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We derive the variation formula of the ∂̄-energy and of the ∂-energy for a
smooth map from a complex Finsler manifold to an Hermitian manifold.
Applying the result on a nonlinear elliptic system due to J. Jost and S. T.
Yau, we obtain some existence theorems of harmonic maps from strongly
Kähler Finsler manifolds to Kähler manifolds. Also, for such maps, we show
that the difference between ∂-energy and ∂̄-energy is a homotopy invariant.

1. Introduction

Complex Finsler manifolds are complex manifolds with complex Finsler metrics,
which are more general than Hermitian metrics. S. Kobayashi [1975] gave two
good reasons for considering complex Finsler structures in a complex manifold.
One is that every hyperbolic complex manifold M carries a natural complex Finsler
metric in a broad sense. The other is their use as a differential geometric tool for
the study of complex vector bundles.

Harmonic maps are important and interesting in both differential geometry and
mathematical physics. By using the volume measure induced from the projective
sphere bundle, harmonic maps between real Finsler manifolds were investigated in
[He and Shen 2005; 2007; Mo 2001; Mo and Yang 2005; Shen and Zhang 2004].
X. Mo [2001] considered the energy functional and the Euler–Lagrange operator
of a smooth map from a real Finsler manifold to a Riemannian manifold. Mo and
Yang [2005] also gave an existence theorem of harmonic maps from a real Finsler
manifold to a Riemannian manifold. In [Shen and Zhang 2004], the second author
and Y. Zhang obtained the first and second variation formulas of harmonic maps
between two real Finsler manifolds. As an application of the variation formulas, He
and Shen [2005; 2007] showed some stability and rigidity results of harmonic maps
for real Finsler manifolds. Recently, Nishikawa [2004] studied the harmonic maps
from a compact Riemann surface into complex Finsler manifolds by considering
the ∂-energy.
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In this paper, we shall study harmonic maps from complex Finsler manifolds
to Hermitian manifolds — in particular, to Kähler manifolds — by virtue of the
∂-energy. Of course, the harmonic maps are defined as the critical point of the
∂-energy (or ∂-energy). By calculating the first variation and applying a result of
J. Jost and S. T. Yau [1993] to a nonlinear elliptic system, we shall give some
existence theorems on harmonic maps from strongly Kähler Finsler manifolds to
Kähler manifolds. Precisely, we prove the following.

Theorem 1.1. Let (M,G) be a compact strongly Kähler Finsler manifold, and
let (N , H) be a compact Kähler manifold with negative sectional curvature. Let
ψ : M → N be continuous, and suppose that ψ is not homotopic to a map onto
a closed geodesic of N. Then there exists a harmonic map φ : M → N homotopic
to ψ .

Moreover, we also prove a striking theorem, which was found by A. Lichnerow-
icz [1968/1969] for the case of the smooth maps between Kähler manifolds:

Theorem 1.2. Let (M,G) be a compact strongly Kähler Finsler manifold and
(N , H) be a Kähler manifold. If φ : (M,G) → (N , H) is a smooth map, then
the difference K (φ) between ∂-energy and ∂-energy of φ is a smooth homotopy
invariant.

Some technical terms in above will be explained below. The contents of the
paper are arranged as follows. Section 2 gives some fundamental definitions and
formulas which are necessary for the present paper. In Section 3, we establish
the first variation formula of ∂-energy functional for a smooth map from a com-
plex Finsler manifold to a Hermitian manifold. Section 4 shows some existence
theorems of harmonic maps from a compact strongly Kähler Finsler manifold to
a compact Kähler manifold. Finally, in Section 5, we derive the first variation
formula of ∂-energy functional, obtain the homotopy invariant theorem, and give
some of its applications.

2. Preliminaries

Let M be a complex manifold of complex dimension m. Denote the holomorphic
tangent bundle of M by π : T 1,0 M → M . For a local complex coordinate system
z = (z1, . . . , zm) on M , a holomorphic tangent vector v of M is written as

v = vi∂i , ∂i :=
∂

∂zi , ∂̇ j :=
∂

∂v j ,

and we may take (z, v)= (z1, . . . , zm, v1, . . . , vm) as a local coordinate system for
T 1,0 M . Throughout this paper and unless otherwise stated, we shall fix the index
ranges as 1 ≤ i, j, k, . . .≤ m and 1 ≤ α, β, γ, . . .≤ n.
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Let M̃ = T 1,0 M \ {0} denote T 1,0 M without the zero section. {∂i , ∂̇ j = ∂/∂v j
}

gives a local holomorphic frame field of the holomorphic tangent bundle T 1,0 M̃
of M̃ .

