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We give a classification of the infinitesimal g-Schur algebras that have finite
representation type.

1. Introduction

R. Dipper and G. James [1989; 1991] introduced g-analogues of Schur algebras,
called g-Schur algebras. The g-Schur algebras are related to Hecke algebras of
type A in precisely the same way that classical Schur algebras are related to group
algebras of symmetric groups. The g-Schur algebras play an important role in the
nondefining representation and cohomology theories of the finite general linear
groups. The representations of g-Schur algebras S, (n, d) are equivalent to the
polynomial representations of the quantum linear group G := G,(n) of a given
degree d; see [Parshall and Wang 1991, 11.2], [Donkin 1996, Section 4], and [Cox
1997, 1.6]. Infinitesimal Schur/g-Schur algebras were introduced in [Doty et al.
1996; Cox 1997; 2000] as the dual algebras of the homogeneous components of
the infinitesimal thickening (by the torus) of the Frobenius kernel. It turns out
that infinitesimal g-Schur algebras control the polynomial representations of G, T'.
Here G, T is the g-analogue of Jantzen subgroups, which can be regarded as infin-
itesimal thickenings of the Frobenius kernels G, by the torus 7.

It is important to classify the representation type of a finite-dimensional algebra.
In the classical case, the representation type of Schur algebras and infinitesimal
Schur algebras has been classified; see [Erdmann 1993; Doty et al. 1997; Doty et al.
1999]. In the quantum case, the classification of the representation type of the g-
Schur algebras was given in [Erdmann and Nakano 2001]. The representation type
of Hecke algebras has also been classified; see [Uno 1992; Erdmann and Nakano
2002; Ariki and Mathas 2004; Ariki 2005]. Here, we will classify the infinitesimal
g-Schur algebras of finite representation type.
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Little g-Schur algebras were introduced as homomorphic images of infinitesimal
quantum gl, in [Du et al. 2005]; see also [Fu 2007]. The relationship between
infinitesimal ¢-Schur algebras and little g-Schur algebras is similar to that of G, T
and G,; see [Fu 2005]. We expect that the result of this paper can be used to study
the representation type of little g-Schur algebras.

2. Main result

Let k be an algebraically closed field of characteristic p > 0. Letg €k and g #0, 1.
Let [ be the multiplicative order of ¢ in k*; that is, either ¢ is a primitive /-th root
of unity or [ = oo.

The g-Schur algebra S, (n, d) is a deformation of the classical Schur algebra
S(n, d). Let us recall the construction of the g-Schur algebra from the coordinated
algebra of the quantum matrix monoid M, (n) as follows. Following [Dipper and
Donkin 1991], let A, (n) be the k-algebra generated by the n? indeterminates ¢; i
with 1 < i, j < n, subject to the relations

CijCit = Ci1Cij for all i, j, t,
CijCst = qCstCij fori > s and j <1,
CijCst = CsiCij + (g — )egjciy fori>sand j > 1.

This is a bialgebra, with comultiplication and counit given by

n
A(Cij):Zcit®ctj and 8(Cij)=5ij.

t=1

We denote by M = M, (n) the quantum matrix monoid with the coordinate algebra
k[M]=A,(n). Let A, (n, d) denote the subspace of elements in A, (n) of degree d
in the ¢;;. Then the A, (n, d) are in fact subcoalgebras of A, (n) for all d. Hence
Ay (n,d)* is an algebra, which is isomorphic to the g-Schur algebra S, (n, d) by
[Dipper and Donkin 1991, 3.2.6].

Theorem 2.1 [Erdmann and Nakano 2001, Theorem 1.4(B)]. The algebra S,(n, d)
has infinite representation type if and only if q is a primitive l-th root of unity and
one of the following holds:

(1) n>=3andd > 2I,
2)yn=2, p£0,l>3andd > Ip;
B)yn=2, p=3, l=2anddisevenwithd>2p,0rdisoddwithdZsz—i—l.

From now on, we assume p > 0 and ¢ is a primitive /-th root of unity. Note
that / and p must be coprime.
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We recall the definition of infinitesimal q—Schur algebras of [Cox 1997; Cox
2000]. Let J; be the ideal in A, (n) generated by c¢;; , " for 1<i#j<n. Thisis
a coideal; thus A, (n)/J, is a bialgebra and gives rise to a quantum monoid, which
we denote by M, D. Let A, (n,d), be the image of A,(n, d) under the quotient
map k[M]= A,(n) — k[M,D] = A,(n)/J,. This subspace is also a subcoalgebra
of k[M, D] for all d. The algebra s,(n,d), = A,(n, d)} is called the infinitesimal
g-Schur algebra.

The main result of this paper is as follows.

Theorem 2.2. Assume k is an algebraically closed field of characteristic p > 0
and q € k is a primitive l-th root of unity. Then the infinitesimal q-Schur algebra
sq(n, d), has finite representation type if and only if one of the following holds:

M) nz=3, r=z2andd <2l

2)n=3, r=1landd <,

B)n=3,1=3,r=1andd =4,5;

@ n=31=2r=1landd =2, 3;

O)n=2,r>22andd <lIp;

6)n=2,1=2, r>3anddis0ddwith2p+l<d<2p2+1;
N n=2,1=2, r=2andd is odd withd > 2p + 1;

@) n=2andr =1.

For convenience, it will be useful to reformulate Theorem 2.2 as follows.

