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Let M and N be C r Banach manifolds with r ≥ 1. Let P be a submanifold of
N and f : M → N a C r map. This paper extends the well-known transver-
sality f t P mod N to the tangent map Tx f with a sharper singularity by
using a new characteristic of the continuity of generalized inverses of linear
operators in Banach spaces under small perturbations. We introduce a con-
cept of generalized transversality, written as f tG P mod N . We show that
if f t P mod N , then f tG P mod N , but the converse is false in general.
Then Thom’s famous result is expanded into a generalized transversality
theorem: if f tG P mod N , then the preimage S = f −1(P) is a submanifold
of M with the tangent space Tx S = (Tx f )−1(T f (x) P) for any x ∈ S. As a con-
sequence, when P={ y} is a single point set, f tG P mod N if and only if y
is a generalized regular value of f . Finally, we give an equivalent geometric
description of generalized transversality without the aid of charts.

1. Introduction and preliminaries

E. Zeidler [1988] has pointed out that transversality is certainly one of the most
important concepts in modern mathematics, which provides an answer to the ques-
tion, when is the preimage of a manifold still a manifold? This, the celebrated
transversality theorem of Thom, revitalizes the map approach to nonlinear differ-
ential equations, as illustrated by a number of examples in [Cafagna 1990]. The
result is applied widely to differential topology and dynamic systems in [Abraham
et al. 1988; Arnol’d 1988] and [Cafagna 1990].

This paper generalizes transversality and the transversality theorem by using
some continuity characteristics of generalized inverses of singular bounded linear
operators in Banach spaces under small perturbations. Let M and N be Cr Banach
manifolds with r ≥ 1. Let P be a submanifold of N and f : M → N a Cr map.
We say f is transversal to P and write f t P mod N if, for each x ∈ f −1(P),
R(Tx f ) + Ty P = Ty N and (Tx f )−1(Ty P) splits Tx M , where y = f (x), Tx f
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denotes the tangent map of f at x , and Ty P and Ty N denote the tangent spaces of
P and N at y, respectively. One has the following important result.

Theorem 1.1 [Abraham et al. 1988]. Suppose f t P mod N. Then the preimage
S = f −1(P) is a submanifold of M with the tangent space Tx S = (Tx f )−1(Ty P)
for any x ∈ S.

This is Thom’s famous result, the transversality theorem, which provides an an-
swer to the question above. The concept of transversality , f t P mod N , requires
that R(Tx f )+ Ty P = Ty N for any x ∈ f −1(P). However, it is often the case that
R(Tx f )+ Ty P 6= Ty N ; see, for instance, the three examples in Section 3. In this
case, the singularities of the tangent maps are sharper, and so it is by no means
simple to determine what kinds of properties f must have so that the conclusion
of the theorem remains true.

Let B(E, F) be the space of all bounded linear operators from a Banach space E
to a Banach space F . Recall that an operator A+

∈ B(F, E) is said to be a gener-
alized inverse of A ∈ B(E, F) if A+ AA+

= A+ and AA+ A = A. It is well known
that even in the case of matrices, the generalized inverse (A +1A)+ may not tend
to A+ as 1A → 0. Nevertheless, we have the following general theorems.

Theorem 1.2 [Ma 2000b; Ma 2003]. Let T0 ∈ B(E, F) be double splitting. Then
for any generalized inverse T +

0 of T0 and T ∈ B(E, F) with ‖(T −T0)T +

0 ‖< 1 the
following conditions are equivalent:

(i) R(T )∩ N (T +

0 )= {0};

(ii) (IE − T +

0 T0)N (T )= N (T0);

(iii) B = T +

0 (IF + (T − T0)T +

0 )
−1

= (IE + T +

0 (T − T0))
−1T +

0 is a generalized
inverse of T .

Here N ( · ) and R( · ) denote respectively the null space and the range of operators
in the parenthesis, and IE means the identity on E.

Remark 1.1. Nashed and Chen [1993] first presented the condition (iii) of The-
orem 1.2. Thanks to it, some results in [Ma 1999] were improved in [Ma 2000b;
Ma 2000a; Ma 2007; Ma 2008]; we will refer to these papers frequently.

Theorem 1.3 [Ma 2000b]. Let X be a topological space and Tx : X → B(E, F)
an operator-valued map continuous at x0 ∈ X. Suppose that T0 = Tx0 is double
splitting. Then for a generalized inverse T +

0 of T0, there exists a neighborhood U0

at x0 such that the two conditions

(i) Tx has a generalized inverse T +
x for all x ∈ U0) and

(ii) limx→x0 T +
x = T +

0
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hold if and only if

(1-1) R(Tx)∩ N (T +

0 )= {0} (near x0).