Definition 2.1 [Abate and Patrizio 1994]. A complex Finsler metric on M is an
upper continuous function F : T 1,0 M → R+ that satisfies the conditions

(1) G = F2(z, v) ∈ C∞(M̃), that is, G is smooth in M̃ ;

(2) G(z, v)≥ 0, where the equality holds if and only if v = 0;

(3) G(z, λv)= |λ|2G(z, v) for all (z, v) ∈ T 1,0 M and λ ∈ C∗
= C \ {0}.

The pair (M,G = F2) is called a complex Finsler manifold. A complex Finsler
metric F is said to be strongly pseudoconvex if the complex Hessian

(Gi j )= (∂̇i ∂̇ j G)

of G is positively definite on M̃ . In particular, if G(z, v) = hi j (z)v
iv j is a Her-

mitian metric on M , then G(z, v) defines a strongly pseudoconvex Finsler metric
on M . All complex Finsler metrics considered in the present paper are always
strongly pseudoconvex unless otherwise stated.

Let π̃ : T 1,0 M̃ → M̃ denote the natural projection. The differential dπ : T C M̃ →

T C M of π : M̃ → M defines the vertical bundle V over M̃ by

V = ker dπ ∩ T 1,0 M̃,

which yields a holomorphic vector bundle of rank m over M̃ . A local frame field
of V is given by {∂̇ j }. As is described in [Abate and Patrizio 1994], there is another
horizontal subbundle H over M̃ such that T 1,0 M̃ = V ⊕ H and whose local frame
field is {δi } given by

(2-1) δi = ∂i − N j
i ∂̇ j and N i

j = Gil Gl, j := Gil ∂̇l ∂ j G,

where (Gil) = (Gil)
−1. Thus we get a local frame field {δi , ∂̇i } of T 1,0 M̃ . Let

{dzi , δvi
} denote the dual frame field of {δi , ∂̇i }, where

δvi
= dvi

+ N i
j dz j .

Associated with the decomposition T 1,0 M̃ = V⊕H, a Hermitian metric h M̃ on
M̃ canonically associated with G is defined by requiring H to be orthogonal to V,
so that h M̃ is given in local coordinates by

(2-2) h M̃ = Gi j (z, v)dzi
⊗ dz j

+ Gi j (z, v)δv
i
⊗ δv j .

For a complex Finsler metric on a complex manifold M , there is a unique Chern–
Finsler connection c

∇, for which the connection form (ωi
j ) can be written as [Abate
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and Patrizio 1994]

(2-3) ωi
j = Gki∂G jk = 0i

j,kdzk
+ γ i

jkδv
k,

where

(2-4) 0i
j,k = Gliδk G jl and γ i

jk = Gli ∂̇k G jl .

The differential operator d on functions is decomposed as d = dH + dV. We also
decompose dH and dV into (1, 0)-parts and (0, 1)-parts as

(2-5) dH = ∂H + ∂H and dV = ∂V + ∂V,

respectively, where we put ∂H f = (δ f/δzi )dzi and ∂V f = (∂ f/∂vi )δvi for a C∞

function f (z, v) on T M .

Definition 2.2 [Kobayashi 1975]. A complex Finsler metric G = F2 is said to be
strongly Kähler if 0i

j,k = 0i
k, j .

Equation (2-5) and Definition 2.2 lead to another definition:

Definition 2.3 [Aikou 1991]. Let (M,G) be a complex Finsler manifold. The
fundamental form associated with G is 8 =

√
−1Gi j dzi

∧ dz j , which is a real
(1, 1) form on M̃ . (M,G) is called a Finsler–Kähler manifold if dH8= 0.

The curvature form of the Chern–Finsler connection is given by�= (�i
j )= (∂ω

i
j ),

which can be written as

(2-6) �i
j = Ri

j,kl
dzk

∧ dzl
+ Ri

jl,k
dzk

∧ d v̄l
+ Ri

jk,l
dvk

∧ dzl
+ Ri

jkl
dvk

∧ d v̄l,

where

Ri
j,kl

= − δl(0
i
j,k)−0

i
jmδl(0

m
,k),

Ri
jk,l

= − δl(0
i
jk)= Ri

k j,l
,

Ri
jl,k

= − ∂̇l̄(0
i
j,k)−0

i
jm0

m
l,k
,

Ri
jkl

= − ∂̇l̄(0
i
jk).

Setting Ri j,kl = Gm j Rm
i,kl

and so on and using the (1,1)-homogeneity of G, we
have

(2-7) Ri j,klv
iv j

= (−Gi j, kl + G pq G p j, l Gqi, k)v
iv j

= − G, kl + G pq G p, l Gq, k := Rkl,

and Ri jklv
i
= Ri jk,lv

i
= Ri jl,kv

iv j
= 0.

