R1|1
→ R1|1. To see this, we should verify

that m fits into the diagram

C∞(R1|1)
m]

//

D
��

C∞(R1|1
× R1|1)

D⊗1
��

C∞(R1|1)
m]

// C∞(R1|1
× R1|1).

This is indeed the case: the diagram expresses that D is a right invariant vector
field.

3. Connections on supermanifolds and their parallel transport

The section describes the parallel transport along superpaths of a connection on a
super vector bundle over a supermanifold. This follows closely the geometric idea
of parallel transport associated to a connection on a vector bundle over a manifold.

3.1. Setup. Let E be a super vector bundle over a supermanifold M , and let ∇

be a connection on E (see [Deligne and Morgan 1999]), that is, ∇ : 0(M, E) →

�1(M, E) such that

∇( f s)= d f ⊗ s + f ∇s for f ∈ C∞(M) and s ∈ 0(M, E).

In particular, for X ∈X(M) a vector field on M , we have ∇X :0(M, E)→0(M, E)
with

∇X ( f s)= X ( f )s + (−1)p(X)p( f ) f ∇X s.

Let c : S × R1|1
→ M be a (family of) supercurve(s parametrized by a superman-

ifold S) in M . Consider the pullback connection c∗
∇ and the derivation (c∗

∇)D :

0(c∗E)→ 0(c∗E). Here D is the vector field ∂θ + θ∂t on R1|1, extended trivially
to S × R1|1. An element of 0(c∗E) is called a section of E along c. We say that
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the section s along c is parallel if (c∗
∇)Ds = 0. In local coordinates, we can think

of this as being a half-order differential equation. There are two reasons for that:
first, the vector field D squares to the vector field d/dt ; second, for 2n unknown
functions we need n values as initial data.

Proposition 3.1. Let c : S × R1|1
→ M be a supercurve in the compact superman-

ifold M (that is, the reduced manifold is compact). Let ψ0 ∈ 0(c∗

0,0 E) be a section
of E along c0,0 : S → S × R1|1

→ M , with the first map the standard inclusion
i0,0 : S → S ×R1|1. Then there exists a unique parallel section ψ of E along c such
that ψ(0, 0)= ψ0.

Proof. The fact that ψ extends to all of S × R1|1 is a standard argument on the
flows of vector fields on compact manifolds. The existence (and uniqueness) of
ψ is then a local problem. Let U ⊆ M be a trivializing neighborhood such that
E|U ∼= U × Rp|q (p|q is the rank of the bundle E). Then the connection can
be written as ∇ = d + A, for some A ∈ �1(M) ⊗ End(Rp|q)ev. The equation
(c∗

∇)Ds = 0 with the given initial condition is then equivalent to the system

∂ψ

∂D
(s, t, θ)+ A(s, t, θ)ψ(s, t, θ)= 0 and ψ(s, 0, 0)= ψ0(s),

where ψ is defined in a neighborhood of S ↪→ S × R1|1 with values in Rp|q , and
A : S × R1|1

→ End(Rp|q) is short for (c∗ A)(D). If we write

ψ(s, t, θ)= (ai (s, t)+ θbi (s, t))i=1,...,p+q ,

A(s, t, θ)= (ci j (s, t)+ θd i j (s, t))i, j=1,...,p+q ,

then the system is equivalent to

bi (s, t)= − ci j (s, t)a j (s, t),

dai

dt
(s, t)= − ε(ci j (s, t))b j (s, t)− d i j (s, t)a j (s, t),

ai (s, 0)= ψ i
0(s).

Here ε(a)= a if a is even, and ε(a)= − a if a is odd. It is clear that this system
admits a unique solution around S × (0, 0). The proposition is proved. �

Lemma 3.2 (Naturality in S). Let c : S × R1|1
→ M be a supercurve in M , and

let ϕ : S′
→ S be an arbitrary map. Consider the supercurve c′

: S′
× R1|1

→ M
defined by c′

= c ◦ ϕ, where ϕ = ϕ× 1R1|1 . If ψ is a parallel section along c, then
ψ ◦ϕ is parallel along c ◦ϕ.

