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Let G be a real semisimple group. Two important invariants are associated
with the equivalence class of an irreducible unitary representation of G,
namely, the associated variety of the annihilator in the universal enveloping
algebra and Howe’s N-spectrum, where N is a nilpotent subgroup of G. The
associated variety is defined in a purely algebraic way. The N-spectrum is
defined analytically. In this paper, we prove some results about the relation
between associated variety and N-associated variety, where N is a subgroup
of G. We then relate N-associated variety with Howe’s N-spectrum when N
is abelian. This enables us to compute Howe’s rank in terms of the associ-
ated variety. The relationship between Howe’s rank and the associated vari-
ety has been established by Huang and Li, at about the same time this paper
was first written, using the result of Matomoto on Whittaker vectors. It can
also be derived from works of Przebinda and Daszkiewicz–Kraśkiewicz–
Przebinda. Our approach is independent and more self-contained. It does
not involve Howe’s correspondence in the stable range.

Introduction

0.1. The associated variety and the C-associated variety. Let D be a noncommu-
tative associative algebra over C with an identity. Suppose that D has a filtration
{Di }i∈Z such that

Di .D j ⊆ Di+ j and [Di , D j ] ⊆ Di+ j−1 for i, j ∈ Z.

Let gr(D)=
⊕

Di+1/Di be the associated graded algebra. Clearly, gr(D) is a com-
mutative algebra and also is a Poisson algebra [Gabber 1981]. Now suppose that
gr(D) is affine [Eisenbud 1995, page 35]. Let spec(D) be the maximal spectrum
of gr(D). Let J be a left ideal of D. Then {D j } induces a filtration {D j ∩J} for J,
and gr(J) is an ideal of gr(D). We define the associated variety V(J) of J to be
the subvariety of maximal ideals of gr(D) containing gr(J).
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Let C be a subalgebra of D with identity. Again C has an induced filtration
{C ∩ D j }. There is a natural map j : gr(C) → gr(D) which induces a map

j∗
: spec(D) → spec(C).

The first result we prove states that j∗(V(J)) ⊆ V(J ∩ C). See Lemma 1.1.
Now let g be a Lie algebra over R. Let h be a Lie subalgebra. Let D=U(g) be the

universal enveloping algebra equipped with the natural filtration. Then gr(U(g)) =

S(g). So spec(U(g)) = g∗

C
. Put C = U(h). Then spec(U(h)) = h∗

C
, and the map j∗

is the restriction map from gC to hC. Let J be a left ideal of U(g). We call V(J∩C)

the C-associated variety of J.
Let M be a g-module. Let N be a subspace of M . Let AnnU(g)(N ) be the

annihilator of N in U(g). Then AnnU(g)(N ) is a left ideal of U(g). By Lemma 1.1,
we have

j∗(V(AnnU(g)(N ))) ⊆ V(AnnU(h)(N )).

It is not known if the converse is true. But if g is Z-graded, we have the following.

Theorem 0.1. Let a ∈ g be such that ad(a) is semisimple with real eigenvalues.
Let h be the highest eigenspace. Let ad(a)|h = λI , and suppose that λ ≥ 0. Let M
be a g-module. Let N be a subspace that is invariant under the action of a. Then

cl( j∗(V(AnnU(g)(N )))) = V(AnnU(h)(N )).

See the proofs of Theorem 1.1 and Theorem 1.2. A similar statement holds for h,
the subspace with the lowest weight.

0.2. Associated variety and support: the abelian case. Let G be a Lie group with
a finite number of components. Let (π, H) be a unitary representation of G. All
Hilbert spaces in this paper are assumed to be separable. To apply the theory of
associated varieties to unitary representations of G, we consider the annihilator. Let
H∞ be the space of smooth vectors. Clearly U(g) acts on H∞. Define AnnU(g)(π)

to be AnnU(g)(H
∞). In Theorem 1.3, we prove that H∞ can be replaced by any

dense subspace of H∞. In particular, for G semisimple and K a maximal compact
subgroup, a canonical choice is the space of smooth K -finite vectors. In addition,
if (π, H) is irreducible, then all K -finite vectors are smooth.

Next, let N be a connected abelian group. The unitary dual of N can be identified
with a subset of in∗. Here n∗ is the space of real linear functionals of n. Let (π, H)

be a unitary representation of N . Then there is a projection-valued measure dµπ

on n̂ such that
π ∼=

∫
N̂

dµπ .

Define the support of π to be the complement of the maximal open set U with
µπ (U ) = 0. Regard supp(π) as a subset of in∗. This paper proves the following:
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Theorem 0.2. Let π be a unitary representation of a connected abelian group N.
Then cl(supp(π)) = V(AnnU(n)(π)).

Notice that supp(π) ⊂ in∗ and cl(supp(π)) is in n∗

C
, the complexification of n. See

Theorem 2.1 for the proof.

Corollary 0.1. Let (π, H) be a unitary representation of a connected Lie group
G. Let N be a connected abelian Lie subgroup of G. Suppose there is a semisim-
ple element a ∈ g such that ad(a) has only real eigenvalues and n is the highest
eigenspace of ad(a). Suppose that the eigenvalue for ad(a)|n is nonnegative. Then

V(AnnU(n)(π)) = cl(supp(π |N )) = cl( j∗(V(AnnU(g)(π)))),

where j : g∗

C
→ n∗

C
, is the canonical projection.

0.3. Unitary representations, Howe’s N-spectrum and the associated variety.
We shall now use our results to relate the associated variety to Howe’s N -spectrum
[Howe 1982]. In particular, we can read Howe’s rank from the associated variety.

Let G be a connected classical Lie group. Let K be a maximal compact sub-
group of G. Let g be the Lie algebra of G, and let U(g) be the universal en-
veloping algebra of g with complex coefficients. Let (π, H) be a unitary repre-
sentation of G. The classical way to study (π, H) is to analyze the associated
(g, K )-module, obtained by taking the smooth K -finite vectors in H. When a
(g, K )-module satisfies a certain compatibility condition and is finitely generated,
it will be called a Harish–Chandra module [Vogan 1991]. Two irreducible unitary
representations are isomorphic if and only if their Harish–Chandra modules are
isomorphic as U(g)-modules. In addition, (π, H) is irreducible if and only if its
Harish–Chandra module is an irreducible U(g)-module. So problems concerning
irreducible representations can often be reduced to problems concerning irreducible
Harish–Chandra modules. The classification of all the irreducible Harish–Chandra
modules of a linear connected semisimple group was carried out by Langlands
[1989] and Knapp and Zuckerman [1982]. But Langlands’s classification did not
address the question of unitarity. Vogan [1986] classified the unitary dual of general
linear groups, that is, classical groups of type II. We call the rest of the classical
groups classical groups of type I (see Definition 3.1). The unitary dual Ĝ for type I
classical groups remains very much mysterious.

Let V be the Harish–Chandra module of an irreducible representation (π, H).
A well-known theorem of Borho, Brylinski, and Joseph states that the associated
variety V(AnnU(g)(V )) is the closure of a single coadjoint nilpotent orbit. Thus
one may focus on the classification of all the unitarizable Harish–Chandra modules
associated with a fixed nilpotent orbit. This problem is quite difficult to solve, but
not hopeless. The rich structure of the nilpotent orbits provides a lot of information
about the unitary representation. Progress has been made in classifying unitary
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representations with a fixed associated variety; see for example [Huang and Li
1999].

