
Pacific
Journal of
Mathematics

A PROOF OF THE DDVV CONJECTURE
AND ITS EQUALITY CASE

GE JIANQUAN AND TANG ZIZHOU

Volume 237 No. 1 September 2008



PACIFIC JOURNAL OF MATHEMATICS
Vol. 237, No. 1, 2008

A PROOF OF THE DDVV CONJECTURE
AND ITS EQUALITY CASE

GE JIANQUAN AND TANG ZIZHOU

We give a proof of the DDVV conjecture, which is a pointwise inequality
involving the scalar curvature, the normal scalar curvature and the mean
curvature on a submanifold of a real space form. We also solve the problem
of its equality case.

1. Introduction

Let f : Mn
→ N n+m(c) be an isometric immersion of an n-dimensional submani-

fold M into the (n+m)-dimensional real space form N n+m(c) of constant sectional
curvature c. The normalized scalar curvature ρ and normal scalar curvature ρ⊥ are
defined by [DDVV 1999]

ρ =
2

n(n−1)

n∑
1=i< j

R(ei , e j , e j , ei ),

ρ⊥
=

2
n(n−1)

( n∑
1=i< j

m∑
1=r<s

〈R⊥(ei , e j )ξr , ξs〉
2
)1/2

,

where {e1, . . . , en} is an orthonormal basis of the tangent space, and R is the cur-
vature tensor of the tangent bundle. Similarly, {ξ1, . . . , ξm} is an orthonormal basis
of normal space, and R⊥ is the curvature tensor of the normal bundle.

Let h be the second fundamental form and let H = (1/n) Tr h be the mean
curvature vector field. The DDVV conjecture, of De Smet, Dillen, Verstraelen,
and Vrancken [1999], says that there’s a pointwise inequality among ρ, ρ⊥, and
|H |

2 given by
ρ + ρ⊥

≤ |H |
2
+ c.

Since this is a pointwise inequality, one can see using the Gauss and Ricci identities
that it’s equivalent to the following algebraic inequality (see [Dillen et al. 2007]):
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Conjecture A. Let B1, . . . , Bm be (n × n) real symmetric matrices. Then∑m

r,s=1
‖[Br , Bs]‖

2
≤

(∑m

r=1
‖Br‖

2)2
,

where ‖·‖
2 denotes the sum of the squares of the entries of the matrix and [A, B]=

AB − B A is the commutator of the matrices A and B.

The main purpose of this paper is to prove Conjecture A and also to give the
equality condition:

Theorem 1.1. Let B1, . . . , Bm be (n × n) real symmetric matrices. Then∑m

r,s=1
‖[Br , Bs]‖

2
≤

(∑m

r=1
‖Br‖

2)2
,

where the equality holds if and only if under some rotation1 all Br ’s are zero except
two matrices which can be written as P H1 P t and P H2 P t , where P is an (n × n)

orthogonal matrix, and

H1 = diag(µ, −µ, 0, . . .), H2 = diag
((

0 µ

µ 0

)
, 0, . . .

)
.

Therefore, we can solve the DDVV conjecture also with its equality conditions
in terms of shape operators:

Corollary 1.2. Let f : Mn
→ N n+m(c) be an isometric immersion. Then

ρ + ρ⊥
≤ |H |

2
+ c,

where the equality holds at some point p ∈ M if and only if there exist an orthonor-
mal basis {e1, . . . , en} of Tp M and an orthonormal basis {ξ1, . . . , ξm} of T ⊥

p M ,
such that

Aξ1 = diag(λ1 +µ, λ1 −µ, λ1, . . . , λ1), Aξ2 = diag
((

λ2 µ

µ λ2

)
, λ2, . . . , λ2

)
,

and all other shape operators Aξr = λr In , where µ, λ1, . . . , λm are real numbers.

Remark. By the same method, one can see that Conjecture A also holds (though
not optimally) for antisymmetric matrices. However, the following example shows
that Conjecture A fails, as conjectured in [Lu 2007c], when the set {B1, . . . , Bm}

contains both symmetric and antisymmetric matrices.

Example. The conclusion of Conjecture A fails when

B1 =

(
1 0
0 −1

)
, B2 =

(
0 1
1 0

)
, B3 =

(
0 1

−1 0

)
.