Hereby one sees that the property (1-1) for Tx is interesting and important. So
in [Ma 1999; Ma 2000b], x0 is called a locally fine point for Tx if T0 is double
splitting and (1-1) is satisfied.

In particular, we have:

Theorem 1.4 [Ma 2000b; Ma 2003]. If T0 is a semi-Fredholm operator, then x0 is
a locally fine point of Tx if and only if either

dim N (Tx)= dim N (T0) <∞

or
codim R(Tx)= codim R(T0) <∞ (near x0).

For a C1 map from a Banach manifold M into another Banach manifold N , let
(U, ϕ) and (V, ψ) be the charts of M at x and of N at y = f (x), respectively,
and let f be the representative of f under this pair of charts. By replacing Tx

by f ′(xϕ), where xϕ = ϕ(x) for x ∈ U and f ′ stands for the Frechet derivative
of f at xϕ , Ma [2001] showed that the relative property (1-1) with Tx = f ′(xϕ)
is independent of the choice of charts. Then the concept of a generalized regular
point (and corresponding generalized regular value) of f is induced from that of
a locally fine point of f ′(xϕ), which is equivalent to a subimmersion point of f ;
that is, x0 ∈ M is said to be a generalized regular point of f if ϕ(x0) is a locally
fine point of f ′(xϕ).

This yields the following theorem.

Theorem 1.5 [Ma 2001]. Let f be a C1 map from a C1 Banach manifold M into
another Banach manifold N. If y ∈ N is a generalized regular value of f , which
means that the set f −1(y) is empty or consists only of generalized regular points
of f , then the preimage S = f −1(y) is a submanifold of M with the tangent space
Tx S = N (Tx f ) for any x ∈ S.

To generalize the transversality, Section 2 will supplement some new conditions
equivalent to each of the three conditions in Theorem 1.2 and prove that they are
all independent of the choice of a generalized inverse T +

0 of T0 for T near T0.
Finally, Section 3 will introduce generalized transversality and prove a general-
ized transversality theorem. As a corollary, we will give an equivalent geometric
description of generalized transversality.

2. Perturbation analysis of generalized inverses

The following Theorem 2.1 is a supplement to Theorem 1.2, which is the key to
the concept of generalized transversality in this paper.
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Theorem 2.1. Let T0 ∈ B(E, F) be double splitting. Then for any generalized
inverse T +

0 of T0 and T ∈ B(E, F) with ‖(T −T0)T +

0 ‖<1, the following conditions
are equivalent:

(i) R(T )∩ N (T +

0 )= {0};

(ii) (IE − T +

0 T0)N (T )= N (T0);

(iii) B = T +

0 (IF + (T − T0)T +

0 )
−1

= (IE + T +

0 (T − T0))
−1T +

0 is a generalized
inverse of T ;

(iv) N (T )⊕ R(T +

0 )= E ;

(v) N (T )+ R(T +

0 )= E.

Proof. By Theorem 1.2, it suffices to show the equivalence of conditions (ii) and
(iv), as well as (ii) and (v). If (ii) holds, R(B) = R(T +

0 ) and N (T )⊕ R(B) = E ,
since B is a generalized inverse of T . Then N (T ) ⊕ R(T +

0 ) = E . This says
that condition (ii) implies both conditions (iv) and (v). Conversely, if either of
conditions (iv) and (v) holds, then

N (T0)= (IE − T +

0 T0)E = (IE − T +

0 T0)N (T ). �

Let T +

1 and T +

0 be two arbitrary generalized inverses of T0, and let T +
∗

be the
generalized inverse of T0 corresponding to decomposition

E = N (T0)⊕ R(T +

1 ) and F = R(T0)⊕ N (T +

0 ).

Evidently R(T +
∗
) = R(T +

1 ), and N (T +
∗
) = N (T +

0 ). Let δ = (‖T +
∗

‖ + ‖T +

1 ‖ +

‖T +

0 ‖)−1. Then we have the following significant theorem.

Theorem 2.2. Let T +

1 and T +

0 be two arbitrary generalized inverses of T0. If
R(T )∩ N (T +

0 )= {0} for any T with ‖T − T0‖< δ, then R(T )∩ N (T +

1 )= {0}.

Proof. By Theorem 2.1, if R(T )∩ N (T +

0 )= {0} for any T with ‖T −T0‖< δ, then
R(T )∩ N (T +

∗
)= {0} and N (T )+ R(T +

∗
)= E . So

N (T )+ R(T +

1 )= N (T )+ R(T +

∗
)= E .