Proof. ψ is parallel along c if (c∗
∇)Dψ = 0. Observe that ϕ∗D = D. Therefore

(ϕ∗c∗
∇)D(ϕ

∗ψ)= ϕ]((c∗
∇)ϕ∗ Dψ)= ϕ]((c∗

∇)Dψ)= 0,

since ψ is parallel. That is, ψϕ is parallel along cϕ. �
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Remark 3.3. We could just as well have defined a parallel section along a super-
curve c in M to be a section s along c that satisfies the equation (c∗

∇)Qs = 0,
where Q = ∂θ − θ∂t . Let us call such sections Q-parallel to distinguish them from
the parallel sections defined above. Their relevance will become clear in property
(iii) of Theorem 3.5.

3.2. Invariance under reparametrization. The usual parallel transport is invariant
under reparametrization of paths. We will see in this subsection what that means
in the super context.

Let c : S × R1|1
→ M be a supercurve in M , and let ψ be a parallel section

of E along c, that is, (c∗
∇)Dψ = 0. Let ϕ be a family, parametrized by S, of

diffeomorphisms of R1|1 that preserve the distribution D. In particular, ϕ∗D = bD,
for some b ∈ C∞(S × R1|1). Then we have

((c ◦ϕ)∗∇)D(ψ ◦ϕ)= ((c∗
∇)ϕ∗ Dψ) ◦ϕ = b · ((c∗

∇)Dψ) ◦ϕ = 0.

Therefore, we conclude that if ψ is a parallel section of E along c, then ψ ◦ϕ is
a parallel section of E along c◦ϕ. We say that the parallel transport defined by the
connection is invariant under reparametrization. (In our case, “reparametrization”
refers to diffeomorphisms that preserve a distribution.)

This notion of parallel transport along superpaths generalizes the usual notion of
parallel transport along paths associated with a connection in the sense that a paral-
lel section in the old sense is parallel in the new sense, and the new parametrization
invariance is compatible with the parametrization invariance in the old sense (a
detailed discussion can be found in [Dumitrescu 2006, Section 4.3]).

3.3. Recovering the connection from the super parallel transport. We next ask,
Given a connection on a super vector bundle and its associated parallel transport,
how can we recover the connection? The answer goes as follows.

Giving a connection ∇ on E over M amounts to specifying for each vector field
X on M an X -derivation ∇X = X̃ : 0(M, E)→ 0(M, E), that is,

X̃( f s)= X ( f )s + (−1)p(X)p( f ) f X̃(s) for f ∈ C∞(M) and s ∈ 0(M, E),

such that the correspondence X 7→ X̃ is C∞(M)-linear.
Let X be an odd vector field on M , and let α = αX : R1|1

× M → M be the flow
of X . By definition (see Section 2.6), X fits into the diagram

C∞(M) α] //

X
���
�
� C∞(R1|1

× M)

D
��

C∞(M) α] // C∞(R1|1
× M).
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The pullback-connection via the path α will define, via the vector field D, a
D-derivation D̃ on the sections of the pullback bundle

0(R1|1
× M, α∗E)= C∞(R1|1

× M)⊗C∞(M) 0(M, E).

Lemma 3.4. D̃ = D ⊗ 1 + 1 ⊗ X̃ , where the right hand side is defined by

f ⊗ s 7→ D f ⊗ s + f ⊗ X̃s for f ∈ C∞(R1|1
× M) and s ∈ 0(M, E).

Proof. Indeed, both sides are D-derivations, and they coincide on sections of E
pulled back via the map α. To see the latter, write α∗s = 1 ⊗ s for s ∈ 0(M, E).
Then

D̃(1 ⊗ s)= (α∗
∇)D(α

∗s)= α∗(∇X s)= 1 ⊗ (X̃s)= (D ⊗ 1 + 1 ⊗ X̃)(1 ⊗ s). �

Now, the parallel transport depicts in particular the parallel sections along c
in the direction of D. That information is enough to determine D̃ : 0(c∗E) →

0(c∗E) as a D-derivation. Indeed, if si for i = 1, . . . , p + q locally are linearly
independent parallel sections, then any s ∈0(c∗E) can be written s =

∑
fi si with

fi ∈ C∞(R1|1
× M). Then D̃(

∑
fi si ) =

∑
D( fi )si . By the lemma above, we

have in particular D̃(α∗s)= α∗(X̃s) for s ∈ 0(M, E), and since α∗
: 0(M, E)→

0(R1|1
× M, α∗E) is injective, knowing D̃ uniquely determines X̃ .

