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A hypersurface x : Mn → Sn+1(1) is called a Wr -minimal hypersurface if
it is a critical hypersurface of the Generalized Willmore functional. In this
paper, we give some new nontrivial examples of Wr -minimal hypersurfaces
of Sn+1(1).

1. Introduction

Let M be an n-dimensional compact hypersurface of the (n+1)-dimensional unit
sphere Sn+1(1). If hi j denotes the components of the second fundamental form of
M , then we can choose a proper basis for TM such that hi j = λiδi j , where the λi

are the principal curvatures of M . Then the r -th mean curvature σr of M is defined
by

(1-1) Cr
nσr =

∑
1≤i1<···<ir ≤n

λi1 · · · λir for r = 1, . . . , n,

where Cr
n = n!/(r !(n − r)!) is a binomial coefficient. For convenience, we define

σ0 = 1. When σk = 0, a hypersurface M is said to be k-minimal.
The Generalized Willmore functional is the functional

Wr (M) =


∫

M Qn/r
r dv if r is odd and 3 ≤ r < n,∫

M Qn/r
r dv if r is even and 2 ≤ r < n and Qr ≥ 0,∫

M Qndv if 2 ≤ r = n,

where

(1-2) Qr =

r∑
k=0

(−1)k+1Ck
r σ r−k

1 σk .

When r = 2, we know that Q2 = σ 2
1 − σ2 is a nonnegative function on M , and

the functional
W2(M) =

∫
M

(σ 2
1 − σ2)

n/2dv
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is called the Willmore functional (see [Chen 1974; Wang 1998; Li 2001]). B. Y.
Chen [1974] and C. P. Wang [1998] proved that the Willmore functional is an
invariant under conformal transformations of Sn+1. Its critical points are called
Willmore hypersurfaces. In particular, if n = 2, the critical points are called Will-
more surfaces. There has been important progress on Willmore hypersurfaces in
recent years. For example, R. Bryant proved a duality theorem for Willmore sur-
faces. H. Li [2001] proved an integral inequality of Simons type for Willmore
hypersurfaces.

For general 2 ≤ r ≤ n, it was shown in [Guo 2007] that the functional Wr (M)

is also an invariant under conformal transformations of Sn+1. A hypersurface
x : Mn

→ Sn+1(1) is called a Wr -minimal hypersurface if it is a critical hyper-
surface of the Generalized Willmore functional Wr . Guo also proved that M is a
Wr -minimal hypersurface if and only if M satisfies

(1-3) 4(Q(n−r)/r
r (Qr−1 + σ r−1

1 ))

+ (Cr−1
n−1)

−1
r∑

k=2

(−1)k+1Cr−k
n−k T(k−1)i j (Q(n−r)/r

r σ r−k
1 ),i j

+ Q(n−r)/r
r (n2σ 2

1 − n(n − 1)σ2 + n)(Qr−1 + σ r−1
1 ) − nσ1 Q(n)/r

r

+ Q(n−r)/r
r (Cr−1

n−1)
−1

r∑
k=2

(−1)k+1Cr−k
n−kCk

nσ r−k
1 (nσ1σk − (n −k)σk+1 +kσk−1) = 0,

where 4 is the Laplacian, ( · ),i j is the covariant derivative relative to the induced
metric, and the T(k)i j are the components of the k-th Newton transformation T(k);
see [Cao and Li 2007; Reilly 1973].

Equation (1-3) is such a complicated equation to deal with that people know
few examples of Wr -minimal hypersurfaces in Sn+1(1); few examples are known
even for W2-minimal hypersurfaces (that is, Willmore hypersurfaces). H. Li and
L. Vrancken [2003] got some new examples of Willmore surfaces in a sphere. In
this paper, we obtain numerous nontrivial examples of Wr -minimal hypersurfaces.
In fact, we show two theorems:

Theorem 1.1. For n ≥ 3, let M be an n-dimensional compact (n−1)-minimal
rotational hypersurface in Sn+1(1). Then M is a Wr -minimal hypersurface.

Theorem 1.2. For n ≥ 3 and 1 ≤ j ≤ n −2, there are no compact j-minimal rota-
tional and Wr -minimal hypersurfaces of Sn+1 other than round geodesic spheres.

