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In this paper, we consider second order semilinear elliptic systems of the
form −1u = a(x)v p and −1v = b(x)uq in RN for N ≥ 3, where p, q > 0
and a, b ∈ C(RN). We prove a new Liouville-type theorem for the system
under appropriate conditions on the nonlinearity.

1. Introduction

We consider second order semilinear elliptic systems of the form

(1-1)
−1u = a(x)v p

−1v = b(x)uq

}
in RN

for N ≥ 3, where p, q > 0 and a, b ∈ C(RN ).
The problem of existence and nonexistence of positive solutions of scalar elliptic

equation

(1-2) −1u = K (x)u p in RN

has been investigated by many authors, see [Ding and Ni 1985; Gidas and Spruck
1981; Kusano and Naito 1987; Lin 1998; Ni 1982]. For p = (N +2)/(N −2), we
note that (1-2) has a geometric root. Given a smooth positive function K defined on
a Riemannian manifold (M, g0) of dimension N ≥ 3, we ask whether there exists
a metric g conformal to g0 such that K is the scalar curvature of the new metric g.
Let g = u4/(N−2)g0 for some positive function u; then the problem reduces to find
solutions of the equation

(1-3) 4(N−1)
N−2 1g0u − k0u + K u(N+2)/(N−2)

= 0 in M ,

where 1g0 is the Laplace–Beltrami operator on M and k0 is the scalar curvature of
(M, g0). In the special case that M = RN and g0 is the standard metric of RN , we
have k0 ≡ 0 and Equation (1-3) reduces to (1-2) with p = (N + 2)/(N − 2). For
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more background material and other related problems, we refer to [Ni 1982; Lin
1998] and the references therein.

When a(x) and b(x) are positive constants, the system (1-1) becomes the Lane–
Emden system

(1-4)
−1u = v p

−1v = uq

}
in RN .

There are some nonexistence results for positive solutions of the system (1-4); see
[Busca and Manásevich 2002; de Figueiredo and Felmer 1994; Mitidieri 1993;
1996; Serrin and Zou 1994; 1996].

Next we turn our attention to system (1-1). As far as the author knows, there are
no results that contain nonexistence criteria of positive solutions to (1-1) except
for the following result of Mitideri [1996]. Let a(x) = a(|x |) and b(x) = b(|x |).

Theorem. Suppose that N ≥ 3 and p, q > 1 and let a, b ∈ [0, +∞) → [0, +∞)

be functions such that

(i) a, b ∈ C[0, +∞)
⋂

C1(0, +∞) and a(r), b(r) > 0 for r > 0;

(ii) (a(r)r δ)′, (b(r)r δ)′ ≥ 0 and r > 0 with

δ =
2(p+1)(q+1)−N (pq−1)

p+q+2
;

(iii) limr→∞ a(r)r δ
= limr→∞ a(r)r δ

= +∞.

Then the problem (1-1) has no positive radial solutions.

In this work, we consider nonradial solutions of (1-1), that is, a(x) and b(x)

need not be radially symmetric. We generalize Mitidieri’s result partially here.
Our result is the following.

Theorem 1.1. Suppose that N ≥ 3 and p, q > 1 and that the nonnegative functions
a, b satisfy

(i) |x |
δ1a(x) and |x |

δ2b(x) are nondecreasing along each ray {tξ : t ≥ 0} for any
unit vector ξ in RN , where

δ1 =
1
2(N + 2 − p(N − 2)) and δ2 =

1
2(N + 2 − q(N − 2)),

(ii) lim|x |→∞|x |
δ1a(x) = lim|x |→∞|x |

δ2b(x) = +∞.

Then the system (1-1) has no positive classical solutions.

We can easily obtain a corollary of Theorem 1.1.

Corollary 1.2. If 1< p, q <(N +2)/(N −2), then the system (1-4) has no positive
classical solutions.
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We note that Figueiredo and Felmer [1994] proved Corollary 1.2, among other
things, by using the moving plane method.

In the proof of Theorem 1.1, we use the method of moving spheres, a variant of
the method of moving planes. Roughly speaking, we make reflection with respect
to spheres instead of planes. The method of moving spheres was used in [Chou
and Chu 1993; Padilla 1994; Chen and Li 1995; Li and Zhu 1995; Li and Zhang
2003]. Li and Zhang made significant simplifications and proved some Liouville
type theorems for a single equation. The proof of our theorem is along the lines of
the works cited above.