Theorem 2.3. Assume k is an algebraically closed field of characteristic p > 0
and q € k is a primitive [-th root of unity. Then the infinitesimal q-Schur algebra
sq(n, d), has infinite representation type if and only if one of the following holds:

D) n=3 r>=2andd > 2,

Q) n=4, r=1landd > 1,

B)yn=3,124, r=1landd > 1,

4) n=3,1=3, r=1and either d =3 or d > 6,
BO)n=3,1=2,r=1andd > 4,
©)n=2,1=23,r>2andd > Ip;

(M n=2, 1=2, r >3 and either d is even with d > 2p or d is odd with
d>2p*+1;

@®)yn=2,1=2, r=2andd is even withd > 2p
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3. Preliminaries

In this section, we shall prove some general results of infinitesimal g-Schur alge-
bras, which will be used in Sections 4 and 5 to prove our main result.
Let G = GL(n, k) be the general linear group with coordinate algebra

k[G] = k[x;; for 1 <i, j <n; §7'], where § = det(x;})nxn-

There are several different quantum deformations of G; see [Parshall and Wang
1991; Dipper and Donkin 1991; Du et al. 1991]. We will use the version intro-
duced by Dipper and Donkin: let §, = Zneyn (—l)z(”)clﬂlﬂcz,zﬂ -+« Cppr be the
g-determinant in A, (n), where ¥, is the symmetric group and £(r) is the length
of 7. Since ¢;;8, =q'~/8,¢;; for 1 <i, j <n, we may localize the bialgebra A, (n)
at d,. They proved that the localization A, (n)s, is a Hopf algebra. Let G = G, (n)
be the quantum linear group whose coordinate algebra is k[G] = A, (n)s, -

The torus T = T, (n) is defined to be the subgroup of G with defining ideal
of k[G] generated by all ¢;; with i # j. Similarly, we can define D = D, (n)
to be the submonoid of M with defining ideal of k[M] generated by all ¢;; with
i # j. Following [Du et al. 1991, (3.1)], let F' be the quantum Frobenius morphism
F:G — G with comorphism F*:k[G]— k[G] defined by F#(xl-j) = c,-jl foralli, j.
We also have the usual Frobenius map F for G taking x; jtox;;P. Let F" =F -1F,
and let G, be the kernel of F”. Then G, is the subgroup of G with defining ideal
of k[G] generated by the elements c,-jlpr_l —3§;j for 1 <i,j <nand SqIPH —1.
Similarly, we may define M, to be the submonoid of M with defining ideal of k[M]
generated by the elements c; jlpr_l —d;j for 1 <i, j <n. Let G, T be the subgroup
of G with defining ideal generated by the elements c; jlpH for 1 <i # j <n. Note
that k[ M, ] is isomorphic to k[G,] and k[G, T] is the localization of k[ M, D] at the
quantum determinant.

Let G,, be the multiplicative group with coordinate algebra k[z, '], and let M,
be the multiplicative monoid with coordinate algebra k[¢]. Let

X(T)=Hom(T, G,,) and P(D)=Hom(D,M,,).
As usual, we identify X (7") with Z" and P (D) with N". Let

XTM)=eX(T) | M =r= 2} PY(D)=P(D)NXT(T),
A, d)={reN"| 3 e, b =dJ, AT, d) =AM, d)NXT(T).

For . € AT(n, d), let V(1) and V(1)) be the costandard modules for Sy(n,d) and
S(n, d), respectively, with highest weight A; see [Donkin 1998, Appendix]. Let
L(}) = socs, (n.4yV (%) and L(A) =socs.ayV(A). The sets {L(A) | A € AT (n, d)}
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and {L(A) | A € AT(n, d)} form complete sets of inequivalent irreducible S, (n, d)-
modules and S(n, d)-modules, respectively. For A € X (T), let Zr (1) be the corre-
sponding irreducible G, T-module; see [Donkin 1998; Cox 1997; Cox 2000].

Let X,(T)=P.(D)={Le X(T)|0< A —hip1 <Ip"~'—1, 1<i <n}, where
Ant1 =0. By [Cox 1997; Cox 2000] the set {Zr A |re Ff (D)} forms a complete
set of nonisomorphic simple s, (n, d),-modules, where

(D)= P.(D)+Ip" 'P(D) and T¢(D)={rel(D)|X}_ 1 =d).

By [Donkin 1998, 3.2] and [Cox 1997, 1.7], fora = A+ Ip" ' € AT (n, d) with
A€ P.(D)and u € PT(D), we have

S
(3-1) L(oz)|sq(n?d)r =PL ).
j=1

where o) = A 4+ Ip" 1) and (1) : 1 < j < s} is some enumeration of the
weights of L(w).

Let E(n, d) be the set of n x n matrices with nonnegative integer entries sum-
mingtod. For A€ E(n, d),letc =c{}' ¢ - ("SI 5% - 5eimicin? ... ey €
A4 (n, d). By [Dipper and Donkin 1991, 1.1.8] the set {¢c" | A€ E(n,d)} forms a
k-basis for A, (n, d). For A € E(n, d), we write ¢4 for the element for S, (n, d) =
Ag(n,d)* dual to c¢*. For A € E(n, d), let

(3-2) [Al=v"%¢s withda= ) ajau.

ik, j<l

Then the set {[A] | A € E(n,d)} forms a k-basis for s,(n,d),. By [Cox 1997,
5.3.1], the set

(3-3) {[A]| A€ E(n,d), ajj <1p"" fori # j}
forms a k-basis for s, (n, d),.

