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We give a classification of the infinitesimal q-Schur algebras that have finite
representation type.

1. Introduction

R. Dipper and G. James [1989; 1991] introduced q-analogues of Schur algebras,
called q-Schur algebras. The q-Schur algebras are related to Hecke algebras of
type A in precisely the same way that classical Schur algebras are related to group
algebras of symmetric groups. The q-Schur algebras play an important role in the
nondefining representation and cohomology theories of the finite general linear
groups. The representations of q-Schur algebras Sq(n, d) are equivalent to the
polynomial representations of the quantum linear group G := Gq(n) of a given
degree d; see [Parshall and Wang 1991, 11.2], [Donkin 1996, Section 4], and [Cox
1997, 1.6]. Infinitesimal Schur/q-Schur algebras were introduced in [Doty et al.
1996; Cox 1997; 2000] as the dual algebras of the homogeneous components of
the infinitesimal thickening (by the torus) of the Frobenius kernel. It turns out
that infinitesimal q-Schur algebras control the polynomial representations of Gr T .
Here Gr T is the q-analogue of Jantzen subgroups, which can be regarded as infin-
itesimal thickenings of the Frobenius kernels Gr by the torus T .

It is important to classify the representation type of a finite-dimensional algebra.
In the classical case, the representation type of Schur algebras and infinitesimal
Schur algebras has been classified; see [Erdmann 1993; Doty et al. 1997; Doty et al.
1999]. In the quantum case, the classification of the representation type of the q-
Schur algebras was given in [Erdmann and Nakano 2001]. The representation type
of Hecke algebras has also been classified; see [Uno 1992; Erdmann and Nakano
2002; Ariki and Mathas 2004; Ariki 2005]. Here, we will classify the infinitesimal
q-Schur algebras of finite representation type.
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Little q-Schur algebras were introduced as homomorphic images of infinitesimal
quantum gln in [Du et al. 2005]; see also [Fu 2007]. The relationship between
infinitesimal q-Schur algebras and little q-Schur algebras is similar to that of Gr T
and Gr ; see [Fu 2005]. We expect that the result of this paper can be used to study
the representation type of little q-Schur algebras.

2. Main result

Let k be an algebraically closed field of characteristic p >0. Let q ∈ k and q 6=0, 1.
Let l be the multiplicative order of q in k∗; that is, either q is a primitive l-th root
of unity or l = ∞.

The q-Schur algebra Sq(n, d) is a deformation of the classical Schur algebra
S(n, d). Let us recall the construction of the q-Schur algebra from the coordinated
algebra of the quantum matrix monoid Mq(n) as follows. Following [Dipper and
Donkin 1991], let Aq(n) be the k-algebra generated by the n2 indeterminates ci j ,
with 1 6 i, j 6 n, subject to the relations

ci j ci t = ci t ci j for all i, j, t,

ci j cst = qcst ci j for i > s and j 6 t,

ci j cst = cst ci j + (q − 1)cs j ci t for i > s and j > t .

This is a bialgebra, with comultiplication and counit given by

1(ci j ) =

n∑
t=1

ci t ⊗ ct j and ε(ci j ) = δi j .

We denote by M = Mq(n) the quantum matrix monoid with the coordinate algebra
k[M]= Aq(n). Let Aq(n, d) denote the subspace of elements in Aq(n) of degree d
in the ci j . Then the Aq(n, d) are in fact subcoalgebras of Aq(n) for all d . Hence
Aq(n, d)∗ is an algebra, which is isomorphic to the q-Schur algebra Sq(n, d) by
[Dipper and Donkin 1991, 3.2.6].

Theorem 2.1 [Erdmann and Nakano 2001, Theorem 1.4(B)]. The algebra Sq(n, d)

has infinite representation type if and only if q is a primitive l-th root of unity and
one of the following holds:

(1) n > 3 and d > 2l;

(2) n = 2, p 6= 0, l > 3 and d > lp;

(3) n = 2, p > 3, l = 2 and d is even with d > 2p, or d is odd with d > 2p2
+1.

From now on, we assume p > 0 and q is a primitive l-th root of unity. Note
that l and p must be coprime.
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We recall the definition of infinitesimal q-Schur algebras of [Cox 1997; Cox
2000]. Let Jr be the ideal in Aq(n) generated by ci j

lpr−1
for 1 6 i 6= j 6 n. This is

a coideal; thus Aq(n)/Jr is a bialgebra and gives rise to a quantum monoid, which
we denote by Mr D. Let Aq(n, d)r be the image of Aq(n, d) under the quotient
map k[M] = Aq(n) → k[Mr D] = Aq(n)/Jr . This subspace is also a subcoalgebra
of k[Mr D] for all d . The algebra sq(n, d)r = Aq(n, d)∗r is called the infinitesimal
q-Schur algebra.

The main result of this paper is as follows.

Theorem 2.2. Assume k is an algebraically closed field of characteristic p > 0
and q ∈ k is a primitive l-th root of unity. Then the infinitesimal q-Schur algebra
sq(n, d)r has finite representation type if and only if one of the following holds:

(1) n > 3, r > 2 and d < 2l;

(2) n > 3, r = 1 and d < l;

(3) n = 3, l = 3, r = 1 and d = 4, 5;

(4) n = 3, l = 2, r = 1 and d = 2, 3;

(5) n = 2, r > 2 and d < lp;

(6) n = 2, l = 2, r > 3 and d is odd with 2p + 1 6 d < 2p2
+ 1;

(7) n = 2, l = 2, r = 2 and d is odd with d > 2p + 1;

(8) n = 2 and r = 1.

For convenience, it will be useful to reformulate Theorem 2.2 as follows.

Theorem 2.3. Assume k is an algebraically closed field of characteristic p > 0
and q ∈ k is a primitive l-th root of unity. Then the infinitesimal q-Schur algebra
sq(n, d)r has infinite representation type if and only if one of the following holds:

(1) n > 3, r > 2 and d > 2l;

(2) n > 4, r = 1 and d > l;

(3) n = 3, l > 4, r = 1 and d > l;

(4) n = 3, l = 3, r = 1 and either d = 3 or d > 6;

(5) n = 3, l = 2, r = 1 and d > 4;

(6) n = 2, l > 3, r > 2 and d > lp;

(7) n = 2, l = 2, r > 3 and either d is even with d > 2p or d is odd with
d > 2p2

+ 1;

(8) n = 2, l = 2, r = 2 and d is even with d > 2p.
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3. Preliminaries

In this section, we shall prove some general results of infinitesimal q-Schur alge-
bras, which will be used in Sections 4 and 5 to prove our main result.