The method of moving planes was first introduced by Alexandrov [1958] and
then used by several authors: Serrin [1971]; Gidas, Ni and Nirenberg [1979, 1981];
and Berestycki and Nirenberg [1988, 1991]. This method has become a powerful
tool in the study of nonlinear partial differential equations.

The paper is organized as follows. In Section 2, we give some lemmas that are
used in the proof of Theorem 1.1, which is then proved in Section 3.

2. Preliminary lemmas

For λ > 0, consider the Kelvin transformation of u and v for x ∈ RN
\ {0}:

uλ(x) =
λN−2

|x |N−2 u
(

λ2

|x |2
x
)

and vλ(x) =
λN−2

|x |N−2 v
(

λ2

|x |2
x
)
.

Our first lemma says that we can initiate the method of moving spheres.

Lemma 2.1. There exists a λ0 > 0 such that uλ(x) ≤ u(x) and vλ(x) ≤ v(x) for
all 0 < λ < λ0 and |x | ≥ λ.

Proof. Clearly, there exists an r0 > 0 such that

d
dr

(r (N−2)/2u(r, θ)) > 0 for all 0 < r < r0 and θ ∈ SN−1.

Consequently,
uλ(x) < u(x) for all 0 < λ < |x | < r0.

By the superharmonicity of u and the maximum principle,

u(x) ≥ (min∂ Br0
u)r N−2

0 |x |
2−N for all |x | ≥ r0.

Let

λ1 = r0

(min∂ Br0
u

maxBr0
u

)1/(N−2)

≤ r0.

Then for every 0 < λ < λ1 and |x | ≥ r0, we have

uλ(x) ≤
λN−2

1

|x |N−2 maxBr0
u ≤

r N−2
0 min∂ Br0

u

|x |N−2 ≤ u(x).
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Similarly, there exists λ2 > 0 such that for every 0 < λ < λ2, we have

vλ(x) ≤ v(x) for |x | ≥ λ.

We choose λ0 = min{λ1, λ2}. Thus, for every 0 < λ < λ0,

uλ(x) ≤ u(x) and vλ(x) ≤ v(x) for |x | ≥ λ. �

Set

λ = sup{µ > 0 : uλ(x) ≤ u(x) and vλ(x) ≤ v(x) for all |x | ≥ λ and 0 < λ ≤ µ}.

By Lemma 2.1, λ is well defined, and 0 < λ ≤ +∞.

Lemma 2.2. If λ < +∞, then uλ(x) ≡ u(x) and vλ(x) ≡ v(x) in RN
\ {0}.

Proof. Let 6λ = {x : |x | > λ}. Clearly it suffices to show

uλ ≡ u and vλ ≡ v in 6λ.

We first prove uλ ≡ u. We prove it by contradiction. Supposing uλ 6≡ u in 6λ, we
know from the definition of λ that

uλ ≤ u and vλ ≤ v in 6λ.

From (1-1), a direct calculation yields

−1uλ =

(
λ

|x |

)N+2−p(N−2)

a
(

λ2

|x |2
x
)
v

p
λ .

Thus, by condition (i) of Theorem 1.1, we have

−1(u − uλ) = a(x)v p
−

(
λ

|x |

)N+2−p(N−2)

a
(

λ2

|x |2
x
)
v

p
λ

= |x |
−δ1

(
|x |

δ1a(x)v p
− |x |

δ1
(

λ

|x |

)N+2−p(N−2)

a
(

λ2

|x |2
x
)
v

p
λ

)
= |x |

−δ1

(
|x |

δ1a(x)v p
−

(
λ2

|x |

)δ1
a
(

λ2

|x |2
x
)
v

p
λ

)
≥ 0 in 6λ.

By the maximum principle, u − uλ > 0 in 6λ. Thus, by the Hopf lemma and the
compactness of ∂ Bλ, there exists a positive constant b such that

d
dr

(u − uλ)

∣∣∣
∂ Bλ

> b > 0.

By the continuity of ∇u, there exists R > λ such that

d
dr

(u − uλ) >
b
2

> 0 for λ ≤ λ ≤ R and λ ≤ r ≤ R.
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Consequently, since u − uλ ≡ 0 on ∂ Bλ,

(2-1) u(x) > uλ(x) for λ ≤ λ ≤ R and λ ≤ |x | ≤ R.

Set c = min∂ BR (u − uλ) > 0. It follows from the superharmonicity of u − uλ that
u − uλ ≥ cRN−2/|x |

N−2 for |x | ≥ R. Therefore

(2-2) u − uλ ≥
cRN−2

|x |N−2 − (uλ − uλ) for |x | ≥ R.