Let H be a type I subgroup of G; see [[Dixmier 1977] and [Wallach 1992,
pages 312–340]. From the direct integral theory, the restriction of π to H yields a
projection-valued measure µH (π) on Ĥ , that is,

H =

∫
s∈Ĥ

Hs⊗̂Vs dµπ |H (s) for (πs, Hs) ∈ Ĥ ,

where H acts trivially on Vs . dim(Vs) is often called the multiplicity function
of π |H . It is defined almost everywhere. R. Howe [1982] called the projection-
valued measure µH (π), and he called the unitary equivalence class it defines the
H -spectrum of π . When Ĥ is well understood, the H -spectrum of π should shed
some light on the structure of the representation (π, H). We shall point out that all
classical Lie groups and nilpotent Lie groups are Lie groups of type I. Lie groups
of type I is not to be confused with type I classical groups, which refer to classical
groups that preserve a nondegenerate sesquilinear form (see Definition 3.1).

Howe [1982] studied the case where G = Sp2n(R) and H is the (abelian) nil-
radical Nn of the Siegel parabolic subgroup Pn . In this case, N̂n can be regarded
as the space of real symmetric bilinear forms. In particular, Howe defined the
notion of Nn-rank for a unitary representation π to be the highest rank of the
support of µNn (π) regarded as symmetric bilinear forms. Later, Howe’s Z Nk-
rank was extended to all the type I classical groups by J.-S. Li [1989], to all the
type II classical groups by R. Scaramuzzi [1990], and to the exceptional groups
by H. Salmasian [2007]. This approach to studying Z Nk-spectrum has lead to the
classification of the “small” unitary representations for type I classical groups; see
[Li 1989].

A natural way to relate V(AnnU(g)(π)) to Howe’s H -spectrum is to relate the
H -associated variety, V(AnnU(h)(π)), to the H -spectrum. More precisely, one
may study the Lie algebra action of h (as skew-adjoint differential operators) in
the framework of direct integral theory. In general, this is not an easy task since
the direct integral theory is an L2-theory. Nevertheless, for an abelian group H ,
our result is sharp, that is, V(AnnU(h)(π)) is the Zariski closure of the support of
the H -spectrum of π .

Let G be a type I classical group. Suppose Pk is a maximal parabolic subgroup
of G and Nk is its nilradical. Let Z Nk be the center of Nk . Since Z Nk is a connected
and simply connected abelian group, Ẑ Nk can be regarded as the purely imaginary
dual of znk . Let j∗

: g∗

C
→ znk

∗

C
be the canonical projection from the complex dual

of g to the complex dual of znk . Our results immediately imply this:

Theorem 0.3. V(AnnU(znk)(π)) is the Zariski closure of j∗(V(AnnU(g)(π))). It
is also the Zariski closure of supp(µZ Nk (π)).



ASSOCIATED VARIETIES AND HOWE’S N -SPECTRUM 101

See Theorem 3.1 and Theorem 2.1.

0.4. Howe’s rank and the associated variety. Finally, we compute Howe’s Z Nk-
rank for an irreducible unitary representation of a type I classical group — that
is, any of the groups U(p, q), Op,q , O∗(2n), O(n, C), Sp2n(R), Sp(n, C), and
Sp(p, q) — in terms of the associated variety. Since gC can always be represented
by a standard matrix Lie algebra, we define the rank of a subset of gC to be the
maximal rank of its elements.

Theorem 0.4 (see also [Huang and Li 1999]). Let (π, H) be an irreducible unitary
representation of a type I classical group G. Then we have a table:

G Z Nk-rank of (π, H)

Sp2n(R), U(p, q) min(k, rank(V(AnnU(g)(π))))

Op,q min(k, rank(V(AnnU(g)(π)))) if k is even
min(k − 1, rank(V(AnnU(g)(π)))) if k is odd

O∗(2n), Sp(p, q) min(k, 1
2 rank(V(AnnU(g)(π))))

Sp(n, C) min(k, 1
2 rank(V(AnnU(g)(π))))

O(n, C) min(k, 1
2 rank(V(AnnU(g)(π)))) if k is even

min(k − 1, 1
2 rank(V(AnnU(g)(π)))) if k is odd

In the rows of Sp(p, q) and O(n, C), one can replace 1
2 rank(V(AnnU(g)(π))) by

rank(WF(π)). I should remark that essentially the same statement was proved by
Huang and Li [1999] when k is the real rank of G. This theorem can also be derived
from the results of Przebinda [1993] and Daszkiewicz, Kraśkiewicz, and Przebinda
[1997]. These two approaches involve Howe’s correspondence in the stable range
[Howe 1989; Li 1989]. Our approach is independent and more self-contained [He
1998, pages 1–127].

The following is an outline of the paper. In Section 1, we study the associ-
ated variety of a left ideal of a special type of filtered noncommutative algebra.
We investigate the relationship between the associated variety of M and the H -
associated variety of M when M is a U(g) module. In Section 2, we study the Lie
algebra action under the framework of the direct integral for abelian Lie groups.
We show that for a unitary representation of a connected abelian Lie group G,
the associated variety of the annihilator is the Zariski closure of the support of
its spectral measure. In Section 3, we present the structure theory of parabolic
subgroups for a type I classical group. In Section 4, we compute the Z Nk-rank
using associated varieties.

After I finished this work, Vogan pointed out that there should be a real version
of Theorem 0.1, namely, there must be a strong connection between the wave
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front set of π and the wave front set of π restricted to certain subgroups. Let
WF(π) be the wave front set of a representation π of a Lie group G in the sense
of [Howe 1981]. Then it is easy to see from [Howe 1981, Proposition 2.1] that
WF(π |Z Nk ) = supp(π |Z Nk ), since supp(π |Z Nk ) is conic. On the other hand, it is
well known that the associated variety is the Zariski closure of the wave front set,
that is, V(AnnU(g)(π)) = cl(WF(π)). From what we have proved in this paper, we
have cl(supp(π |Z Nk )) = cl( j∗(V(AnnU(g)(π)))). Therefore

cl(WF(π |Z Nk )) = cl( j∗(cl(WF(π)))).

At this time it is not clear how to relate WF(π |Z Nk ) to WF(π). Nevertheless, we
make the following conjecture.

Conjecture. Let G be a connected classical group of type I. Let π be an irre-
ducible unitary representation of G. Let j∗

: g∗
→ zn∗

k be the canonical projection.
Then

WF(π |Z Nk ) = j∗(WF(π)).

This paper is essentially the first part of my PhD thesis. I wish to thank my advisor
David Vogan for guidance.

1. Associated variety under restriction

A filtered (noncommutative) algebra D over C is an algebra endowed with a fil-
tration {Di }i∈Z such that Di .D j ⊆ Di+ j for i, j ∈ Z. Let gr(D) =

⊕
Di+1/Di be

the associated graded algebra. An element x ∈ gr(D) is said to be homogeneous of
degree i if there exists an i ∈ Z such that x ∈ Di/Di−1. Let σi : Di → Di/Di−1 be
the natural projection. We call it the symbol map. Then gr(D) =

⊕
i σi (Di ).