The projective tangent bundle P M̃ of M is defined by P M̃ := M̃/C∗, which
has a natural Hermitian metric (2-2) with local homogeneous coordinates (zi , vi ).
The invariant volume form of P M̃ is (see [Zhong and Zhong 2004])

(2-8) dµP M̃ =
ωm−1

V

(m − 1)!
∧
ωm

H

m!
,
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where ωV =
√

−1(ln G)i jδv
i
∧ δv j and ωH =

√
−1Gi j dzi

∧ dz j . The advantage
of working on P M̃ rather than M̃ is that P M̃ is compact when M is compact.

Lemma 2.1 [Bland and Kalka 1996]. Let (M,G) be a complex Finsler manifold.
Then
√

−1∂∂ ln G =
√

−1(ln G)i j δv
i
∧ δv j

+
√

−1G−1(G
;kl − Gm;k GmnGn;l)dzk

∧ dzl
= ωV + κ,

where κ :=
√

−1G−1(G
;kl − Gm;k GmnGn;l)dzk

∧ dzl .

Using Lemma 2.1 the volume form of P M̃ can also be written as

dµP M̃ =
(
√

−1∂∂ ln G)m−1

(m − 1)!
∧
ωm

H

m!
.(2-9)

If we denote by dσ the pure vertical forms of (∂∂G)m−1/(m − 1)!, that is,

dσ =
(
√

−1(ln G)i jδv
i
∧ δv j )m−1

(m − 1)!
,(2-10)

then

dµP M̃ = dσ ∧
ωm

H

m!
= det(Gi j )dσ ∧ dz,(2-11)

where dz = (
√

−1
∑m

i=1 dzi
∧ dzi )m .

3. ∂-energy and the first variation

Let (M,G) be a complex manifold of dimension m with strongly pseudoconvex
Finsler metrics G, and let (N , H) be a Hermitian manifold of complex dimension
n. Let φ : M → N be a smooth map from M to N . We denote the local holomorphic
coordinate systems for M by {zi

} and for N by {wα}, and express φ locally as

wα = φα(z1, . . . , zm, z1, . . . , zm) for 1 ≤ α, β, . . . ≤ n.

As is well known, the differential dφ : T M → T N of φ extends to a complex linear
map between the complexified tangent bundles T C M and T C N . According to the
decompositions

T C M = T 1,0 M ⊕ T 0,1 M and T C N = T 1,0 N ⊕ T 0,1 N ,

we obtain

(3-1) dφ|T 1,0 M = ∂φ+ ∂φ and dφ|T 0,1 M = ∂φ+ ∂φ,
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where

∂φ : T 1,0 M → T 1,0 N , ∂φ : T 0,1 M → T 1,0 N , ∂φ = ∂φ, ∂φ = ∂φ,

which are expressed in local coordinates by

(3-2) ∂φ = φαi dzi
⊗

∂

∂wα
and ∂φ = φαi dzi

⊗
∂

∂wα
,

where
φαi =

∂φα

∂zi and φαi =
∂φα

∂zi .

Obviously, φ is holomorphic (respectively antiholomorphic) if and only if ∂φ = 0
(respectively ∂φ = 0).

We set Ñ = T 1,0 N \ {0} as well as M̃ . Then G (respectively H ) on M̃ (respec-
tively Ñ ) can be expressed as

G(z, v)= Gi j (z, v)v
iv j and H(w)= Hαβ(w)dω

αdωβ .

Then the ∂-energy density of φ can be defined naturally by

(3-3) |∂φ|
2(z, v)= Gi j (z, v)φαi φ

β

j Hαβ(φ(z)).

By means of the volume measure (2-8) of the projective tangent bundle P M̃ ,
we can define the ∂-energy of φ by

E∂(φ)=
1

cM

∫
P M̃

|∂φ|
2dµP M̃ ,

where cM is the standard volume of the (m−1)-dimensional complex projective
space CPm−1.

We now consider a smooth variation of φ = φ0 via a family of smooth maps

φt : M → N for t ∈ D = {z ∈ C | |z|< ε}.

Then the first variation of the ∂-energy functional is

(3-4) ∂

∂t
E∂(φt)

∣∣∣
t=0

=
1

cM

∫
P M̃

(
∂

∂t
|∂φt |

2
)∣∣∣

t=0
dµP M̃ .

The variation {φt } induces a vector field on the pull-back bundle φ−1
t T C N :

(3-5) V := dφt

(
∂

∂t

)
= ∂φt

(
∂

∂t

)
+ ∂φt

(
∂

∂t

)
= V ′

+ V ′′,

with

V ′
=
∂φαt

∂t
∂

∂wα
and V ′′

=
∂φαt

∂t
∂

∂wα
.