Let G = GL(n, k) be the general linear group with coordinate algebra

k[G] = k[xi j for 1 6 i, j 6 n; δ−1
], where δ = det(xi j )n×n.

There are several different quantum deformations of G; see [Parshall and Wang
1991; Dipper and Donkin 1991; Du et al. 1991]. We will use the version intro-
duced by Dipper and Donkin: let δq =

∑
π∈Sn

(−1)`(π)c1,1πc2,2π · · · cn,nπ be the
q-determinant in Aq(n), where Sn is the symmetric group and `(π) is the length
of π . Since ci jδq = q i− jδqci j for 1 6 i, j 6 n, we may localize the bialgebra Aq(n)

at δq . They proved that the localization Aq(n)δq is a Hopf algebra. Let G = Gq(n)

be the quantum linear group whose coordinate algebra is k[G] = Aq(n)δq .
The torus T = Tq(n) is defined to be the subgroup of G with defining ideal

of k[G] generated by all ci j with i 6= j . Similarly, we can define D = Dq(n)

to be the submonoid of M with defining ideal of k[M] generated by all ci j with
i 6= j . Following [Du et al. 1991, (3.1)], let F be the quantum Frobenius morphism
F :G →G with comorphism F#

:k[G]→k[G] defined by F#(xi j )=ci j
l for all i, j .

We also have the usual Frobenius map F for G taking xi j to xi j
p. Let Fr

= Fr−1 F ,
and let Gr be the kernel of Fr . Then Gr is the subgroup of G with defining ideal
of k[G] generated by the elements ci j

lpr−1
− δi j for 1 6 i, j 6 n and δq

lpr−1
− 1.

Similarly, we may define Mr to be the submonoid of M with defining ideal of k[M]

generated by the elements ci j
lpr−1

− δi j for 1 6 i, j 6 n. Let Gr T be the subgroup
of G with defining ideal generated by the elements ci j

lpr−1
for 1 6 i 6= j 6 n. Note

that k[Mr ] is isomorphic to k[Gr ] and k[Gr T ] is the localization of k[Mr D] at the
quantum determinant.

Let Gm be the multiplicative group with coordinate algebra k[t, t−1
], and let Mm

be the multiplicative monoid with coordinate algebra k[t]. Let

X (T ) = Hom(T, Gm) and P(D) = Hom(D, Mm).

As usual, we identify X (T ) with Zn and P(D) with Nn . Let

X+(T ) = {λ ∈ X (T ) | λ1 > λ2 > · · · > λn},

3(n, d) = {λ ∈ Nn
|
∑

16i6n λi = d},

P+(D) = P(D) ∩ X+(T ),

3+(n, d) = 3(n, d) ∩ X+(T ).

For λ ∈ 3+(n, d), let ∇(λ) and ∇(λ)) be the costandard modules for Sq(n, d) and
S(n, d), respectively, with highest weight λ; see [Donkin 1998, Appendix]. Let
L(λ) = socSq (n,d)∇(λ) and L(λ) = socS(n,d)∇(λ). The sets {L(λ) | λ ∈ 3+(n, d)}
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and {L(λ) | λ ∈ 3+(n, d)} form complete sets of inequivalent irreducible Sq(n, d)-
modules and S(n, d)-modules, respectively. For λ ∈ X (T ), let L̂r (λ) be the corre-
sponding irreducible Gr T -module; see [Donkin 1998; Cox 1997; Cox 2000].

Let Xr (T ) = Pr (D) = {λ ∈ X (T ) | 0 6 λi −λi+1 6 lpr−1
−1, 1 6 i 6 n}, where

λn+1 = 0. By [Cox 1997; Cox 2000] the set {L̂r (λ) | λ ∈ 0d
r (D)} forms a complete

set of nonisomorphic simple sq(n, d)r -modules, where

0r (D) = Pr (D) + lpr−1 P(D) and 0d
r (D) = {λ ∈ 0r (D) |

∑n
i=1 λi = d}.

By [Donkin 1998, 3.2] and [Cox 1997, 1.7], for α = λ + lpr−1µ ∈ 3+(n, d) with
λ ∈ Pr (D) and µ ∈ P+(D), we have

(3-1) L(α)
∣∣
sq (n,d)r

∼=

s⊕
j=1

L̂r (α
( j)).

where α( j)
= λ + lpr−1µ( j) and {µ( j)

: 1 6 j 6 s} is some enumeration of the
weights of L(µ).

Let 4(n, d) be the set of n × n matrices with nonnegative integer entries sum-
ming to d. For A∈4(n, d), let cA

=ca11
11 ca12

12 · · · ca1n
1n ca21

21 ca22
22 · · · ca2n

2n can1
n1 can2

n2 · · · cann
nn ∈

Aq(n, d). By [Dipper and Donkin 1991, 1.1.8] the set {cA
| A ∈ 4(n, d)} forms a

k-basis for Aq(n, d). For A ∈ 4(n, d), we write φA for the element for Sq(n, d) =

Aq(n, d)∗ dual to cA. For A ∈ 4(n, d), let

(3-2) [A] = υ−dAφA with dA =

∑
i>k, j<l

ai j akl .

Then the set {[A] | A ∈ 4(n, d)} forms a k-basis for sq(n, d)r . By [Cox 1997,
5.3.1], the set

(3-3) {[A] | A ∈ 4(n, d), ai j < lpr−1 for i 6= j}

forms a k-basis for sq(n, d)r .

Lemma 3.1. For any λ, µ ∈ 0d
r (D), we have

Ext1sq (n,d)r
(L̂r (λ), L̂r (µ)) = Ext1sq (n,d)r

(L̂r (µ), L̂r (λ)).

