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PIOTR GALĄZKA AND JANINA KOTUS

Volume 237 No. 1 September 2008



PACIFIC JOURNAL OF MATHEMATICS
Vol. 237, No. 1, 2008

THE STRAIGHTENING THEOREM FOR TANGENT-LIKE
MAPS

PIOTR GALĄZKA AND JANINA KOTUS

By analogy to polynomial-like maps, we introduce a notion of tangent-like
maps. The main result of this paper is the straightening theorem. It says
that a tangent-like map is quasiconformally equivalent to some tangent-type
function f : C → C \ {a, b} for a 6= b, which is unique up to an affine map.
We also prove that quasiconformal conjugacy is conformal on the interior
of the filled Julia set.

1. Introduction

In [1985], A. Douady and J. H. Hubbard introduced a notion of the polynomial-like
maps. A polynomial-like map of degree d ≥ 2 is a triple ( f,U, V ) where U and
V are open subsets of C isomorphic to discs, with U relatively closed in V and
f : U → V an analytic map, proper of degree d . Of course, every polynomial of
degree d ≥ 2 is locally polynomial-like of the same degree. It appears that some
transcendental meromorphic functions are locally polynomial-like of finite degree
(for example, f (z)=cos(z)−2 in some neighborhood of zero). Small perturbations
of polynomial-like maps of degree d stay in the same class of maps. The filled Julia
set of a polynomial-like map f : U → V is defined as K ( f )=

⋂
n≥0 f −n(U ). The

set K ( f ) is a compact subset of U . Douady and Hubbard proved the straightening
theorem [1985, Theorem 1], which says that every polynomial-like map f :U → V
is hybrid equivalent to a polynomial of degree d . This result has many applications,
mainly in the renormalization theory of rational functions initiated by D. Sullivan.
For other applications see [McMullen 2000].

Nevertheless, the concept of polynomial-like maps does not fit with those mero-
morphic functions whose inverses have at least one transcendental singularity at
some point in C (for example, for arctan(z) at ±i , log(z) at 0, and so on).
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The aim of this paper is to introduce a definition of tangent-like maps and prove
an analogue of the Straightening Theorem for this class.

The paper is organized as follows. In Section 2, we describe the dynamics of
some family of transcendental meromorphic functions with two omitted values. In
Section 3, we introduce a notion of tangent-like maps. In Section 4, we prove the
main result of our paper, that is, the straightening theorem.

2. A model family

The Fatou set F( f ) of a meromorphic function f : C → C is defined in exactly the
same manner as for rational functions: F( f ) is the set of points z ∈ C such that all
the iterates are defined and form a normal family on a neighborhood of z. The Julia
set J ( f ) is the complement of F( f ) in C. Thus, F( f ) is open, J ( f ) is closed,
F( f ) is completely invariant while f −1(J ( f )) ⊂ J ( f ), and f (J ( f ) \ {∞}) =

J ( f ). For a general description of the dynamics of meromorphic functions see for
example [Bergweiler 1993]. It follows from Montel’s criterion of normality that if
f : C → C has at least one pole that is not an omitted value, then

J ( f )=

⋃
n≥0

f −n(∞).

See [Baker et al. 1991b]. Let Crit( f ) = {z ∈ C : f ′(z) = 0} be the set of critical
points of f . We note that we do not consider multiple poles as critical points. Let
Sing( f −1) denote the set of singular values of f , that is, c ∈ Sing( f −1) if c ∈ C

and c is a critical or an asymptotic value of f .
Consider a family of transcendental meromorphic functions of the form

Tβ(z)=
ez/2

− eβz/2

ez/2 −βeβz/2

for β ∈ C \ {0, 1}. It is easy to see that Tβ(z) has no critical points. It has two
omitted values 1 and 1/β (which are always the asymptotic values), and its poles
are simple. Thus Tβ : C → C\{1, 1/β} is a regular holomorphic cover if we define
a derivative of f by the means of the spherical metric. One can easily check for all
β ∈ C \ {0, 1} that z0 = 0 is an attracting fixed point, that is,

Tβ(0)= 0 and T ′

β(0)= 1/2,

where T ′

β denotes a derivative of Tβ defined with respect to the Euclidean metric.
We note that the choice of a multiplier of the attracting fixed point is arbitrary. It
could be any complex number α such that 0< |α|< 1.