Lemma 3.1. Forany A, u € F;j(D), we have

XU 0., (Lr V), Le () = B, 4y, (L (1), Ly (1)),

Proof. By [Beilinson et al. 1990, 3.10], [Du 1992, A.1] and [Du et al. 1991, 5.7],
there is an antiautomorphism W on the g-Schur algebra S, (n, d) defined by sending
[A] to ['A] for all A € E(n,d), where ‘A is the transpose of A. By (3-3), we
have W (s, (n, d),) =s4(n, d),. Using the antiautomorphism W on the infinitesimal
g-Schur algebra s, (n, d),, we may construct from any s, (n, d),-module M the
contravariant dual module M°. It is easy to see that (Z, W)= Zr (A) for any
NS Ff(D). We can now imitate the proof of [Jantzen 1987, 11, 2.12(4)] to get the
result. O
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For generalizing [Doty et al. 1997, 2.3] to the quantum case, we have to prove
the following two lemmas.

Lemma 3.2. For any A, u € X, (T), the restriction map
1esG.G, : Exth (L(A), L(w) — Ext};r (L(A), L(w)) is injective.

Proof. Let G” be the factor group of G whose coordinate algebra is the sub-Hopf
algebra of k[G] generated by the elements c,~jll”r_1 for 1 <i,j <nand (Sq*lp"fl.
Note that the factor group G” is isomorphic to G via F".

By [Parshall and Wang 1991, (2.11.1) and (2.8.2)(3)], we have the five term
exact sequence

0— H'(G", Homg, (L(1), L(1)))
— Ext(L(A), L) — Ext, (LG, L)@
—> H*(G", Homg, (L(%), L(w))) — Extg(L(%), L(w).

Since G’ is isomorphic to G, by [Jantzen 1987, 11, 4.11] we have Hig(_}’, k)=0
for all i > 0. Hence we have Extg; (L(A), L(w)) = Extg; (L(1), L(n)¢". O

Lemma 3.3. For any G-module N, we have

socg N = @ socg Homg, (L(X), N) ® L(}).
reX(T)

Proof. By [Donkin 1998, 3.2(4)], the natural map f :Homg, (L(A), N)®L(A) — N
for A € X,(T) is a morphism of G-modules. In fact, the map f is injective, since
Homg, (L(A), N) ® L(1) is isomorphic to (socg, N)L) via f. So we can view
Homg, (L(A), N) ® L()1) as a submodule of N for A € X, (T). By [Parshall and
Wang 1991, 2.8.2(3) and 2.10.2], for A € X, (T) there exists a G-module V such
that

socg (Homg, (L(1), N)) = socg (N ® L(A)*) ") = socg(VF) = (socg V)T

It follows from [Donkin 1998, 3.2(5)] that socc Homg, (L(A), N) @ L(A) is a
semisimple G-module for each A € X, (T). On the other hand, each simple G-
submodule W of N is isomorphic to Z(M)FV ® L(A) for some A € X,(T) and
p € XT(T). By the proof of [Donkin 1998, 3.2(5)], L ()" =Homg, (L(}), W) C
Homg, (L(A), N). Hence W C socg Homg, (L(1), N) ® L()). The assertion fol-
lows. Il
Now using the above two lemmas we can prove the following result, which gives
information about the restriction of extensions of simple M-modules to M, D.

Proposition 3.4. (1) IfA, u € X, (T), then the restriction map

resyu, p - Exty (L(L), L(w)) = Exty, p(L(A), L(w)) s injective.



FINITE REPRESENTATION TYPE OF INFINITESIMAL ¢-SCHUR ALGEBRAS 63

(2) Let N be an M-module with two composition factors L(\) and L(u), where
A€ X.(T) and u € PT(D) with socyy N = L(\). Assume that L(n) =
@‘}:1 f,(,uj) is the decomposition of L(u) as M, D-modules. Ier A 2
Z, () as G,-modules for all j, then socy, p N = L(A).

Proof. The proof is almost the same as [Doty et al. 1997, 2.3]. For A, u € X, (T),
we have the commutative diagram

Extl, (L(A), L(1)) —2> Extl, p(L(A), L())

resy .G l irCSMrD,GrT

Extg (L(3), L(w) Extg, 7 (L(A), L(W).

resG,G,T

By Lemma 3.2 we know that resg g, 7 is injective, and by [Donkin 1996, 4(5)] the
map resy ¢ is an isomorphism. Hence the assertion (1) follows.

Now we consider part (2). If socy,p N Z L(X), then Z, () is a simple factor
of socy, p N for some 1 < j <s. By [Cox 1997, bottom of page 76], [Cox 2000,
§4] and [Donkin 1998, 3.1(18)], we have socy, p N =socg,r N =socg, N. Hence
Z, () is afactor of socg, N. It follows from Lemma 3.3 that socg N is not simple.
This is a contradiction. U

Now we shall describe some results which will be used to reduce the general
question of representation type of infinitesimal g-Schur algebras to that of finding
the representation type of s, (n, d), for small n and small d. The first result relates
the representation type of s, (n, d), with s,(n’, d), where n’ > n.

Theorem 3.5. Assume n’ > n. If s,(n, d), has infinite representation type, then so
does sq(n', d);.