This, valued at t = 0, is called the variation vector field and is denoted V0 := V |t=0.
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On putting [Nishikawa 2004]

(3-6)

U = dφt

(
∂

∂t

)
= ∂φt

(
∂

∂t

)
+ ∂φt

(
∂

∂t

)
:= U ′

+ U ′′,

Ti = dφt

(
∂

∂zi

)
= ∂φt

( ∂

∂zi

)
+ ∂φt

(
∂

∂zi

)
:= T ′

i + T ′′

i ,

Si = dφt

(
∂

∂zi

)
= ∂φt

(
∂

∂zi

)
+ ∂φt

(
∂

∂zi

)
:= S′

i + S′′

i ,

we have from (3-3)

(3-7)

|∂φt |
2
= Gi j (z, v)φαtiφ

β

t j Hαβ(φ(z))= Gi j
〈φαtiδα, φ

β

t j
δβ〉N

= Gi j
〈(φαti∂α)

H, (φ
β

t j
∂β)

H
〉N

= Gi j
〈S′H

i , S′H
j 〉N ,

where 〈 · , · 〉N is the Hermitian inner product in the pull-back bundle φ−1
t T 1,0 Ñ .

By means of (3-5) and (3-6) we have

∂

∂t
|∂φt |

2
= Gi j ∂

∂t
〈S′H

i , S′H
j 〉N .

Thus,

(3-8)

∂

∂t
〈S′H

i , S′H
j 〉N = V H

〈S′H
i , S′H

j 〉N

= 〈∇V H S′H
i , S′H

j 〉N + 〈S′H
i ,∇V H S′H

j 〉N

= 〈∇S′H
i

V ′H
+ [V ′H, S′H

i ] + θ(V ′H, S′H
j ), S′H

j 〉N

+ 〈∇V ′′H S′H
i , S′H

j 〉N + 〈S′H
i ,∇V H S′H

j 〉N .

On the other hand, it is easy to obtain

[V ′H, S′H
i ] =

[∂φαt
∂t
δα,

∂φ
β
t

∂zi δβ

]
=

(∂φαt
∂t
δα

(∂φβt
∂zi

)
−
∂φαt

∂zi δα

(∂φβt
∂t

))
δβ,

∇V ′′H S′H
i =

∂φαt

∂t
δα(∂i φ

β
t )δβ .

Combining these two equations yields that

(3-9) [V ′H, S′H
i ] +∇V ′′H S′H

i = ∇S′′H
i

V ′H.

Similarly, we also have

(3-10) [V ′′H, S′H
j ] +∇V ′H S′H

j = ∇S′′H
j

V ′′H.
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Substituting (3-9) and (3-10) into (3-8), we get

(3-11) ∂

∂t
〈S′H

i , S′H
j 〉N = SH

i 〈V ′H, S′H
j 〉N − 〈V ′H,∇

SH
i

S′H
j 〉N

+ SH
j 〈S′H

i , V ′′H〉N − 〈∇
SH

j
S′H

i , V ′′H〉N

+ 〈θ(V ′H, S′H
i ), S′H

j 〉N + 〈S′H
i , θ(V ′′H, S′H

j )〉N .

Substituting (3-11) into (3-4) yields

(3-12) ∂

∂t
E∂(φt)=

1
cM

∫
P M̃

Gi j{SH
i 〈V ′H, S′H

j 〉N + SH
j 〈S′H

i , V ′′H〉N

−〈V ′H,∇
SH

i
S′H

j 〉N − 〈∇
SH

j
S′H

i , V ′′H〉N

+ 〈θ(V ′H, S′H
i ), S′H

j 〉N + 〈S′H
i , θ(V ′′H, S′H

j )〉N
}
dµP M̃ .

In the following, we denote the canonical connection coefficient for M by M0

and for N by N0.
Let 9̃ = Gi j

〈V ′H, S′H
j 〉N Iδi

(dµP M̃) be an (m,m−1)-form, where Iδi
denotes

the inner differential operator with respect to the vector δi . We have

d9̃ = Gi j
{SH

i 〈V ′H, S′H
j 〉N − 〈V ′H, S′H

j 〉N (
M0k

i,k
−

M0k
k,i
)}dµP M̃ ,

so that, by Stokes’ formula,∫
P M̃

Gi j SH
i 〈V ′H, S′H

j 〉N dµP M̃ =

∫
P M̃

Gi j
〈V ′H, S′H

j 〉N (
M0k

i,k
−

M0k
k,i
)dµP M̃ ,

if M is compact without boundary. Since

〈V ′H, S′H
j 〉N = V ′α ∂φ

β
t

∂z j Hαβ,

we then obtain

(3-13)
∫

P M̃
Gi j SH

i 〈V ′H, S′H
j 〉N dµP M̃

=

∫
P M̃

Gi j V ′α ∂φ
β
t

∂z j (
M0k

i,k
−

M0k
k,i
)HαβdµP M̃ .