1An orthogonal m × m matrix R = (Rrs) acts as a rotation on (B1, . . . , Bm) by R(Br ) =∑m
s=1 Rsr Bs .
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We point out that the inequality and its equality condition of Theorem 1.1
(respectively Corollary 1.2) for m = 2 were given in [Chern 1968] (respectively
[DDVV 1999]). There are also some studies about classifying submanifolds that
satisfy the equality everywhere, for example [Choi and Lu 2008; DDVV 1999;
Dajczer and Florit 2001; Dillen et al. 2007]. The first nontrivial case, n = 3, of
the DDVV conjecture was proved in [Choi and Lu 2008]. For general n and m,
a weaker version was proved in [Dillen et al. 2007]. After we solved the conjec-
ture and its equality case, we found very recently that Zhiqin Lu had proved the
inequality without the equality case (the inequality’s key step is contained in [Lu
2007a; Lu 2007c]), as seen on his homepage [Lu 2007b]. Since we use a quite
different method and work out the equality condition in addition to the inequality,
we’d like it to be part of the literature.

2. Notations and preparatory lemmas

Throughout this paper, we denote by M(m, n) the space of m × n real matrices,
M(n) the space of n × n real matrices, and SM(n) the subspace of symmetric
matrices in M(n), which has dimension N := n(n + 1)/2.

For every (i, j) with 1 ≤ i ≤ j ≤ n, let

Êi j :=

{
Ei i if i = j,
(Ei j + E j i )/

√
2 if i < j,

where Ei j ∈ M(n) is the matrix with 1 in position (i, j) and 0 elsewhere. Clearly
{Êi j }i≤ j is an orthonormal basis of SM(n). Let us put an ordering on the index set
S := {(i, j) | 1 ≤ i ≤ j ≤ n} by saying

(2-1) (i, j) < (k, l) if and only if i < k or i = k and j < l.

We use this ordering to index elements of S with a single (Greek) index in the
range {1, . . . , N }.

For α = (i, j) < (k, l) = β in S, direct calculations imply

(2-2) ‖[Êα, Êβ]‖
2
=


1 if i = j = k < l or i < j = k = l,
1/2 if i < j = k < l or i = k < j < l or i < k < j = l,
0 otherwise,

and for any α, β ∈ S,

(2-3)
∑

γ∈S
〈[Êα, Êγ ], [Êβ, Êγ ]〉 = nδαβ − δαδβ,

where δαβ = δikδ jl , δα = δi j , δβ = δkl , and 〈 · , · 〉 is the standard inner product
of M(n).
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Let {Q̂α}α∈S be any orthonormal basis of SM(n). Then there exists a unique
orthogonal matrix Q ∈ O(N ) such that (Q̂1, . . . , Q̂N ) = (Ê1, . . . , ÊN )Q, that is,
Q̂α =

∑
β qβα Êβ for Q = (qαβ)N×N , and if Q̂α = (q̂α

i j )n×n ,

q̂α
i j = q̂α

j i =

{
qβα if β = (i, j) and i = j,
qβα/

√
2 if β = (i, j) and i < j .

Let λ1, . . . , λn be n real numbers satisfying
∑

i λ2
i = 1 and λ1 ≥· · ·≥λn . Define

I1 := { j | λ1 −λ j > 1}, I2 := {i | λi −λn > 1}, and I := {(i, j) | λi −λ j > 1}. Let
n0 be the number of elements of I . Then ({1} × I1) ∪ (I2 × {n}) ⊂ I ⊂ S.

Lemma 2.1. Either I = {1} × I1 or I = I2 × {n}.

Proof. If n0 = 0, the three sets are all empty. If n0 = 1, the single element must
be (1, n), and the three sets are equal. Now let (1, n) and (i1, j1) be two different
elements of I , that is, λ1 − λn ≥ λi1 − λ j1 > 1 and (1, n) 6= (i1, j1). We assert
that either i1 = 1 and j1 6= n or i1 6= 1 and j1 = n, which shows exactly that
I = {1}× I1

⋃
I2 ×{n}. Otherwise, 1, i1, j1, and n will be four different elements

in {1, . . . , n}, and thus

1 ≥ λ2
1 + λ2

i1
+ λ2

j1 + λ2
n ≥

1
2(λ1 − λn)

2
+

1
2(λi1 − λ j1)

2 > 1

is a contradiction. Without loss of generality, we can assume (i1, j1) ∈ {1} × I1.
Then it’ll be seen that I2 × {n} = {(1, n)} and thus I = {1} × I1, which completes
the proof. Otherwise, if there’s another element, say (i2, n), in I2×{n}, then i1 = 1,
j1, i2, and n are four different elements in {1, . . . , n}, and we come to the same
contradiction as above. �

Lemma 2.2. We have
∑

(i, j)∈I [(λi − λ j )
2
− 1] ≤ 1, where the equality holds in

the case when I = {1} × I1 if and only if 1 ≤ n0 < n and λ1 =
√

n0/(n0 + 1),
λn−n0+1 = · · · = λn = −1/

√
n2

0 + n0 and all other λk = 0.