Proof. By [Beı̆linson et al. 1990, 3.10], [Du 1992, A.1] and [Du et al. 1991, 5.7],
there is an antiautomorphism 9 on the q-Schur algebra Sq(n, d) defined by sending
[A] to [

tA] for all A ∈ 4(n, d), where tA is the transpose of A. By (3-3), we
have 9(sq(n, d)r ) = sq(n, d)r . Using the antiautomorphism 9 on the infinitesimal
q-Schur algebra sq(n, d)r , we may construct from any sq(n, d)r -module M the
contravariant dual module M0. It is easy to see that (L̂r (λ))0 ∼= L̂r (λ) for any
λ ∈ 0d

r (D). We can now imitate the proof of [Jantzen 1987, II, 2.12(4)] to get the
result. �
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For generalizing [Doty et al. 1997, 2.3] to the quantum case, we have to prove
the following two lemmas.

Lemma 3.2. For any λ, µ ∈ Xr (T ), the restriction map

resG,Gr : Ext1G(L(λ), L(µ)) → Ext1Gr
(L(λ), L(µ)) is injective.

Proof. Let Gr be the factor group of G whose coordinate algebra is the sub-Hopf
algebra of k[G] generated by the elements ci j

lpr−1
for 1 6 i, j 6 n and δq

−lpr−1
.

Note that the factor group Gr is isomorphic to G via Fr .
By [Parshall and Wang 1991, (2.11.1) and (2.8.2)(3)], we have the five term

exact sequence

0 → H 1(Gr , HomGr (L(λ), L(µ)))

−→ Ext1G(L(λ), L(µ)) −→ Ext1Gr
(L(λ), L(µ))Gr

−→ H 2(Gr , HomGr (L(λ), L(µ))) −→ Ext2G(L(λ), L(µ)).

Since Gr is isomorphic to G, by [Jantzen 1987, II, 4.11] we have H i (Gr , k) = 0
for all i > 0. Hence we have Ext1G(L(λ), L(µ)) ∼= Ext1Gr

(L(λ), L(µ))Gr
. �

Lemma 3.3. For any G-module N , we have

socG N ∼=

⊕
λ∈Xr (T )

socG HomGr (L(λ), N ) ⊗ L(λ).

Proof. By [Donkin 1998, 3.2(4)], the natural map f :HomGr (L(λ), N )⊗L(λ)→ N
for λ ∈ Xr (T ) is a morphism of G-modules. In fact, the map f is injective, since
HomGr (L(λ), N ) ⊗ L(λ) is isomorphic to (socGr N )L(λ) via f . So we can view
HomGr (L(λ), N ) ⊗ L(λ) as a submodule of N for λ ∈ Xr (T ). By [Parshall and
Wang 1991, 2.8.2(3) and 2.10.2], for λ ∈ Xr (T ) there exists a G-module V such
that

socG(HomGr (L(λ), N )) ∼= socG((N ⊗ L(λ)∗)Gr ) ∼= socG(V Fr
) ∼= (socG V )Fr

.

It follows from [Donkin 1998, 3.2(5)] that socG HomGr (L(λ), N ) ⊗ L(λ) is a
semisimple G-module for each λ ∈ Xr (T ). On the other hand, each simple G-
submodule W of N is isomorphic to L(µ)Fr

⊗ L(λ) for some λ ∈ Xr (T ) and
µ∈ X+(T ). By the proof of [Donkin 1998, 3.2(5)], L(µ)Fr ∼= HomGr (L(λ), W )⊆

HomGr (L(λ), N ). Hence W ⊆ socG HomGr (L(λ), N ) ⊗ L(λ). The assertion fol-
lows. �

Now using the above two lemmas we can prove the following result, which gives
information about the restriction of extensions of simple M-modules to Mr D.

Proposition 3.4. (1) If λ, µ ∈ Xr (T ), then the restriction map

resM,Mr D : Ext1M(L(λ), L(µ)) → Ext1Mr D(L(λ), L(µ)) is injective.
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(2) Let N be an M-module with two composition factors L(λ) and L(µ), where
λ ∈ Xr (T ) and µ ∈ P+(D) with socM N ∼= L(λ). Assume that L(µ) =⊕s

j=1 L̂r (µ j ) is the decomposition of L(µ) as Mr D-modules. If L̂r (λ) �
L̂r (µ j ) as Gr -modules for all j , then socMr D N ∼= L(λ).

Proof. The proof is almost the same as [Doty et al. 1997, 2.3]. For λ, µ ∈ Xr (T ),
we have the commutative diagram

Ext1M(L(λ), L(µ))
resM,Mr D //

resM,G

��

Ext1Mr D(L(λ), L(µ))

resMr D,Gr T

��

Ext1G(L(λ), L(µ)) resG,Gr T
// Ext1Gr T (L(λ), L(µ)).

By Lemma 3.2 we know that resG,Gr T is injective, and by [Donkin 1996, 4(5)] the
map resM,G is an isomorphism. Hence the assertion (1) follows.

Now we consider part (2). If socMr D N 6∼= L(λ), then L̂r (µ j ) is a simple factor
of socMr D N for some 1 6 j 6 s. By [Cox 1997, bottom of page 76], [Cox 2000,
§4] and [Donkin 1998, 3.1(18)], we have socMr D N ∼= socGr T N ∼= socGr N . Hence
L̂r (µ j ) is a factor of socGr N . It follows from Lemma 3.3 that socG N is not simple.
This is a contradiction. �

Now we shall describe some results which will be used to reduce the general
question of representation type of infinitesimal q-Schur algebras to that of finding
the representation type of sq(n, d)r for small n and small d . The first result relates
the representation type of sq(n, d)r with sq(n′, d)r where n′ > n.

Theorem 3.5. Assume n′ > n. If sq(n, d)r has infinite representation type, then so
does sq(n′, d)r .

Proof. Let e =
∑

λ∈3(n,d)[diag(λ)] ∈ Sq(n′, d)r . (See (3-2) for the definition of
[diag(λ)].) Then we have esq(n′, d)r e ∼= sq(n, d)r . Hence the assertion follows by
[Erdmann 1990, I 4.7]. �

Lemma 3.6. There is a surjective homomorphism ϕd from sq(n, d+n)r to sq(n, d)r

for any d.