Throughout this paper, our filtered algebra will be assumed to have the properties

• D0 = C1, where 1 is the identity element;

• Dn = {0} for every n < 0;

• gr(D) is a commutative affine algebra [Eisenbud 1995].

Notice that gr(D) being commutative is equivalent to [Di , D j ] ⊆ Di+ j−1.

Definition 1.1. Let spec(D) be the maximal spectrum of gr(D). Suppose that I is
a (left) ideal of D. Then I inherits a filtration from D, that is,

Ii = Di ∩ I for i ∈ N.

Let gr(I) =
⊕

σi (Ii ) be the graded algebra of I. Then gr(I) is an ideal of
gr(D). Let V(gr(I)) be the set of maximal ideals in gr(D) containing gr(I). Define
V(I) = V(gr(I)). V(I) is called the associated variety of I.
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Now suppose that C is a subalgebra of D with identity. C inherits a filtration from
D. Thus we have an injection j : gr(C) → gr(D). Automatically, gr(C) becomes
an affine, commutative algebra. The associated map on the spaces of spectrum is
j∗

: spec(D) → spec(C). If M ∈ spec(D), then j∗(M) = M∩gr(C), which is again
a maximal ideal in gr(C). Let J be a left ideal of D. Let I = J ∩ C. We would
like to study the relationship between V(J) and V(I).

Strictly speaking, we should have written VD(J) and VC(I) instead of V(J)

and V(I) to indicate the difference of the ambient space. However, within the
context, it is clear that I is an ideal of C and J is an ideal of D. And we will
only be discussing the associated variety of an ideal. So it is clear that V(J) is a
subvariety of spec(D) and V(I)) is a subvariety of spec(C).

Lemma 1.1. Let D be a filtered algebra with the properties specified at the begin-
ning of this section. Let C be a subalgebra of D. Let J be an left ideal in D and
I = C ∩ J. Then I is a left ideal of C. In addition, j∗(V(J)) ⊆ V(I).

Proof. Obviously, I is a left ideal of C. By definition, gr(I) is a direct sum of
homogeneous elements. Suppose f ∈ gr(I) is homogeneous of degree k. Then
there exists U ∈ I ⊆ J such that σk(U ) = f . This implies that j ( f ) ∈ gr(J).
Therefore j (gr(I)) ⊆ gr(J). So j∗(V(J)) ⊆ V(I). �

Corollary 1.1. Let D be a filtered algebra with the properties specified at the be-
ginning of this section. Let M be a D-module and N a linear subspace of M. Let
C be a subalgebra of D. Let AnnD(N ) and AnnC(N ) be the annihilators of N in
D and C, respectively. Then AnnD(N ) and AnnC(N ) are left ideals of D and C,
respectively. In addition, j∗V(AnnD(N )) ⊆ V(AnnC(N )).

Now let D = U(g) be the universal enveloping algebra of g with complex coef-
ficients. Since U(g) has a natural filtration

C.1 ⊆ U1(g) ⊆ U2(g) ⊆ · · · ⊆ Ui (g) ⊆ · · · ,

the associated graded algebra gr(U(g)) can be identified with the symmetric al-
gebra S(g). Thus spec(U(g)) = g∗

C
. Here g∗

C
is the complex dual of g. Let h

be a subalgebra of g. Then j∗ is simply the projection of g∗

C
onto h∗

C
(through

restriction). In this setting, we have this:

Corollary 1.2. Let h be a Lie subalgebra of a Lie algebra g. Let M be a g-module.
Let N be a linear subspace of M. Then j∗(V(AnnU(g)(N ))) ⊆ V(AnnU(h)(N )).

We are interested in equalities of the type

cl( j∗(V(AnnU(g)(N )))) = V(AnnU(h)(N )).

At this stage, we only have a very limited understanding about the behavior of j∗

for associated varieties. Nevertheless, we have the following theorem.
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Theorem 1.1. Suppose a is a semisimple element in an arbitrary Lie algebra g

such that ad(a) has only real eigenvalues. Let r be the maximal eigenvalue. Sup-
pose r > 0. Let h = gr . Then h is abelian. Let M be a g-module, and let N be a
subspace of M such that a.N ⊆ N. Then

V(AnnU(h)(N )) = cl( j∗(V(AnnU(g)(N )))),

where cl( j∗(V(AnnU(g)(N )))) is the Zariski closure of j∗(V(AnnU(g)(N ))).

Proof. First of all, under the eigendecomposition with respect to ad(a), we have

[gr , gr ] = g2r = {0}.

Therefore h = gr is abelian. Now it suffices to show that

V(AnnU(h)(N )) ⊆ cl( j∗(V(AnnU(g)(N )))).

Suppose that f ∈ Si (h) vanishes on cl( j∗(V(AnnU(g)(N )))). In other words,
j ( f ) = f vanishes on V(AnnU(g)(N )). Here f is regarded as a linear func-
tion on g∗

C
. Thus by Hilbert’s Nullstellensatz, there exists an n ∈ N such that

f n
∈ gr(AnnU(g)(N )). Therefore, there exists a P ∈ Uni (g) ∩ AnnU(g)(N ) such

that σni (P) = f n . Because ad(a) is semisimple, U(g) is completely reducible
as an ad(a)-module. Also notice that N is an a-module. Thus AnnU(g)(N ) is
also an ad(a)-module. Now Uni (g) ∩ AnnU(g)(N ) possesses an eigen (weight)
decomposition with respect to ad(a):

Uni (g) ∩ AnnU(g)(N ) =

⊕
k∈R

(Uni (g) ∩ AnnU(g)(N ))k .

This implies that every eigencomponent of P with respect to ad(a) is again in
AnnU(g)(N ).

Since h is abelian, Sni (h) can be regarded as a subspace of Uni (h), which in turn
is a subspace of Uni (g). In addition, Sni (h) is the highest eigenspace of ad(a)|Uni (g).
Let P0 be the eigenprojection of P ∈Uni (g) onto Sni (h). Clearly, P0 ∈AnnU(g)(N ).
Since the action of ad(a) intertwines the symbol map σni : Uni (g) → Sni (g), by
comparing the eigendecompositions for P and σni (P) = f n , we get σni (P0) = f n .
Now P0 ∈ AnnU(h)(N ), and σni (P0) = f n

∈ gr(AnnU(h)(N )). This implies that f
vanishes at V(AnnU(h)(N )). So

V(AnnU(h)(N )) ⊆ cl( j∗(V(AnnU(g)(N )))).

By Corollary 1.2, V(AnnU(h)(N )) = cl( j∗(V(AnnU(g)(N )))). �

When r = 0, the algebra h will no longer be abelian. We can define P0 to be the
eigenprojection of Uni (g) onto the highest eigenspace Uni (h) with respect to ad(a).
It is still true that σni (P0) = f n and P0 ∈ AnnU(h)(N ). We obtain the following.
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Theorem 1.2. Suppose a is a semisimple element in an arbitrary Lie algebra g

such that ad(a) has only real eigenvalues. Suppose that 0 is the highest eigenvalue
of ad(a). Let h be the 0-eigenspace of ad(a). Let M be a g-module, and let N be a
subspace of M such that a.N ⊆ N. Then

V(AnnU(h)(N )) = cl( j∗(V(AnnU(g)(N )))),

where cl( j∗(V(AnnU(g)(N )))) is the Zariski closure of j∗(V(AnnU(g)(N ))).