Let now X be an even vector field on M , and let α : R × M → M be the flow
determined by X . Let α̂ : R1|1

× M → M be the trivial extension of α, that is,
α̂ = α ◦ (p × 1M), where p : R1|1

→ R is the usual projection (which on functions
is the inclusion of functions on R into forms on R). Then

(α̂∗
∇)D(α̂

∗s)= θ(α∗
∇)∂t (α

∗s)= θα∗(∇X s),

for all sections s ∈ 0(M, E). Since, as before, α∗ is injective, the lift of D along
α determines the lift of X given by the connection.

In this way, via the super parallel transport, we can lift all the vector fields
on M to the derivations given by the connection; in other words, the super parallel
transport recovers the connection.

3.4. Parallel transport along superpaths. Let (t, θ) ∈ R
1|1
+ (S) be an S-point of

R
1|1
+ . We define a super analogue of the interval It = [0, t] as follows:
Consider the triplet

S � �

i(0,0)
// S × R1|1 S? _

i(t,θ)
oo ,

with i(0,0)(s)= (s, 0, 0) and i(t,θ)(s)= (s, t (s), θ(s)). Here R1|1 is endowed with the
standard metric structure given by the odd vector field D = ∂η+η∂u in coordinates
(u, η) on R1|1 (see Section 2.3). We denote this (family of) superinterval(s) by I(t,θ).
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Let x and y be S-points of M . A superpath in M parametrized by the super-
interval I(t,θ) and with endpoints x and y is an equivalence class of supercurves
c : S × R1|1

→ M with c ◦ i0,0 = c(0, 0) = x and c ◦ it,θ = c(t, θ) = y, respec-
tively, such that c ∼ c′ if there exists an ε > 0 such that c(u, η) = c′(u, η) for all
(−η, 0) < (u, η) < (t +η, θ). Here, “<” is a partially defined order as follows: for
(t, θ), (u, η) ∈ R1|1(S), we say

(u, η) < (t, θ) if (t, θ)(u, η)−1
∈ R

1|1
+ (S).

Recall that R1|1 is a super Lie group (see Section 2.4) with the group structure

(t, θ), (s, η) 7→ (t, θ)(s, η) := (t + s + θη, θ + η).

In particular, for any supermanifold S, R1|1(S) = SM(S,R1|1) is not just a set
but a group. R

1|1
+ is the open subsupermanifold in R1|1 whose reduced part is

R+ = (0, ∞). For short, such a superpath is denoted c : I(t,θ) → M .
Now let c : I(t,θ) → M be a superpath in M . Then the connection ∇ on the

bundle E will determine a vector bundle homomorphism

x∗E

##GG
GG

GG
G

SP(c) // y∗E

{{wwwwww

S.

SP(c) is a C∞(S)-linear map SP(c) : 0(S, x∗E)→ 0(S, y∗E) described by the
diagram

E

��
M

S

x

??��������

v

GG���������������
� �

i(0,0)
// S × R1|1

c

ccHHHHHHHHH

ψ

ZZ5
5

5
5

5
5

5
5

S,? _

i(t,θ)
oo

y

jjVVVVVVVVVVVVVVVVVVVVVVVVVV

ψ(t,θ)

ii

that is, SP(c)(v)= ψ(t, θ), where ψ is the unique parallel section of E along the
supercurve c such that ψ(0, 0) = v. Since the solution ψ depends on the local
data, it turns out that the map SP(c) is well defined, that is, it does not depend on
a representative for the superpath c : I(t,θ) → M . It is clearly a C∞(S)-linear map;
therefore it defines a bundle map SP(c) : x∗E → y∗E .