Remark. From [Palmas 1999] and [Wei 2007], we know that there exist many
compact immersed k-minimal rotational hypersurfaces in a unit sphere Sn+1(1)

for 1 ≤ k ≤ n − 1.
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Remark. It is easy to verify that only the hypersurface in Theorem 1.1 conformally
equivalent to the hypersurface S1(

√
(n − 1)/n)×Sn−1(

√
1/n) is that hypersurface

itself.

Remark. When r = 2, both theorems reduce to theorems due to G. Wei [2008].

2. Preliminaries

In this section, let us introduce rotational hypersurfaces in a sphere. Let M be a
rotational hypersurface of Sn+1, that is, one left invariant by the orthogonal group
O(n) considered as a subgroup of isometries of Sn+1(1). Let us parametrize the
profile curve α in S2(1) by y1 = y1(s) ≥ 0, yn+1 = yn+1(s), and yn+2 = yn+2(s).
We take ϕ(t1, . . . , tn−1) = (ϕ1, . . . , ϕn) to be an orthogonal parametrization of the
unit sphere Sn−1(1). It follows that the rotational hypersurface (see [do Carmo and
Dajczer 1983; Leite 1990]) x : Mn ↪→ Sn+1(1) ⊂ Rn+2 defined by

(s, t1, . . . , tn−1) 7→ (y1(s)ϕ1, . . . , y1(s)ϕn, yn+1(s), yn+2(s)),

ϕi = ϕi (t1, . . . , tn−1), and ϕ2
1 + · · · +ϕ2

n = 1

is a parametrization of a rotational hypersurface generated by a curve y1 = y1(s),
yn+1 = yn+1(s), and yn+2 = yn+2(s). Since the curve {y1(s), yn+1(s), yn+2(s)}
belongs to S2(1) and the parameter s can be chosen as its arc length, we have

(2-1) y2
1(s) + y2

n+1(s) + y2
n+2(s) = 1 and ẏ2

1(s) + ẏ2
n+1(s) + ẏ2

n+2(s) = 1,

where the dot denotes the derivative with respect to s. From (2-1) we can obtain
yn+1(s) and yn+2(s) as functions of y1(s). In fact, we can write

(2-2)

y1(s) = cos r(s),

yn+1(s) = sin r(s) cos θ(s),

yn+2(s) = sin r(s) sin θ(s).

We can deduce from (2-1) and (2-2) that

(2-3) ṙ2
+ θ̇2 sin2 r = 1.

It follows from (2-3) that ṙ2
≤ 1. Combining these with ṙ2

= ẏ2
1/(1 − y2

1), we
have ẏ2

1 + y2
1 ≤ 1.

Writing f (s) = y1(s) gives a theorem:

Lemma 2.1 [do Carmo and Dajczer 1983]. Let Mn be a rotational hypersurface
of Sn+1(1). Then the principal curvatures λi of Mn are

(2-4) λi = λ = −

√
1 − f 2 − ḟ 2

f
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for i = 1, . . . , n − 1 and

(2-5) λn = µ =
f̈ + f√

1 − f 2 − ḟ 2
.

If M is a k-minimal rotational hypersurface in Sn+1(1) with k < n, then we can
deduce that

0 = Ck
nσk = Ck−1

n−1λ
k−1µ + Ck

n−1λ
k .

That is,

(2-6) λk−1
{(n − k)λ + kµ} = 0.

Putting (2-4) and (2-5) into (2-6) gives another theorem:

Lemma 2.2 [Palmas 1999]. The rotational hypersurface Mn in Sn+1(1) is k-mini-
mal with k < n if and only if f satisfies the differential equation

(2-7) (n − k)(1 − f 2
− ḟ 2)k/2

− k(1 − f 2
− ḟ 2)(k−2)/2( f̈ + f ) f = 0.

Equation (2-7) is equivalent to its first order integral

(2-8) f n−k(1 − f 2
− ḟ 2)k/2

= K ,

where K is a constant.

For a constant solution f = f0 in (2-7), one has that

f 2
0 =

n−k
n

and K0 =

(k
n

)k/2(n−k
n

)(n−k)/2
.

Moreover, the constant solutions of Equation (2-7) correspond to the Riemannian
product S1(

√
k/n) × Sn−1(

√
(n − k)/n).