Similarly, we can also get

(3-14)
∫

P M̃
Gi j SH

j 〈S′H
i , V ′′H〉N dµP M̃

=

∫
P M̃

Gi j ∂φ
α
t

∂zi V ′′β(M0k
j,k −

M0k
k, j )HαβdµP M̃ .
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On the other hand, by the definitions of V and Si , it is easy to see

〈V ′H,∇
SH

i
S′H

j 〉N = V ′α
(
∂2φ

β
t

∂zi∂z j +
∂φ

γ
t

∂zi
∂φσt
∂z j

N0
β

γ ,σ

)
Hαβ,(3-15)

〈∇
SH

j
S′H

i , V ′′H〉N = V ′′β
(
∂2φαt
∂zi∂z j +

∂φ
γ
t

∂zi
∂φσt
∂z j

N0αγ,σ

)
Hαβ .(3-16)

Recall that [Abate and Patrizio 1994]

〈θ(V ′H, S′H
i ), S′H

j 〉N = 〈V ′H, θ∗(S′H
j , S′H

i )〉N ,

where θ∗
=

1
2 HσαHβγ (N0

γ

ρ,σ −
N0

γ

σ ,ρ)dw
β

∧ dwρ ⊗ δα.

We then obtain

(3-17)

〈θ(V ′H, S′H
i ), S′H

j 〉N = 〈V ′H, θ∗(S′H
j , S′H

i )〉N

=
1
2
∂φαt
∂t

HβδHσγ
(N0

γ

ρ,δ −
N0

γ

δ,ρ

)∂φρt
∂zi

∂φσt
∂z j Hαβ .

Similarly, we can also get

(3-18)

〈S′H
i , θ(V ′′H, S′H

j )〉N = 〈θ∗(S′H
i , S′H

j ), V ′′H〉N

=
1
2
∂φ

β
t

∂t
H δαHσγ

(N0
γ

ρ,δ
−

N0
γ

δ,ρ

)∂φσt
∂zi

∂φ
ρ
t

∂z j Hαβ .

Inserting (3-13)–(3-18) into (3-12), we have the following result:

Theorem 3.1. Let (M,G) be a compact complex Finsler manifold and (N , H) be
a Hermitian manifold. Let φ : M → N be a smooth map from M to N. Then the
first variation of ∂-energy functional is

∂

∂t
E∂(φt)

∣∣∣
t=0

= −
1

cM

∫
P M̃

(
V β

0 QαHαβ + V α
0 QβHαβ

)
dµP M̃ ,

where

Qα
= Gi j((M0l

l; j −
M0l

j;l)φ
α

i +φαi j +
N0ασ,ρφ

σ

i φ
ρ
j

−
1
2 H δαHσγ

(N0
γ

ρ,δ
−

N0
γ

δ,ρ

)
φσi φ

ρ
j

)
.

By Definition 2.2, we have immediately a corollary:

Corollary 3.1. Let (M,G) be a compact strongly Kähler Finsler manifold and
(N , H) be a Hermitian manifold. Let φ : M → N be a smooth map from M to N.
Then the first variation of ∂-energy functional is

∂

∂t
E∂(φt)

∣∣∣
t=0

= −
1

cM

∫
P M̃

(
V β

0 4
αHαβ + V α

0 4
βHαβ

)
dµP M̃ ,
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where

(3-19) 4α = Gi j(φαi j +
N0ασρφ

σ

i φ
ρ
j −

1
2 H δαHσγ

(N0
γ

ρ,δ
−

N0
γ

δ,ρ

)
φσi φ

ρ
j

)
.

It is well known that a harmonic map is critical point of the first variation of the
energy functional. Let

‖Q‖ := sup
V0∈C(φ−1T C N )

{∣∣∫
P M̃ V β

0 QαHαβ dµP M̃

∣∣
‖V0‖

}
.

Using this, we can make the following definition:

Definition 3.1. φ is harmonic if and only if ‖Q‖ ≡ 0; φ is said to be strongly
harmonic if and only if Qα

= 0.

From this definition, we see that a holomorphic (respectively antiholomorphic)
map is a (strongly) harmonic map. Also we remark that strong harmonicity implies
harmonicity.