Again by Theorem 2.1, we conclude that R(T )∩ N (T +

1 )= {0}. �

Remark 2.1. Recalling the definition of a locally fine point x0 for an operator
value map Tx (or a generalized regular point of a C1 map f ), we see that it in-
volves formally a generalized inverse of the operator T0 (or f ′(x0)); however, it
is independent of the choice of a generalized inverse by Theorem 2.2. Thus it
presents a behavior depending only on Tx (or f ′(x)) near x0 in the case of double
splitting T0 (or f ′(x)).
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3. Generalized transversality

Let M and N be Cr Banach manifolds with r ≥ 1. Let P be a submanifold of N
and f : M → N a Cr map. By the definition of a submanifold, for each point y ∈ P
there exists a chart (V, ψ) of N with y ∈ V such that the chart space F contains
a linear closed subspace F0 that splits F and such that the image ψ(V ∩ P) is an
open set in F0. For abbreviation, in the sequel we will write such a chart (V, ψ)
as an (N .P) chart at y.

Before going to the generalized transversality, let us introduce the following two
conditions.

(H1) For each x ∈ f −1(P), R(Tx f )+Ty P and (Tx f )−1(Ty P) split Ty N and Tx M ,
and Ty P splits R(Tx f )+Ty P . Here y = f (x), Tx f denotes the tangent map
of f at x , and Ty( · ) is the tangent space at y of the manifold in parentheses.

(H2) For any x0 ∈ f −1(P), there exist a neighborhood U0 at x0, a pair of charts
(U, ϕ) of M at x0, and a (N .P) chart at y0 = f (x0) such that

( f ′(xϕ))−1(F0)+ E0 = E for all x ∈ U ∩ U0,

where E is the chart space of (U, ϕ) and E0 satisfies ( f ′(x0
ϕ))

−1(F0)⊕E0 = E
for x0

ϕ = ϕ(x0).

Remark 3.1. In the definition of f t P mod N , the assumption that (Tx f )−1(Ty P)
splits Tx M and R(Tx f )+Ty P = Ty N implies that (H1) holds when f t P mod N ;
in the case of dim M <∞ and dim N <∞, (H1) is automatically satisfied.

We will focus our attention on (Tyψ)(Ty P) = F0 for any y ∈ P ∩ V under a
(N .P) chart (V, ψ); this fact follows from that ψ(P ∩ V ) is open in F0. Because
of the continuity of f , we can assume f (U )⊂ V in the sequel.

Next we claim a lemma, which shows that together with (H1), (H2) is coordinate
independent, that is, geometric.

For each x0 ∈ f −1(P), let (U1, ϕ1) at x0 and (V1, ψ1) at y0 = f (x0) be other
charts with the same properties as (U, ϕ) and (V, ψ), and let F1 be the chart space
of (V1, ψ1) containing a closed subspace F1

0 such that ψ1(P ∩ V1) is open in it.

Lemma 3.1. Suppose that condition (H1) holds. If condition (H2) holds under the
charts (U, ϕ) and (V, ψ), then so does (H2) under two arbitrary charts (U1, ϕ1)

and (V1, ψ1) as above.

Proof. Let f and f̃ be the representatives of f under the two pairs of charts (U, ϕ)
and (V, ψ) and (U1, ϕ1) and (V1, ψ1), respectively. Obviously

f̃ (xϕ1)= (ψ1 ◦ψ−1) ◦ f ◦ (ϕ ◦ϕ−1
1 )(xϕ1) for all xϕ1 ∈ ϕ1(U ∩ U1),
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and so

(3-1) f̃ ′(xϕ1)= (ψ1 ◦ψ−1)′(yψ) · f ′
· (ϕ ◦ϕ−1

1 )′(xϕ1) for all xϕ1 ∈ ϕ1(U ∩U1),

where yψ = ψ(y).
By the assumptions of the lemma, we can assume that there exist two subspaces

F01 and F02 of the chart space F such that

(R( f ′(x0
ϕ))+ F0)⊕ F01 = F and R( f ′(x0

ϕ))+ F0 = F0 ⊕ F02,

where (Ty0
ψ)(Ty0

P)= F0 and (Ty0
ψ)(Ty0

N )= F . We can also assume there is a
closed subspace E0 of E such that

f ′(x0
ϕ)

−1(F0)⊕ E0 = E .

Obviously F⊥

0 = F01 ⊕ F02 is a topological complement of F0, and

(3-2) F1
0 = (ψ1 ◦ψ−1)′(yψ)F0 for all y ∈ P ∩ V1 ∩ V .