The map SP satisfies the usual properties of a parallel transport map, that is,
it is compatible with gluing superpaths and is invariant under reparametrizations
(that is, diffeomorphisms of superintervals that preserve the fiberwise conformal
structure on R1|1). This forms the content of the following theorem:
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Theorem 3.5. Any connection ∇ on a super vector bundle E over a supermanifold
M gives rise to a correspondence SP(∇)= SP

It,θ
c // M � SP(∇) // c∗

0,0 E // c∗

t,θ E

satisfying the following properties:

(i) The correspondence c 7→ SP(c) is smooth and natural in S (see Lemma 3.2).
Smoothness means that if c is a family of smooth superpaths parametrized by
a supermanifold S, then the map SP(c) : c∗

0,0 E → c∗

t,θ E is a smooth bundle
map over S.

(ii) (Compatibility under gluing.) If c : It,θ → M and c′
: It ′,θ ′ → M are two

superpaths in M such that c′
≡ c ◦ Rt,θ on some neighborhood S × U of

S × (0, 0) ↪→ S × R1|1, with U an open subsupermanifold in R1|1 containing
(0, 0), we have SP(c′

· c)= SP(c′)◦SP(c), where c′
· c : It ′+t+θ ′θ,θ ′+θ → M is

obtained from c and c′ by gluing them along their “common endpoint”, that
is,

(c′
· c)(s, u, η)=

{
c(s, u, η) if (u, η) < (t + ε, θ),

c′(s, (u, η)(t, θ)−1) if (t − ε, θ) < (u, η).

(Here Rt,θ : S × R1|1
→ S × R1|1 is the right translation by (t, θ) in the R1|1-

direction, that is, Rt,θ (s, (u, η))= (s, (u, η)(t, θ)).)

(iii) For any superpath c : It,θ → M , the bundle map SP(c) : c∗

0,0 E → c∗

t,θ E is an
isomorphism, with inverse given by PS(c) : c∗

t,θ E → c∗

0,0 E , where c : It,θ → M
is given by c(u, η) = c((u, η)−1(t, θ)) and, for a superpath α in M , PS(α)
denotes Q-parallel transport along α (see Remark 3.3).

(iv) (Invariance under reparametrization.) Given c : It,θ → M a superpath in M
and ϕ : Is,η → It,θ a family of diffeomorphisms of superintervals that preserve
the vertical distribution, we have SP(c ◦ϕ)= SP(c).

Moreover, if ∇ 6= ∇
′, then SP(∇) 6= SP(∇ ′).

Proof of (ii). Since the construction of parallel transport is natural in S (see Lemma
3.2), it is enough to consider the case when S is “small” and c and c′ map to a
trivializing neighborhood U ⊆ M for E such that E |U ∼= U ×Rp|q and ∇ = d + A.
If ψ is a superparallel section along c with ψ(0, 0) = ψ0 and ψ ′ is parallel along
c′ with ψ ′(0, 0)= ψ(t, θ), then ψ ′

·ψ defined by

ψ ′
·ψ(s, u, η)=

{
ψ(s, u, η) if (u, η) < (t + ε, θ),

ψ ′(s, (u, η)(t, θ)−1) if (t − ε, θ) < (u, η)

is a parallel section along c′
· c. (Observe that ψ ′

·ψ is well defined by Proposition
3.1.) To show this, it is enough to prove the following lemma.
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Lemma 3.6. Let c : S × R1|1
→ M be a superpath in M , and let A ∈ �1(M)⊗

End(Rp|q)ev. Also let ψ : S × R1|1
→ Rp|q be such that

∂Dψ + (c∗ A)(D)ψ = 0.

If c = c ◦ R(t,θ) and ψ = ψ ◦ R(t,θ), then

∂Dψ + (c∗ A)(D)ψ = 0.

Proof. Let R be short for R(t,θ). Then R] extends to Rp|q -valued functions. Also,
the vector field D is invariant under right translations, that is, R∗D = D or, written
differently, D ◦ R] = R] ◦ D. Applied to the Rp|q -valued function ψ , this gives

∂D(ψ ◦ R)= (∂Dψ) ◦ R.

On the other hand,

(c∗ A)(D)= (R∗(c∗ A))(D)= R](c∗ A(R∗D))= R](c∗ A(D))= (c∗ A(D)) ◦ R.