Equation (2-8) tells us that a local solution f of (2-7) paired with its first de-
rivative is a subset, denoted by ( f, ḟ ), of a level curve of the function Gk defined
by

(2-9) Gk(u, v) = un−k(1 − u2
− v2)k/2,

with u > 0 and u2
+ v2

≤ 1.
Let us map the open half plane {(u, v) | u > 0} by the level curve Gk = K . See

Figure 1.
Each curve is a smooth union of two graphs

v = ±

√
1 − u2 −

( K
un−k

)2/k
,
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v

u1

1

−1

0

K=0

K>0

K=K
0

.

Figure 1. Level curves for K ≥ 0.

except for the level K0 given by (2-9). The level curve Gk = K0 consists of the
unique critical point of Gk , which is on the horizontal axis, as can be seen from

∇Gk(u, v) = un−k−1(1 − u2
− v2)(k−2)/2((n − k)(1 − v2) − nu2, −kuv).

For K = 0, the level curve u2
+ v2

= 1 is a semicircle. For K 6= 0, we can get
easily that the level curve is closed in the open half plane (in fact, in the semicircular
region; see Figure 1).

We consider the foliation of the open half plane by level curves Gk = K . Since
Gm has a maximum at K0, we know K ∈ [0, K0]. Clearly any curve at an interme-
diate level K is compact and the associated solution r(s) attains a unique minimum
r1 > 0.

Now we have to consider two cases.

Case 1: K = 0. This gives us a totally geodesic n-sphere. In fact, from K = 0 and
Equation (2-8), we get f 2

+ ḟ 2
= 1. Integration of f 2

+ ḟ 2
= 1 with f (0) = 0,

we obtain f = sin s and θ = constant, so the profile curve is a great circle which
generates a totally geodesic n-sphere.

Case 2: K ∈ (0, K0]. In this case, we have

(2-10) f 2
+ ḟ 2 < 1 and 0 < f < 1.

We then claim that M has two distinct principal curvatures, that is, λ 6= µ. In
fact, if λ = µ, then we see from (2-4), (2-5), and (2-10) that

(2-11) −( f̈ + f ) f = 1 − f 2
− ḟ 2.
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Then from Equation (2-7) and (2-10), we obtain that

(2-12) (n − k)(1 − f 2
− ḟ 2) − k( f̈ + f ) f = 0.

By (2-11) and (2-12), we have n(1 − f 2
− ḟ 2) = 0. This contradicts (2-10) and

hence proves our claim.

3. The rotational k-minimal hypersurfaces in Case 2

In this section, we will recall some basic formulas for submanifolds of a sphere;
see [Cheng 2001; Li 1996]. Let M be an n-dimensional compact k-minimal ro-
tational hypersurface in Sn+1(1). For any p ∈ M , we choose a local orthonormal
frame e1, . . . , en, en+1 in Sn+1(1) around p such that e1, . . . , en are tangent to
M . Take the corresponding dual coframe ω1, . . . , ωn, ωn+1. We fix the following
conventions for the ranges of indices:

1 ≤ A, B, C ≤ n + 1; 1 ≤ i, j, k ≤ n; 1 ≤ a, b, c ≤ n − 1.

The structure equations of Sn+1(1) are

dωA =
∑

B ωAB ∧ ωB with ωAB = −ωB A,

dωAB =
∑

C ωAC ∧ ωC B − ωA ∧ ωB .

Restricted to M , we have ωn+1 = 0; thus

0 = dωn+1 =
∑

i ωn+1i ∧ ωi .

From Cartan’s lemma, we obtain

(3-1) ωin+1 =
∑

j hi jω j = λiωi ,

where hi j = h j i = λiδi j , λ1 = · · · = λn−1 = λ, and λn = µ.
Then the structure equation of M is

dωi =
∑

j ωi j ∧ ω j with ωi j = −ω j i ,

dωi j =
∑

k ωik ∧ ωk j −
1
2 Ri jklωk ∧ ωl,

where Ri jkl is the curvature tensor of the induced metric on M .
The Gauss equation is

Ri jkl = (δikδ jl − δilδ jk) + (hikh jl − hilh jk),

n(n − 1)r = n(n − 1) + n2 H 2
− S,

where r is the normalized scalar curvature, H =
1
n

∑
i hi i is the mean curvature,

and S =
∑

i, j h2
i j is the norm square of the second fundamental form of M .
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The Codazzi equations are hi jk = hik j , where the covariant derivative of hi j is
defined by

(3-2)
∑

k hi jkωk = dhi j +
∑

k hk jωki +
∑

k hikωk j .