4. Existence theorem

The basic problem for harmonic maps can be formulated in the following manner:
Let φ0 : M → N be a map between two manifolds M and N . Can φ0 be deformed
into a harmonic map φ : M → N? Mo and Yang [2005] gave an existence theorem
of harmonic maps from a real Finsler manifold to a Riemannian manifold. On
the other hand, J. Jost and Yau [1993] introduced and studied a nonlinear ellip-
tic system of equations imposed on a map from a Hermitian manifold M into a
Riemannian manifold N . In local coordinates, the system is

(4-1) 1
2
∂

∂zβ
(
γ αβ

∂ f i

∂zα
)

+
1
2
∂

∂zα
(
γ αβ

∂ f i

∂zβ
)

+ γ αβ0i
jk
∂ f j

∂zα
∂ f k

∂zβ
= 0,

where γαβ is the Hermitian metric of M , 0i
jk are the Christoffel symbols of N ,

and α, β, . . . = 1, . . . , dim M , i, j, . . . = 1, . . . , dim N . A disadvantage of this
system is that a holomorphic map need not be harmonic unless M is Kähler. So
(4-1) is replaced by

(4-2) γ αβ
(
∂2 f i

∂zα∂zβ
+0i

jk
∂ f j

∂zα
∂ f k

∂zβ
)

= 0,

which is equivalent to (4-1) if M is Kähler. Some existence theorems on the solu-
tions of the system (4-2) were given in [Jost and Yau 1993]. Of course, the act of
taking variations for the system has no meaning unless M is Kähler.

In this section we give the existence theorem of harmonic maps from a compact
strongly Kähler Finsler manifold to a compact Kähler manifold by means of the
result of [Jost and Yau 1993].
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First of all, from the formula (2-11) we have a lemma.

Lemma 4.1. If M is a compact complex Finsler manifold, then for any function
f : P M̃ → R, we have∫

P M̃
f dµP M̃ =

∫
M

dz
∫

Pz M̃
f det(Gi j )dσ.

Lemma 4.2. Let G be a complex Finsler metric on M. Put

γ i j (z) :=

∫
Pz M̃ Gi j (z, v) det(Gkl(z, v))dσ∫

Pz M̃ det(Gkl(z, v))dσ
.

Then g = γi j dzi
⊗ dz j is a Hermitian metric on M, where γ i j

= (γi j )
−1.

Proof. It is easy to see that (γ i j ) is a positive definite matrix. Thus we only
need to check that g is independent of the local holomorphic coordinate system
(U, zi ). Suppose there is another local holomorphic coordinate system (V, z̃i ), and
U ∩V 6=∅. Then on U ∩V , from Gi j dzi dz j

= G̃i j dz̃i d ¯̃z j and dz̃ j
= (∂ z̃ j/∂zi )dzi ,

we have a series of implications:

G̃i j = Gkl
∂ z̃k

∂zi
∂ ¯̃zl

∂z j ⇒ γ i j
= γ̃ kl ∂zi

∂ ¯̃zk
∂z j

∂ z̃l ⇒ γi j = γ̃kl
∂zk

∂ z̃i
∂zl

∂̄̃z j
,

that is, g̃ is a Hermitian metric. �

Let (M,G) be a compact strongly Kähler Finsler manifold and (N , H) be a
compact Kähler manifold. Let φ : M → N be a smooth map from M to N . By
Theorem 3.1, we know that φ is a harmonic map if and only if

(4-3)
∫

P M̃
Gi j (φαi j +

N0ασ,ρφ
σ

i φ
ρ
j )V

β

0 Hαβ dµP M̃ = 0.

for any variation field V0. By Lemmas 4.1 and 4.2, Equation (4-3) can be written
as

(4-4)
∫

M
γ i j (z)(φαi j +

N0ασ,ρφ
σ

i φ
ρ
j )V

β

0 Hαβσ(z)dz = 0,

where σ(z) :=
∫

Pz M̃ det(Gkl(z, v))dσ and γ i j is a Hermitian metric defined in
Lemma 4.2. Since the field V0 is arbitrary, we see that φ is harmonic if and only
if

(4-5) γ i j (z)(φαi j +
N0ασ,ρφ

σ

i φ
ρ
j )= 0.
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Let φα = f α +
√

−1 f n+α. Then (4-5) can be reduced as

(4-6) γ i j (z)
(
∂2 f α

∂zi∂z j +
N0̃αA,B

∂ f A

∂zi
∂ f B

∂z j

)
+

√
−1γ i j (z)

(
∂2 f n+α

∂zi∂z j +
N0̃n+α

A,B
∂ f A

∂zi
∂ f B

∂z j

)
= 0,

where 1 ≤ A, B,C, . . . ≤ 2n. Hence, (4-6) is equivalent to

(4-7) γ i j (z)
(
∂2 f C

∂zi∂z j
+

N0̃C
A,B

∂ f A

∂zi

∂ f B

∂z j

)
= 0.