The next proposition shows why the family of functions Tβ is called a model
family.
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Proposition 2.1. For every β ∈ C \ {0, 1} the map Tβ ◦ A, in which A(z) =

z + 4kπ i/(1 − β) for k ∈ Z, is a regular holomorphic covering f from C onto
C \ {1, 1/β} such that f (0)= 0 and f ′(0)= 1/2.

Proof. Suppose that f : C → C \ {1, 1/β} is an another regular covering. Then
there exists a Möbius map A : C → C such that f = Tβ ◦ A. Then A(z) = az + b
for a 6= 0, and

f (z)= Tβ(az + b)=
e(az+b)/2

− eβ(az+b)/2

e(az+b)/2 −βeβ(az+b)/2 .

It implies

0 = f (0)= Tβ(b)=
e(1−β)b/2

− 1
e(1−β)b/2 −β

if and only if b = 4kπ i/(1−β) for k ∈ Z. But 1
2 = f ′(0)= T ′

β(b)A
′(0)= 1

2a; thus
a = 1. Therefore f (z)= Tβ(z + 4kπ i/(1 −β)). �

It follows from the classification of the periodic components of the Fatou set
(see [Baker et al. 1991a]) that at least one of the asymptotic values {1, 1/β} must
belong to the basin of attraction B(0) of z0 = 0. It is easy to see that for large β the
asymptotic value 1/β is close to z0 = 0. Now we show that, for sufficiently large
β, the asymptotic value 1/β ∈ B(0). We rewrite Tβ(z) as

Tβ(z)= 1 +
βez(β−1)/2

− ez(β−1)/2

1 −βez(β−1)/2 .

For a given β ∈ C \ {0, 1}, we choose disc D(0, 3/|2β|). We want to prove that for
large β

(1) Tβ (D (0, 3/|2β|))⊂ D (0, 3/|2β|) .

Let β = |β|eiα. We consider z = 3eiθ/|2β| for θ ∈ [0, 2π). Then

z(β−1)
2

=
3
2

eiθ

|β|

(|β|eiα
−1)

2
=

3
4

ei(θ+α)
−

3
4

eiθ

|β|
.

For sufficiently large β we can approximate z(β − 1)/2 by 3
4 ei(θ+α). Observe that

for θ = −α, we have 3
4 ei(θ+α)

=
3
4 , while for θ = π − α we have 3

4 ei(θ+α)
= −

3
4 .

Consequently

Tβ
(3

2
e−iα

|β|

)
= 1 +

βe3/4
−e3/4

1−βe3/4 = 1 +
e3/4(β−1)
1−βe3/4

= 1 −
e3/4(β−1)

e3/4(β−e−3/4)
=

1−e−3/4

β−e−3/4 ≈
1

2(β−0.5)
.
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Analogously

Tβ
(3

2
ei(π−α)

|β|

)
= 1 +

βe−3/4
−e−3/4

1−βe−3/4 = 1 +
e−3/4(β−1)
1−βe−3/4

= 1 −
e−3/4(β−1)

e−3/4(β−e3/4)
=

1−e3/4

β−e3/4 ≈ −
1

β−2
.

Consequently, for z ∈ ∂D(0, 3/|2β|) the maximum of |Tβ(z)| ≤ 1/|β−2|. Enlarg-
ing β if necessary, we may say that 1/|β−2|< 3eiθ/|2β|. Thus we may claim that
(1) is satisfied. It proves that D(0, 3/|2β|)⊂ B(0). Since 1/β ∈ D(0, 3/|2β|), we
have 1/β ∈ B(0).

From now we assume that β is so large that 1/β ∈ B(0).
Let D be a component of the Fatou set F(Tβ) containing z0 = 0. Then D is

forward invariant. Of course D ⊂ B(0) and 1/β ∈ D. Take a component D0 of
T −1
β (D) containing a fixed point z0 = 0. Since 1/β is an omitted value, D0 must

contain an asymptotic tract corresponding to 1/β. Thus D must be a completely
invariant unbounded domain and D = B(0). As B(0) is completely invariant,
J (Tβ)= ∂B(0). One can easily prove that B(0) is simply connected if and only if
the second asymptotic value 1 /∈ B(0). By analogy to polynomials we define the
filled Julia set

K (Tβ)= {z ∈ C : T n
β (z) /∈ B(0) for all n ∈ N ∪ {0}}.

Then the Julia set can be written as

J (Tβ)= ∂K (Tβ)∪ {∞}.