Now, we consider the map g : ϕ(U )→ B(E, F⊥

0 ) defined by

g(xϕ)= PF0,F0
⊥ f ′(xϕ) for all xϕ ∈ ϕ(U ),

where PF0,F0
⊥ is the projection corresponding to the decomposition F = F0 ⊕ F⊥

0 .
It is not difficult to verify that x0

ϕ is a locally fine point for g(xϕ). Indeed,

R(g(x0
ϕ))= PF0,F0

⊥ R( f ′(x0
ϕ))= PF0,F0

⊥{R( f ′(x0
ϕ))+F0}= PF0,F0

⊥(F0⊕F02)= F02

and u ∈ N (g(xϕ))⇐⇒ f ′(xϕ)u ∈ F0 ⇐⇒ u ∈ ( f ′(xϕ))−1(F0), so that

(3-3) N (g(xϕ))= ( f ′(xϕ))−1(F0) for all xϕ ∈ ϕ(U ).

Hence by the condition (H2) and Theorem 2.1, we can conclude that x0
ϕ is a locally

fine point for g(xϕ). To show the condition (H2) holds under the charts (U1, ϕ1)

and (V1, ψ1), the routine method in global analysis can hardly be applied here;
indeed, an ingenious application of both Theorems 2.1 and 1.3 is the essence of
our proof below.

Consider the operator-valued map g̃ : ϕ1(U ∩ U1)→ B(E1, F1) defined by

g̃(xϕ1)= (ψ1 ◦ψ−1)′(yψ) · g(xϕ) · (ϕ ◦ϕ−1
1 )′(xϕ1) for all xϕ1 ∈ ϕ1(U ∩ U1),

where E1 is the chart space of (U1, ϕ1). Clearly,

R(g̃(xϕ1))= (ψ1 ◦ψ−1)′(yψ)R(g(xϕ)).

Meanwhile, it is easy to verify by (3-1)–(3-3) that

(3-4) N (g̃(xϕ1))= ( f̃ ′(xϕ1))
−1(F1

0 ).
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In fact,

u ∈ g̃(xϕ1)⇐⇒ (ϕ ◦ϕ−1
1 )′(xϕ1)u ∈ N (g(xϕ))

⇐⇒ f ′(xϕ)(ϕ ◦ϕ−1
1 )′(xϕ1)u ∈ F0 by (3-3)

⇐⇒ (ψ1 ◦ψ−1)′(yψ) · f ′(xϕ) · (ϕ ◦ϕ−1
1 )′(xϕ1)u ∈ F1

0 by (3-2)

⇐⇒ u ∈ ( f̃ ′(xϕ1))
−1(F1

0 ) by (3-1).

Moreover, as x0
ϕ is a locally fine point of g(xϕ), there exists, by Theorem 1.3, a

neighborhood U0 ⊂ U ∩ U1 at x0 such that there is a generalized inverse g+(xϕ)
of g(xϕ) for any x ∈ U0 and g+(xϕ)→ g+(x0

ϕ) as xϕ → x0
ϕ . Hereby we get

g̃+(xϕ1)= (ϕ1 ◦ϕ−1)′(xϕ) · g+(xϕ) · (ψ ◦ψ−1
1 )′(yψ1) for all xϕ1 ∈ ϕ1(U0),

which is clearly continuous at x0
ϕ1

.
Next we claim that g̃+(xϕ1) is just a generalized inverse of g̃(xϕ1) for each x ∈U0.

By computing directly,

g̃(xϕ1) · g̃+(xϕ1)= (ψ1 ◦ψ−1)′(yψ) · g(xϕ) · g+(xϕ) · (ψ ◦ψ−1
1 )′(yψ1),

which means

g̃(xϕ1) · g̃+(xϕ1) · g̃(xϕ1)

= (ψ1 ◦ψ−1)′(yψ) · g(xϕ) · g+(xϕ) · g(xϕ) · (ϕ ◦ϕ−1
1 )′(xϕ1)

= (ψ1 ◦ψ−1)′(yψ) · g(xϕ) · (ϕ ◦ϕ−1
1 )′(xϕ1)= g̃(xϕ1)

and

g̃+(xϕ1) · g̃(xϕ1) · g̃+(xϕ1)

= (ϕ1 ◦ϕ−1)′(xϕ) · g+(xϕ) · g(xϕ) · g+(xϕ) · (ψ ◦ψ−1
1 )′(yψ1)

= (ϕ1 ◦ϕ−1)′(xϕ) · g+(xϕ) · (ψ ◦ψ−1
1 )′(yψ1)= g̃+(xϕ1).

So g̃+(xϕ1) is a generalized inverse of g̃(xϕ1) for each x ∈ U0. On the other hand,
by the continuity of g+(xϕ) at x0

ϕ , we have

lim
x→x0

g̃+(xϕ1)= g̃+(x0
ϕ1
).

