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XIAOLI HAN

We consider the evolution of the graph of f : Rn → Rn in Rn × Rn by the
mean curvature flow. We prove that the flow exists smoothly for all time if
the differential of f has a positive lower bound. Moreover, at each time, the
flow remains the graph of a map ft .

1. Introduction

The mean curvature flow deforms the initial surface in the direction of its mean
curvature vector. Let f : 61→ 62 be a smooth map, and denote the graph of f
by 6 which is a submanifold of 61×62 by the embedding F = id× f . Chen, Li,
and Tian [2002], Ecker and Huisken [1989], Li and Li [2003], and Wang [2001;
2002] have studied the deformation of f by the mean curvature flow. The key idea
of these papers is to consider the quantity ∗ω, where ω is the volume form on 61

and ∗ is the Hodge operator with respect to the metric induced on 6 by F . In
fact ∗ω is the Jacobian of the projection from 6 to 61, and ∗ω > 0 if and only if
6 is a graph over 61, by the implicit function theorem. In [Chen et al. 2002; Li
and Li 2003; Wang 2001; 2002], the authors independently obtained the results of
long time existence and convergence under the condition ∗ω > 1/

√
2. We remark

that their results depend on the choice of subspace over which 6 is written as a
graph. In this article, we investigate smooth maps of Rn . The advantage of this kind
of map is that we can find a good representation of 6 via Lewy transformation.
This technique is used by Yuan [2002] to prove a Bernstein theorem for special
Lagrangian graphs. The difficult is that this case is noncompact. We don’t know
the behavior of solutions 6t for large time t . The surfaces 6t may diverge to∞.

Our result is as follows.

Theorem 1.1. Let f : Rn
→ Rn be a smooth map and 6 be the graph of f . If

D f ≥ ε for some ε > 0, then the mean curvature flow of the graph of f remains a
graph and exists for all time.
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2. Evolution equation

First we recall the evolution equation of ∗ω along the mean curvature flow. Let
f : Rn

→ Rn be a smooth map. The graph of f is an embedded submanifold 6 in
Rn
×Rn by F = id× f . Let ω be the standard volume form on Rn . Around any

point p ∈6, we choose orthonormal frames {ei }i=1,...,n for T 6 and {eα}α=n+1,...,2n

for N6. In the sequel, we use Roman letters i, j, k, . . . for tangent indices; we
use Greek letters α, β, γ, . . . for normal indices. We consider the quantity ∗ω,
where ∗ is Hodge operator with respect to the induced metric on 6. Then ∗ω =
ω(e1, . . . , en)=ω(π1(e1), . . . , π1(en)), where π1 :R

n
×Rn
→Rn is the projection

map from R2n to the tangent space of the domain Rn . In fact ∗ω is the Jacobian
of the projection from T 6 to the domain Rn . By the singular value decomposition
(see [Bretscher 1997]), there exist orthonormal bases {ai }i=1,...,n for the domain
Rn and {aα}α=n+1,...,2n for the target Rn , such that λiα = 〈d f (ai ), aα〉 is diagonal.
For simplicity, we denote λi(n+i) = λi . Now {ei = (1+ λ2

iα)−1/2(ai +
∑

α λiαaα)}

forms an orthonormal basis for T 6 and {eα = (1+λ2
iα)−1/2(aα−

∑
i λiαai )} forms

an orthonormal basis for N6. In this setting,

∗ω =
1∏n

i=1(1+λ2
i )

.

Define the second fundamental form of 6 as hα
i j = 〈∇ei e j , eα〉. Recall that ∗ω

satisfies the equation

(2-1)
( d

dt
−1

)
∗ω

= ∗ω
(∑

i, j,α

(hα
i j )

2
− 2

∑
k,i< j

λiλ j hn+i
ik hn+ j

jk + 2
∑

k,i< j

λiλ j h
n+ j
ik hn+i

jk

)
;

see [Wang 2002; Chen et al. 2002; Li and Li 2003]. This formula plays the impor-
tant role in these papers.

3. Long time existence

Using Equation (2-1), we now begin to prove our theorem.

Theorem 3.1. If D f ≥ ε for some ε > 0, then the mean curvature flow exists for
all time.

Proof. Step 1: The key idea is to seek a good representation of 6 via Lewy trans-
formation such that |λi | ≤ 1 − δ on the initial surface for some δ > 0. This is
inspired by Yuan’s work [2002]. We rotate the (x, y)∈Rn

×Rn coordinate system
to (x̄, ȳ) by π/4, that is, we set x̄ = (x + y)/

√
2 and ȳ = (−x + y)/

√
2. Then 6
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has a new parametrization

x̄ = 1
√

2
(x + f (x)) and ȳ = 1

√
2
(−x + f (x)).