Before we continue, we want to examine the definition of the annihilator of a
unitary representation for an arbitrary Lie group G.

Theorem 1.3. Let (π, H) be a unitary representation of a Lie group G. Let M be
any dense subset of the space of smooth vectors H∞. Then

AnnU(g)(H∞) = AnnU(g)(M).

Proof. If D ∈ U(g) and π(D)H∞
= 0, then π(D)M = 0. Thus

AnnU(g)(M) ⊇ AnnU(g)(H∞).

If D ∈ AnnU(g)(M), then (π(D)u, v) = 0 for all u ∈ M and v ∈ H∞. Since g acts
by skew-adjoint operators, that is, π(X)∗ = π(−X) for all X ∈ g, we have

(π(D)u, v) = (u, π(D∗)v) = 0 for u ∈ M, v ∈ H∞.

Here D → D∗ is the natural real involution defined by

αX1 X2 . . . Xn → (−1)nαXn Xn−1 · · · X2 X1 for X i ∈ g.

Since M is dense in H∞, M is dense in H . Hence π(D∗)v = 0 for every v ∈ H∞.
We have (π(D)u, v) = (u, π(D∗)v) = 0 for u, v ∈ H∞. Thus π(D)u = 0 for every
u ∈ H∞, and D ∈ AnnU(g)(H∞). This implies AnnU(g)(M) ⊆ AnnU(g)(H∞). �

Definition 1.2. Let (π, H) be a unitary representation of G. Let M be any dense
subset of H∞. Define AnnU(g)(π) = AnnU(g)(M). Let N be a connected closed
subgroup of G. Define AnnU(n)(π) = AnnU(n)(M). We call V(AnnU(n)(π)) ⊆ n∗

C

the N -associated variety of π .

Let NG(N ) be the normalizer of N in G. One can easily see that the N -associated
variety is NG(N )-stable.

2. Associated variety and support of a unitary representation: abelian case

In this section, we review the basic theory of unitary representations of abelian
groups and abelian Lie groups. When G is an abelian Lie group, the Lie algebra g

acts by mutually commuting (unbounded) skew-self adjoint operators. Both the Lie
group action and Lie algebra action can be represented by spectral integrals. This
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allows us to relate the associated variety and the support of a unitary representation
π of G.

Theorem 2.1. Suppose that (π, H) is a unitary representation of a connected
abelian Lie group G. If we identify Ĝ with a subset of ig∗, then

V(AnnU(g)(π)) = cl(suppG(π)).

Let G be a locally compact abelian group. Let Ĝ be the set of unitary characters
of G endowed with the Pontryagin topology. Then Ĝ is a locally compact abelian
group under pointwise multiplication.

Theorem 2.2 (Stone). If H is a Hilbert space and µ is a regular projection-valued
Borel measure on Ĝ, then the equation

(1) Tg =

∫
Ĝ

ξ(g)dµ(ξ) for g ∈ G

defines a unitary representation T of G on H. Conversely, every unitary represen-
tation of G determines a unique regular projection-valued Borel measure µ on H
such that Equation (1) holds.

We define the support of a unitary representation H of G to be the (closed) support
of the projection-valued measure µ. In other words, suppG(π) is the complement
of the biggest open subset U of Ĝ such that µ(U ) = 0. Equivalently, suppG(π) is
the smallest closed subset K of Ĝ such that µ(K ) = id. Of course if we remove
the closedness of suppG(π), suppG(π) is unique only up to a set of measure zero.

For an arbitrary Borel measurable set K ⊆ Ĝ, let

µv(K ) = µ(K ).v and µu,v(K ) = (µ(K )u, v).

Then µv defines a vector-valued regular Borel measure, and µu,v defines a complex
regular Borel measure.

Suppose G is a connected abelian Lie group and g is the (real) Lie algebra of G.
Let g∗ be the real dual of g. Each ξ ∈ Ĝ corresponds to a smooth function ξ(g)

on G. We can define

ξ(x) =
d
dt

∣∣∣
t=0

ξ(exp(t x)) for x ∈ g.

This defines a map from Ĝ to g∗

C
. Because ξ(exp(t x))ξ(exp(t x)) = 1, we have

ξ(x)+ξ(x)= 0. So ξ(x)∈ iR. We denote the pure imaginary dual by ig∗. Then we
have defined a map from Ĝ to ig∗. Now, we want to study the Lie algebra action
π of g. This involves integral of unbounded functions. We recall the following
definition of the spectral integral.
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Definition 2.1. Let (µ, X) be a projection-valued spectral measure on a Hilbert
space. Let f : X → C be a µ-measurable function. Then we may find a sequence
{An} of pairwise disjoint measurable sets such that

•
⋃

∞

1 An = X ;

• f is µ-essentially bounded on each An .

Let Pn = µ(An), Hn = range(Pn), and Tn =
∫

An
f dµ. Then there exists a unique

normal operator T = 6Tn on ⊕̂Hn . This T is often written as
∫

f dµ and called
the spectral integral of f .

In the framework of the spectral integral, the action of the abelian Lie group G
is presented in Stone’s theorem as an integral of bounded functions. We will first
find a presentation of the Lie algebra action in terms of the spectral integral. Let
us recall two theorems from [Fell and Doran 1988, page 118].

Theorem 2.3. If f : Ĝ → C is a µ-measurable function. Let

T f =

∫
Ĝ

f dµ.

Then v ∈ Dom(T ) if and only if
∫
| f (ξ)|2 dµv,v(ξ) < ∞. In this case, for u, v ∈ H ,

‖T f v‖
2
=

∫
| f (ξ)|2 dµv,v(ξ) and (T f v, u) =

∫
f (ξ)dµv,u(ξ).

Theorem 2.4. Let f1, f2 be µ-measurable functions on Ĝ. Then in terms of the
graphs of linear operators,(∫

f1 dµ
)(∫

f2 dµ
)

⊂

∫
f1 f2 dµ and

(∫
f1 dµ

)∗

=

∫
f1 dµ.

Proposition 2.1. Let (π, H) be a unitary representation of a connected abelian
Lie group G. Let µ be the projection-valued regular Borel measure from Stone’s
theorem. We denote the Lie algebra g actions by π . Then∫

Ĝ
ξ(X)dµ(ξ) ⊂ π(X) for X ∈ g.

Here ξ ∈ Ĝ ∼= ig∗.

Proof. Let TX =
∫

Ĝ ξ(X)dµ(ξ). Suppose u ∈ Dom(TX ). It suffices to show that
(TX u, v) = −(u, π(X)v) for all v ∈ Dom(π(X)). In other words,

−(u, π(X)v) =

∫
Ĝ

ξ(X)dµu,v(ξ).
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Notice that

−(u, π(X)v) = −

(
u,

d
dt

∣∣∣
t=0

π(exp t X)v
)

=
d
dt

∣∣∣
t=0

(π(exp(t X)u, v))

=
d
dt

∣∣∣
t=0

∫
Ĝ

ξ(exp(t X))dµu,v(ξ).

We would like to interchange the integration and differentiation, obtaining

(2) −(u, π(X)v) =

∫
d
dt

∣∣∣
t=0

ξ(exp(t X))dµu,v(ξ) =

∫
ξ(X)dµu,v(ξ).