Proof. Without loss of generality, we can assume that I = {1}× I1 by Lemma 2.1.
Then∑

(i, j)∈I
[(λi − λ j )

2
− 1] =

∑
j∈I1

(λ2
1 + λ2

j − 2λ1λ j ) − n0

= n0λ
2
1 +

∑
j∈I1

λ2
j − 2λ1

∑
j∈I1

λ j − n0

≤ (n0 + 1)λ2
1 +

∑
j∈I1

λ2
j + (

∑
j∈I1

λ j )
2
− n0

≤ (n0 + 1)(λ2
1 +

∑
j∈I1

λ2
j ) − n0

≤ (n0 + 1)
∑

i λ2
i − n0 = 1,

where the equality condition is easily seen from the proof. �

Lemma 2.3. We have
∑

β∈Jα
(‖[Q̂α, Q̂β]‖

2
− 1) ≤ 1 for any Q ∈ O(N ), α ∈ S

and Jα ⊂ S.
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Proof. For α ∈ S, we can assume without loss of generality Q̂α = diag(λ1, . . . , λn)

with
∑

i λ2
i = 1 and λ1 ≥ · · · ≥ λn . Then by Lemma 2.2,

∑
β∈Jα

(‖[Q̂α, Q̂β]‖
2
− 1) =

∑
β∈Jα

n∑
i, j=1

((λi − λ j )
2
− 1)(q̂β

i j )
2

=

∑
β∈Jα

∑
(i, j)=γ∈S

((λi − λ j )
2
− 1)q2

γβ

≤

∑
(i, j)=γ∈I

((λi − λ j )
2
− 1)

∑
β∈Jα

q2
γβ

≤

∑
(i, j)∈I

((λi − λ j )
2
− 1) ≤ 1. �

Lemma 2.4. We have
∑

β∈S‖[Q̂α, Q̂β]‖
2
≤ n for any Q ∈ O(N ) and α ∈ S.

Proof. It follows from Equation (2-3) that∑
β∈S

‖[Q̂α, Q̂β]‖
2
=

∑
βγ τξη

qγαqξαqτβqηβ〈[Êγ , Êτ ], [Êξ , Êη]〉

=

∑
γ ξ

qγαqξα

∑
τ 〈[Êγ , Êτ ], [Êξ , Êτ ]〉

=

∑
γ ξ

qγαqξα(nδγ ξ − δγ δξ ) = n
∑

γ q2
γα − (

∑
i q̂α

i i )
2
≤ n. �

Now let ϕ :M(m, n)→M(C2
m, C2

n) be the map defined by ϕ(A)(i, j)(k,l) := A(kl
i j ),

where 1 ≤ i < j ≤ m, 1 ≤ k < l ≤ n, and A(kl
i j ) = aika jl −aila jk is the discriminant

of the 2 × 2 submatrix of A that is the intersection of rows i and j with columns
k and l, arranged with the same order as in (2-1). We have easily ϕ(In) = IC2

n
,

ϕ(A)t
= ϕ(At), and the following lemma.

Lemma 2.5. The map ϕ preserves the matrix product, that is, ϕ(AB) = ϕ(A)ϕ(B)

holds for A ∈ M(m, k) and B ∈ M(k, n).

We’ll also need a result of linear algebra for proving the equality case.

Lemma 2.6. Let A, B be two matrices in M(m, n). Then AAt
= B B t if and only

if A = B R for some R ∈ O(n).

3. Proof of the main results

Let B1, . . . , Bm be any real symmetric n × n matrices. Their coefficients in the
standard basis {Êα}α∈S of SM(n) are determined by a matrix B ∈ M(N , m) as
(B1, . . . , Bm) = (Ê1, . . . , ÊN )B. Taking the same ordering as in (2-1) for 1 ≤ r <
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s ≤ m and 1 ≤ α < β ≤ N , we arrange {[Br , Bs]}r<s and {[Êα, Êβ]}α<β into C2
m

and C2
N vectors, respectively. We first observe that

([B1, B2], . . . , [Bm−1, Bm]) = ([Ê1, Ê2], . . . , [ÊN−1, ÊN ]) · ϕ(B).