Since D f ≥ ε, we have

|x̄2
− x̄1
|
2
=

1
2

(
|x2
− x1
|
2
+ 2(x2

− x1) · ( f (x2)− f (x1))+ | f (x2)− f (x1)|2
)

≥
1
2 |x

2
− x1
|
2.

It follows that 6 is still graph over the whole x̄ space Rn . That means 6 has the
representation (x̄, f (x̄)). Any tangent vector to 6 takes the form

1
√

2
((I + D f (x))e, (−I + D f (x))e),

where e ∈ Rn . It follows that

D f̄ (x̄)= (I + D f (x))−1(−I + D f (x)).

Noting that D f ≥ ε, we have

−I + δ ≤ (D f̄ )≤ I − δ for some δ > 0.

For the sake of convenience, we still denote the eigenvalues of d f̄ by λi . Now we
have already shown that |λi | ≤ 1−δ for some δ. By the theorem in [Tsui and Wang
2004] we know that this condition can be preserved along the mean curvature flow.
After putting this into Equation (2-1), its right side term in parentheses becomes∑

i, j,α

(hα
i j )

2
− 2

∑
k,i< j

λiλ j hn+i
ik hn+ j

jk + 2
∑

k,i< j

λiλ j h
n+ j
ik hn+i

jk

= δ|A|2+ (1− δ)
∑
i,k

(hn+i
ik )2

+ (1− δ)
∑

i< j,k

((hn+i
jk )2
+ (hn+ j

ik )2)

− 2
∑

k,i< j

λiλ j hn+i
ik hn+ j

jk + 2
∑

k,i< j

λiλ j h
n+ j
ik hn+i

jk

≥ δ|A|2+ (1− δ)
∑
i,k

(hn+i
ik )2

+ (1− δ)
∑

i< j,k

((hn+i
jk )2
+ (hn+ j

ik )2)

− 2(1− δ)
∑

i< j,k

|hn+i
ik hn+ j

jk | − 2(1− δ)
∑

i< j,k

|hn+ j
ik hn+i

jk |

≥ δ|A|2.

Thus we have

(3-1)
( d

dt
−1

)
∗ω ≥ δ|A|2.
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According to the maximum principle for parabolic equations, min6t ∗ω is non-
decreasing in time. So ∗ω has a positive lower bound, and this implies that 6t

remains the graph of a map ft : R
n
→ Rn whenever the flow smoothly exists.

Step 2: The remaining proof is routine. Fix any point (X0, t0). Then the back-
ward heat kernel ρ(F, X0, t, t0) at (X0, t0) is given by

ρ(F, X0, t, t0)=
1

(4π(t0−t))n/2 exp
(
−|F(x, t)−X0|

2

4(t0−t)

)
.

First we find a weighted monotonicity formula for
∫
6t

(1/∗ω)ρ(F, X0, t, t0)dµt

(see [Chen and Li 2004]). Recalling that

d
dt

dµt =−|H |2dµt ,(
∂

∂t
+1

)
ρ =−

(
|H + (F−X0)

⊥

2(t0−t)
|−|H |2

)
,

and combining these equations and Equation (3-1), we get

(3-2)

d
dt

∫
6t

1
∗ω

ρ(F, X0, t, t0)

≤

∫
6t

φρ1
1
∗ω
− δ

∫
6t

|A|2

∗ω2 ρ− 2
∫

6t

|∇ ∗ω|2

∗ω3 ρ

−

∫
6t

1
∗ω

(
1ρ+

(∣∣∣H +
(F − X0)

⊥

2(t0− t)

∣∣∣2
− |H |2

)
ρ
)

−

∫
6t

1
∗ω

ρ|H |2

≤ −

∫
6t

ρ
( 2
∗ω3 |∇ ∗ω|

2
+

1
∗ω

∣∣∣H + (F−X0)
⊥

2(t0−t)

∣∣∣2
+ δ
|A|2

∗ω2

)
+

∫
6t

(
ρ1

1
∗ω
−

1
∗ω

1ρ
)

≤ −

(∫
6t

1
∗ω

ρ(F, X0, t, t0)
∣∣∣H +

(F − X0)
⊥

2(t0− t)

∣∣∣2
dµt

+ δ

∫
6t

|A|2

∗ω2 ρ(F, X0, t, t0)dµt

+ 2
∫

6t

|∇ ∗ω|2

∗ω3 ρ(F, X0, t, t0)dµt

)
.