Comparing (4-7) with (4-2) and using the existence results of [Jost and Yau 1993],
we have immediately the following theorems.

Theorem 4.1. Suppose (M,G) is a compact strongly Kähler Finsler manifold and
(N , H) is a compact Kähler manifold with negative sectional curvature. Suppose
ψ : M → N is continuous and ψ is not homotopic to a map onto a closed geodesic
of N. Then there exists a harmonic map φ : M → N homotopic to ψ .

Theorem 4.2. Let (M,G) be a compact strongly Kähler Finsler manifold, and let
(N , H) be a compact Kähler manifold with nonpositive sectional curvature. Let
ψ : M → N be smooth, and suppose E(g∗T N ) 6= 0, where E is the Euler class.
Then there exists a harmonic map f homotopic to ψ .

We can also get the other existence theorems as in [Jost and Yau 1993].

5. ∂-energy and homotopy invariant

Let (M,G) be a complex Finsler manifold of dimension m, and let (N , H) be a
Hermitian manifold of complex dimension n. Let φ : M → N be a smooth map
from M to N . As defined in Section 3, we have the partial energy densities of φ
as the following squares of complex norms:

(5-1)
e′(φ)= |∂φ|

2(z, v)= Gi j (z, v)φαi φ
β

j
Hαβ(φ(z)),

e′′(φ)= |∂φ|
2(z, v)= Gi j (z, v)φαi φ

β

j Hαβ(φ(z)),

where φαi (respectively φαj) is the matrix representation of ∂φ (respectively ∂φ) in
the chosen local frame fields. We then have e(φ)= e′(φ)+ e′′(φ).

By means of the volume measure (2-8) of the projective tangent bundle P M̃ ,
we can define the ∂-energy and ∂-energy of φ respectively by

E ′(φ)≡ E∂(φ)=
1

cM

∫
P M̃

|∂φ|
2dµP M̃ ,

E ′′(φ)≡ E∂(φ)=
1

cM

∫
P M̃

|∂φ|
2dµP M̃ ,



HARMONIC MAPS FROM COMPLEX FINSLER MANIFOLDS 353

where cM is the standard volume of the (m−1)-dimensional complex projective
space CPm−1. We also have E(φ)= E ′(φ)+ E ′′(φ).

Obviously, φ is holomorphic if and only if E∂ = 0, and antiholomorphic if and
only if E∂ = 0.

Set

(5-2) k(φ)= e′(φ)− e′′(φ) and K (φ)= E ′(φ)− E ′′(φ).

In Section 3, we have obtained

(5-3) ∂

∂t
E∂(φt)=

1
cM

∫
P M̃

∂e′′(φt)

∂t
dµP M̃

=
1

cM

∫
P M̃

Gi j
〈V ′H, (M0k

i,k −
M0k

k,i )S
′H
j − ∇

SH
i

S′H
j + θ∗(S′H

j , S′H
i )〉N dµP M̃

+
1

cM

∫
P M̃

Gi j
〈(M0k

j,k −
M0k

k, j )S
′H
i −∇

SH
j

S′H
i +θ∗(S′H

i , S′H
j ),U

′H
〉N dµP M̃

for a smooth variation {φt : M → N }.
Similarly, we have

(5-4) ∂

∂t
E∂(φt)=

1
cM

∫
P M̃

∂e′(φt)

∂t
dµP M̃ .

From (5-1) and (3-6) we have

∂e′(φt)

∂t
=
∂

∂t
|∂φt |

2
= Gi j ∂

∂t
〈T ′H

i , T ′H
j 〉N .

Since
∂

∂t
〈T ′H

i , T ′H
j 〉N = V H

〈T ′H
i , T ′H

j 〉N

= 〈∇V H T ′H
i , T ′H

j 〉N + 〈T ′H
i ,∇V H T ′H

j 〉N ,

we can get

(5-5) ∂

∂t
E∂(φt)=

1
cM

∫
P M̃

Gi j(
〈V ′H, (M0k

i,k
−

M0k
k,i
)T ′H

j − ∇
T H

i
T ′H

j + θ∗(T ′H
j , T ′H

i )〉N

+ 〈(M0k
j,k

−
M0k

k, j
)T ′H

i − ∇
T H

j
T ′H

i + θ∗(T ′H
i , T ′H

j ),U ′H
〉N

)
dµP M̃

by means of the similar calculation in Section 3.
In the following, suppose that (M,G) is a compact strongly Kähler Finsler

manifold and (N , H) is a Kähler manifold. Thus (5-3) and (5-5) can be reduced
respectively to