Observe that the interior of K (Tβ) is nonempty if and only if the second asymp-
totic value 1 is related to some periodic component of the Fatou set F(Tβ) different
from B(0). Since Sing(T −1

β ) consists of two asymptotic values {1, 1/β}, the map
Tβ belongs to the class S defined in [Bergweiler 1993]. Then the classification
of periodic components of the F(Tβ) is the same as for rational map. That is, Tβ
does not have Baker domains; see [Bergweiler 1993]. Moreover, Tβ does not have
Herman rings. The proof is same for tangent family; see [Keen and Kotus 1997].
Thus the interior K (Tβ) is nonempty if F(Tβ) has either some attracting periodic
cycle, some parabolic periodic cycle, or some Siegel periodic point. In the last case
1 ∈ J (Tβ).

Finally we would like to explain why we prefer to work with the family Tβ(z)
instead of the tangent family fλ(z) = λ tan(z) with λ ∈ C∗, which was described
[Keen and Kotus 1997]. The map fλ is a regular holomorphic cover of C \ {±λi}
and the orbits of two asymptotic values ±λi are symmetric — they belong either
to the same or to two symmetric periodic cycles of the Fatou set; see [Keen and
Kotus 1997]. To get some analogy with quadratic polynomials, we should have
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an attracting fixed point and associated with it some asymptotic value, while the
second asymptotic value should be “free”. But this never happens in the classical
tangent family. On the other hand, the proposed family admits phenomena dis-
covered in [Keen and Kotus 1997] for tangent maps, for example, collisions of
repelling periodic points with poles, if some iterate of the asymptotic value 1 is
eventually mapped onto a pole.

3. Tangent-like maps

Definition 3.1. The triple ( f,U, V ) is a tangent-like map if

(i) U and V are Jordan domains such that U ⊂ V,

(ii) there exist v ∈ V and u ∈ ∂U such that f : U \ {u} → V \ {v} is a cover,

(iii) f is holomorphic on U , and

(iv) U is a quasidisc.

Here u plays a role of essential singularity, and v is an asymptotic value of f .

Definition 3.2. The set

K ( f,U, V ) :=

⋂
n≥0

f −n(U )

is called the filled Julia set of ( f,U, V ), while J ( f,U, V ) :=∂K ( f,U, V ) is called
the Julia set of ( f,U, V ).

Proposition 3.3. For every sufficiently large β ∈ C \ {0, 1}, the function Tβ(z) is a
tangent-like map.

Proof. We know that if β sufficiently large, the asymptotic value 1/β belongs to
the basin of the attraction of the fixed point z0 = 0. Since Tβ is locally linearizable
in some disc D0 := D(0, ε) (shrinking ε if necessary) we can say that there exist a
quasidisc D0 and an integer N ∈ N such that

0 ∈ D0,

T N
β (1/β) ∈ D0,

D0 ⊂ C \ K (Tβ),

T N−1
β (1/β) /∈ D0,

Tβ(D0)⊂ D0,

T N
β (1) /∈ D0.

Let Di+1 denotes a component of T −1(Di ) that contains Di for i = 0, . . . , N − 1.
Then DN contains an asymptotic value 1/β, and a branch of the inverse function
T −1
β that maps DN \ {1/β} onto DN+1 has a logarithmic singularity. Thus DN+1 is

a simply connected unbounded domain, and Tβ : DN+1 → DN \{1/β} is a universal
cover. Let U := C \ DN+1 and V := C \ DN . Set also u := ∞ and v = 1. Then
Tβ : U \ {u} → V \ {v} is a universal cover. Since D0 is a quasidisc, DN+1 and U
are also quasidiscs. It proves that (Tβ,U, V ) is a tangent-like map. �
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Definition 3.4. We say that two tangent-like maps ( f1,U1, V1) and ( f2,U2, V2)

are hybrid equivalent if there exists a quasiconformal homeomorphism φ mapping
a neighborhood of K ( f1,U1, V1) onto a neighborhood of K ( f2,U2, V2) in C such
that φ ◦ f1(z)= f2 ◦φ on a neighborhood of K ( f1,U1, V1) and (∂φ/∂z)(z)= 0 for
z ∈ K ( f1,U1, V1).

4. The straightening theorem

Definition 4.1. Suppose that γ is a Jordan curve. A map p : R → γ is called a unit
speed parametrization of γ if for all t ∈ R, p′(t) is well defined, |p′(t)| = 1, and
p(t) winds anticlockwise as t increases.