To show that the integration is interchangeable with the differentiation, first we
observe that∣∣∣ d

dt
ξ(exp(t X))

∣∣∣ =

∣∣∣ d
dt

exp(tξ(X))

∣∣∣ ≤ |ξ(X)| for ξ ∈ Ĝ.

For a complex measure λ on Ĝ, let |λ|(U ) be the supremum of {6m
j=1|λ(E j )|},

where {E j }
m
1 is any measurable partition of U . Since

|(µ(U )u, v)|2 = |(µ(U )u, µ(U )v)|2 ≤ ‖µ(U )u‖
2
‖µ(U )v‖

2,

we have
|µu,v|(U )2

≤ |µu,u|(U )|µv,v|(U ) = µu,u(U )µv,v(U ).

Therefore(∫
|ξ(X)|d|µu,v|(ξ)

)2
≤

(∫
|ξ(X)|2 dµu,u(ξ)

)(∫
dµv,v(ξ)

)
=

(∫
|ξ(X)|2 dµu,u(ξ)

)
‖v‖

2.

From Theorem 2.3, u ∈ Dom(TX ) implies that
∫
|ξ(X)|2 dµu,u(ξ) < ∞. Hence

ξ(X) as a function on Ĝ is absolutely integrable with respect to µu,v. How-
ever, d

dt ξ(exp(t X)) is dominated by |ξ(X)|. Thus integration and differentiation
in Equation (2) are interchangeable. We obtain (TX u, v) = −(u, π(X)v) for all
v ∈ Dom(π(X)). So TX u is a bounded linear functional on Dom(π(X)) and
TX u =−π(X∗)u. Since X is skew self-adjoint, TX u =π(X)u and u ∈Dom(π(X)).

�

Now for X1, X2, . . . , Xn ∈ g, we define

TX1 X2···Xn =

∫
Ĝ

ξ(X1)ξ(X2) · · · ξ(Xn)dµ(ξ).

We can extend this definition by linearity to all D ∈ U(g). One can easily obtain
the following corollary concerning the universal enveloping algebra U(g).
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Corollary 2.1. Let (π, H) be a unitary representation of a connected abelian
Lie group G, and let µ be its projection-valued regular Borel measure. Suppose
X1, X2, . . . , Xn ∈ g. Then

TX1 TX2 · · · TXn ⊂ π(X1 X2 · · · Xn) and TX1 X2···Xn ⊃ TX1 TX2 · · · TXn .

Since U(g) is commutative, we may identify it with S(g). Thus ξ(D) is well defined
for every ξ ∈ g∗ and D ∈ U(g). We will also denote ξ(D) by D(ξ), in order to
indicate that D can be regarded as a function on g∗.

Corollary 2.2. If u ∈ Dom(TD) for every D ∈ U(g), then u is smooth, and also
π(D)u = TDu.

Proof. Suppose u ∈ Dom(TD) for every D ∈ U(g). Then u ∈ Dom(π(D)) by
Corollary 2.1. So u is smooth, and π(D)u = TDu. �

By Theorem 1.3, we may define AnnU(g)(π) to be the annihilator of any smooth
dense subset M of H . In our context, for G an abelian Lie group, we choose

M =

{∫
Ĝ

f (ξ)dµu(ξ)

∣∣∣ f ∈ Bc(Ĝ), u ∈ H
}
,

where Bc(Ĝ) is the space of bounded measurable functions with compact support.
M here has some property similar to the Gårding space.

Theorem 2.5. Let (π, H) be a unitary representation of a connected abelian Lie
group G, and let µ be the projection-valued regular Borel measure on Ĝ. Then M
is dense in H , and M ⊆ H∞. Suppose D ∈ U(g) = S(g) such that D(ξ) = 0 for all
ξ ∈ suppG(π). Then D ∈ AnnU(g)(π).

Proof. We will show that M ⊆ Dom(TD) for every D ∈ U(g). For all f ∈ Bc(Ĝ),
u ∈ H , and D ∈ S(g), let v = (

∫
f (ξ)dµ(ξ))u. Then for every measurable U ⊂ Ĝ,

µv,v(U ) =

(∫
U

dµ(ξ)v, v
)

=

∫
U
| f (ξ)|2 dµu,u(ξ).

This implies that dµv,v(ξ) = | f (ξ)|2 dµu,u(ξ). Notice that∫
|D(ξ)|2 dµv,v(ξ) =

∫
|D(ξ) f (ξ)|2 dµu,u(ξ)

converges since f is compactly supported. Thus by Theorem 2.3,(∫
f (ξ)dµ(ξ)

)
u ∈ Dom(TD) for all D ∈ U(g).

Therefore
∫

f (ξ)dµu(ξ) ∈ H∞. We have M ⊆ H∞. Approximate the constant
function 1Ĝ by bounded functions { fi }

∞

1 with compact support. Since the mea-
sure µ is regular, u ∈ H can be approximated by

∫
fi (ξ)dµu(ξ). Therefore M is
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dense in H . Now suppose D(ξ) = 0 for all ξ ∈ suppG(π). Then for all f ∈ Bc(Ĝ),
we have

π(D)
(∫

f (ξ)dµ(ξ)
)

u = TD

(∫
f (ξ)dµ(ξ)

)
u =

(∫
D(ξ) f (ξ)dµ(ξ)

)
u.

Notice that the integral above is over suppG(π). It must vanish. Hence D belongs
to AnnU(g)(M) = AnnU(g)(π). �

Theorem 2.6. Under the assumptions of Theorem 2.5, if D ∈ AnnU(g)(π), then
D(suppG(π)) = 0.

Proof. Let D ∈ AnnU(g)(π).
First, we want to show that µ(zero(D)∩suppG(π)) = id. Suppose the contrary.

Then there exist a complex number a 6= 0 and a compact K ⊂ suppG(π) with
µ(K ) 6= 0 such that |D(ξ) − a| < 1

2 |a| for all ξ ∈ K . It follows that∥∥∥∫
K

D(ξ)dµ(ξ) − aµ(K )

∥∥∥ =

∥∥∥∫
K
(D(ξ) − a)dµ(ξ)

∥∥∥
≤

∥∥∥∫
K

|D(ξ) − a|dµ(ξ)

∥∥∥ ≤

∥∥∥∫
K

1
2 |a|dµ(ξ)

∥∥∥
≤

1
2 |a|‖µ(K )‖.

Thus
∫

K D(ξ)dµ(ξ) 6= 0. On the other hand, Theorem 2.5 gives(∫
K

dµ(ξ)
)
v ∈ M ⊆

⋂
D∈U(g)

Dom(TD).

for every v ∈ H . Then

0 = π(D)
(∫

K
dµ(ξ)

)
v = TD

(∫
K

dµ(ξ)
)
v =

(∫
K

D(ξ)dµ(ξ)
)
v.

This is a contradiction.
Therefore, we have µ(zero(D) ∩ suppG(π)) = id. Notice that for a connected

abelian Lie group G, the Gelfand topology is just the induced Euclidean topology.
Thus zero(D) = {ξ ∈ Ĝ | D(ξ) = 0} is closed in the Euclidean topology (not neces-
sarily in the Zariski topology). Therefore zero(D)∩suppG(π) is closed. According
to the minimality of suppG(π), we have zero(D) ∩ suppG(π) = suppG(π). Thus
zero(D) ⊇ suppG(π). Hence D(suppG(π)) = 0. �

What we have shown is that for D ∈ U(g), D(suppG(π)) = 0 if and only if
D ∈ AnnU(g)(π). But D ∈ AnnU(g)(π) if and only if D(V(AnnU(g)(π))) = 0. Thus
we have proved Theorem 2.1. �
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3. Structure theory of the parabolic subgroups of classical groups of type I

In this section, we summarize some known results about the structure of parabolic
subgroups of a classical group of type I. We also sketch some proofs when they
are needed. Notations are mainly adopted from [Li 1989].