(5-6) ∂

∂t
E∂(φt)= −

1
cM

∫
P M̃

Gi j(
〈V ′H,∇

SH
i

S′H
j 〉N + 〈∇

SH
j

S′H
i ,U ′H

〉N
)
dµP M̃
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and

(5-7) ∂

∂t
E∂(φt)= −

1
cM

∫
P M̃

Gi j(
〈V ′H,∇

T H
i

T ′H
j 〉N +〈∇

T H
j

T ′H
i ,U ′H

〉N
)
dµP M̃ .

In local coordinates, (5-6) and (5-7) can be expressed as

∂

∂t
E∂(φt)= −

1
cM

∫
P M̃

Gi j
(
∂φαt
∂t

(
∂2φ

β
t

∂zi∂z j +
∂φ

γ
t

∂zi
∂φσt
∂z j

N0
β

γ ,σ

)
+
∂φ

β
t

∂t

(
∂2φαt
∂zi∂z j +

∂φ
γ
t

∂zi
∂φσt

∂z j
N0αγ,σ

))
Hαβ dµP M̃

and

∂

∂t
E∂(φt)= −

1
cM

∫
P M̃

Gi j
(
∂φαt
∂t

(
∂2φ

β
t

∂zi∂z j +
∂φ

γ
t

∂zi
∂φσt
∂z j

N0
β

γ ,σ

)
+
∂φ

β
t

∂t

(
∂2φαt
∂zi∂z j +

∂φ
γ
t

∂zi
∂φσt
∂z j

N0αγ,σ

))
Hαβ dµP M̃ .

From the last two equations, it follows that

(5-8) d
dt

K (φt)=
∂

∂t
E∂(φt)−

∂

∂t
E∂(φt)= 0.

This proves the following theorem.

Theorem 5.1. Suppose (M,G) is a compact strongly Kähler Finsler manifold and
(N , H) is a usual Kähler manifold. Then K (φ) is a smooth homotopy invariant,
that is, it is constant on the connected components of the space C(M, N ) of all
smooth maps from M to N.

Remark. When (M,G) is the usual Kähler manifold, this striking theorem due
to Lichnerowicz [1968/1969] was proved in a different way by Eells and Lemaire
[1983].

By (5-8), we can get

∂

∂t
E∂(φt)=

∂

∂t
E∂(φt)=

1
2
∂

∂t
E(φt).

Thus we have a corollary:

Corollary 5.1. The E ′-, E ′′-, and E-critical points coincide. Furthermore, in a
given homotopy class the E ′-, E ′′-, and E-minima coincide.
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Proof. For the second statement, we note that for φ and φ0 in the same homotopy
class, E ′(φ)− E ′(φ0)= E ′′(φ)− E ′′(φ0). Thus, if E ′(φ0) ≤ E ′(φ) for all φ, then
E ′′(φ0)≤ E ′′(φ) for all φ.

Similarly, since E(φ) = K (φ)+ 2E ′′(φ), we get E(φ)− 2E ′(φ) = E(φ0)−

2E ′′(φ0) or E(φ)− E(φ0)= 2E ′′(φ)− 2E ′′(φ0), so the minima also coincide. �

Corollary 5.2. If φ is a holomorphic or antiholomorphic map from a compact
strongly Kähler Finsler manifold to a Kähler manifold, then it is a harmonic map
and an absolute minimum of E in its homotopy class.

Proof. Let φt : M ×[0, 1] → N be a family of smooth maps satisfying φ0 = φ. If φ
is a holomorphic map, then E ′′(φ)= 0. So we have

E(φ)= E ′(φ0)+ E ′′(φ0)= E ′(φ0)− E ′′(φ0)= K (φ0)= K (φt)≤ E(φt).

If φ is an antiholomorphic map, the claim follows by a similar proof. �

Theorem 5.1 has another consequence:

Corollary 5.3. If φ0 and φ1 are homotopy maps from a compact strongly Kähler
Finsler manifold to a Kähler manifold such that φ0 is holomorphic and φ1 is anti-
holomorphic, then φ0 and φ1 are constant. In particular, any homotopically trivial
holomorphic (or antiholomorphic) map is constant.

Remark. Recently, B. Chen and the second author prove that Kähler and
strongly Kähler Finsler metrics are in fact equivalent [Chen and Shen 2008]. So,
all the strongly Kähler Finsler manifolds in this paper can be changed into Kähler
Finsler manifolds.
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