Therefore we have

∂Dψ + (c∗ A)(D)ψ = ∂D(ψ ◦ R)+ R∗(c∗ A)(D)(ψ ◦ R)

= ∂D(ψ) ◦ R + ((c∗ A)(D)ψ) ◦ R = 0. � �

Proof of (iii). It is enough to assume that c maps to a trivializing neighborhood, as
before. Thenψ is parallel along c if ∂Dψ+(c∗ A)(D)ψ=0. Consider the sectionψ
along c defined by ψ(s, u, η)=ψ(s, (u, η)−1(t, θ)). Then ψ is Q-parallel along c.
To see this, it is enough to prove this lemma:

Lemma 3.7. Let c : S × R1|1
→ M be a superpath in M , and let A ∈ �1(M)⊗

End(Rp|q)ev. Let also ψ : S × R1|1
→ Rp|q be such that

∂Dψ + (c∗ A)(D)ψ = 0.

If c = c◦ R(t,θ)◦ I and ψ =ψ ◦ R(t,θ)◦ I , where I : S×R1|1
→ S×R1|1

: (s, u, η) 7→
(s,−u,−η) is the inversion map, then ∂Qψ + (c∗ A)(Q)ψ = 0.

Proof. Let us begin by showing that, via the inversion map I :R1|1
→R1|1

: (t, θ) 7→
(−t,−θ), we have I∗D = −Q. For that, we need to show the commutativity of

C∞(R1|1)
I ] //

−Q=−(∂θ+θ∂t )

���
�
�

C∞(R1|1)

D=∂θ−θ∂t
��

C∞(R1|1)
I ] // C∞(R1|1).
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Following the diagram both ways, we have

t � I ] //
_

−Q
��

−t_
D

��

θ
� I ] //

_

−Q
��

−θ_

D
��

θ
� I ] // −θ −1 � I ] // −1.

Returning to the proof of the lemma, let us notice thatψ can be writtenψ= I ]R]ψ ,
where R is short for R(t,θ). Then

∂Q(ψ)= ∂Q(I ]R]ψ)= −I ]∂D R]ψ = −I ]R]∂Dψ,

where the second equality is true by ∂Q I ] = −I ]∂D above and the third equality
is true since D is a right-invariant vector field, that is, R]∂D = ∂D R].

On the other side, we have

(c∗ A)(Q)= (I ∗ R∗c∗ A)(Q)

= I ](R∗(c∗ A)(I∗(Q))) = −I ](R∗(c∗ A)(D))

= −I ]R]((c∗ A)(D)),

where we used that the fact that

( f ∗ω)(Y )= f ](ω( f∗Y )),

with f : N → M an arbitrary map of supermanifolds, ω ∈�1(M), and Y ∈ X(N ).
(The relation is true provided f∗Y exists, which is true in our cases.) Therefore

∂Qψ + (c∗ A)(Q)ψ = −I ]R]∂Dψ − I ]R]((c∗ A)(D))(I ]R]ψ)

= −(∂Dψ + (c∗ A)(D)ψ) ◦ R ◦ I = 0. �

The conclusion of (iii) follows. �

3.5. The parallel transport of (∇, A). In the end of this section we define a notion
of A-parallel transport for the pair consisting of a connection and a bundle endo-
morphism A, and see that it converges (by an “inverse adiabatic limit” process) to
the parallel transport of the connection. In particular, this means that the A-parallel
transport is reparametrization invariant in the limit.

Let E be a super vector bundle over a supermanifold M . Let (∇, A) be a pair
consisting of a (grading-preserving) connection ∇ on E and A ∈ 0(M,End E) an
odd endomorphism of E . Let c : S × R1|1

→ M in M be a family of supercurves
parametrized by a supermanifold S. A section ψ ∈ 0(c∗E) of E along c is A-
parallel if it satisfies the equation

(3) (c∗
∇)Dψ − (c∗ A)ψ = 0.
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This is again a “half-order” differential equation. In local coordinates, if E|U ∼=

U × Rp|q , then ∇ = d + a with a ∈ �1(M,End E)odd, and Equation (3) can be
written

∂Dψ + (c∗a)(D)ψ − (c∗ A)ψ = 0,

where D = ∂η + η∂u . Suppose for simplicity that (u, η) runs on the superinterval
I(T,τ ) for (T, τ ) ∈ R

1|1
+ (S) an S-superpoint of R

1|1
+ . Recall that I(T,τ ) is defined by

the embeddings

S � �

i(0,0)
// S × R1|1 S? _

i(T,τ )
oo .