The second covariant derivative of hi j is defined by

(3-3)
∑

l hi jklωl = dhi jk +
∑

l hl jkωli +
∑

l hilkωl j +
∑

l hi jlωlk .

By exterior differentiation of (3-2), we have the Ricci identities

hi jkl − hi jlk =
∑

m hmj Rmikl +
∑

m him Rmjkl .

In Case 2, we know from Section 2 that M has two distinct principal curvatures,
that is, λ 6= µ.

From (2-4) and (2-10), we can obtain that

(3-4) λ 6= 0.

We see from (2-6) and (3-4) that

(3-5) (n − k)λ + kµ = 0.

Lemma 3.1 [Ôtsuki 1970, p. 150]. Let M be an n-dimensional compact hypersur-
face in a unit sphere Sn+1(1) such that the multiplicities of principal curvatures
are all constant. Then the distribution of the space of principal vectors corre-
sponding to each principal curvature is completely integrable. In particular, if the
multiplicity of a principal curvature is greater than 1, then this principal curvature
is constant on each integral submanifold of the corresponding distribution of the
space of principal vectors.

By Lemma 3.1 and (3-5), we have

(3-6) λ,1 = · · · = λ,n−1 = 0 and µ,1 = · · · = µ,n−1 = 0.

By means of (3-2), we obtain

(3-7) hi jkωk = δi j dλ j + (λi − λ j )ωi j .

Summarizing the arguments above, we obtain

(3-8)

hi jk = 0 if i 6= j and λi = λ j ,

haab = 0, haan = λ,n,

hnna = 0, hnnn = µ,n.

By using methods similar to those in [Ôtsuki 1970], we can prove this:
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Proposition 3.1. Let M be an n-dimensional k-minimal hypersurface in Sn+1(1)

with n ≥ 3 and k < n and with two distinct principal curvatures λ and µ whose
multiplicities are n − 1 and 1, respectively. Then M is a locus of the moving
(n−1)-dimensional submanifold Mn−1

1 (s) along which the principal curvature λ is
constant. Mn−1

1 (s) is locally isometric to an (n − 1)-sphere Sn−1(c(s)) = En(s) ∩

Sn+1(1) of constant curvature; λ satisfies the second order ordinary differential
equation

(3-9) d2λ

ds2 =
n+k
nλ

(dλ

ds

)2
−

n(n−k)λ3

k2 +
nλ

k
,

where En(s) is an n-dimensional linear subspace in the Euclidean space Rn+2

which is parallel to a fixed En .

4. Proofs of the theorems

Proof of Theorem 1.1. Let M be an n-dimensional compact (n−1)-minimal rota-
tional hypersurface in Sn+1(1) with n ≥ 3. From Section 2, we know that we have
to consider two cases.

Case 1: M is a totally geodesic n-sphere, that is, hi j = 0, σ1 = · · · = σn = 0 and
Q1 = · · · = Qn = 0; it follows that (1-3) holds. Hence, we can easily get that M
is a Wk-minimal hypersurface.

Case 2: M has two distinct principal curvatures λ1 =· · ·=λn−1 =λ and λn =µ;
moreover λ 6= 0 and µ = −λ/(n − 1).

From (3-1) and (3-3), we have

(4-1) λ,i jω j = dλ,i + λ, jω j i .

By using (3-7), (3-8),we obtain ωan = λ,nωa/(λ − µ).
Therefore, we have dωn =

∑
i ωni ∧ ωi = 0, which shows that we may put

ωn = ds.
Then we have

ωan =
(n−1)λ,n

nλ
ωa = (log λ(n−1)/n)′ωa,

where the prime denotes the derivative with respect to s.
Letting i = a in (4-1), we see from (3-6) and (3-8) that

λ,ajω j = dλ,a + λ, jω ja = λ,nωna

= λ,n
λ,n

µ−λ
ωa = −

(n−1)

nλ
(λ,n)

2ωa.
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It follows that

(4-2)
λ,aa = −

(n−1)

nλ
(λ,n)

2 for 1 ≤ a ≤ n − 1,

λ,al = 0 if a 6= l, 1 ≤ a ≤ n − 1, and 1 ≤ l ≤ n.