Proof. By [Donkin 1998, 4.2(18)], there is a surjective homomorphism ϕd from
Sq(n, d + n) to Sq(n, d). It is easy to check that restriction induces a surjective
homomorphism ϕd from sq(n, d + n)r to sq(n, d)r . �

By the above lemma, we get the following corollary which relates the represen-
tation type of sq(n, d)r to that of sq(n, d + n)r .

Corollary 3.7. If sq(n, d)r has infinite representation type, then sq(n, d +n)r does
as well.
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Using the translation functor for G defined in [Erdmann and Nakano 2001, 2.4],
we can define the translation functor for Gr T as follows. Let 8+ be a set of positive
roots for the root system of type An−1, and let ρ = (n − 1, n − 2, . . . , 0) and

CZ = {λ ∈ X (T ) | 0 6 〈λ + ρ, α∨
〉 6 l for all α ∈ 8+

}.

Let Wl be the affine Weyl group. For any Gr T -module V and λ, µ ∈ X (T ), let
prλ V be the largest Gr T -submodule of V such that µ∈ Wl ·λ for every composition
factor L̂r (µ) of V . For λ, µ∈CZ, let ν be the unique weight in X+(T )∩W (µ−λ).
Then the translation functor T µ

λ : mod(Gr T ) → mod(Gr T ) is defined by

T µ
λ (V ) = prµ(L̂r (ν) ⊗ prλ V ).

For V ∈ mod(Gr T ), let FMr D(V ) be the unique maximal Gr T -submodule of
V that lifts to an Mr D-module. For any λ, µ ∈ CZ, define a truncated translation
functor T µ

λ to be the composite FMr D ◦ T µ
λ . By restriction, T µ

λ induces a functor
from mod(Mr D) into itself.

For λ ∈ 0d
r (D), let Bd

r (λ) be the block of sq(n, d)r containing λ. Since a simple
sq(n, d)r -module appears as a composition factor of exactly one block and the
simple sq(n, d)r -modules are indexed by elements of 0d

r (D)⊆Zn , we may identify
blocks for sq(n, d)r with subsets of Zn .

Theorem 3.8. Assume the block Bd
r (λ) of sq(n, d)r has infinite representation

type. Suppose that µ ∈ 0d ′

r (D) is a weight in the same facet as λ with µ−λ∈ P(D).
Then sq(n, d ′)r has infinite representation type.

Proof. Since λ and µ lie in the same facet, there exist unique elements λ′, µ′
∈ CZ

in the same facet and a unique w ∈ Wl with w · λ′
= λ and w · µ′

= µ. Since
µ′

−λ′
∈W (µ−λ) and µ−λ∈ P(D), we have µ′

−λ′
∈ P(D). View T µ′

λ′ as a functor
from {V ∈ mod(sq(n, d)r ) | prλ′ V = V } to {V ∈ mod(sq(n, d ′)r ) | prµ′ V = V }.
Then one can prove T λ′

µ′ ◦ T λ′

µ′

is equivalent to identity functor as in the proof of
[Doty et al. 1997, 4.2]. It follows that the functor T λ′

µ′

preserves indecomposable
modules and isomorphism classes. The assertion follows. �

4. Infinite representation type

In this section, we will prove that the infinitesimal q-Schur algebra has infinite
representation type for the cases listed in Theorem 2.3.

Proposition 4.1. The algebra sq(n, d)r has infinitesimal representation type if one
of the following holds:

(1) n > 3, d > 2l and either r > 3 or both r = 2 and p > 5;

(2) n = 2, l > 3, r > 3 and d > lp.

(3) n = 2, l = 2, r > 3 and d is even with d > 2p



FINITE REPRESENTATION TYPE OF INFINITESIMAL q -SCHUR ALGEBRAS 65

(4) n = 2, l = 2, r > 4 and d is odd with d > 2p2
+ 1.

Proof. (1) Suppose either r > 3 or both r = 2 and p > 5. Then lpr−1 > 4l > d for
d = 2l, 2l +1, 2l +2. By (3-3) and Theorem 2.1, the algebra sq(3, d)r = Sq(3, d)

has infinite representation type for d = 2l, 2l + 1, 2l + 2. So by Corollary 3.7
and Theorem 3.5, we have sq(n, d)r has infinite representation type for n > 3 and
d > 2l.

(2) Suppose l > 3 and r > 3. Then lpr−1 > lp2 > d for d = lp, lp +1. By (3-3)
and Theorem 2.1, the algebra sq(2, d)r = Sq(2, d) has infinite representation type
for d = lp, lp+1. So by Corollary 3.7, we have sq(2, d)r has infinite representation
type for d > lp.

(3) Suppose l =2 and r >3. Then lpr−1 >2p2 >2p. By (3-3) and Theorem 2.1,
the algebra sq(2, 2p)r = Sq(2, 2p) has infinite representation type. So by Corollary
3.7, we have sq(2, d)r has infinite representation type for d even with d > 2p.

(4) Suppose l =2 and r >4. Then lpr−1 >2p3 >2p2
+1. By (3-3) and Theorem

2.1, the algebra sq(2, 2p2
+ 1)r = Sq(2, 2p2

+ 1) has infinite representation type.
So by Corollary 3.7, we have sq(2, d)r has infinite representation type for d odd
with d > 2p2

+ 1. �

Proposition 4.2. Assume l = 2. Then the algebra sq(2, d)3 has infinite represen-
tation type for d odd with d > 2p2

+ 1.

Proof. Let λ0 = (2p2
+ 1, 0), λ1 = (2p2

+ 1 − 2p, 2p), µ0 = (2p2
− 1, 2) and

µ1 = (2p2
− 2p − 1, 2p + 2). By [Erdmann and Nakano 2001, 3.2], the classical

Schur algebra S(2, p2) is Morita equivalent to the principal block component of
Sq(2, 2p2

+ 1). It follows from [Erdmann 1993, 5.2] that Ext1M(L(λ1), L(σ )) 6=

0 for σ = λ0, µ0, µ1. By (3-1) we have L(λ0)|M3 D ∼= L̂3(λ0) ⊕ L̂3(ν), where
ν = (1, 2p2). Hence by Proposition 3.4, we have Ext1M3 D(L̂3(λ1), L̂3(σ )) 6= 0 for
σ = λ0, µ0, µ1, ν. The Ext1 quiver of sq(2, 2p2

+ 1)3 has a four subspace quiver
as a subquiver, as illustrated.