For λ > 0, let

ϕλ : I(λT,
√
λτ) → I(T,τ ) : (t, θ) 7→

(1
λ

t, 1
√
λ
θ
)

be the “rescaling” diffeomorphism that preserves the distribution D. Then ψ̃ is
A-parallel with respect to c̃ = c ◦ϕλ if

∂D̃ψ̃ + (c∗a)(D̃)ψ̃ − (c̃∗ A)ψ̃ = 0,

where D̃ = ∂θ + θ∂t . If we write ψ̃ =ψλ ◦ϕλ = ϕ
]
λ(ψ

λ) then the last equation can
be rewritten

∂D̃(ϕ
]
λ(ψ

λ))+ϕ∗

λ(c
∗a)(D̃)ϕ]λ(ψ

λ)−ϕ
]
λ(c

∗ A)ϕ]λ(ψ
λ)= 0,

An easy calculation shows that ϕλ∗(D̃) = (1/
√
λ)D, which can be rewritten as

∂D̃ϕ
]
λ = (1/

√
λ)ϕ

]
λ∂D , and the last equation is equivalent to

1
√
λ
ϕ
]
λ∂Dψ

λ
+

1
√
λ
ϕ
]
λ((c

∗a)(D))ϕ]λ(ψ
λ)−ϕ

]
λ((c

∗ A)ψλ)= 0;

therefore ∂Dψ
λ
+ (c∗a)(D)ψλ −

√
λ(c∗ A)ψλ = 0.

If we let λ→ 0 we see that ψλ −→ψ0, where ψ0 is the parallel section along c
determined by the connection ∇. We conclude that the parallel transport defined
by (∇, A) converges in the “inverse adiabatic limit” to the parallel transport of ∇,
which is in particular invariant under reparametrization. Symbolically we write

SP(∇, A)−→ SP(∇).

4. Superconnections and parallel transport

In this section we prove our main result: Any superconnection A on a Z/2-graded
vector bundle over a manifold gives rise to a parallel transport SP(A) which con-
verges to the parallel transport SP(A1) determined by A1, the connection part of
the superconnection.
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4.1. Preliminaries. Start with a Z/2-graded vector bundle E over a manifold M ,
and consider a grading-preserving connection ∇ on E , together with an End E-
valued form A on M, A ∈ (�∗(M,End E))odd. Combining these two pieces, we
obtain a Quillen connection A = ∇ + A on E .

Recall the identification in Section 2.5.

SM(R1|1,M)= SM(R,5TM),

which for a supermanifold S gives

SM(S × R1|1,M)∼= SM(S × R,5TM).

Let c : S × R1|1
→ M be a supercurve in M . Lift it to a supercurve c̃ in 5TM

as follows:

5TM ×R0|1 T // 5TM

π

��
S × R1|1

c
//

ĉ×1

OO
c̃

77oooooo
M.

In other words, c̃=T ◦(ĉ×1), where T is the R0|1 action map on5TM (see Lemma
2.2). The map ĉ : S×R →5TM corresponds to c : S×R1|1

→ M under the above
identification. The map π is given on functions by π ] : C∞(M)→ C∞(5TM)=

�(M), the inclusion of functions on M into the space of differential forms on M .

Claim. The above diagram is commutative.