Definition 3.1. A type I classical group G(V ) consists of the following data.

• A division algebra D of a field F with involution ] satisfying a]b]
= (ba)];

• A (right) vector space V over D, with a nondegenerate (D-valued) sesquilin-
ear form ( · , · )ε for ε = ±1, that is,

(u, v) = ε(v, u)] for u, v ∈ V,

(uλ, v) = (u, v)λ for u, v ∈ V and λ ∈ D;

• An isometry G group of ( · , · ), that is,

g.(uλ) = (g.u)λ for λ ∈ D, u ∈ V, g ∈ G,

(gu, gv) = (u, v) for u, v ∈ V .

Here we allow ] to be trivial. We call the identity component of G a connected
classical group of type I. For F = C and ] trivial, we obtain all the complex simple
groups of type I, namely, Sp2n(C) and O(n, C). If D = H, F = R, and ] is the usual
involution, we obtain Sp(p, q) or O∗(2n), depending on the sesquilinear form. For
F = R, D = C, and ] the usual conjugation, we obtain U(p, q) depending on the
signature of the Hermitian form. For F = R and D = R with trivial involution, we
obtain Sp2n(R) and Op,q(R). If (V, ( · , · )) is implicitly understood, we write G or
G(n) if V ∼= Dn . Let V0 be a linear subspace of V . We write V ⊥

0 for the subspace
of V that is orthogonal to V0 under ( · , · ). If ( · , · ) is nondegenerate on V0, we let
G(V0) denote the subgroup of G consisting of all elements that fix all v ∈ V ⊥

0 .

Definition 3.2. A flag F of V = Dn is a sequence of strictly increasing (D-)linear
subspaces of V ,

0 = V0 $ V1 $ V2 $ · · · $ Vk $ V,

such that V ⊥

i = Vk+1−i . Suppose dim(Vi ) = di . Then F is said to be a flag of type

I = (0 < d1 < d2 < · · · < dk < n) for di ∈ N.

We denote the space of flags of type I by BI. We fix once and for all a maximal
set of linearly independent vectors

{e1, e2, . . . , er , e∗

1, e∗

2, . . . , e∗

r } for ei , e∗

i ∈ V

such that (ei , e j ) = 0 = (e∗

i , e∗

j ) and (ei , e∗

j ) = δi j , where r is the real rank of G.
For each integer 1 ≤ k ≤ r , we let Xk be the linear span of {e1, . . . , ek} and let X∗

k
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be the linear span of {e∗

1, . . . , e∗

k }. We set Wk = Xk ⊕ X∗

k . We define a map τ ∈ G
as follows

τ(ei ) = e∗

i , τ (e∗

i ) = εei for i ∈ [1, r ], τ |W ⊥
r

= id.

Let I0 = {0 < 1 < 2 < · · · < r ≤ n −r < n −r +1 < · · · < n −1 < n}. We fix a flag

F0 = {0 $ X1 $ · · · $ Xr ⊆ X⊥

r $ · · · $ X⊥

1 $ V }.

For any λ = (λ1, . . . λr ) ∈ (R+)r , we define a linear isomorphism A(λ) ∈ GL D(V )

through
A(λ)ei = λi ei and A(λ)e∗

i = λ−1
i e∗

i for i ∈ [1, r ],

A(λ)u = u for u ∈ W ⊥

r .

It is easy to check that A(λ) ∈ G(V ). Let A be the group consisting of all A(λ).
Then A is a maximal split abelian subgroup of G(V ).

For h = (h1, . . . , hr ) ∈ Rr , we define a(h) ∈ EndD(V ) such that

a(h)ei = hi ei and a(h)e∗

i = −hi e∗

i for i ∈ [1, r ],

a(h)u = u for u ∈ W ⊥

r .

It is easy to see that the Lie algebra a of A consists of all a(h). Let 1(g, a) be the
restricted root system. For α ∈ 1(g, a), let gα be the root space. Then we have
τ(gα) = g−α for α ∈ 1(g, a).

Lemma 3.1. The isotropic group P0 = GF0 is a minimal parabolic subgroup of G.
Its Levi factor

M A = P0 ∩ τ(P0)

= {g ∈ G(V ) | g.X i = X i , g.X∗

i = X∗

i , g.W ⊥

r = W ⊥

r }

= {g ∈ G(V ) | g.(ei D) = ei D, g.(e∗

i D) = e∗

i D, g.W ⊥

r = W ⊥

r }.

Similarly, we can define a flag FI of type I = {0 < i1 < i2 < · · · < il < n} by

V j =

{
X i j if j ≤ (l + 1)/2,

X⊥

il+1− j
if j ≥ (l + 1)/2.

Lemma 3.2. {PI = GFI | I} is the set of all parabolic subgroups containing P0.
If G 6= does not equal O1,1 or O(2, C) (in these two cases, no proper parabolic
subgroup exists), then the maximal parabolic subgroups correspond to I = {0 <

k ≤ n − k < n}.

Proof. Obviously PI ⊇ P0. Now we observe that if G is not equal to O(1, 1) or
O(2, C), then PI and PI′ are different if I 6= I′. The cardinality of I is 2r . But
the cardinality of the parabolic groups containing P0 is also 2r . Thus PI exhausts
all the parabolic subgroups containing P0.
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Observe that PI ⊇ PI′ if and only if I′ is a refinement of I. Therefore the
maximal parabolic subgroups correspond to I = {0 < k ≤ n − k < n}. �

We denote the maximal parabolic subgroup P{0<k≤n−k<n} by Pk .

Lemma 3.3. The Levi factor MI AI can be given by

PI ∩ τ(PI) = {g ∈ G(V ) | g.X i j = X i j and g.X∗

i j
= X∗

i j
for j ∈ [1, (l + 1/2)]}.

For Pk maximal parabolic, let Mk Ak Nk be the Langlands decomposition. Then Ak

is one-dimensional and

Ak =
{

a(t) | t ∈ R+, a(t)|Xk = t, a(t)|X∗

k
= t−1, a(t)|W ⊥

k
= 1

}
,

Mk Ak =
{

g ∈ G(V ) | g.Xk = Xk, g.X∗

k = X∗

k
}

∼= GL D(k) × G(W ⊥

k ).

Now we fix an hk ∈ ak such that hk is the identity on Xk , is −1 on X∗

k , and is zero
on W ⊥

k . Then V can be decomposed into eigenspaces of hk :

V−1 = X∗

k , V1 = Xk, V0 = W ⊥

k .