Definition 4.2. If γ1 and γ2 are two Jordan curves, p1 and p2 are their respective
unit speed parametrizations. Let f : γ1 → γ2 be a homeomorphism. Then there ex-
ists a lift f̃ : R → R such that f ◦ p1 = p2◦ f̃ . We say that f is a Cr diffeomorphism
with respect to the parametrization if and only if f̃ is a Cr diffeomorphism.

We leave to the reader a proof of the next lemma.

Lemma 4.3. Let D ⊂ C be a Jordan domain such that ∂D = γ (S1) and γ is C2

in some neighborhood of S1. Then ∂D has a constant speed parametrization. If
φ : D → D is a conformal isomorphism with homeomorphic extension φ̃ : D →

D, then the restriction φ̃ : S1
→ ∂D is a C1 diffeomorphism with respect to the

parametrization.

For a given conformal annulus A ⊂ C such that each component of the boundary
is a Jordan curve, let ∂A+ and ∂A− denote respectively the outer and the inner
component. Let A1 and A2 be two annuli. We say that a homeomorphism h :

∂A1 → A2 is sense preserving if h : ∂A+

1 → ∂A+

2 and h : ∂A−

1 → ∂A−

2 are sense
preserving homeomorphisms.

Let
At := {z ∈ C : 1< |z|< et

} for t > 0.

Lemma 4.4. Let φ : ∂A1 → ∂A1 be a sense preserving homeomorphism such that
its restriction to components of ∂A1 is a C1 diffeomorphism with respect to the
parametrization. Then there exists a homeomorphic extension φ : A1 → A1 that is
quasiconformal on A1.

Proof. There must exist a C1 lift of φ that commutes with the translation T (x) =

x +2π . Suppose that a : R → R is a lift of φ|∂A− and b is a lift of φ|∂A+ , with a and
b both increasing maps. Then φ(ei t) = eia(t) and φ(e1+i t) = e1+ib(t) for all t ∈ R.
Then the interpolation φ(es+i t) := e(1−s)ia(t)+s(1+ib(t)) is quasiconformal. �

Lemma 4.5. Let A1 and A2 ⊂ be two annuli whose boundary components are
images of S1 by C2 diffeomorphisms. Let h : ∂A1 → ∂A2 be a sense preserving
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homeomorphism that extends to a C2 diffeomorphism on a neighborhood of ∂A1.
Then there exists a homeomorphic extension h : A1 → A2 that is quasiconformal
on A1

Proof. For t > 0, the map L t : C∗
→ C∗ defined as L t(rei t)= r t ei t is a real-analytic

quasiconformal homeomorphism. It maps A1 homeomorphically onto At . For
i = 1, 2, choose a conformal isomorphism φi,1 from the interior of ∂A+

i to D, and
let Ai,1 :=φi,1(Ai ). Next, choose a conformal isomorphism φi,2 from the exterior of
∂A−

i to C \ D, and let Ai,2 := φi,2(Ai,1). Finally choose a conformal isomorphism
φi,3 from Ai,2 to Ati for some ti > 0. (Notice that the boundary components of
Ai,2 are both conformal images of S1, so by the Schwartz reflection principle, φi,3

extends holomorphically to a neighborhood of the closure of Ai,2.) Now define
φi : Ai → A1 by φi := L1/ti ◦φi,3 ◦φi,2 ◦φi,1. This is a conformal isomorphism that
extends holomorphically to a map φi : Ai → A1. We can define H : ∂A1 → ∂A1

by H = φ2 ◦ h ◦ φ1. This is a sense preserving homeomorphism. It follows from
Lemma 4.3 and the Schwartz reflection principle that H restricts on the boundary
components of ∂A1 to give C1 diffeomorphic maps with respect to parametrization.
By Lemma 4.4, H admits a homeomorphic extension of H : A1 → A1 that is
quasiconformal on A1. This induces an extension h : A1 → A2. �

Lemma 4.6. If D is a quasidisc and φ : D → D is conformal, then φ has a quasi-
conformal extension φ : C → C that is real analytic on C \ D.