Define a matrix C(E) in M(C2
N ) by C(E)(α,β)(γ,τ ) := 〈[Êα, Êβ], [Êγ , Êτ ]〉 for

1 ≤ α < β ≤ N and 1 ≤ γ < τ ≤ N . We use the same notation for {Br } and {Q̂α},
that is, we write C(B) and C(Q), respectively. Then it’s obvious that

C(B) = ϕ(B t)C(E)ϕ(B) and C(Q) = ϕ(Qt)C(E)ϕ(Q).

Since B B t is a semi positive definite matrix in SM(N ), there exists an orthogonal
matrix Q ∈ SO(N ) such that B B t

= Q diag(x1, . . . , xN )Qt with xα ≥ 0 for 1 ≤

α ≤ N . Thus
∑m

r=1‖Br‖
2
= ‖B‖

2
=

∑N
α=1 xα, and hence by Lemma 2.5

m∑
r,s=1

‖[Br , Bs]‖
2
= 2 Tr C(B) = 2 Tr ϕ(B t)C(E)ϕ(B) = 2 Tr ϕ(B B t)C(E)

= 2 Tr ϕ(diag(x1, . . . , xN ))C(Q) =

N∑
α,β=1

xαxβ‖[Q̂α, Q̂β]‖
2.(3-1)

Proof of Theorem 1.1. For the inequality, the arguments above show that it is
equivalent to prove

(3-2)
N∑

α,β=1

xαxβ‖[Q̂α, Q̂β]‖
2
≤

( N∑
α=1

xα

)2 for any x ∈ RN
+

and Q ∈ SO(N ),

where RN
+

:= {0 6= x = (x1, . . . , xN )∈ RN
| xα ≥ 0, 1 ≤α ≤ N } is the cone spanned

by the positive axes of RN .
Let fQ(x) = F(x, Q) :=

∑N
α,β=1 xαxβ‖[Q̂α, Q̂β]‖

2
− (

∑N
α=1 xα)2. Then F is

a continuous function defined on RN
× SO(N ) and thus uniformly continuous on

any compact subset of RN
× SO(N ). Let 4 := {x ∈ RN

+
|
∑

α xα = 1} and for any
sufficiently small ε > 0, let 4ε := {x ∈ 4 | xα ≥ ε, 1 ≤ α ≤ N }. Also let

G := {Q ∈ SO(N ) | fQ(x) ≤ 0 for all x ∈ 4},

Gε := {Q ∈ SO(N ) | fQ(x) < 0 for all x ∈ 4ε}.

We claim that G = limε→0 Gε = SO(N ). Note that this implies (3-2) and thus
proves the inequality. In fact we can show

(3-3) Gε = SO(N ) for any sufficiently small ε > 0.

To prove (3-3), we use the continuity method, in which we must prove the following
three properties:

(i) IN ∈ Gε (and thus Gε 6= ∅);



A PROOF OF THE DDVV CONJECTURE AND ITS EQUALITY CASE 93

(ii) Gε is open in SO(N );

(iii) Gε is closed in SO(N ).

Since F is uniformly continuous on 4ε × SO(N ), (ii) is obvious.

Proof of (i). For any x ∈ 4ε, f IN (x) =
∑N

α,β=1 xαxβ‖[Êα, Êβ]‖
2
− 1.

It follows from (2-2) that

f IN (x) = 2
{∑

i< j

(xi i xi j + xi j x j j ) +
1
2

∑
i< j<k

(xi j x jk + xi j xik + xik x jk)
}
− 1

= 2
∑
i< j

(xi i xi j + xi j x j j ) +

∑
i< j<k

(xi j x jk + xi j xik + xik x jk) − (
∑N

i≤ j xi j )
2

< 0,

which means IN ∈ Gε. �

Proof of (iii). We only need to prove the following a priori estimate: Suppose
fQ(x) ≤ 0 for every x ∈ 4ε. Then fQ(x) < 0 for every x ∈ 4ε.

The proof of this estimate is as follows: If there is a point y ∈ 4ε such that
fQ(y) = 0, we can assume without loss of generality that

y ∈ 4
γ
ε := {x ∈ 4ε | xα > ε for α ≤ γ and xβ = ε for β > γ }

for some 1 ≤ γ ≤ N . Then y is a maximum point of fQ(x) in the cone spanned by
4ε and an interior maximum point in 4

γ
ε . Hence there exist numbers bγ+1, . . . , bN

and a number a such that

(3-4)

(
∂ fQ
∂x1

(y), . . . ,
∂ fQ
∂xγ

(y)
)

= 2a(1, . . . , 1),(
∂ fQ

∂xγ+1
(y), . . . ,

∂ fQ
∂xN

(y)
)

= 2(bγ+1, . . . , bN )

or equivalently

(3-5)
N∑

β=1

yβ(‖[Q̂α, Q̂β]‖
2) − 1 =

{
a if α ≤ γ,

bα if α > γ.