Thus, by Theorem 1.3 again, we assert that x0
ϕ1

is a locally fine point for g̃(xϕ1), and
hence by Theorem 2.1, there are a neighborhood at x0, still written as U0 ⊂U ∩U1,
and a closed subspace E1

0 = R(g̃+(x0
ϕ1
)) of E1 such that

N (g̃(xϕ1))+ E1
0 = E1 for all x ∈ U0.

Finally by (3-4),

( f̃ ′(xϕ1))
−1(F1

0 )+ E1
0 = E1 for all x ∈ U0;
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that is, the condition (H2) holds under the charts (U1, ϕ1) and (V1, ψ1). �

We are now ready to introduce generalized transversality.

Definition 3.1. Let f : M → N be a Cr map and P be a submanifold of N . We
say f is generalized transversal to P , and write as f tG P mod N , if, for each
x0 ∈ f −1(P), conditions (H1) and (H2) hold for some pair consisting of a chart of
M at x0 and an (N .P) chart at y0.

Thanks to Lemma 3.1, Definition 3.1 is reasonable.
The next theorem and counterexamples show that the concept of f tG P mod N

expands that of f t P mod N .

Theorem 3.1. If f t P mod N , then f tG P mod N.

Proof. Assume f t P mod N . It has been pointed out that (H1) is satisfied. Hence
we only need to examine the condition (H2). Our proof at this time is also based
on an application of Theorem 2.1. With the charts (U, ϕ) of M at x0 and an (N .P)
chart at y0 = f (x0) as in Lemma 3.1, consider for each x0 ∈ f −1(P) the map
g : ϕ(U )→ B(E, F⊥

0 ) defined by

g(xϕ)= PF0,F0
⊥ f ′(xϕ) for all xϕ ∈ ϕ(U ),

where F⊥

0 is a topological complement of F0. Obviously,

R(g(x0
ϕ))= PF0,F0

⊥{R( f ′(x0
ϕ))+ F0} = PF0,F0

⊥ F = F⊥

0 ,

while N (g(x0
ϕ))= ( f ′(x0

ϕ))
−1(F0) by (3-3), which splits E by assumption. There-

fore x0
ϕ is a locally fine point for g(xϕ). Thus by Theorem 2.1 there is a neighbor-

hood U0 ⊂ U at x0 such that

( f ′(xϕ))−1(F0)+ E0 = E for all x ∈ U0,

where E0 = R(g(x0
ϕ)

+) and g(x0
ϕ)

+ is a generalized inverse of g(x0
ϕ). �

The examples below deal with finite-dimensional manifolds, and so for verifying
the generalized transversality, one only needs to check the condition (H2).

Example 1. Define f : R → N by

(u, v, w)= f (x)= (x2, x, x) for all x ∈ R,

and let N be the parabolic cylinder in R3 defined by u = v2. Suppose that P is the
parabolic curve in R3 defined by u = v2 and w = v.

Since f (R) = P  N , it is clear that f is not transversal to P . However, one
can verify that f tG P mod N .
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In fact, by Lemma 3.1, consider the charts (R.I ) and (N .ψ), where ψ is as
follows:

(u1, v1, w1)= ψ(u, v, w)= (u − v2, v, w) for all (u, v, w) ∈ R3.

Clearly (N , ψ) is an (N .P) chart at each point of P , and its chart space is the
coordinate plane V1OW1 containing the subspace

F0 = {(0, v1, v1) : for all v1 ∈ R},

while f (x) = (ψ ◦ f )(x) = (0, x, x), F0 = R( f ′(x)) for any x ∈ R, and F0 =

(Tyψ)(P) for any y ∈ P . Then immediately,

f ′(x)−1(F0)+ {0} = R + {0} = R for all x ∈ R.

Therefore f tG P mod N .

Example 2. Let M = {(x1, x2) ∈ R2
: x1x2 6= 0}, and define f : M → R2 by

f (x1, x2)= (ex1x2, x1x2) for all (x1, x2) ∈ M.

Suppose that P consists only of a single point (e, 1) in R2. Because T(e,1)P = {0},
we have

(3-5) f ′(x)=

(
x2ex1x2 x1ex1x2

x2 x1

)
for all (x1, x2) ∈ M.

Then it is easy to see that for all x ∈ M ,

(3-6) f ′(x)−1(T(e,1)P)= f ′(x)−1(0)= N ( f ′(x)) ,

and dim N ( f ′(x))= codim R( f ′(x))= 1. Hence

R( f ′(x))+ T f (x)P = R( f ′(x))( R2 for all x ∈ f −1(P).

This means that f is not transversal to P mod R2. However, f tG P mod N .
In fact, by Theorem 1.4, each x ∈ M is a locally fine point for f ′(x) so that by

Theorem 2.1, there exists a neighborhood U0 at x and E0 ⊂ R2 such that

N ( f ′(z))+ E0 = f ′(z)−1(0)+ E0 = R2

for any z ∈ U0, and

N ( f ′(x))⊕ E0 = f ′(x)−1(0)⊕ E0 = R2,

where E0 is the range of a generalized inverse of f ′(x).