Proof. Suppose that h : C → C is a quasiconformal homeomorphism such that
h(D) = D. Consider a reflection j : C → C in the unit circle. Let ψ : C \ D →

C \ D be a conformal isomorphism. Then φ and ψ has a homeomorphic extension
to D and C \ D. Thus h−1

◦ φ : S1
→ S1 is a homeomorphism. Define a map

H = j ◦ψ−1
◦ h ◦ j ◦ h−1

◦ φ. Then H is a quasiconformal extension of h−1
◦ φ

to D. Then h−1
◦ φ must be quasisymmetric. If follows from [Douady and Earle

1986] that h−1
◦φ has a real analytic extension Eh−1◦φ : D → D. Take φ̃ on D and

φ̃ := ψ ◦ j ◦ Eh−1◦φ ◦ j on C \ D. �

Proposition 4.7. Suppose that ( f1,U1, V1) and ( f2,U2, V2) are two tangent-like
maps. Then there exists a quasiconformal homeomorphism φ : V 1 → V 2 such that
f2 ◦φ(z)= φ ◦ f1(z) for z ∈ U 1 \ {u1} and such that φ is holomorphic on U1.

Proof. For simplicity, we may assume that V1 = V2 = D and v1 = v2 = 0. To
get a general case one must conjugate f1 and f2 with Riemann maps. Define
Ai = Vi \U i for i = 1, 2. Since f1 and f2 are universal coverings of D∗, there must
exist a conformal isomorphism h : U1 → U2 such that

f2 ◦ h(z)= f1(z) for z ∈ U1.
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Since U1,U2 are quasidiscs there exist an extension h̃ : U 1 → U 2 such that f2 ◦

h̃(z) = f1(z) for z ∈ ∂U1 \ {u1}. We want to construct a quasiconformal homeo-
morphism H : A1 → A2 such that H(z) = Id(z) if z ∈ ∂V1 and H(z) = h̃(z) for
z ∈ ∂U1. Let’s take two conformal isomorphisms gi : D → Ui for i = 1, 2 such
that g2 ◦g−1

1 = h. Lemma 4.6 implies that gi extends to a quasiconformal self-map
of C that is real-analytic on C \ D. Let Ãi := g−1

i (Ai ) for i = 1, 2 be two annuli.
By Lemma 4.5, there exists a quasiconformal homeomorphism φ̃ : Ã1 → Ã2 that
agrees with g−1

2 ◦ h̃ ◦ g1 = Id on ∂ Ã1
−

and with g−1
2 ◦ Id ◦ g1 on ∂ Ã1

+
. Then

φ := g2 ◦ φ̃ ◦ g−1
1 is a quasiconformal homeomorphism agreeing with h̃ on ∂A1

−

and with Id on ∂A1
+. Thus φ ◦ f1 = f2 ◦ φ on ∂U1 \ {u1}. We extend φ to U1 by

setting φ = h. �

Theorem 4.8. Every tangent-like map is hybrid equivalent to some Tβ ◦ A with
sufficiently large β ∈ C \ {0, 1} and A(z)= z + 4kπ i/(1 −β) for k ∈ Z.

Proof. It follows from Proposition 3.3 that we can choose a map Tβ having a
tangent-like restriction (F0,U0, V0). This is possible if β is sufficiently large. Then
the asymptotic value 1/β belongs to the basin of attraction of z0 = 0. Let ( f,U, V )
be a tangent-like map. It follows from Proposition 4.7 that there is a homeomor-
phism φ : V 0 → V that is quasiconformal on V0 and holomorphic on U0 and that has
φ◦ F0(z)= f ◦φ(z) for z ∈ U 0 \{u0}. Now we define a map F(z) :=φ−1

◦ f ◦φ(z)
for z ∈U0 and F(z)= Tβ(z) if z /∈U0. Then F is well defined in C and holomorphic
outside the closure of F−1(V0 \ U 0). For any z ∈ C, the forward trajectory Fn(z)
lands at most once in F−1(V0\U 0). Let σ0 denote the standard conformal structure
on C. We define a new structure σ by σ = (Fn)∗σ0 on F−n(V0 \ U0) for n ≥ 1,
by σ = σ0 on K (F) = φ−1(K ( f )), and by σ = σ0 on C \ U0. The structure σ is
F invariant, that is, F∗(σ ) = σ . There exists a quasiconformal homeomorphism
8 : C → C fixing 0, 1,∞ and such that 8∗(σ )= σ0; see [Boyarskiı̆ 1955]. Then

g =8 ◦ F ◦8−1
: C → C \ {1, w}

for some w 6= 1. Since σ agrees with σ0 on a neighborhood of 0 (more precisely
on C \ U0), 8 is holomorphic on this neighborhood, and g′(0) = F ′

0(0) = 1/2. So
g is a regular holomorphic covering from C onto C \ {1, w}. By Proposition 2.1,
g = Tβ ◦ A, where A(z)= z + 4kπ i/(1 −β) for k ∈ Z and β = 1/w. �
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