Thus g can be decomposed into eigenspaces of hk as

(3) g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2,

where
g0 = {x ∈ g | x .Xk ⊆ Xk,

g1 = {x ∈ g | x .Xk = 0,

g2 = {x ∈ g | x .Xk = 0,

g−i = τ(gi ) for i = 1, 2.

x .X∗

k ⊆ X∗

k ,

x .W ⊥

k ⊆ Xk,

x .W ⊥

k = 0,

x .W ⊥

k ⊆ W ⊥

k },

x .X∗

k ⊆ W ⊥

k },

x .X∗

k ⊆ Xk},

Moreover, g0 = mk ⊕ ak and g1 ⊕ g2 = nk . Since our argument is valid for every
k ≤ r , we will denote by gi the i-eigenspace of ad(hk) for a fixed (implicit) k.
Notice that x ∈ g2 if and only if x |Xk⊕W ⊥

k
= 0. Also (x .u, v) + (u, x .v) = 0 for

all u, v ∈ X∗

k . If we define a sesquilinear form on X∗

k to be Bx(u, v) = (x .u, v)

for u, v ∈ X∗

k , then Bx(u, v) = −εBx(v, u)]. Therefore g2 can be identified with a
space of sesquilinear forms ( · , · )−ε on X∗

k . Similarly, g∗

2 can be identified with a
space of sesquilinear forms ( · , · )−ε on Xk .

Lemma 3.4. g1 is an irreducible g0-module. Suppose g2 6= {0}. Then g2 is the
center of g1 ⊕ g2.

By Theorem 1.1, we have the following theorem.

Theorem 3.1. Let g be a real classical Lie algebra of type I. Let M be a g-module.
Let j∗ be the canonical projection from g∗

C
onto g2

∗

C
. Then

V(AnnU(g2)(M)) = cl( j∗(V(AnnU(g)(M)))).
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By Theorem 1.2, we have the following theorem.

Theorem 3.2. Let Pk = Mk Ak Nk be as in Lemma 3.3. Let lk = mk ⊕ ak . Let V be
a pk-module. Let p∗ be the canonical projection from p∗

k C
onto l∗k C

. Then

V(AnnU(lk)(V )) = cl(p∗(V(AnnU(pk)(V )))).

We end this section with the following lemma.

Lemma 3.5. Pk acts on g∗

2 with finitely many orbits. The orbits are uniquely de-
termined by the rank and the signature of the corresponding sesquilinear form.

Here g∗

2 is the dual space of g2. It is not to be confused with g−2. Following [Howe
1982], define the rank of any subset S of g∗

2, regarded as sesquilinear form, to be
the maximal rank of the elements of S.

4. Howe’s N-spectrum and N-associated variety

Let G be a Lie group with a finite number of connected components, and let H be a
closed subgroup. Let Ĝ be the unitary dual of G. Suppose that G and H are type I
groups [Dixmier 1977]. Take a unitary representation (π, H) of G, and consider its
restriction to H . According to the direct integral theory, π |H uniquely determines a
projection-valued Borel measure µH (π) on Ĥ . Howe [1982] called such a measure
the H -spectrum of π . Under the Fell topology, Howe called the (closed) support
of µH (π) the geometric H -spectrum. Let NG(H) be the normalizer of H in G.
Since (π, H) is a unitary representation of NG(H), supp(µH (π)) is NG(H)-stable.

To study the H -spectrum, we must have a well-understood unitary dual Ĥ . For
H nilpotent or solvable of type I, Ĥ is somewhat well understood. For H connected
and abelian, Ĥ can be identified with a subset of ih∗. In this section, we will deal
with abelian H , and we identify Ĥ with a subset of ih∗.

Let G be a type I classical group as in the last section. Let Nk be the nilradical
of Pk and Z Nk be the center of Nk . Then nk = g1 ⊕ g2 and znk = g2, where g1

and g2 are defined as eigenspaces of ad(hk). The main problem in this section is to
study the relationship between Howe’s Z Nk-spectrum and the associated variety
V(AnnU(g)(π)).

Recall that g1 ⊕ g2 = nk and g2 = znk . By Theorem 2.1 and Theorem 3.1, we
have the following:

Theorem 4.1. Let (π, H) be a unitary representation of a type I classical group G.
Then the Z Nk-associated variety of π is the Zariski closure of the geometric Z Nk-
spectrum of π . Furthermore,

V(AnnU(znk)(π)) = cl( j∗(V(AnnU(g)(π)))),
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where j∗ is the projection from g∗

C
to zn∗

k C
. So

cl(suppZ Nk
(π)) = cl( j∗(V(AnnU(g)(π)))).

Since g is a reductive linear Lie algebra, g∗ can be identified with g by an
invariant bilinear form. For any subset S of g∗, we define rank(S) to be the
max{rankD(X) | X ∈ S}. Now for a type I classical group G(V ), for every x ∈ g,
we define a sesquilinear form Bx such that Bx(u, v) = (x .u, v) for u, v ∈ V . Then
Bx(u, v) = −εBx(v, u)]. Thus g can be identified with a space of sesquilinear
forms. Clearly, the rank of the sesquilinear form Bx is exactly the rank of x .

Recall that the parabolic subgroup Pk acts on zn∗

k with finitely many orbits
and that zn∗

k can be identified with a subspace of sesquilinear forms. Howe and
Li defined the Z Nk-rank to be the maximal rank of supp(µZ Nk (π)) regarded as
sesquilinear forms. Notice that for each x ∈ HomD(Xk, X∗

k ), the rank of the linear
transform x is the same as the rank of the bilinear form Bx . In the rest of this paper,
we will compute the Howe’s Z Nk-rank using associated variety.

If we regard g as a subset of HomD(V, V ), then j∗ can be regarded as the
(eigen)projection with respect to ad(hk) from g onto g−2 ∼= τ(znk); see Equation
(3). We have the following list regarding g−2 and its complexification:

• If G = U(p, q), then zn∗

k is the space of k × k skew-Hermitian matrices; its
complexification is the space of k × k complex matrices.

• If G = O(p, q), then zn∗

k is the space of k × k real skew-symmetric matrices;
its complexification is the space of k × k complex skew-symmetric matrices.

• If G = Sp2n(R), then zn∗

k is the space of k × k real symmetric matrices; its
complexification is the space of k × k complex symmetric matrices.

• If G = O∗(2n), then zn∗

k is the space of sesquilinear forms on Hk such that

(u, v) = (v, u)] for u, v ∈ Hk .

Let (u, v) = A(u, v)+ j B(u, v) with A and B complex-valued. Then

A(v, u) + j B(v, u) = (A(u, v)+ j B(u, v))] = A(u, v)− j B(u, v)

Therefore A(u, v)= A(v, u) and B(u, v)=−B(v, u). Now B(u, v) is a (right)
C-bilinear form. If we fix a basis {(ei , jei )}

k
1 for Hk , then zn∗

k can be identified
with {(

U V
−V U

) ∣∣∣ U t
= −U, V = V t

}
.

Thus the complexification of zn∗

k can be identified with the space of 2k × 2k
complex skew-symmetric matrices.
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• If G = Sp(p, q), then zn∗

k can be identified with a space of 2k ×2k symmetric
matrices; its complexification is the space of 2k × 2k complex symmetric
matrices.

• If G = O(n, C), then zn∗

k is the space of k × k complex skew-symmetric
matrices. It can be identified with{(

A −B
B A

) ∣∣∣ At
= −A, B t

= −B for A, B ∈ EndR(Rk)

}
.

Therefore znk
∗

C
can be identified with{(

A −B
B A

) ∣∣∣ At
= −A, B t

= −B for A, B ∈ EndC(Ck)

}
.