Example 3. Let f : R2
→ R3 be defined by

(x, y, z)= f (x1, x2)= (x1, x2
1 , x2),



366 JIPU MA

and let P be the z-axis in R3. Then, for any (x1, x2) ∈ R2,

f ′(x1, x2)=

 1 0
2x1 0

0 1

 , f −1(P)= the x2-axis in R2,

and

(3-7) R(T(x1,x2) f )= {(h1, 2x1h1, h2) : for all (h1, h2) ∈ R2
}.

So for each (x1, x2)∈ f −1(P), we have R(T(0,x2) f )+T(0,0,x2)P (R3, that is, f is
not transversal to P mod R3. However, f tG P mod R3. Indeed, by (3-7)

(T(x1,x2) f )−1(T(x1,x2
1 ,x2)

P)= the x2-axis in R2,

so that E0 = the x1-axis fulfills that for any (x1, x2) ∈ R2,

(T(x1,x2) f )−1(T(x1,x2
1 ,x2)

P)+ E0 = R2.

Note that here the natural coordinate system in R3 is just an (R3.P) chart at each
(x, y, z) ∈ P . This proves that f tG P mod R3.

None of the maps f in the examples above are transversal to P , but all are
generalized transversal to P .

The following, one of the main theorems in this paper, is like the well-known
transversality theorem [Kahn 1980]. It should lead one to recognize the concept
of generalized transversality.

Theorem 3.2. If f tG P mod N , then the preimage S = f −1(P) is a submanifold
of M with the tangent space Tx S = (Tx f )−1(T f (x)P) for any x ∈ S.

Proof. For any x0 ∈ f −1(P), let (U, ϕ) be a chart of M at x0 with chart space E ,
and let (V, ψ) be a (N .P) chart at y0 = f (x0) with the chart space F , which
contains a splitting subspace F0 such that ψ(P ∩ V ) is open in it. Because of the
continuity of f , we may assume f (U )⊂ V . Under this pair of charts, let f be the
representative of f .

Assume that f tG P mod N . Let the subspaces of F , F01, and F02 be the
same as in the proof of Lemma 3.1. Then we see F⊥

0 = F01 ⊕ F02 is a topological
complement of F0. Consider the map g : ϕ(U )→ F⊥

0 defined by

g(xϕ)= PF0,F0
⊥ f (xϕ) for all xϕ ∈ ϕ(U ),

where PF0,F0
⊥ is the projection corresponding to the decomposition F = F0 ⊕ F⊥

0 .
Then g′(xϕ)= PF0,F0

⊥ f ′(xϕ) and g−1(0)= {xϕ ∈ ϕ(U ) : x ∈ f −1(P ∩ V )}. (Note
that f (U )⊂ V .)
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Replacing g in Lemma 3.1 by g′, we assert as in the lemma that

R(g′(x0
ϕ))= F02 and N (g′(x0

ϕ))= ( f ′(x0
ϕ))

−1(F0),

and this means that g′(x0
ϕ) is double splitting. Moreover, because of the condition

(H2) and by Theorem 2.1, x0
ϕ is a locally fine point for g′(xϕ), that is, a generalized

regular point of g.
By Theorem 1.2, it is easy to check that a locally fine point is an inner point.

Indeed, let Tx : X → B(E, F) be the same as in Theorem 1.3, and let x0 ∈ X be a
locally fine point for Tx . Then there exists a neighborhood W0 at x0 such that

R(Tx)∩ N (T +

0 )= {0} for all x ∈ W0.

Without loss of generality, one can assume that W0 ⊂{x ∈ X : ‖Tx −T0‖<‖T +

0 ‖
−1

}.
For any x1 ∈ W0, by Theorem 1.2,

T +

1 = (IE + T +

0 (Tx1 − T0))
−1T +

0

is a generalized inverse of Tx1 with N (T +

1 )= N (T +

0 ). Thus

R(Tx)∩ N (T +

1 )= {0} for all x ∈ W0 ∩ {x ∈ X : ‖Tx − Tx1‖< ‖T +

1 ‖
−1

};

that is, x1 is also a locally fine point for Tx . This proves that x0 is an inner point.
Therefore, a generalized regular point is an inner point, and hence each point
of ϕ(U ) may be regarded as a generalized regular point, for otherwise one may
shrink U .