Proof. Let e = ZkeA(n’d) [diag(A)] € S, (n’, d),. (See (3-2) for the definition of
[diag(2)].) Then we have es, (n’, d),e = s,(n, d),. Hence the assertion follows by
[Erdmann 1990, I 4.7]. O

Lemma 3.6. There is a surjective homomorphism ¢q from s, (n, d+n), to s,(n, d),
forany d.

Proof. By [Donkin 1998, 4.2(18)], there is a surjective homomorphism ¢, from
Sy(n,d +n) to S;(n,d). It is easy to check that restriction induces a surjective
homomorphism ¢, from s, (n, d +n), to s,(n, d),. Il

By the above lemma, we get the following corollary which relates the represen-
tation type of s, (n, d), to that of s,(n,d +n),.

Corollary 3.7. If s,(n, d), has infinite representation type, then s, (n, d +n), does
as well.
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Using the translation functor for G defined in [Erdmann and Nakano 2001, 2.4],
we can define the translation functor for G, T as follows. Let ®T be a set of positive
roots for the root system of type A,_j,andlet p=(n—1,n — .,0) and

EZ={AGX(T)|0<()»+,0,otv)<lf0rallozecl>+}.

Let W, be the affine Weyl group. For any G,7-module V and A, u € X(T), let
pr, V be the largest G, T -submodule of V such that u € W;-A for every composition
factor Zr(u) of V. For A, u € Cgz,let v be the unique weight in X T (T)NW (u—2A).
Then the translation functor TA” :mod(G,T) - mod(G,T) is defined by

T/ (V) = pr, (L, (v) @ pr, V).

For V € mod(G,T), let %y p(V) be the unique maximal G, T -submodule of
V that lifts to an M, D-module. For any A, u € C7, define a truncated translation
functor T’;\L to be the composite Fy, p o T}, By restriction, Tf induces a functor
from mod(M, D) into itself.

For A € Ff (D), let 9735’ (A) be the block of s, (n, d), containing A. Since a simple
sq(n, d),-module appears as a composition factor of exactly one block and the
simple s, (n, d),-modules are indexed by elements of I'Y(D) C 7", we may identify
blocks for s, (n, d), with subsets of Z".

Theorem 3.8. Assume the block %f (A) of sq(n,d), has infinite representation
type. Suppose that . € Ff/ (D) is a weight in the same facet as A with u—x € P(D).
Then sy (n, d"), has infinite representation type.

Proof. Since A and p lie in the same facet, there exist unique elements 1’, i’ € C7
in the same facet and a unique w € W; with w - A’ = A and w - u’ = . Since
w =2 € W(u—>A) and u—x € P(D), we have '—1' € P(D). View T, as a functor
from {V € mod(s,(n, d),) |prN V =V} to{V € mod(sy(n,d),) | pry V = V}.

Then one can prove T’\, o T is equivalent to 1dent1ty functor as in the proof of
[Doty et al. 1997, 4.2]. It follows that the functor Tw preserves indecomposable
modules and isomorphism classes. The assertion follows. 0

4. Infinite representation type
In this section, we will prove that the infinitesimal g-Schur algebra has infinite
representation type for the cases listed in Theorem 2.3.

Proposition 4.1. The algebra s, (n, d), has infinitesimal representation type if one
of the following holds:

(1) n>3, d =2l and eitherr >3 orbothr =2 and p > 5;
2Q)yn=2,123,r>23andd > Ip.
B)yn=2,1=2,r>23andd is even withd > 2p
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D n=2,1=2, r 24 andd is odd with d >2p2+1.

Proof. (1) Suppose either r >3 or both » =2 and p > 5. Then Ip"~! >4l > d for
d=2l, 2l+1, 21 +2. By (3-3) and Theorem 2.1, the algebra s, (3, d), = S,(3, d)
has infinite representation type for d = 2[, 2/ + 1, 2] + 2. So by Corollary 3.7
and Theorem 3.5, we have s, (n, d), has infinite representation type for n > 3 and
d>2l.

(2) Suppose [ >3 and r > 3. Then lp’~! > Ip? > d ford =1p,Ip+1. By (3-3)
and Theorem 2.1, the algebra s, (2, d), = S4(2, d) has infinite representation type
ford=Ip, p+1. Soby Corollary 3.7, we have s, (2, d), has infinite representation
type for d > Ip.

(3) Suppose / =2 and r >3. ThenIp"~! >2p?>2p. By (3-3) and Theorem 2.1,
the algebra s, (2, 2p), = S, (2, 2p) has infinite representation type. So by Corollary
3.7, we have s,(2, d), has infinite representation type for d even with d > 2p.

(4) Suppose [ =2 and r >4. Thenlp"~! >2p®>2p?+1. By (3-3) and Theorem
2.1, the algebra s4(2, 2p2 + 1), = Sq(2, 2p? + 1) has infinite representation type.
So by Corollary 3.7, we have s, (2, d), has infinite representation type for d odd
with d > 2p?% + 1. O

Proposition 4.2. Assume | = 2. Then the algebra s,(2, d)3 has infinite represen-
tation type for d odd with d > 2p* + 1.