By the uniform continuity of u on B R , there exists an ε ∈ (0, R − λ) such that for
all λ ≤ λ ≤ λ + ε,∣∣∣∣λN−2u

(
λ2x
|x |2

)
− λN−2u

(
λ2x
|x |2

)∣∣∣∣ <
cRN−2

2
for |x | ≥ R.

It follows from (2-2) and the above inequality that

u(x) − uλ(x) > 0 for λ ≤ λ ≤ λ + ε and |x | ≥ R.

Thus, (2-1) and (2-2) are in contradiction with the definition of λ. Similarly, we
can prove that vλ ≡ v in 6λ. �

Lemma 2.3. λ < +∞.

Proof. Suppose by way of contradiction that λ = +∞. By the definition of λ,

(2-3) u(x) ≥ uλ(x) for |x | ≥ λ for all λ > 0.

Set |x | = λ2. Then, from (2-3),

u(x) ≥ λ−(N−2)u(x/λ2) ≥ c1|x |
−(N−2)/2 for |x | ≥ 1,

where c1 = min∂ B1 u(x). Similarly, we have

v(x) ≥ c2|x |
−(N−2)/2 for |x | ≥ 1,

where c2 = min∂ B1 v(x). Rewrite system (1-1) into

1u + ã(x)v = 0 and 1v + b̃(x)u = 0,

where ã(x) = a(x)v p−1 and b̃(x) = b(x)uq−1. For any M > 0, by condition (ii) of
Theorem 1.1, there exists R0 ≥ 1 such that

ã(x)|x |
2
≥ Mc1−p

2 |x |
2−δ1(c2|x |

−(N−2)/2)p−1
= M for |x | ≥ R0.

Thus

(2-4) lim
|x |→+∞

ã(x)|x |
2
= +∞.
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Similarly, we have

(2-5) lim
|x |→+∞

b̃(x)|x |
2
= +∞.

For |y| ≤ 1/2, set ũ(y) = u(x +|x |y) and ṽ(y) = v(x +|x |y). Then ũ and ṽ satisfy

(2-6)
1ũ + |x |

2ã(x + |x |y)ṽ = 0

1ṽ + |x |
2b̃(x + |x |y)ũ = 0

}
in B1/2.

in B1/2. Set f (x) = inf|y|≤1/2|x |
2ã(x +|x |y) and g(x) = inf|y|≤1/2|x |

2b̃(x +|x |y).
From (2-6),

(2-7)
−1ũ ≥ f (x)ṽ

−1ṽ ≥ g(x)ũ

}
in B1/2.

Let φ∈ H 1
0 (B1/2) be the positive eigenfunction corresponding to the first eigenvalue

λ1 of (−1, H 1
0 (B1/2)). Multiplying both sides of the first inequality in (2-7) by φ

and integrating the obtained inequality over B1/2, we have

(2-8) f (x)

∫
B1/2

ṽφ dy ≤

∫
B1/2

−1ũ · φ dy

≤

∫
B1/2

−1φ · ũ dy = λ1

∫
B1/2

ũφ dy.

Similarly, by the second inequality in (2-7), we obtain

(2-9) g(x)

∫
B1/2

ũφ dy ≤ λ1

∫
B1/2

ṽφ dy.

From (2-8) and (2-9), f (x)g(x) ≤ λ2
1. However, by (2-4) and (2-5),

lim
|x |→+∞

|x |
2ã(x + |x |y) = lim

|x |→+∞

|x |
2b̃(x + |x |y) = +∞,

uniformly for |y| ≤ 1/2. This yields a contradiction. �

3. Proof of Theorem 1.1

By Lemmas 2.2 and 2.3, we have

uλ(x) ≡ u(x) and vλ(x) ≡ v(x) in RN
\ {0}.

Since

−1uλ =

(
λ

|x |

)N+2−p(N−2)

a
(

λ2

|x |2
x
)
v

p
λ ,

−1vλ =

(
λ

|x |

)N+2−q(N−2)

b
(

λ2

|x |2
x
)

uq
λ,
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we have by (1-1)(
λ

|x |

)N+2−p(N−2)

a
(

λ2

|x |2
x
)

≡ a(x) in RN
\ {0},

that is,

(3-1)
(

λ2

|x |

)δ1
a
(

λ2

|x |2
x
)

≡ |x |
δ1a(x) in RN

\ {0}.

For large |x |, we have, by condition (ii) of Theorem 1.1,(
λ2

|x |

)δ1
a
(

λ2

|x |2
x
)

< |x |
δ1a(x),

which contradicts (3-1). �
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