Thus, 0 is a generalized regular value of g(xϕ), so by Theorem 1.5, S0 = g−1(0)
is a submanifold of ϕ(U )with tangent space Txϕ S0 = (Txϕ f )−1(F0) for any xϕ ∈ S0.
Hence S0 = ϕ−1(S0) is a submanifold of U , and Tx S0 = (Tx f )−1(T f (x)P) for any
x ∈ S0. Indeed, let c denote a smooth curve based the point x , and let [c] be the
equivalence class of c. Then for any x ∈ S0,

[c] ∈ Tx S0 ⇐⇒ [ϕ ◦ c] ∈ Txϕ S0 = (Txϕ f )−1(F0)

⇐⇒ f (ϕ ◦ c)= ψ( f ◦ c)⊂ F0 ∩ V

⇐⇒
d
dt
ψ( f ◦ c)

∣∣
t=0 = v =

d
dt
ψ(ψ−1(ψ( f (x))+ tv))

∣∣
t=0

and ψ( f ◦ c)⊂ F0 ∩ψ(V )

⇐⇒ [ f ◦ c] = [ψ−1(ψ( f (x))+ tv)] ∈ T f (x)P

⇐⇒ [c] ∈ (Tx f )−1(T f (x)P).

This proves that Tx S0 = (Tx f )−1(T f (x)P). The first argument is obvious.
Now we claim that S is a submanifold of M . By the definition of a submanifold

in [Zeidler 1988], one merely needs to show that for any x0 ∈ f −1(P), there exists
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an (M.S) chart at x0. Since S̃0 is a submanifold of E , there exists an (E .S0) chart
(Ũ0, ϕ̃0) at x0

ϕ such that Ũ0 ⊂ ϕ(U ). Hereby one gets an (M.S0) (and also an
(M.S)) chart (ϕ−1(Ũ ), ϕ̃ ◦ϕ) at x0. This proves the theorem. �

Remark 3.2. In view of the counterexamples above, Theorem 3.2 answers in more
generality than the well-known transversality theorem the question, when is the
preimage of a manifold a manifold?

In what follows, we give a corollary of the generalized transversality theorem.

Corollary 3.1. If P consists of a single point y ∈ N , then f tG P mod N if and
only if y is a generalized regular value of f .

Proof. If f tG P mod N , then, noting that Ty P = {0}, we assert that Tx f splits
Ty N for each x ∈ f −1(y), and for each x0 ∈ f −1(y) there exists a neighborhood
U of x0 and a chart (U, ϕ) of M at x0 such that

N ( f ′(xϕ))+ E0 = E for all xϕ ∈ ϕ(U ),

where E is the chart space of (U, ϕ) and E = E0 ⊕ N ( f ′(x0
ϕ)). Thus by Theorems

2.1 and 2.2, x0 is a generalized regular point of f . This shows that f −1(y) consists
only of generalized regular points of f , and therefore y is a generalized regular
value of f .

Conversely, if y is a generalized regular value of f , then for x ∈ f −1(y), R(Tx f )
and (Tx f )−1(0)= N (Tx f ) split Ty N and Tx M , respectively, while by the definition
of a generalized regular point of f and Theorem 2.1, it is not difficult to verify that
the condition (H2) is fulfilled; this means that f tG P mod N . �

Remark 3.3. Since a point x that is regular is also generalized regular (that is, any
regular value is also a generalized regular value), it is clear that Corollary 3.1 is a
generalization of the well-known preimage theorem when P is a set formed by a
single point.

In order to give a geometric description of the condition (H2) without the aid of
charts, we will need the following lemma.

Lemma 3.2. If N is a differentiable manifold and P is a submanifold of N , then
for each y0 ∈ P there exists a neighborhood V0 at y0 such that for any y ∈ V0, there
exists a splitting subspace of Ty N , which is identified with Ty P when y ∈ P. We
still denote it by Ty P for any y ∈ V0.

Proof. We first work on an (N .P) chart (V, ψ) at y0. For any u ∈ F0, set

α(t)= yψ + ut for t ∈ (−ε, ε),
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where y ∈ V and ε is a positive number satisfying that α(t) ⊂ F0 ∩ψ(V ) for all
t ∈ (−ε, ε). Thus we get

Ty P = {[ψ−1
◦α] : for all u ∈ F0}.

For another (N .P) chart (V1, ψ1) at y0, we have by (3-2) that

F1
0 = (ψ1 ◦ψ−1)′(yψ)F0 for all y ∈ P ∩ V1 ∩ V .

Thus the definition of Ty P makes sense, as is required. �

Theorem 3.3. If M and N are Cr Banach manifolds with r ≥ 1. Let P be a
submanifold of N and f : M → N a Cr map. Then (H2) is equivalent to the
condition that

(H3) for any x0 ∈ f −1(P), there exists a neighborhood U0 at x0 and a subbundle⋃
x∈U0

mx of TU0 M (the restriction of T M to U0) such that mx0 is a topologi-
cal complement of (Tx0 f )−1(Ty0 P), and (Tx f )−1(Ty P)+ mx = Tx M for any
x ∈ U0.