Letting i = n in (4-1), we know from (3-6) and (3-9) that

λ,njω j = dλ,n + λ, jω jn = dλ,n

=

(2n−1
nλ

(λ,n)
2
−

nλ3

(n−1)2 +
nλ

n−1

)
ωn,

it follows that

(4-3) λ,na =

0 if 1 ≤ a ≤ n − 1.

2n−1
nλ

(λ,n)
2
−

nλ3

(n−1)2 +
nλ

n−1
if a = n.

In this case, we see from (3-4), (3-5), (1-1), and (1-2) that σ1 =λ(n−2)/(n−1),

(4-4)

σk =
1

Ck
n

∑
1≤i1<···<ik≤n

λi1 . . . λik

=
1

Ck
n
{Ck−1

n−1λ
k−1µ + Ck

n−1λ
k
} =

n−1−k
n−1

λk,

and

(4-5)

Qr =

r∑
k=0

(−1)k+1Ck
r σ r−k

1 σk

=

r∑
k=0

(−1)k+1Ck
r

(n−2
n−1

)r−k n−1−k
n−1

λr

= (−1)r (r − 1)
( 1

n−1

)r
λr

6= 0.

It is sufficient to prove

(4-6) 4(Q(n−r)/r
r (Qr−1 + σ r−1

1 ))

+ (Cr−1
n−1)

−1
r∑

k=2

(−1)k+1Cr−k
n−k T(k−1)i j (Q(n−r)/r

r σ r−k
1 ),i j = 0

and

(4-7) (n2σ 2
1 − n(n − 1)σ2 + n)(Qr−1 + σ r−1

1 ) − nσ1 Qr

+ (Cr−1
n−1)

−1
r∑

k=2

(−1)k+1Cr−k
n−kCk

nσ r−k
1 (nσ1σk − (n − k)σk+1 + kσk−1) = 0.
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By a direct calculation, we see from (4-4) and (4-5) that

(Cr−1
n−1)

−1
r∑

k=2

(−1)k+1Cr−k
n−kCk

nσ r−k
1 (nσ1σk − (n − k)σk+1)

=

r∑
k=2

(−1)k+1 n2(r −1)(r −2) · · · (r −k+1)

k!

(n−2
n−1

)r−k+1 n−1−k
n−1

λr+1

+

r∑
k=2

(−1)k n(n−2−k)(n−k)

n−1
(r −1)(r −2) · · · (r −k+1)

k!

(n−2
n−1

)r−k
λr+1

=
n(−n2

+3n−3)

(n−1)2

(
(−1)r

( 1
n−1

)r−1
+

(n−2
n−1

)r−1)
λr+1

+ (−1)r n(r −1)

n−1

( 1
n−1

)r−2
λr+1,

(Cr−1
n−1)

−1
r∑

k=2

(−1)k+1Cr−k
n−kCk

nσ r−k
1 kσk−1

=

r∑
k=2

(−1)k+1 n(r −1)(r −2) · · · (r −k+1)

(k−1)!

(n−2
n−1

)r−k n−k
n−1

λr−1

= (−1)r n(r − 2)
( 1

n−1

)r−1
λr−1

−
n(n−r)

n−1
λr−1,

and

(n2σ 2
1 − n(n − 1)σ2 + n)(Qr−1 + σ r−1

1 ) − nσ1 Qr

=

(
n2

(n−2
n−1

)2
λ2

− n(n − 1)
n−3
n−1

λ2
)

×

(
(−1)r−1(r − 2)

( 1
n−1

)r−1
λr−1

+

(n−2
n−1

)r−1
λr−1

)
+ n

(
(−1)r−1(r − 2)

( 1
n−1

)r−1
λr−1

+

(n−2
n−1

)r−1
λr−1

)
+ (−1)r+1n n−2

n−1
(r − 1)

( 1
n−1

)r
λr+1

=
n(n2

−3n+3)

(n−1)2

(
(−1)r−1(r − 2)

( 1
n−1

)r−1
+

(n−2
n−1

)r−1)
λr+1

+ (−1)r+1n(r − 1)
n−2
n−1

( 1
n−1

)r
λr+1

+ (−1)r−1n(r − 2)
( 1

n−1

)r−1
λr−1

+ n
(n−2

n−1

)r−1
λr−1.