•
λ1

•µ1
�•ν -

•
λ0

?

•
µ0

6

By [Gel’fand and Ponomarev 1972], sq(2, 2p2
+ 1)3 is of infinite type. Now the

assertion follows from Corollary 3.7. �
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By Propositions 4.1 and 4.2, we know that the algebras listed in Theorem 2.3 for
r > 3 have infinite representation type. It remains to check the algebras listed there
have infinite representation type for r = 1, 2.

Proposition 4.3. Assume p = 2. Then the algebra sq(n, d)2 has infinite represen-
tation type for n > 2 and d > 2l.

Proof. Let µ1 = (2l, 0), µ2 = (0, 2l), µ3 = (2l − 1, 1) and λ = (l, l). By
[Cox 1997, 6.2.13] and [Cox 2000, 5.12], the block B2l

2 (λ) of sq(2, 2l)2 is equal
to {µi , λ | 1 6 i 6 3}. By [Erdmann and Nakano 2001, Proposition 3.3(B)] and
Proposition 3.4, the projective cover of L̂2(λ) has the following structure.

L̂2(λ)

DD
DD

DD

zz
zz

zz

SSSSSSSSSSSSS

P(L̂2(λ)) : L̂2(µ1)

DD
DD

DD
L̂2(µ2)

zz
zz

zz
L̂2(µ3)

L̂2(λ) L̂2(λ)

L̂2(µ3)

The vertices in this diagram correspond with composition factors, and the edges
indicate a nonsplit extension. The structure of the projective covers for the other
simple modules in the block B2l

2 (µ) are given below.

P(L̂2(µ1)) :

L̂2(µ1)

L̂2(λ)

L̂2(µ3)

P(L̂2(µ2)) :

L̂2(µ2)

L̂2(λ)

L̂2(µ3)

P(L̂2(µ3)) :

L̂2(µ3)

L̂2(λ)

tttt
JJJJ

L̂2(µ1)

JJJJ
L̂2(µ2)

tttt

L̂2(λ)

L̂2(µ3)

By [Doty et al. 1997, 5.2], the basic algebra of B2l
2 (λ) is isomorphic to the

basic algebra of the infinitesimal Schur algebra s(2, 4)2. So B2l
2 (λ) has infinite

representation type. It follows that the algebra sq(2, 2l)2 has infinite representation
type.
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Since p = 2 and l and p are coprime, we have l > 3. So the weight µ = (l +1, l)
belongs to 02l+1

2 (D), lies in the same facet as λ, and µ−λ∈ P(D). It follows from
Theorem 3.8 that sq(2, 2l +1)2 has infinite representation type. Now the assertion
follows by Corollary 3.7 and Theorem 3.5. �

Proposition 4.4. Assume p > 3. Then the algebra sq(2, lp + 2 j)2 has infinite
representation type for j > 0.

Proof. Let λ = (lp − l, l), γ = (lp, 0), β = (lp − 1, 1), τ = (0, lp) and η =

(lp − l − 1, l + 1). By [Thams 1994], the M-modules ∇(λ) and ∇(γ ) have the
following structure.

∇(λ) :

L(η)

L(λ)

∇(γ ) :

L(β)

L(λ)

L(γ )

By (3-1) we have L(γ )|M2 D ∼= L̂2(γ ) ⊕ L̂2(τ ). By Proposition 3.4, it follows that
Ext1M2 D(L̂2(λ), L̂2(σ )) 6= 0 for σ = γ, β, τ, η. The Ext1-quiver for sq(2, lp)2 has a
four subspace quiver as subquiver. Hence sq(2, lp)2 is of infinite type. Hence the
assertion follows by Corollary 3.7. �

Corollary 4.5. Assume l >3. Then the algebra sq(2, d)2 has infinite representation
type for d > lp.

Proof. If p = 2, then the assertion follows from Proposition 4.3. Now we assume
p > 3. Let λ = (lp − l, l) and µ = (lp − l + 1, l). Then the weight µ belongs to
0

lp+1
2 (D), it lies in the same facet as λ since l > 3, and µ−λ∈ P(D). By the proof

of Proposition 4.4, the block Blp
2 (λ) of sq(2, lp)2 has infinite representation type. It

follows from Theorem 3.8 that the algebra sq(2, lp+1)2 has infinite representation
type. Hence the assertion follows by Corollary 3.7. �

Proposition 4.6. Assume p = 3. Then the algebra sq(n, d)2 has infinite represen-
tation type for n > 3 and d > 2l.

Proof. There are two cases.
(1) Suppose l > 2. Then 3l > d for d = 2l, 2l + 1, 2l + 2. By (3-3) and

Theorem 2.1, the algebra sq(3, d)2 = Sq(3, d) has infinite representation type for
d = 2l, 2l +1, 2l +2. So by Corollary 3.7 and Theorem 3.5, sq(n, d)2 has infinite
representation type for n > 3 and d > 2l.

(2) Suppose l = 2. By (3-3) and Theorem 2.1, the algebra sq(3, d)2 = Sq(3, d)

has infinite representation type for d = 4, 5. But by Proposition 4.4 and Theorem
3.5, the algebra sq(3, 6)2 has infinite representation type. So by Corollary 3.7 and
Theorem 3.5, sq(n, d)2 has infinite representation type for n > 3 and d > 4. �
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By Proposition 4.1(1) and Propositions 4.3–4.6, we know that the algebras listed
in Theorem 2.3 for r = 2 have infinite representation type. We can now concentrate
on the situation when r = 1.

Proposition 4.7. Assume l > 3. Then the algebra sq(3, l)1 has infinite representa-
tion type.