Proof. By the definition of the subbundle, there exists a chart (W, ϕ) of M at x0

with W ⊂ U such that for all x ∈ W ,

(Txϕ)(Tx M)= E and (Txϕ)(mx)= E0,

where E is the chart space of (W, ϕ), and E0 is a split subspace of E . By Lemma
3.2, there exists a neighborhood V0 at y0 = f (x0), and, as mentioned before, we
can also assume that f (W )⊂ V0 and that there exists a split subspace Ty P of Ty N
for any y ∈ V0.

Now if we assume the condition (H3) holds, then

E0 ⊕ (Tx0ϕ)((Tx0 f )−1(Ty0 P))= E,

where x0 ∈ f −1(P), and

E0 + (Txϕ)((Tx f )−1(Ty P))= E,

where y = f (x) for all x ∈ W .
Let (V, ψ) be an (N .P) chart at y0 whose chart space F contains a subspace

F0 such that ψ(P ∩ V ) is open in F0. Without loss of generality, one can assume
V = V0. Then it is clear that the condition (H2) holds under the charts (W, ϕ)
and (V, ψ). Indeed, let f be the representative of f under these charts, and let
Ty P be the tangent space given in the proof of Lemma 3.2. Then it follows that
(Tyψ)(Ty P)= F0 for all y ∈ V , so that for all x ∈ W ,

E = E0 + (Txϕ)((Tx f )−1(Ty P))= ( f ′(x))−1(F0)+ E0
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and
E = E0 ⊕ (Tx0ϕ)((Tx0 f )−1(Ty0 P))= ( f ′(x0))

−1(F0)⊕ E0.

This shows the sufficiency part of the theorem.
Now assume (H2) holds for the pair of a chart (U, ϕ) at x0 and an (N .P) chart

(V, ψ) at y0. Without loss of generality, we can assume that V fulfills the property
for V0 in Lemma 3.2. We can also assume U0 ⊂ U and f (U0)⊂ V .

Proceeding as in Lemma 3.2, we set

mx = {[ϕ−1
◦β] : β = xϕ + ut, for all u ∈ E0}

for each x ∈ U0. Obviously
⋃

x∈U0
mx is a subbundle of TU0 M , which fits our

requirement. In fact, for any [cx ] ∈ Tx M , let u ∈ E be such that cx = ϕ−1(xϕ+ut).
By condition (H2), there exist u0 ∈ E0 and u1 ∈ f ′(xϕ)−1(F0) such that u =u0+u1.
On the other hand, ϕ−1(xϕ + u0t) ∈ mx , and

u1 ∈ f ′(xϕ)−1(F0)⇐⇒ f ′(xϕ)u1 ∈ F0

⇐⇒ [ f (xϕ + u1t)] ∈ (Tψ)(Ty P)

⇐⇒ [ f (ϕ−1(xϕ + u1t))] ∈ Ty P

⇐⇒ [ϕ−1(xϕ + u1t)] ∈ (Tx f )−1(Ty P).

Thus by the definition of a linear operator in the tangent space,

[ϕ−1(xϕ + u1t)] + [ϕ−1(xϕ + u0t)] = [ϕ−1(xϕ + ut)].

This shows (Tx f )−1(Ty P)+ mx ⊃ Tx M for any x ∈ U0. The converse inclusion
is obvious. This proves the necessary part of the theorem. �

Thus the generalized transversality has the following equivalent description.

Corollary 3.2. Let M and N be Cr Banach manifolds with r ≥ 1. Let P be a
submanifold of N and f : M → N a Cr map. Then f is generalized transversal
to P , if and only if the conditions (H1) and (H3) are satisfied.

Remark 3.4. When f t P mod N , then in a way analogous to Lemma 3.1, we
can work on the charts (U, ϕ) at x0 and an (N .P) chart at y0 and find that

g(x0
ϕ)= PF0,F0

⊥ f ′(x0
ϕ) ∈ B(E, F⊥

0 )

is surjective and N (g(x0
ϕ))= f ′(x0

ϕ)
−1(F0) splits E as

E = E0 ⊕ f ′(x0
ϕ)

−1(F0).

Hence x0
ϕ is a locally fine point for g(xϕ). Further one can verify the existence

of the subbundle
⋃

x∈U0
mx by the equivalent condition (v) in Theorem 2.1 for a

locally fine point x0
ϕ; that is, mx ={[ϕ−1

◦β] :β(t)= xϕ+ut for all u ∈ E0} near x0.
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