Proof. Let Ao = 2p> +1,0), Ay = (2p*+1—2p,2p), py= 2p>—1,2) and
ny = @2p*—2p—1,2p+2). By [Erdmann and Nakano 2001, 3.2], the classical
Schur algebra S(2, p?) is Morita equivalent to the principal block component of
S,(2,2p*+ 1). It follows from [Erdmann 1993, 5.2] that Ext),(L(A), L(0)) #
0 for o = Ao, fo. 1. By (3-1) we have L(Ao)[sp = L3(Ao) @ L3(v), where
v=(1, 2p2). Hence by Proposition 3.4, we have Ext}mD(z_g A, 23 (0)) # 0 for
o = Ao, g, 1, v. The Ext' quiver of 54(2,2p% + 1)3 has a four subspace quiver
as a subquiver, as illustrated.

Ao
[ )

N

Ve——eo

|

[ ]
Ko

o[

By [Gel'fand and Ponomarev 1972], 5,(2, 2 p% + 1)3 is of infinite type. Now the
assertion follows from Corollary 3.7. O
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By Propositions 4.1 and 4.2, we know that the algebras listed in Theorem 2.3 for
r 2 3 have infinite representation type. It remains to check the algebras listed there
have infinite representation type for r =1, 2.

Proposition 4.3. Assume p = 2. Then the algebra s,(n, d), has infinite represen-
tation type forn = 2 and d > 2I.

Proof. Let p; = (21,0), p, = (0,20), puz =2l —1,1) and 2 = (/,/). By
[Cox 1997, 6.2.13] and [Cox 2000, 5.12], the block B%l(k) of 54(2,2l), is equal

to {m;, 2| 1 <i < 3}. By [Erdmann and Nakano 2001, Proposition 3.3(B)] and
Proposition 3.4, the projective cover of L,()) has the following structure.

Ly(n)
N
P(Ly(V)): Lo(py) Ly(pmy)  La(ps)
N
v L)
|
Lo(ps)

The vertices in this diagram correspond with composition factors, and the edges
indicate a nonsplit extension. The structure of the projective covers for the other
simple modules in the block Bzzl (w) are given below.

Lo(py) Lo(py)
| |
P(Ly(n): L) P(La(my):  Ly(h) -
A‘ ,\‘ 2(m3)
Lo(p3) Ly(p3) .00
2
P(Ly(m3)):  La(py) Lo(py)
~_ 7
Ly(X)
|
Lo(ps)

By [Doty et al. 1997, 5.2], the basic algebra of 3221 (1) is isomorphic to the
basic algebra of the infinitesimal Schur algebra s(2,4),. So B%l (1) has infinite
representation type. It follows that the algebra s, (2, 2/); has infinite representation

type.
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Since p =2 and [ and p are coprime, we have [ > 3. So the weight u =({+1, 1)
belongs to l"%”l (D), lies in the same facet as A, and 4 —A € P (D). It follows from
Theorem 3.8 that s, (2, 2/ + 1), has infinite representation type. Now the assertion
follows by Corollary 3.7 and Theorem 3.5. g

Proposition 4.4. Assume p > 3. Then the algebra s,(2,1lp + 2j)> has infinite
representation type for j = 0.

Proof. Let A = (Ip—1.1), y =(p,0), p=Up—1,1), t=(0,Ip) and n =
(Ip—1—1,141). By [Thams 1994], the M-modules V(1) and V(y) have the
following structure.

L(B)
L(n) |

V(A : | Viy): L)
L) |

L(y)

By (3-1) we have L(y)|u,p = La(y) & La(7). By Proposition 3.4, it follows that
Extly, p(L2(3), L2(0)) #0 for o =y, B, 7, n. The Ext!-quiver for 5,(2, [p), has a
four subspace quiver as subquiver. Hence s,(2, Ip), is of infinite type. Hence the
assertion follows by Corollary 3.7. O

Corollary 4.5. Assumel > 3. Then the algebra s,(2, d); has infinite representation
type for d = Ip.

Proof. If p = 2, then the assertion follows from Proposition 4.3. Now we assume
p=3. Leti=(p—1I,])and u = (Ip — 1+ 1,[). Then the weight i belongs to
Flzerl (D), it lies in the same facet as A since [ > 3, and u—A € P(D). By the proof
of Proposition 4.4, the block Bép (A) of s4(2, [p)> has infinite representation type. It
follows from Theorem 3.8 that the algebra s, (2, [p+ 1), has infinite representation
type. Hence the assertion follows by Corollary 3.7. O

Proposition 4.6. Assume p = 3. Then the algebra s,(n, d)> has infinite represen-
tation type forn > 3 and d > 2I.

Proof. There are two cases.

(1) Suppose [ > 2. Then 3] > d for d = 21, 2l + 1, 2] + 2. By (3-3) and
Theorem 2.1, the algebra s5,(3, d)> = S,(3, d) has infinite representation type for
d=2l, 21+1, 21 +2. So by Corollary 3.7 and Theorem 3.5, s,(n, d); has infinite
representation type for n > 3 and d > 21.

(2) Suppose [ = 2. By (3-3) and Theorem 2.1, the algebra s, (3, d)> = §,(3, d)
has infinite representation type for d = 4, 5. But by Proposition 4.4 and Theorem
3.5, the algebra s, (3, 6)> has infinite representation type. So by Corollary 3.7 and
Theorem 3.5, s,(n, d); has infinite representation type forn >3 andd > 4. [
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By Proposition 4.1(1) and Propositions 4.3—4.6, we know that the algebras listed
in Theorem 2.3 for » =2 have infinite representation type. We can now concentrate
on the situation when r = 1.