Proof. Let λ = (l−1, 1, 0), γ = (l, 0, 0), β = (0, l, 0), η = (0, 0, l) and τ =

(l−2, 1, 1). By [Thams 1994], the M-module ∇(γ ) has only two composition fac-
tors L(λ) and L(γ ). So Ext1M(L(λ), L(γ )) 6=0. It is clear that L(γ )|M1 D ∼= L̂1(γ )⊕

L̂1(β)⊕ L̂1(η). It follows from Proposition 3.4(2) that ExtM1 D(L̂1(λ), L̂1(σ )) 6= 0
for σ = γ, β, η. By [Xi 1999], Ext1M1 D(L̂1(λ), L̂1(τ )) 6= 0. The Ext1 quiver for
sq(3, l)1 has a four subspace quiver as subquiver. Hence the algebra sq(3, l)1 has
infinite representation type. �

Corollary 4.8. Assume l >4. Then the algebra sq(3, d)1 has infinite representation
type for d > l.

Proof. Let τ = (l−2, 1, 1), µ1 = (l−2, 2, 1) and µ2 = (l−2, 2, 2). For i =1, 2, we
have µi ∈ 0l+i

1 (D), µi lies in the same facet as τ since l > 4, and µi − τ ∈ P(D).
From the proof of Proposition 4.7 we know that the block Bl

1(τ ) of sq(3, l)1 has
infinite representation type. It follows from Theorem 3.8 that sq(3, l + i)1 has
infinite representation type for i = 1, 2. Hence by Proposition 4.7 and Corollary
3.7, the algebra sq(3, d)1 has infinite representation type for d > l. �

Lemma 4.9. Let s1 be one of the algebras sq(3, 7)1 or sq(3, 8)1 for l = 3, or
sq(3, 4)1 or sq(3, 5)1 for l = 2. Then the algebra s1 has infinite representation
type.

Proof. Let X , Y1, Y2 and Z denote the following simple s1-modules.

Simple sq(3, 7)1 sq(3, 8)1 sq(3, 4)1 sq(3, 5)1

modules l = 3 l = 3 l = 2 l = 2

X L̂1(2, 5, 0) L̂1(3, 5, 0) L̂1(1, 3, 0) L̂1(3, 0, 2)

Y1 L̂1(4, 3, 0) L̂1(4, 4, 0) L̂1(2, 2, 0) L̂1(3, 1, 1)

Y2 L̂1(1, 3, 3) L̂1(1, 4, 3) L̂1(0, 2, 2) L̂1(1, 1, 3)

Z L̂1(4, 2, 1) L̂1(4, 2, 2) L̂1(2, 1, 1) L̂1(2, 2, 1)

We consider the algebra sq(3, 7)1 for l = 3. By [Donkin 1998, 4.2(9) and 4.2
(15)] and [Thams 1994], we know that the M-modules ∇(4, 3, 0) and ∇(4, 0, 0)

have the following structure.

∇(4, 3, 0) :

L(4, 2, 1)

L(4, 3, 0)

∇(4, 0, 0) :

L(2, 2, 0)

L(4, 0, 0)
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It is clear that L(1, 1, 0) = ∇(1, 1, 0). Hence by Weyl’s character formula we
know that the weights of L(1, 1, 0) are (1, 1, 0), (1, 0, 1) and (0, 1, 1). It follows
from (3-1) that L(4, 3, 0)|M1 D ∼= L̂1(4, 3, 0)⊕ L̂1(1, 3, 3)⊕ L̂1(4, 0, 3). Hence by
Proposition 3.4 and Lemma 3.1, Ext1M1 D(L̂1(σ ), L̂1(4, 2, 1)) 6= 0 for σ = (4, 3, 0)

and (1, 3, 3). Since

L(4, 0, 0)|M1 D ∼= L̂1(4, 0, 0) ⊕ L̂1(1, 3, 0) ⊕ L̂1(1, 0, 3),

by Lemma 3.1, there exist nonsplit extensions of the form

0 → L̂1(4, 0, 0) → M1 → L̂1(2, 2, 0) → 0,

0 → L̂1(1, 0, 3) → M2 → L̂1(2, 2, 0) → 0.

Now, by tensoring these short exact sequences by the one-dimensional module
L̂1(0, 3, 0), we have that Ext1M1 D(L̂1(σ ), L̂1(2, 5, 0)) 6= 0 for σ = (4, 3, 0) and
(1, 3, 3). For the other algebras, we can prove the existence of the extensions in
a similar manner. So one of the components of the separated quiver of the Ext1-
quiver of s1 contains the subquiver given below.

•Y2•Y1

•
X

@
@@R

�
��	

•
Z
�

���
@

@@I

The algebra s1/J 2 has the same Ext1 quiver as s1, where J = Rad s1. By [Pierce
1982, 11.8], s1/J 2 has infinite representation type. Hence s1 has infinite represen-
tation type. �

Lemma 4.10. The algebra sq(3, 6)1 has infinite representation type for l = 2.

Proof. Let λ = (2, 2, 2), γ = (4, 1, 1), β = (2, 3, 1), τ = (2, 1, 3) and η = (3, 3, 0).
By [Donkin 1998, 4.2(9) and 4.2 (15)] and [Thams 1994], we know that the
M-module ∇(γ ) has two composition factors with top L(λ). By [Erdmann and
Nakano 2001, 5.6], we know that the M-module ∇(η) has two composition factors
with top L(λ). By (3-1), we have L(γ )|M1 D ∼= L̂1(γ ) ⊕ L̂1(β) ⊕ L̂1(τ ). Upon
restriction to M1 D, we have Ext1M1 D(L̂1(λ), L̂1(σ )) 6= 0 for σ = γ, β, τ, η by
Proposition 3.4. So the Ext1-quiver for sq(3, 6)1 has a four subspace quiver as
a subquiver. The assertion follows. �

Proposition 4.11. The algebra sq(3, d)1 has infinite representation type for

(1) l = 3 and d > 6;

(2) l = 2 and d > 4.
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Proof. By Proposition 4.7 and Corollary 3.7, the algebra sq(3, 6)1 has infinite
representation type for l = 3. Hence the assertion follows by Lemmas 4.9 and 4.10
and Corollary 3.7. �

Proposition 4.12. The algebra sq(n, d)1 has infinite representation type for n > 4
and d > l.

