
Pacific
Journal of
Mathematics

CORRECTION TO THE ARTICLE
COVERING OF A HOLOMORPHICALLY CONVEX MANIFOLD

CARRYING A POSITIVE LINE BUNDLE

SAID ASSERDA

Volume 236 No. 2 June 2008



PACIFIC JOURNAL OF MATHEMATICS
Vol. 236, No. 2, 2008

CORRECTION TO THE ARTICLE
COVERING OF A HOLOMORPHICALLY CONVEX MANIFOLD

CARRYING A POSITIVE LINE BUNDLE

SAID ASSERDA

Volume 185:2 (1998), 201–208

Let M̃ be a connected holomorphic covering of a holomorphically convex
manifold M. If M carries a positive holomorphic line bundle L such that the
pullback of L is holomorphically trivial on M̃, then M̃ is a Stein manifold.

In the paper being corrected, the argument given on page 203, six lines from
the bottom, is erroneous. It is asserted that, after passing to a subsequence of
(zk) := (xνk ) of (xν), we may assume that

r(zk) = distg̃(zk, x0) ≥ k + ρk,

where ρk := sup1≤l≤k supx∈Xl
‖s‖π∗L , since this would imply

r(zk) = distg̃(zk, x0) ≥ k + c| f (zk)|

for k large enough, where f0 is a nowhere vanishing holomorphic function on
π−1(U ). But a priori (| f (zk)|) might tend to infinity. We overcome this difficulty
as follows.

If the sequence (ρk) is bounded then we follow fully Case 1 on page 203.
If the sequence (ρk) is unbounded, assume that dim M = n ≥ 2. Following the

notations of Case 1, let k be large enough such that 9/R ≤ ρ
1/(n−1)

k ≤ ρ
m/(n−1)

k for
all m ≥ 1. Set

Y m
k := φ−1

k (B(φk(zk), ρ
−m/(n−1)

k )) ⊂⊂ Xk := φk(B(φk(zk), R/(4))).

(Xk is defined on page 203, line −4.) Let θ ∈ C∞(R) such that θ = 1 if 0 ≤ t ≤ 1/2
and θ = 0 if t ≥ 1 and 0 ≤ θ ≤ 1. Let tm the C∞ section of π∗(Lm) over M̃ defined
by 0 on M̃ \

⋃
k Y m

k and

tm(x) := θ(ρ
m/(n−1)

k ‖φk(x) − φk(zk)‖)er(zk) ⊗
m
i=1 s if x ∈ Y m

k .
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Following page 204, line −2, we have on Y m
k

‖∂̄tm‖
2
π∗(Lm) ≤ Cρ2m/(n−1)e2r(zk)ρ2m

k .

Hence∫
M̃

‖∂̄tm‖
2e−(9+3c1τ)dVg̃ ≤ C

+∞∑
k=1

ρ2m/(n−1)e−r(zk)ρ2m
k Volg̃(Y m

k )

≤ C
+∞∑
k=1

ρ2m/(n−1)e−r(zk)ρ2m
k Vol(Be(φk(zk), ρ

−m/(n−1)

k ))

≤ C
+∞∑
k=1

e−r(zk) < ∞,

since we may suppose that r(zk)≥ k for k large enough. After this, we follow page
205, line −3.

If dim M = 1, then M̃ is a noncompact Riemann surface and hence a Stein
manifold, by the Behnke–Stein theorem.
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