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We show that a smooth arithmetically Cohen–Macaulay variety X , of codi-
mension 2 in Pn if 3 ≤ n ≤ 5 and general if n > 3, admits a morphism
onto a hypersurface of degree (n + 1) in Pn−1 with, at worst, double points;
moreover, this morphism comes from a (global) Cremona transformation
which induces, by restriction to X , an isomorphism in codimension 1. We
deduce that two such varieties are birationally equivalent via a Cremona
transformation if and only if they are isomorphic.

1. Introduction

Arithmetically Cohen–Macaulay (ACM for short) codimension 2 subschemes of
Pn are geometric objects whose cohomologies satisfy very restrictive properties.
In fact, the ideal sheaf of such a subscheme admits a determinantal resolution
of length 2 whose Betti numbers determine a certain invariant, the so-called type
(following the terminology of G. Ellingsrud [1975]) for the subscheme; in partic-
ular, most of their algebro-geometric properties are completely determined by this
resolution. Ellingsrud showed that the ACM codimension 2 subschemes of Pn of
a fixed type may be parametrized by an open, smooth and connected subset of a
Hilbert scheme. Among these ACM subschemes, a still more special subfamily is
that consisting of subschemes X ⊆ Pn whose ideal sheaf JX has a determinantal
minimal resolution of the form

(1) 0 // OPn (−n − 1)n µ // OPn (−n)n+1 // JX // 0.

We will denote this family by Un .
From geometers of the so-called Italian School of mathematicians, we know

that such a general object is the base locus scheme of a Cremona transformation of
Pn (see [Cremona 1871], [Cayley 1870], [Hudson 1927, Chapter XIV, Section 11]
or Proposition 1); therefore it is not a complete intersection, following [Pan and
Russo 2005, Proposition 2.1] (see also [Crauder and Katz 1991, Proposition 1]).
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In this case, X is smooth if and only if n ∈ {3, 4, 5} [Ein and Shepherd-Barron
1989, Theorem 3.2] and thus constitutes a rare and therefore interesting object, as
pointed out by Sample and Tyrrel [1970]. Another reason for exploring these kind
of varieties is the special role they play in the Hartshorne conjecture on complete
intersections: in fact, by a theorem due to Peskine and Szpiro [1974, Theorem 5.1],
an ACM smooth codimension 2 subvariety of Pn is a complete intersection when
n > 5; hence, when n > 5, varieties as in our setup yield examples which show
that the smoothness hypothesis in Peskine and Szpiro’s theorem is necessary.

In this work, we describe some birational properties of such smooth codimension
2 subvarieties. More precisely, first we show that for a smooth X ∈ Un if n = 3, 4, 5
and general X for n > 3, there exists a Cremona transformation φX : Pn //___ Pn

that induces, by restriction, a birational morphism η : X → Y , where Y is a hy-
persurface of degree n + 1 in Pn−1. Then we show that η is an isomorphism
in codimension 1, which is an isomorphism for n = 3, 4 and, at worst, a crepant
resolution of a finite number of double points for n = 5; from this we will conclude
that a birational map ϕ : X //___ X is actually an automorphism; see Theorems
8 and 9. On the other hand, we show that two such smooth subvarieties of Pn are
isomorphic if and only if they are birationally equivalent via a global birational
map of Pn; this is, essentially, the statement of Theorem 10.

The starting point for establishing our main results is the existence of the Cre-
mona transformation φX , whose construction is based on a very natural idea: We
take general elements V ∈ PH0(JX (n)) and S ∈ PH0(JX (n + 1)). The theory of
linkage [Peskine and Szpiro 1974] shows that X is linked to another X ′

∈ Un by
the complete intersection V ∩ S; hence V ∈ PH0(JX ′(n)). Thus φX is a Cremona
transformation, of degree n, whose base locus scheme is X ′. We need to prove that
the base locus scheme of φ−1

X is smooth and also belongs to Un . Then φX maps V
to a hyperplane, and one expects that it maps S to an element of PH0(JX ′(n +1)),
from which it follows that Y = φX (V ) ∩ φX (S).

2. Some remarks on codimension 2 determinantal varieties

Let Pn be the n-dimensional projective space over the field C of complex numbers.
A Cremona transformation on Pn is a birational map φ : Pn //___ Pn . We denote
the base locus scheme of φ by Base(φ). We can write

φ = ( f0 : · · · : fn),

where f0, . . . , fn ∈ C[X0, . . . , Xn] are forms without common factors, of same
degree, denoted by deg φ; the integer number deg φ is the degree of φ. If Z ⊆ Pn

is an irreducible variety not contained in Base(φ), we denote by φ̃(Z) the closure
of φ(Z \ Base(φ)) and call it the strict transform of Z by φ.
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A linear system on Pn is the projective space associated to a vector space of
forms on Cn+1 of a certain fixed degree. We say a linear system 3 is homaloidal
if it has dimension n and if the associated rational map

φ3 : Pn //___ 3∨

is birational. Clearly, every Cremona transformation is associated to a homaloidal
linear system.