• G = Sp(n, C), zn∗

k can be identified with{(
A −B
B A

) ∣∣∣ At
= A, B t

= B for A, B ∈ EndR(Rk)

}
,

and znk
∗

C
can be identified with{(

A −B
B A

) ∣∣∣ At
= A, B t

= B for A, B ∈ EndC(Ck)

}
.

For any S ⊆ znk
∗

C
, we write rankC(S) for the maximal rank of the elements in S in

this setting. We call it the C-rank of S. Thus, we have

rankC(supp(µZ Nk (π)))

rank(supp(µZ Nk (π)))
=

{
1 if G = U(p, q), O(p, q), Sp2n(R)),

2 if G = Sp(n, C), O(n, C), Sp(p, q), O∗(2n).

In this setting, taking the Zariski closure of a subset of sesquilinear form would not
change C-rank of such a subset. Since V(AnnU(znk)(π)) is the Zariski closure of
supp(µZ Nk (π)), we have rankC(V(AnnU(znk)(π))) = rankC(supp(µZ Nk (π))). By
Theorem 4.1, we have rankC(supp(µZ Nk (π))) = rankC( j∗(V(AnnU(g)(π)))). To
compute Howe’s Z Kk-rank, we will have to compute rankC( j∗(V(AnnU(g)(π)))).

Let us first recall the following theorem.

Theorem 4.2 (Borho, Brylinski, and Joseph). Suppose g is a reductive Lie alge-
bra and M is a simple g-module. Then V(AnnU(g)(M)) is the closure of a single
coadjoint orbit.

So for a connected reductive group G and an irreducible unitary representation
π , V(AnnU(g)(π)) is the closure if a single coadjoint orbit. Now concerning a
linear reductive Lie group G with finitely many components, we can employ the
Mackey machine to show that for any irreducible unitary representation (π, H)

of G, π splits into finitely many irreducible representations when restricted to
the identity component G0, that is, π = π1 ⊕ π2 ⊕ . . . ⊕ πs . Furthermore, G/G0
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permutes these irreducible factors. A more careful examination shows that the
Harish–Chandra modules of the πi are related by the algebra isomorphisms of
U(g) defined by the adjoint action of G/G0. Thus the V(AnnU(g)(πi )) are related
by automorphisms of g defined by G/G0. In fact, V(AnnU(g)(π)) is exactly the
union of G/G0-orbit of any chosen V(AnnU(g)(πi )). More precisely, we have

V(AnnU(g)(π)) =

⋃
xG0∈G/G0

Ad(x)(V(AnnU(g)(π1))).

Thus, for the rest of this paper, even though some of the classical Lie group G is
not connected, we may prove our results for the identity component G0 first. Then
all the results can be generalized to G.

Now identify g∗

C
with gC via an invariant bilinear form. According to [Colling-

wood and McGovern 1993, Chapter 5.1, 6.2], each nilpotent orbit in a (com-
plex) simple Lie algebra g(m) ⊆ EndC(Cm) is parameterized by certain partition
λ = (λ1, λ2, . . . , λl > 0) of m. We denote the adjoint orbit corresponding to λ by
Oλ. Then rankC(Oλ) = m − l.

Lemma 4.1. Let S ⊆ g(m). Then rankC( j∗(S)) ≤ min(rk, rankC(S)), where rk =

rankC(zn∗

k). In particular, rankC( j∗(Oλ)) ≤ min(rk, rankC(Oλ)).

Now we concentrate on the noncomplex groups O(p, q), U(p, q), Sp2n(R),
O∗(2n), and Sp(p, q). We will deal with complex groups at the end. We treat
type A, C and type B, D Lie algebras differently. We will follow the convention in
[Collingwood and McGovern 1993] regarding the order of nilpotent orbits.

Theorem 4.3 (gC of type A or C). Let Oλ be a complex nilpotent orbit in a
type A or C simple Lie algebra g(m) parametrized by λ. Then rankC( j∗(Oλ)) =

min(k, rankC(Oλ)).

Proof. If rankC(Oλ) ≥ k, then λ ≥ (1m−2k, 2k). Thus cl(Oλ) ⊇ cl(O(1m−2k ,2k)).
Recall that g−2 ⊆ O(1m−2k ,2k). Therefore

cl( j∗(Oλ)) ⊇ j∗(cl((Oλ))) ⊇ j∗(cl(O(1m−2k ,2k))) ⊇ j∗(g−2) ⊇ g−2.

Hence rankC( j∗(Oλ)) = k. If rankC(Oλ) = s < k, then cl(Oλ) ⊇ cl(O(1m−2s ,2s)).
Thus

cl( j∗(Oλ)) ⊇ j∗(cl((Oλ))) ⊇ j∗(cl(O(1m−2s ,2s))).

But rankC(cl(O(1m−2s ,2s))∩ g−2) = s, because the elements in g−2 of rank s are all
contained in O(1m−2s ,2s). Therefore

rankC( j∗(Oλ)) ≥ rankC( j∗(cl(O(1m−2s ,2s))) ∩ g−2)

= rankC(cl(O(1m−2s ,2s))) ∩ g−2) = s.

Combined with Lemma 4.1, we have rankC( j∗(Oλ)) = min(k, rankC(Oλ)). �
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Theorem 4.4 (gC of type B or D). Let Oλ be a complex nilpotent orbit in a type B
or D simple Lie algebra parametrized by λ. Then rankC( j∗(Oλ)) is always even,
and it is equal to min(rk, rankC(Oλ)). Here rk = rankC(zn∗

k).

Proof. For O(p, q), the C-rank of a real skew-symmetric form is always even. For
O∗(2n), the C-rank of an H-sesquilinear form is also even. Thus rankC( j∗(Oλ))

is always even. Recall that the partitions corresponding to type B or D nilpotent
orbits satisfy that even parts occur with even multiplicity. In other words, if we
delete the first column in the Young diagram, then odd parts occur with even mul-
tiplicity. Therefore, rankC(Oλ) has to be even as well. The rest of the proof is the
same as the proof for type A and C groups. �

Now we want to deal with complex groups O(n, C) and Sp(n, C). In these cases,
gC is not simple. However, once we regard g as a real matrix Lie algebra, gC is
still a matrix algebra. Thus the C-rank of V(AnnU(g)(π)) is still valid. Recall that
cl(WF(π)) = V(AnnU(g)(π)). Here W F(π) ⊆ g.

Theorem 4.5. Let π be an irreducible representation of O(n, C) or Sp(n, C). Then

rankC( j∗(V(AnnU(g)(π)))) = min(rk, rankC(V(AnnU(g)(π)))),

where rk = rankC(zn∗

k).

Proof. Notice that cl( j∗(WF(π)))= cl( j∗(cl(WF(π))))= cl( j∗(V(AnnU(g)(π)))).
Since g is already a complex linear space, rankC(S)=2 rank(S) for any S ⊆g∗

⊆g∗

C
.

It suffices to show that rank( j∗(WF(π))) = min(rank(znk), rank(WF(π))). Since
WF(π) is a finite union of nilpotent orbits in g∗, the statement above is just a
corollary of Theorems 4.4 and 4.5. �

Finally, we come to the conclusions tabulated in Theorem 0.4, and that theorem
is proved. �
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