Proof of Claim. It is enough to show that

(4)

5TM ×R0|1 T // 5TM

π

��
S × R0|1

α
//

α̂×1

OO

M

is commutative for S an arbitrary supermanifold, and α : S×R0|1
→ M an arbitrary

map. Here α̂ : S →5TM corresponds to α via Lemma 2.1.
This translates into the commutativity of

�∗(M)[θ ]

α̂]⊗1
��

�∗(M)T ]oo

C∞(S)[θ ] C∞(M).
α]

oo

π]

OO

Recall from the proof of Lemma 2.1 that if α] : f 7→ a]( f )+θXa( f ) for a ∈ M(S)
and Xa ∈ TMa , then α̂] : �∗(M) → C∞(S)[θ ] is determined by requiring that
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f 7→ a]( f ) and d f 7→ Xa( f ). Therefore we have

f
π]

7−→ f
T ]

7−→ f + θd f pα̂
]
⊗1

−−−→ a]( f )+ θXa( f )= α]( f ).

To complete the proof of the claim, it is enough to replace S 7→ S × R and α 7→ c
in the above considerations. �

Remark 4.1. It is not hard to check that the construction c 7→ c̃ is natural in S,
that is,

˜c ◦ (ϕ× 1)= c̃ ◦ (ϕ× 1)

for ϕ : S′
→ S an arbitrary map of supermanifolds.

Given the supercurve c, consider the pullback diagram

E

��

c∗Eoo

yyssssssssss

��

π∗E

ccFFFFFFFFF

��

M S × R1|1coo

c̃yys s
s

s
s

5TM

π

bbFFFFFFFFF

where c̃ is as above. We say a section ψ ∈ 0(c∗E) of E along c is A-parallel if it
satisfies the equation

(c∗
∇)Dψ − (c̃∗ A)ψ = 0.

This is again a “half-order” differential equation. It is equivalent to the equation

(c̃∗(π∗
∇))Dψ − (c̃∗ A)ψ = 0.

Therefore ψ ∈0(c∗E) is A-parallel if and only if ψ is A-parallel along the lift c̃
with respect to the pair (π∗

∇, A ∈ 0(End(π∗E))) on the bundle π∗E → 5TM,
as defined in Section 3.5. Therefore Proposition 3.1 gives the following:

Proposition 4.2. Let c : S × R1|1
→ M be a supercurve in the compact manifold

M. Let ψ0 ∈ 0(c∗

0,0 E) be a section of E along c0,0 : S → M. Then there exists a
unique A-parallel section ψ of E along c such that ψ(0, 0)= ψ0.

4.2. Parallel transport along superpaths. Suppose c : It,θ → M is a superpath
in M with c(0, 0) = x and c(t, θ) = y. Then the A-parallel transport of ∇, and
A ∈�∗(M,End E) will determine a bundle homomorphism SP(c) : x∗E → y∗E .
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This is defined as in Section 3.4 by a C∞(S)-linear map SP(c) : 0(S, x∗E) →

0(S, y∗E) described by the diagram

E

��
M

S

x

??��������

v

GG���������������
� �

i(0,0)
// S × R1|1

c

ccHHHHHHHHH

ψ

ZZ5
5

5
5

5
5

5
5

S,? _

i(t,θ)
oo

y

jjVVVVVVVVVVVVVVVVVVVVVVVVVV

ψ(t,θ)

kk

that is, SP(c)(v)= ψ(t, θ), where ψ is the unique A-parallel section with respect
to the pair (∇, A) of E along the supercurve c such that ψ ◦ i(0,0) = v.

4.3. Main theorem. We are now in the position to state our main theorem.

Theorem 4.3. Let E be a Z/2-graded vector bundle over a manifold M. Let ∇ be
a grading preserving connection on E and A ∈�∗(M,End E)odd. The pair (∇, A)
gives rise to a correspondence SP = SP(∇, A)

It,θ
c // M � SP // c∗

0,0 E // c∗

t,θ E

such that

(i) the correspondence c 7→ SP(c) is smooth and natural in S (see Lemma 3.2);

(ii) (Compatibility under gluing.) If c : It,θ → M and c′
: It ′,θ ′ → M are two

superpaths in M such that c′
≡ c ◦ Rt,θ on some neighborhood S × U of

S × (0, 0) ↪→ S × R1|1, with U an open subsupermanifold in R1|1 containing
(0, 0), we have

SP(c′
· c)= SP(c′) ◦ SP(c),

where c′
· c : It ′+t+θ ′θ,θ ′+θ → M is obtained from c and c′ by gluing them along

their “common endpoint”.