From this we see that limt→t0
∫
6t

(1/ ∗ω)ρ exists.
Let λi be positive numbers tending to∞ as i→∞ and let Fi be the diverging

sequence obtained by translating F by X0 and then dilating parabolically by λi ,
that is, by taking (F, t)→ (λi (F−X0), λ

2
i (t−t0)). Denote the new time parameter



ENTIRE MEAN CURVATURE FLOWS OF GRAPHS 337

by s. Then t = t0+ s/λ2
i . Thus,

Fi (x, s)= λi (F(x, t0+ λ−2
i s)− X0).

Let dµi
s denote the induced volume form on 6i

s by Fi . Notice that ∗ω is invariant
under the parabolic dilation. It is clear that∫

6t

1
∗ω

ρ(F, X0, t, t0)dµt =
1
∗ω

∫
6i

s

ρ(Fi , 0, s, 0)dµi
s .

Therefore we get

d
ds

∫
6i

s

1
∗ω

ρ(Fi , 0, s, 0)dµi
s ≤−

(∫
6i

s

1
∗ω

ρ(Fi , 0, s, 0)

∣∣∣Hi +
F⊥i

2(t0− t)

∣∣∣2
dµi

s

+ δ

∫
6i

s

|Ai |
2

∗ω2 ρ(Fi , 0, s, 0)dµi
s

+ 2
∫

6i
s

|∇ ∗ω|2

∗ω3 ρ(Fi , 0, s, 0)dµi
s

)
.

Note t0+λ−2
i s→ t0 for any fixed s as i→∞ and limt→t0

∫
6t

(1/ ∗ω)ρdµt exists.
By the above monotonicity formula, this implies that, for any fixed s1 and s2,

0←
∫

6i
s1

1
∗ω

ρ(Fi , 0, s1, 0)dµi
s1
−

∫
6i

s2

1
∗ω

ρ(Fi , 0, s2, 0)dµi
s2

≥

∫ s2

s1

∫
6i

s

1
∗ω

ρ(Fi , 0, s, 0)

∣∣∣Hi+
F⊥i

2(t0− t)

∣∣∣2
dµi

s

+ δ

∫ s2

s1

∫
6i

s

|Ai |
2

∗ω2 ρ(Fi , 0, s, 0)dµi
s

+2
∫ s2

s1

∫
6i

s

|∇ ∗ω|2

∗ω3 ρ(Fi , 0, s, 0)dµi
s .

Since ∗ω is bounded below, we have∫ s2

s1

∫
6i

s

|Ai |
2ρ(Fi , 0, s, 0)→ 0 as i→∞.

This implies that for any compact K ⊂ R2n ,

(3-3)
∫

6i
si
∩K
|Ai |

2
→ 0 as i→∞.

Now we claim that for the graphic mean curvature flow the fact that ∗ω has
a positive lower bound implies that (X0, t0) is a regular point. Without loss of
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generality, we assume the origin 0 is on the boundary of 6i
si

. Since

∗ω =
1∏n

i=1(1+λ2
i )
≤

1
1+λ2

i
=

1
1+|d ft |

2

and because ∗ω has a positive lower bound, 6t can be written as the graph of
a map ft : 61 → 62 with uniformly bounded |d ft |. We consider the diverging
sequence of f in R2n by λi given by

f̃i (y)= λi ft0+λ−2
i si

(y),

where y∈Rn . It is clear that |d f̃i | is also uniformly bounded and limi→∞ f̃i (0)=0.
By the Arzela theorem, f̃i→ f̃∞ in Cα on any compact set. Note that by [Ilmanen
1995, inequality (29)], we have

|Ai | ≤ |∇d f̃i | ≤ C(1+ |d f̃i |
3)|Ai |,

where ∇d f̃i is measured with respect to the induced metric on 6i
si

. From Equation
(3-3) we know that ∫

6i
si
∩K
|∇d f̃i |

2
→ 0 as i→∞,

which implies that f̃i→ f̃∞ in Cα
∩W 1,2

loc and that the second derivative of f̃∞ is 0.
By [Chen and Li 2004, Main Theorem], we know that 6i

si
→6∞ and that 6∞ is

independent of s. Therefore 6∞ is the graph of a linear function. Therefore

lim
i→∞

∫
ρ(Fi , 0, si , 0)dµi

si
=

∫
ρ(F∞, 0,−1, 0)dµ∞ = 1,

This implies that

(3-4)

lim
t→t0

∫
ρ(F, X0, t, t0)= lim

i→∞

∫
ρ(F, X0, t0+ λ−2

i si , t0)

= lim
i→∞

∫
ρ(Fi , 0, si , 0)dµi

si
= 1.

White’s regularity theorem [2002] tells us that if limt→t0 ρ(F, X0, t, t0) ≤ 1, then
(X0, t0) is a regular point. Thus (3-4) tells us that (X0, t0) is a regular point. We
have proved the theorem. �
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