NEW EXAMPLES OF Wr -MINIMAL HYPERSURFACES IN A SPHERE 383

Using (4-4), (4-5), and the last three equations, we obtain

(n2σ 2
1 − n(n − 1)σ2 + n)(Qr−1 + σ r−1

1 ) − nσ1 Qr

+(Cr−1
n−1)

−1
r∑

k=2

(−1)k+1Cr−k
n−kCk

nσ r−k
1 (nσ1σk − (n − k)σk+1 + kσk−1) = 0.

Note that

(4-8)
4(λn−1) = (n − 1)(n − 2)λn−3

n∑
i=1

(λ,i )
2
+ (n − 1)λn−2

4λ

= (n − 1)(n − 2)λn−3(λ,n)
2
+ (n − 1)λn−2

4λ

and

(4-9)

(λn−k),aa = (n − k)(n − k − 1)λn−k−2(λ,a)
2
+ (n − k)λn−k−1λ,aa

= (n − k)λn−k−1λ,aa

= −
(n−k)(n−1)

nλ
λn−k−1(λ,n)

2,

(λn−k),nn = (n − k)(n − k − 1)λn−k−2(λ,n)
2
+ (n − k)λn−k−1λ,nn.

Next we will prove that Equation (4-6) holds.
We recall the k-th Newton transformation defined by

T(k) = sk I − sk−1 A + · · · + (−1)k−1s1 Ak−1
+ (−1)k Ak for k = 0, 1, . . . , n,

where A = (hi j ) and sk = Ck
nσk . Then we know that the matrix of T(k) is (also see

[Cao and Li 2007; Reilly 1973])

(4-10) T(r)i j =
1
r !

δ
i1...ir i
j1... jr j hi1 j1 · · · hir jr ,

where δ
i1...ir i
j1... jr j is the generalized Kronecker symbol. If its i’s and j’s are integers

between 1 and n, then δ
i1...ir i
j1... jr j is +1 or −1 if the i’s are distinct and the j’s are an

even or odd permutation, respectively, of the i’s. It is zero in all other cases.
Since hik jk = λik δik jk and from the definition of δ

i1...ir i
j1... jr j , we know that

T(r)i j = 0 if i 6= j.

From λ + (n − 1)µ = 0 and (4-10), we obtain

(4-11)

T(r)11 = · · · = T(r)n−1n−1

=
1
r !

δ
i1...ir 1
i1...ir 1hi1i1 · · · hir ir = Cr−1

n−2λ
r−1µ + Cr

n−2λ
r

= Cr
n−2λ

r
−

1
n−1

Cr−1
n−2λ

r .



384 GUOXIN WEI

and T(r)nn = (1/r !)δ
i1...ir n
i1...ir n hi1i1 · · · hir ir = Cr

n−1λ
r .

On one hand, we can deduce from (4-8) that

(4-12) 4(Q(n−r)/r
r (Qr−1 + σ r−1

1 ))

= 4

((
(−1)r (r − 1)

( 1
n−1

)r)(n−r)/r

×

(
(−1)r−1(r − 2)

( 1
n−1

)r−1
+

(n−2
n−1

)r−1)
λn−1

)
= (−1)n−r

(
(r − 1)

( 1
n−1

)r)(n−r)/r

×

(
(−1)r−1(r − 2)

( 1
n−1

)r−1
+

(n−2
n−1

)r−1)
4λn−1

= (−1)n−r
(
(r − 1)

( 1
n−1

)r)(n−r)/r

×

(
(−1)r−1(r − 2)

( 1
n−1

)r−1
+

(n−2
n−1

)r−1)
×((n −1)(n −2)λn−3(λ,n)

2
+(n −1)λn−2((n −1)λ,11 +λ,nn)).