Hence

fQ(y) = (
∑γ

α=1 yα)a + (
∑N

α=γ+1 bα)ε = 0 and
∑γ

α=1 yα + (N − γ )ε = 1.

Meanwhile, we see ∂ fQ/∂ν(y) = 2(aγ +
∑N

α=γ+1 bα) ≤ 0, where ν = (1, . . . , 1)

is the vector normal to 4 in RN . For any sufficiently small ε (such as ε < 1/N ), it
follows from the above three formulas that a ≥ 0. Without loss of generality, we
assume y1 = max{y1, . . . , yγ } > ε. Let J := {β ∈ S | ‖[Q̂1, Q̂β]‖

2
≥ 1}, and let
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n1 be the number of elements of J . Now combining Lemma 2.3, Lemma 2.4 and
Equation (3-5) will give a contradiction as follows:

(3-6)

1 ≤ 1 + a =
∑N

β=2 yβ‖[Q̂1, Q̂β]‖
2

=
∑

β∈J yβ(‖[Q̂1, Q̂β]‖
2
− 1) +

∑
β∈J yβ +

∑
β∈S/J yβ‖[Q̂1, Q̂β]‖

2

≤ y1
∑

β∈J (‖[Q̂1, Q̂β]‖
2
− 1) +

∑
β∈J yβ +

∑
β∈S/J yβ‖[Q̂1, Q̂β]‖

2

≤ y1 +
∑

β∈J yβ +
∑

β∈S/J yβ‖[Q̂1, Q̂β]‖
2
≤

∑N
β=1 yβ = 1.

Thus

(3-7) yβ = y1 for β ∈ J and
∑

β∈J ‖[Q̂1, Q̂β]‖
2
= n1 + 1 ≤ n < N .

Hence S/(J ∪ {1}) 6= ∅, and the second “≤” in line (3-6) should be “<” by the
definition of J and the positivity of yβ for β ∈ S/(J ∪ {1}). �

Now we consider the equality condition of Conjecture A in view of the proof of
the a priori estimate.

If there’s an orthogonal matrix Q and a point y ∈ 4 such that fQ(y) = 0, we
can assume without loss of generality that

y ∈ 4
γ

:= {x ∈ 4 | xα > 0 for all α ≤ γ and xβ = 0 for all β > γ }

for some 1 ≤ γ ≤ N . Then y is a maximum point of fQ(x) in RN
+

and an interior
maximum point in 4

γ . Therefore, we have the same conclusions as (3-4), (3-5),
(3-6), and (3-7) when γ = n1 + 1, and all inequalities in the proof of Lemma 2.3
can be replaced by equalities. So

∑
β∈J q2

γβ = 1 implies qγβ = 0 for all γ ∈ I
and β ∈ S/J . And also it follows from Lemma 2.2 that (λi − λ j )

2
− 1 < 0 for all

γ = (i, j) ∈ S/I , and thus qγβ = 0 for all β ∈ J and γ ∈ S/I . Hence n0 = n1,
and it follows from Lemma 2.1 that all Q̂β for β ∈ J have rank 2. On the other
hand, we know from the first formula of (3-7) that Q̂1 can be replaced in the above
arguments by Q̂β for some β ∈ J , which implies that Q̂1 has rank 2 and thus
n0 = n1 = 1 and γ = 2. Finally we can conclude the equality case of Theorem 1.1
from Lemmas 2.2 and 2.6. �

Proof of Corollary 1.2. The inequality case is equivalent to that of Theorem 1.1;
see also [Dillen et al. 2007, Theorem 3.1]. When the equality holds at some point
p ∈ M , we can choose an orthonormal basis {u1, . . . , um} of T ⊥

p M such that
u1 = H/|H | if H 6= 0 or arbitrarily if H = 0. Put B1 = Au1 −|H |In and Br = Aur

for 2 ≤ r ≤ m. Applying the equality case of Theorem 1.1 and choosing an ortho-
normal basis {e1, . . . , en} of Tp M , we get (B1, . . . , Bm) = (H1, H2, 0, . . . , 0)R
for some m × m orthogonal matrix R = (Rrs). Therefore (Au1, . . . , Aum )Rt

=

(H1 + |H |R11 In, H2 + |H |R21 In, |H |R31 In, . . . , |H |Rm1 In). Then taking the or-
thonormal basis (ξ1, . . . , ξm) = (u1, . . . , um)Rt of T ⊥

p M completes the proof. �
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