Proposition 4.7. Assume | > 3. Then the algebra s, (3, 1)1 has infinite representa-
tion type.

Proof. Let A = (I-1,1,0), y =(,0,0), 8=1(0,[,0), n=1(0,0,/)and 7 =
(I-2, 1, 1). By [Thams 1994], the M-module V(y) has only two composition fac-
tors L(A) and L(y). So Ext,lw(L()»), L(y))#0. Itis clear that L(y)|m, D %Zl y)®
L1 (B)® L\ (n). It follows from Proposition 3.4(2) that Exty, p(L1 (1), L1(c)) #0
for o =y, . n. By [Xi 1999], Extl, ,(L1(%), L1(r)) # 0. The Ext! quiver for
54(3,1)1 has a four subspace quiver as subquiver. Hence the algebra s,(3, /) has
infinite representation type. O
Corollary 4.8. Assumel>4. Then the algebra s, (3, d)| has infinite representation
type ford > 1.

Proof. Lett=(1—-2,1,1), uy=(1—-2,2, ) and p, =(—2,2,2). Fori =1,2, we
have u; € F{“(D), 1; lies in the same facet as t since / > 4, and u; —t € P(D).
From the proof of Proposition 4.7 we know that the block B{ (t) of 54(3,1)1 has
infinite representation type. It follows from Theorem 3.8 that s,(3,/ + i) has
infinite representation type for i = 1, 2. Hence by Proposition 4.7 and Corollary
3.7, the algebra s, (3, d)1 has infinite representation type for d > . 0
Lemma 4.9. Let 5| be one of the algebras s,(3,7)1 or s4(3,8) for | = 3, or
54(3,4)1 or s4(3,5) for | = 2. Then the algebra sy has infinite representation
type.

Proof. Let X, Y1, Y, and Z denote the following simple s;-modules.

Simple  5,(3, 7)1 54(3,8) 543, M1 543,51

modules =3 [=3 =2 =2
X  L;2,50 Li(3,50 Li(1,3,00 Li(3,0,2)
i L14,3,00 L;4,4,00 L;(2,2,00 L;(3, 1,1
Y,  L[1(1,3,3) L;(1,4,3) L;(0,2,2) L;(1,1,3)
z Li4,2,1) Li4,22 L2 1,1) L2271

We consider the algebra s, (3, 7); for [ = 3. By [Donkin 1998, 4.2(9) and 4.2
(15)] and [Thams 1994], we know that the M-modules V (4, 3,0) and V4, 0, 0)
have the following structure.

L(4,2,1) L(2,2,0)

V(4,3,0): | V(4,0,0): |
L(4,3,0) L(4,0,0)
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It is clear that L(1,1,0) = V(1, 1,0). Hence by Weyl’s character formula we
know that the weights of L(1,1 O) are (1, 1 0) (1,0, 1) and (0, 1, 1). It follows
from (3-1) that L(4, 3, O)|M1D_L1(4 3, O)EBL1(1 3, 3)69L1(4 0, 3). Hence by
Proposition 3.4 and Lemma 3.1, EXtM D(Ll(a) L1 4,2,1)) #0foro =(4,3,0)
and (1, 3, 3). Since

L(4,0,0)lp,0 =L1(4,0,00@ L1 (1,3,00®L(1,0,3),
by Lemma 3.1, there exist nonsplit extensions of the form
0— L(4,0,0) > M; — L;(2,2,0) = 0,
0— Li(1,0,3) > My — L;(2,2,0) = 0.
Now, by tensoring these short exact sequences by the one-dimensional module
L1(0,3,0), we have that ExtM D(Ll(cr) L1(2,5,0) #0 for o = (4,3,0) and
(1, 3, 3). For the other algebras, we can prove the existence of the extensions in

a similar manner. So one of the components of the separated quiver of the Ext!-
quiver of s; contains the subquiver given below.

Yl/ o
N

The algebra s1/J2 has the same Ext! quiver as s1, where J = Rad s;. By [Pierce
1982, 11.8], s1/J? has infinite representation type. Hence s; has infinite represen-
tation type. O

Lemma 4.10. The algebra s,(3, 6)1 has infinite representation type for | = 2.

Proof. LetA=(2,2,2),y=4,1,1),8=2,3,1),t=(2,1,3)and n=(3, 3, 0).
By [Donkin 1998, 4.2(9) and 4.2 (15)] and [Thams 1994], we know that the
M-module V(y) has two composition factors with top L(1). By [Erdmann and
Nakano 2001, 5.6], we know that the M-module V(n) has two composmon factors
with top L(A). By (3-1), we have L(y)|MID = Ll(y)EBLl(ﬂ)GBLl(r) Upon
restriction to M D, we have ExtM D(Ll(k) Ll(a)) #0 for o = y,B,t,n by
Proposition 3.4. So the Ext!'-quiver for 54(3,6)1 has a four subspace quiver as
a subquiver. The assertion follows. O

Proposition 4.11. The algebra s, (3, d)| has infinite representation type for
(1) I=3andd > 6;
)l =2andd > 4.
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Proof. By Proposition 4.7 and Corollary 3.7, the algebra s,(3, 6); has infinite
representation type for / = 3. Hence the assertion follows by Lemmas 4.9 and 4.10
and Corollary 3.7. O

Proposition 4.12. The algebra s,(n, d)| has infinite representation type for n > 4
andd > 1.