Using (4-11), one can easily check that

(4-13) (Cr−1
n−1)

−1
r∑

k=2

(−1)k+1Cr−k
n−k T(k−1)i j (Q(n−r)/r

r σ r−k
1 ),i j

= (Cr−1
n−1)

−1
r∑

k=2

(−1)k+1Cr−k
n−k T(k−1)i i (Q(n−r)/r

r σ r−k
1 ),i i

= (Cr−1
n−1)

−1
r∑

k=2

(−1)k+1Cr−k
n−k

(
(n − 1)T(k−1)11(Q(n−r)/r

r σ r−k
1 ),11

+ T(k−1)nn(Q(n−r)/r
r σ r−k

1 ),nn
)

= (−1)n−r (Cr−1
n−1)

−1
(
(r − 1)

( 1
n−1

)r)(n−r)/r

×

( r∑
k=2

(−1)k+1Cr−k
n−k((n − 1)Ck−1

n−2 − Ck−2
n−2)

(n−2
n−1

)r−k)
λk−1(λn−k),11

+ (−1)n−r (Cr−1
n−1)

−1
(
(r − 1)

( 1
n − 1

)r)(n−r)/r

×

( r∑
k=2

(−1)k+1Cr−k
n−kCk−1

n−1

(n−2
n−1

)r−k
λk−1(λn−k),nn

)
.
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Using (4-12) and (4-13), we get that Equation (4-6) is equivalent to(
(−1)r−1(r − 2)

( 1
n−1

)r−1
+

(n−2
n−1

)r−1)
×

(
(n − 1)(n − 2)λn−3(λ,n)

2
+ (n − 1)λn−2((n − 1)λ,11 + λ,nn)

)
+ (Cr−1

n−1)
−1

( r∑
k=2

(−1)k+1Cr−k
n−k((n − 1)Ck−1

n−2 − Ck−2
n−2)

(n−2
n−1

)r−k)
λk−1(λn−k),11

+ (Cr−1
n−1)

−1
( r∑

k=2

(−1)k+1Cr−k
n−kCk−1

n−1

(n−2
n−1

)r−k
λk−1(λn−k),nn

)
= 0,

that is,

(4-14)
(
(−1)r−1(r − 2)

( 1
n−1

)r−1
+

(n−2
n−1

)r−1)
×

(
(n − 1)(n − 2)λn−3(λ,n)

2
+ (n − 1)λn−2

[(n − 1)λ,11 + λ,nn]
)

+ (Cr−1
n−1)

−1
r∑

k=2

(−1)k+1Cr−k
n−k((n − 1)Ck−1

n−2 − Ck−2
n−2)

(n−2
n−1

)r−k
(n − k)λn−2λ,11

+ (Cr−1
n−1)

−1
r∑

k=2

(−1)k+1Cr−k
n−kCk−1

n−1

(n−2
n−1

)r−k
λk−1

×
(
(n − k)(n − k − 1)λn−k−2(λ,n)

2
+ (n − k)λn−k−1λ,nn

)
= 0.

From (4-2), (4-3), (4-8), and (4-9), we observe all the terms of Equation (4-14)
have factors of either λ,nn or (λ,n)

2. So, if we can show that the coefficients of these
terms are 0, we will conclude Equation (4-6) holds. The coefficient of λn−2λ,nn on
the left side of Equation (4-14) is

=

(
(−1)r−1(r − 2)

( 1
n−1

)r−1
+

(n−2
n−1

)r−1)
(n − 1)

+ (Cr−1
n−1)

−1
r∑

k=2

(−1)k+1Cr−k
n−kCk−1

n−1

(n−2
n−1

)r−k
(n − k)

=

(
(−1)r−1(r − 2)

( 1
n−1

)r−1
+

(n−2
n−1

)r−1)
(n − 1)

+

r∑
k=2

(−1)k+1Ck−1
r−1

(n−2
n−1

)r−k
((n − 1) + (−k + 1))

=

(
(−1)r−1(r − 2)

( 1
n−1

)r−1
+

(n−2
n−1

)r−1)
(n − 1)

+

r−1∑
k=1

(−1)kCk
r−1

(n−2
n−1

)r−k−1
(n − 1) +

r−2∑
k=0

(−1)k(r − 1)Ck
r−2

(n−2
n−1

)r−k−2
,
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which equals zero. The coefficient of λn−3(λ,n)
2 on the left side of (4-14) is

=

(
(−1)r−1(r − 2)

( 1
n−1

)r−1
+

(n−2
n−1

)r−1)
×

(
(n − 1)(n − 2) −

(n−1)3

n

)
+ (Cr−1

n−1)
−1

r∑
k=2

(−1)k+1Cr−k
n−k((n − 1)Ck−1

n−2 − Ck−2
n−2)