Proof. If l > 4, then the assertion follows from Corollary 4.8 and Theorem 3.5.
Now we assume l < 4. Then l = 2 or l = 3. For l = 3, set s1 = sq(4, 4)1 or sq(4, 5)1,
and for l = 2, set s1 = sq(4, 2)1 or sq(4, 3)1. For the algebra s1 let α, β, λ, η and
µ be the following weights.

sq(4, 4)1 sq(4, 5)1 sq(4, 2)1 sq(4, 3)1

l = 3 l = 3 l = 2 l = 2

α (4, 0, 0, 0) (5, 0, 0, 0) (2, 0, 0, 0) (3, 0, 0, 0)

β (1, 3, 0, 0) (2, 3, 0, 0) (0, 2, 0, 0) (1, 2, 0, 0)

λ (1, 0, 3, 0) (2, 0, 3, 0) (0, 0, 2, 0) (1, 0, 2, 0)

η (1, 0, 0, 3) (2, 0, 0, 3) (0, 0, 0, 2) (1, 0, 0, 2)

µ (2, 2, 0, 0) (2, 2, 1, 0) (1, 1, 0, 0) (1, 1, 1, 0)

By [Thams 1994], we know that ∇(α) has two composition factors with top
L(µ). By (3-1), we have L(α)|M1 D ∼= L(α)⊕ L(β)⊕ L(λ)⊕ L(η). It follows from
Proposition 3.4(2) that Ext1M1 D(L̂1(µ), L̂1(σ )) 6= 0 for σ = α, β, λ, η. The Ext1

quiver of s1 has a four subspace quiver as a subquiver. Hence the algebra s1 has
infinite representation type. By Propositions 4.7 and 4.11 and Theorem 3.5, the
algebra sq(4, d)1 has infinite representation type for l = 3 and d = 3, 6 or l = 2
and d = 4, 5. Hence the assertion follows by Corollary 3.7 and Theorem 3.5. �

5. Finite representation type

In this section, we will prove the infinitesimal q-Schur algebra has finite represen-
tation type for the cases listed in Theorem 2.2.

Proposition 5.1. The algebra sq(n, d)r has finite representation type if one of the
following holds:

(1) n > 3, r > 2 and d < 2l;

(2) n > 3, r = 1 and d < l;

(3) n = 2, r > 2 and d < lp;

(4) n = 2, l = 2, r > 3 and d is odd with 2p + 1 6 d < 2p2
+ 1;

(5) n = 2 and r = 1.
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Proof. In cases (1)–(4), we have sq(n, d)r = Sq(n, d). Hence the assertion in
these cases follows from Theorem 2.1. In the last case, the assertion follows from
[Erdmann and Fu 2008, 3.7]. �

Proposition 5.2. Let s1 be the algebra sq(3, 4)1 or sq(3, 5)1 for l = 3, or sq(3, 2)1

or sq(3, 3)1 for l = 2. Then the algebra s1 has finite representation type.

Proof. All nonsemsimple blocks of s1 are Morita equivalent to a basic algebra B.
The algebra B has four simple modules X, Y1, Y2, Y3. The following table provides
the correspondence between the simple modules for B and the simple modules for
the blocks of s1.

l = 3 l = 2

Simple sq(3, 4)1 sq(3, 5)1 sq(3, 5)1 sq(3, 2)1 sq(3, 3)1

modules block 1 block 2

Y1 L̂1(4, 0, 0) L̂1(5, 0, 0) L̂1(4, 1, 0) L̂1(2, 0, 0) L̂1(3, 0, 0)

Y2 L̂1(1, 3, 0) L̂1(2, 3, 0) L̂1(1, 4, 0) L̂1(0, 2, 0) L̂1(1, 2, 0)

Y3 L̂1(1, 0, 3) L̂1(2, 0, 3) L̂1(1, 1, 3) L̂1(0, 0, 2) L̂1(1, 0, 2)

X L̂1(2, 2, 0) L̂1(2, 2, 1) L̂1(3, 2, 0) L̂1(1, 1, 0) L̂1(1, 1, 1)

The projective covers of these modules have the following structure.

P(X) :

X
CCC{{{

Y1
CCC

Y2 Y3
{{{

X

P(Y j ) for j = 1, 2, 3 :

Y j

X

The Ext1 quiver for B is illustrated below with relations α1α2 = β1β2 = γ1γ2 and
all other products zero.

•

Y1

•

X

• Y2

-α2
�

α1

�
�

���

β1

�
�

��	

β2

• Y3
@

@
@@I γ2@
@

@@R
γ1

Hence by [Pierce 1982, 11.8], the algebra B/J 2 has finite representation type,
where J = Rad(B). Since P(X) is injective and P(X) is the only indecomposable
projective B-module of radical length greater than two, the algebra B has also finite
representation type. �

We have now proved that the algebras listed in Theorem 2.2(1)–(6) and (8)
are of finite type. It remains to check (7). Recall that δq is the q-determinant in
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Aq(n). We shall denote the corresponding 1-dimensional Gq(n)-module by the
same symbol δq . For simplicity, we shall denote by δq the restriction to Gr T of
the q-determinant module. We need the following reduction lemma.

Lemma 5.3. Assume B is a block of sq(2, d)r such that λ − 1 ∈ 0r (D) for any
λ ∈ B, where 1 = (1, 1). Then B′

:= {λ−1 | λ ∈ B} is a block of sq(2, d −2)r , and
B′ is Morita equivalent to B.

Proof. By [Cox 1997, 5.2] and [Cox 2000, Section 4], it is easy to check that B′

is a block of sq(2, d − 2)r . Since P(L̂r (λ)) ∼= P(L̂r (λ − 1)) ⊗ δq for any λ ∈ B,
the assertion follows. �

By [Thams 1994], we have the following result.

Lemma 5.4. Assume l = 2 and 0 6 d < 2p. Then

dim L(d, 0) =

{
d + 1 if d is odd,
d/2 + 1 if d is even.

Let As for s > 2 denote the quiver the figure below with relations α1β1 = 0 =

βsαs , α jα j+1 = 0 = β j+1β j and β jα j = α j+1β j+1 for j = 1, 2, . . . , s − 1.