Proof. If [ > 4, then the assertion follows from Corollary 4.8 and Theorem 3.5.
Now we assume / <4. Then/=2orl/=3. Forl =3, sets; =s,(4,4) ors,(4,5)1,
and for [ = 2, set s1 = s,(4, 2); or s,(4, 3)1. For the algebra s; let o, B, A, n and
w be the following weights.

5q(4, 41 54(4,5)1 5q(4,2)1 54(4,3)1
[=3 1=3 1=2 1=2
4,0,0,0)  (5,0,0,0)  (2,0,0,0)  (3,0,0,0)
(1,3,0,0)  (2,3,0,0)  (0,2,0,0)  (1,2,0,0)
(1,0,3,0)  (2,0,3,0)  (0,0,2,0)  (1,0,2,0)
(1,0,0,3)  (2,0,0,3)  (0,0,0,2)  (1,0,0,2)
2,2,0,00  (2,2,1,0)  (1,1,0,00  (1,1,1,0)

T S > ™ R

By [Thams 1994], we know that V(«) has two composition factors with top
L(w). By (3-1), we have L(oz)lMlD = L(a) DLB)DLOA)DL(n). It follows from
Proposition 3.4(2) that ExtM D(Ll(;L) Ll(a)) # 0 for o = «, B, A, n. The Ext!
quiver of s; has a four subspace quiver as a subquiver. Hence the algebra s; has
infinite representation type. By Propositions 4.7 and 4.11 and Theorem 3.5, the
algebra s, (4, d) has infinite representation type for / =3 andd =3,6 or [ =2
and d =4, 5. Hence the assertion follows by Corollary 3.7 and Theorem 3.5. [J

5. Finite representation type

In this section, we will prove the infinitesimal g-Schur algebra has finite represen-
tation type for the cases listed in Theorem 2.2.

Proposition 5.1. The algebra s,(n, d), has finite representation type if one of the
following holds:

(D n=3 r>=2andd <2,

2)n=3, r=1landd <,

B)yn=2,r>22andd <lIp;

@A n=2,1=2, r>3anddisoddwith2p+1<d<2p2+1;
BO)n=2andr =1.
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Proof. In cases (1)-(4), we have s,(n,d), = S;(n,d). Hence the assertion in
these cases follows from Theorem 2.1. In the last case, the assertion follows from
[Erdmann and Fu 2008, 3.7]. O

Proposition 5.2. Let 51 be the algebra s,(3,4)1 or s4(3,5)1 for | =3, or 54(3, 2);
or s4(3,3)1 for | =2. Then the algebra s\ has finite representation type.

Proof. All nonsemsimple blocks of s are Morita equivalent to a basic algebra B.
The algebra B has four simple modules X, Y1, Y», ¥3. The following table provides
the correspondence between the simple modules for B and the simple modules for
the blocks of s;.

1=3 1=2
Simple  5,(3, 4); 54(3,5)1 54(3,5)1 543,201 5,(3,3)
modules block 1 block 2

Y, Li1(4,0,00 L;(5,0,00 Li(4,1,00 L1(2,0,0) L(3,0,0)
Y> L:(1,3,00 1,(2,3,00 L;(1,4,00 1,(0,2,0) L(1,2,0)
Ys L:(1,0,3) 1,(2,0,3) L;(1,1,3) 1,(0,0,2) L(1,0,2)
X L1(2,2,00 L;(2,2,1) L;(3,2,00 Li(1,1,0) L(1,1,1)

The projective covers of these modules have the following structure.

X
RN Y;
PX): Yy Y, Y3 P(Y;) for j=1,2,3: \
NS X

X

The Ext! quiver for B is illustrated below with relations ooy = 818> = y1y» and
all other products zero.

oY)
B2
a X B1
I )
Y o] V2
4!
Y3

Hence by [Pierce 1982, 11.8], the algebra B/J? has finite representation type,
where J = Rad(B). Since P (X) is injective and P (X) is the only indecomposable
projective B-module of radical length greater than two, the algebra B has also finite
representation type. O

We have now proved that the algebras listed in Theorem 2.2(1)—(6) and (8)
are of finite type. It remains to check (7). Recall that §, is the g-determinant in
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A, (n). We shall denote the corresponding 1-dimensional G, (n)-module by the
same symbol §,. For simplicity, we shall denote by §, the restriction to G,T of
the g-determinant module. We need the following reduction lemma.

Lemma 5.3. Assume B is a block of s,(2,d), such that A — 1 € I'.(D) for any
e B, where1=(1,1). Then B’ :={A—1| 1 € B} is a block of s,(2,d —2),, and
B is Morita equivalent to 9.

Proof. By [Cox 1997, 5.2] and [Cox 2000, Section 4], it is easy to check that %’
is a block of s,(2,d —2),. Since P(L,(1)) = P(L,(A —1)) ® §, for any A € %,
the assertion follows. O

By [Thams 1994], we have the following result.
Lemma 5.4. Assumel =2 and 0 < d <2p. Then

d+1 if d is odd,
dimL(d. 0)=1"" fdiso
d/2+1 ifdis even.
Let s for s > 2 denote the quiver the figure below with relations o8y =0 =
Bsas, ajoj1 =0=pB;11B; and Bja; =aj 1B for j=1,2,...,5s—1.
o oy O
o Lo ® - - - e " o
Xo ,31 X ,32 X5 Xs—1 ,Bs X

For k,t > 0, let
Mr(D=Cp+2k+1,004+ (¢ — k)1,
Mi(D)=Qp—1,2k+2)+ (t — k)1,
A1) =QRk+1,2p)+(t —k)1.
Let B, (1) = {Xox (1), A1, (1), Aok (1)}
Proposition 5.5. Assume | = 2. Then

(1) For0<t < p—2, the nonsemisimple blocks of s4(2, 2p +2t + 1), are By (1)
for 0 < k <t and are Morita equivalent to ;.