(n−2
n−1

)r−k
(n − k)(−1)

n−1
n

+ (Cr−1
n−1)

−1
r∑

k=2

(−1)k+1Cr−k
n−kCk−1

n−1

(n−2
n−1

)r−k
(n − k)(n − k − 1)

=

(
(−1)r−1(r − 2)

( 1
n−1

)r−1
+

(n−2
n−1

)r−1)(1−n)

n

+

r∑
k=2

(−1)kCk−1
r−1

(n−2
n−1

)r−k k(n−k)

n

+

r∑
k=2

(−1)k+1(r − 1)Ck−2
r−2

(n−2
n−1

)r−k
×

(n−k)

n

=

(
(−1)r−1(r − 2)

( 1
n−1

)r−1
+

(n−2
n−1

)r−1)(1−n)

n

+
n−1

n

(
(−1)r

( 1
n−1

)r−1
+

(n−2
n−1

)r−1
− (r − 1)

(n−2
n−1

)r−2)
+

2(n−2)(r −1)

n

(n−2
n−1

)r−2

+
(r −1)(n−3)

n

(
(−1)r

( 1
n−1

)r−2
−

(n−2
n−1

)r−2)
+ (−1)r−1 (r −1)(r −2)

n

( 1
n−1

)r−3

+ (−1)r−1 (n−2)(r −1)

n

( 1
n−1

)r−2
+ (−1)r (r −1)(r −2)

n

( 1
n−1

)r−3
,

which equals zero. In summary, Equation (4-6) and (4-7) are valid, which com-
pletes the proof of Theorem 1.1. �

Proof of Theorem 1.2. Since 4 and Tk−1 are the self-adjoint operators (see also
[Cao and Li 2007; Reilly 1973]), we obtain from (1-3) that the necessary condition
for M to be Wr -minimal is that∫

M

(
Q(n−r)/r

r (n2σ 2
1 − n(n − 1)σ2 + n)(Qr−1 + σ r−1

1 ) − nσ1 Qn/r
r

)
dv

+

∫
M

(
Q(n−r)/r

r (Cr−1
n−1)

−1

×

r∑
k=2

(−1)k+1Cr−k
n−kCk

nσ r−k
1 (nσ1σk − (n − k)σk+1 + kσk−1)

)
dv = 0.
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If M is j-minimal rotational hypersurface for n ≥ 3 and 1 ≤ j ≤ n − 2 and is
not totally geodesic, then we have

(n − j)λ + jµ = 0, σk =
j −k

j
λk, Qr = (−1)r (r − 1)

(1
j

)r
λr , and λ 6= 0.

A straightforward calculation shows that

Q(n−r)/r
r n(Qr−1 + σ r−1

1 ) + Q(n−r)/r
r (Cr−1

n−1)
−1

r∑
k=2

(−1)k+1Cr−k
n−kCk

nσ r−k
1 kσk−1 = 0

and

Q(n−r)/r
r (n2σ 2

1 − n(n − 1)σ2)(Qr−1 + σ r−1
1 ) − nσ1 Qn/r

r

+ Q(n−r)/r
r (Cr−1

n−1)
−1

r∑
k=2

(−1)k+1Cr−k
n−kCk

nσ r−k
1 (nσ1σk − (n − k)σk+1)

= (−1)r n(r −1)

jr+1 Q(n−r)/r
r ( j − n + 1)λr+1

= (−1)nn(r − 1)n/r j−n−1( j − n + 1)λn+1,

so∫
M

(
Q(n−r)/r

r (n2σ 2
1 − n(n − 1)σ2 + n)(Qr−1 + σ r−1

1 ) − nσ1 Qn/r
r

)
dv

+

∫
M

(
Q(n−r)/r

r (Cr−1
n−1)

−1

×

r∑
k=2

(−1)k+1Cr−k
n−kCk

nσ r−k
1 (nσ1σk − (n − k)σk+1 + kσk−1)

)
dv

= (−1)nn(r − 1)n/r j−n−1( j − n + 1)

∫
M

λn+1dv,

which does not equal zero.
Hence, for n ≥ 3 and 1 ≤ j ≤ n − 2, there are no compact j-minimal rotational

and Wr -minimal hypersurfaces of Sn+1 other than round geodesic spheres.
This completes the proof of Theorem 1.2. �
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