•

X0

•

X1

•

X2

•

Xs−1

•

Xs

-α1
�

β1

-α2
�

β2

· · · ·
-αs

�
βs

For k, t > 0, let

λ0,k(1) = (2p + 2k + 1, 0) + (t − k)1,

λ1,k(1) = (2p − 1, 2k + 2) + (t − k)1,

λ2,k(1) = (2k + 1, 2p) + (t − k)1.

Let Bk,t(1) = {λ0,k(1), λ1,k(1), λ2,k(1)}.

Proposition 5.5. Assume l = 2. Then

(1) For 0 6 t 6 p−2, the nonsemisimple blocks of sq(2, 2p+2t +1)2 are Bk,t(1)

for 0 6 k 6 t and are Morita equivalent to A2.

(2) The nonsemisimple blocks of sq(2, 4p − 1)2 are Bk,p−1(1) for 0 6 k 6 p − 2
and are Morita equivalent to A2.

Proof. We consider the algebra sq(2, 2p + 1)2. Let

λ0 = (2p + 1, 0), λ1 = (2p − 1, 2), λ2 = (1, 2p).

By [Cox 1997, 6.2.13] and [Cox 2000, 5.12], we have B
2p+1
2 (λ0) = {λ0, λ1, λ2}.

Since the classical Schur algebra S(2, p) is Morita equivalent to the principal block
component of Sq(2, 2p + 1) by [Erdmann and Nakano 2001, 3.2], we get the
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structure of projective covers for the simple modules in B
2p+1
2 (λ0) as follows by

[Erdmann 1993, 5.1] and Proposition 3.4.

P(L̂2(λ0)) :

L̂2(λ0)

L̂2(λ1)

P(L̂2(λ2)) :

L̂2(λ2)

L̂2(λ1)

P(L̂2(λ1)) :

L̂2(λ1)
MMMMqqqq

L̂2(λ0)
MMMM

L̂2(λ2)

qqqq

L̂2(λ1)

Hence the basic algebra for B
2p+1
2 (λ0) is isomorphic to A2. Since sq(2, 2p−1)2 =

Sq(2, 2p − 1) is semisimple by [Erdmann and Nakano 2001, 1.3], the algebra
sq(2, 2p +1)2 has only one nonsemisimple block B

2p+1
2 (λ0) by Lemma 5.3. Now

by induction on t , the assertion follows. �

Assume a > 2 and 0 6 t 6 p − 1. For 0 6 k 6 p − t − 3, let

Bk(a − 1) = {λi,k(a − 1) | 0 6 i 6 2a − 2},

where

λ2s,k(a − 1) = (2p(a − s) − p + k + t + 1, 2ps + p − k + t),

λ2s+1,k(a − 1) = (2p(a − s − 1) + p − k + t − 1, 2p(s + 1) − p + k + t + 2).

For p − t − 2 6 k 6 p − 2, let

Bk(a) = {λi,k(a) | 0 6 i 6 2a},

where

λ2s,k(a) = (2p(a − s) − p + 2t + 3 + k, 2ps + p − k − 2),

λ2s+1,k(a) = (2p(a − s) + p − k − 3, 2ps − p + 2t + 4 + k).

Proposition 5.6. Assume l =2. Then for a >2 and 06 t 6 p−1, the nonsemisimple
blocks of sq(2, 2pa + 2t + 1)2 are Bk(a − 1) for 0 6 k 6 p − t − 3 and Bk(a) for
p − t − 2 6 k 6 p − 2. Furthermore, the block Bk(a − 1) is Morita equivalent to
A2a−2 for each 0 6 k 6 p − t −3, and the block Bk(a) is Morita equivalent to A2a

for each p − t − 2 6 k 6 p − 2.

Proof. Let d = 2pa + 2t + 1. By induction on a and Proposition 5.5, one can
prove for each 0 6 k 6 p − t − 3 and 0 6 i 6 2a − 2 there exist indecomposable
sq(2, d)2-modules P(λi,k(a − 1)) with the same structure as the projective cover
P(X i ) for the simple A2a−2-modules X i , and for each p − t − 2 6 k 6 p − 2
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and 0 6 i 6 2a, there exist indecomposable sq(2, d)2-modules P(λi,k(a)) with the
same structure as the projective cover P(X i ) for the simple A2a-modules X i . Let

A1 = {2p(a − i − 1, i) + (2p + t, t + 1) | 0 6 i 6 a − 1},

A2 = {2p(a − i − 2, i) + (3p + t, p + t + 1) | 0 6 i 6 a − 2}.

One can check

0d
2 (D) =

(p−t−3⋃
k=0

Bk(a − 1)

)⋃( p−2⋃
k=p−t−2

Bk(a)

)⋃
A1
⋃

A2.

By Lemma 5.4, for λi,k(a − 1) ∈ Bk(a − 1), we have

dim(L̂2(λi,k(a − 1))) =

{
2p − 2k − 2 if i is odd,

2k + 2 if i is even.

Similarly, for λi,k(a) ∈ Bk(a), we have

dim(L̂2(λi,k(a))) =

{
4p − 2k − 2t − 6 if i is odd,

−2p + 2k + 2t + 6 if i is even,

and dim(L̂2(µ)) = 2p for each µ ∈ A1
⋃

A2. It follows from [Cox 1997, 5.3.2]
that
p−t−3∑

k=0

∑
µ∈Bk(a−1)

dim P(µ) dim L̂2(µ) +

p−2∑
k=p−t−2

∑
µ∈Bk(a)

dim P(µ) dim L̂2(µ)

+

∑
µ∈A1

⋃
A2

(dim L̂2(µ))2
= 4p2(2ap − 2p + 2t + 3)

= dim sq(2, d)2.

Hence for µ ∈ A1 ∪ A2, the sq(2, d)2-module L̂2(µ) is projective, and for other
µ ∈ 0d

2 (D), the projective cover of L̂2(µ) is isomorphic to P(µ). The assertion
follows. �

Proposition 5.7. Assume l =2. Then the algebra sq(2, d)2 has finite representation
type for d odd with d > 2p + 1.

Proof. By [Doty et al. 1997, 6.3], the algebra As has finite representation type for
s even with s > 2. Hence the assertion follows from Propositions 5.5 and 5.6. �
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