(2) The nonsemisimple blocks of s4(2,4p — 1)2 are By p,—1(1) for0 <k < p—2
and are Morita equivalent to .

Proof. We consider the algebra s, (2, 2p + 1)2. Let
Ao=(@2p+1,0), LM =Q2p-1,2), A =(1,2p).

By [Cox 1997, 6.2.13] and [Cox 2000, 5.12], we have B"*' (X) = {Ao, A1, Aa).
Since the classical Schur algebra S(2, p) is Morita equivalent to the principal block
component of S,(2,2p + 1) by [Erdmann and Nakano 2001, 3.2], we get the
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structure of projective covers for the simple modules in %;p *+ (Ao) as follows by
[Erdmann 1993, 5.1] and Proposition 3.4.

R L>(ro) -
P(La(ko)) s | Ly(Ay)
Ly(X1) R R -~ SR
R P(L2(A1)) 2 La(hg) Ly(X2)
R Ly(X2) R -
P(La(A2)): | La(Ay)
Ly(Ay)

Hence the basic algebra for %%p + (Ao) is isomorphic to 4. Since s,(2,2p—1)2 =
S4(2,2p — 1) is semisimple by [Erdmann and Nakano 2001, 1.3], the algebra
54(2,2p+1); has only one nonsemisimple block %;p + (Ao) by Lemma 5.3. Now
by induction on ¢, the assertion follows. U

Assumea 22 and 0<r<p—1.ForO<k < p—1t—3,let
Bela—D={Rix(@a—110<i<2a-2},
where
Agskla—1)=Qpla—s)—p+k+t+1,2ps+p—k+1),
Mgtika—1D)=Cpla—s—D+p—k+t—-12ps+1)—p+k+1+2).
Forp—t—2<k<p—2,1let
Bre(a) ={Aix(@) |0 <i < 2al,
where
Aygi(a) =Q2pla—s)—p+2t+3+k 2ps+p—k—2),
Ar1k@)=Qpla—s)+p—k—=3,2ps—p+2t+4+k).

Proposition 5.6. Assume [ =2. Then fora>2and 0<t < p—1, the nonsemisimple
blocks of s4(2, 2pa + 2t + 1), are By(a — 1) for 0 < k < p —t — 3 and By (a) for
p—1t—2< k< p—2. Furthermore, the block By (a — 1) is Morita equivalent to
HAra—2 for each 0 < k < p—t — 3, and the block By (a) is Morita equivalent to Ay,
foreachp—t—-2<k<p-—2.

Proof. Let d = 2pa 4 2t 4+ 1. By induction on a and Proposition 5.5, one can
prove foreach 0 < k < p—t —3 and 0 < i < 2a — 2 there exist indecomposable
54(2,d)2-modules P(A;;(a — 1)) with the same structure as the projective cover
P(X;) for the simple #,,_>-modules X;, and for each p —¢t -2 <k < p—2
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and 0 <i < 2a, there exist indecomposable s, (2, d),-modules P (A; x(a)) with the
same structure as the projective cover P(X;) for the simple #l,,-modules X;. Let

Al=L2pa—i—-1,)+QRp+t,t+1)|0<i<a—1},
Ay={2pa—i—-2,0))+QCp+t,p+t+1)|0<i<a—-2}
One can check
p—t=3 p—2
ry(D) = ( U %(a—l)) U( U %kw)) a4
k=0 k=p—t-2
By Lemma 5.4, for A, x(a — 1) € By(a — 1), we have

2p—2k—2 ifiisodd,

dim(Lay(hix(a — 1)) =
im(Lo (i k(@ — 1)) {2k+2 if i is even.

Similarly, for A; x(a) € Bi(a), we have

4p —2k -2t —6 ifiisodd,

dim(Z, (\; =
(La(Aik(a))) {_2p+2k+2t+6 if i is even,

and dim(zz(u)) = 2p for each u € A; [ Ay. It follows from [Cox 1997, 5.3.2]
that

p—t=3 p—2
> Y dmP(wdimLyw+ Y > dim P(u)dim Ly ()
k=0 weBr(a—1) k=p—1—2 neBi(a)

+ > @imLy(w)? =4p*Qap—2p+2+3)
AUA
pem U = dim s, (2. d),.
Hence for u € Ay U Ay, the 5,(2, d)>-module /L\z(,u) is projective, and for other

[Tl Fg(D), the projective cover of fg (u) is isomorphic to P(u). The assertion
follows. O

Proposition 5.7. Assume | =2. Then the algebra s, (2, d) has finite representation
type for d odd withd > 2p + 1.

Proof. By [Doty et al. 1997, 6.3], the algebra s, has finite representation type for
s even with s > 2. Hence the assertion follows from Propositions 5.5 and 5.6. [J
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