Moreover, if ∇ 6= ∇
′ or A 6= A′ then SP(∇, A) 6= SP(∇ ′, A′). Also, SP(∇, A)

converges in the inverse adiabatic limit to SP(∇).

Proof. The properties (i) and (ii) are clear from the construction of the parallel
transport of the pair (∇, A). Two different such pairs (superconnections) give rise
to two different parallel transports, since the parallel transport recovers the super-
connection, as we will show in Section 4.4. The inverse adiabatic limit process is
described in Section 3.5. �

Corollary 4.4 (The parallel transport of a superconnection). A superconnection A

on the bundle E over M (in the sense of Quillen) gives rise in a unique way to
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a (super)parallel transport based on M ; namely, consider the parallel transport
SP(∇, A) associated to the pair (∇ = A1, A =

∑
i 6=1 Ai ).

4.4. Recovering the superconnection. In this section we show how to recover a
superconnection, that is, a pair (∇, A), from the parallel transport associated to
it. We have already seen in Section 3.5 how the parallel transport of (∇, A) con-
verges via an inverse adiabatic limit process to the parallel transport of ∇, which
further recovers the connection ∇. See Section 3.3. We are only left to obtain
A ∈�∗(M,End E). To do that, let us consider the diagram

M 5TM ×R0|1evoo

T

xxpppppppppp
5TM ×R1|1

ρoo

c̃
rrf f f f f f f f f f f f f f f

c

uu

5TM

π

bbFFFFFFFFF

where ev is the “evaluation” map as in the previous section and ρ = 15TM × p,
with p : R1|1

→ R0|1 the natural projection map. Let us remark first that the lift
of the curve c = ev ◦ ρ is the composition T ◦ ρ. This holds by the naturality of
lifts of supercurves (see Remark 4.1), and the fact that the lift of the “curve” ev is
given by T (in diagram (4), if α = ev then êv = 15TM).

By definition, a section ψ ∈ 0(c∗E) of E along c is A-parallel if

(c∗
∇)Dψ − (ρ∗T ∗ A)ψ = 0.

We therefore know the operator

(c∗
∇)D − ρ∗T ∗ A : 0(c∗E)→ 0(c∗E)

on parallel sections. But that is enough to determine it, since the parallel sections
generate 0(c∗E) as a C∞(5TM ×R1|1)-module. On the other hand, we know the
operator (c∗

∇)D : 0(c∗E) → 0(c∗E) since we know the connection ∇. In this
manner we determine the linear map ρ∗T ∗ A. Since both ρ∗ and T ∗ are injective,
this uniquely determines A. In this manner, we recover the superconnection (∇, A)
from the associated parallel transport.

Example. Let us conclude by considering the above construction in case that M =

pt, that is, M is a point. The bundle E together with the connection reduces in this
case to a Z/2-graded vector space V , and the bundle endomorphism valued form
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A reduces to an odd endomorphism A ∈ End1(V ). We have the pullback diagram

E = E

��

E × R1|1

��

oo

pt = pt R1|1.c=c̃
oo

(It’s enough to consider only this map, since the factor S doesn’t play a role here.)
The pullback bundle is endowed with the trivial connection. The super parallel
sections along c are therefore given by the equation Dψ = Aψ .

Lemma 4.5. The solutions of the above equation are given by (t, θ) 7→ e−t A2
+θ Av

for some v in V .

Proof. Indeed, we have

(∂θ + θ∂t)e−t A2
+θ A

= (∂θ + θ∂t)((1 + θ A)e−t A2
)

= Ae−t A2
+ θe−t A2

(−A2)

= A(1 + θ A)e−t A2

= Ae−t A2
+θ A,

where in the third equality we moved A past e−t A2
without a sign change since

e−t A2
is even, and past θ with a change of sign, since both A and θ are odd. The

lemma follows. �

The parallel transport therefore defines a map

R1|1
3 (t, θ) 7→ e−t A2

+θ A
∈ GL(V ),

which is in fact a supergroup homomorphism R1|1
→ GL(V ) since composition

on R1|1, which preserves the vector field D, corresponds to composition (multipli-
cation) on GL(V ). For a direct proof of this see [Stolz and Teichner 2004].
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