Let X ⊂Pn be an ACM codimension 2 subscheme. There is a minimal resolution
of the form

(2) 0 //
∑n

j=1 OPn (−n j )
µ // ∑n+1

i=1 OPn (−di )
// JX // 0,

where µ corresponds to a matrix MX whose entries are (zero or) forms of degree
n j − di > 0.

When X is the base locus scheme of a Cremona transformation and n ∈ {3, 4, 5},
we know by [Pan and Russo 2005, Theorem 1.8] that di = n and n j = n +1 for all
i, j . Conversely, suppose that we have a minimal resolution as above with di = n
and n j = n + 1, and n arbitrary. The ideal sheaf JX is generated by its global
sections in degree n; more precisely [Peskine and Szpiro 1974, Section 3], the set
of maximal minors 10, . . . ,1n of MX is a minimal set of generators of it. Let Hilb
denote the Hilbert scheme attached to the Hilbert polynomial of OPn/JX . The set
of subschemes of Pn that have a resolution as in Equation (1) form an open and
connected subset of Hilb of dimension n3

− n: see [Ellingsrud 1975, Theorems
1 and 2] or [Pan 1999, Cor. 2.1]. We denote this open set by Un; we also write
simply X ∈ Un .

Therefore we now have a codimension 2 flat family X ⊂ Pn
Un

= Pn
× Un and a

resolution

(3) 0 // OPn
Un

(−n − 1)n µ // OPn
Un

(−n)n+1 // JX
// 0.

For the following result we adapt the deformation trick found in [Pan and Russo
2005, Theorem 1.8]. The same idea was used in [Gonzalez-Sprinberg and Pan
2006, Theorem 1] to show that the so-called multidegrees of a Cremona trans-
formation φ, whose base locus scheme is generically reduced and belongs to Un ,
are exactly the binomial coefficients

(n
k

)
for k = 1, . . . , n; in particular, φ and its

inverse φ−1 have degree n in this case (we will use this in the proof below). We
also observe that an easy (and known) exercise shows that if φ can be defined using
the maximal minors of an (n +1)×n matrix of linear forms, perhaps not relatively
prime, then its inverse map φ−1 has the same property.

Proposition 1. Let Bn ⊂ U be the open set consisting of the subschemes X ∈ Un

whose associated linear system 3X := P(H0(JX (n))) defines a dominant rational
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map. Then there is a family of Cremona transformations with diagram

Pn
Bn

8 //_______

!!B
BB

BB
BB

B
Pn

Bn

}}||
||

||
||

Bn,

where we identify the dual of PH0(JX(n)) with Pn
Bn

(that is, the map

8u : Pn
× {u} //___ Pn

× {u}

is birational if u ∈ Bn). Moreover, if u ∈ Bn corresponds to a generically reduced
scheme, then Base(8−1

u ) ∈ Bn .

Proof. The existence of a rational map 8 : Pn
Bn

//___ Pn
Bn

is clear. For the first
assertion it suffices then to prove that, for each X ∈ Bn , the linear system 3X is
homaloidal.

Denote by M0 the matrix of linear forms whose maximal minors define the
Standard Cremona Transformation

Sn =

( 1
X0

: · · · :
1

Xn

)
.

The maximal minors of the parametric matrix t M0 + (1 − t)MX for t ∈ C define
a curve T := (t 7→ ut) when t varies in C after eliminating, if necessary, a finite
number of values t1, . . . , t`.

Let x, sn ∈ Un be the points of Un associated to X and Base(Sn). Let FT ⊂

Pn
T := Pn

×T be the flat family of the ut ’s, parametrized by t ∈ T ; notice that x, sn

are regular points of T because this curve can be realized as a line in the projective
space whose homogeneous coordinates are the coefficients of the entries of the
(n +1)×n matrix coming from the sequence in (3); see [Peskine and Szpiro 1974,
Section 6]. Consider the blowing-up π : P̃n

T → Pn
T of Pn

T with center FT , and let
E be the exceptional divisor; denote the corresponding blowing-up in level t ∈ T
by πt : P̃n

t → Pn
t . Choose a general section H ∈ π∗OPn

T
(n) ⊗ OP̃n

T
(−E).

The family (H)t is flat over T , and its members are the fibers of a dominant mor-
phism; therefore the intersection number Hn is well defined. By the “conservation
of number” (see [Fulton 1984, Corollary 10.2.1]) one has (H)n

x = (H)n
sn

. Now, the
birationality of Sn is equivalent to (H)n

sn
= 1, from which the birationality of 8x

follows.
Finally, as we have remarked before, we know that deg(8−1

u ) = deg(8u) = n;
thus Base(8−1) ∈ Bn , completing the proof. �

Corollary 2. There exists a birational map Un //___ Un .
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Proof. The family of inverse maps 9 := 8−1 defines a new family of Cremona
transformations on Pn

Bn
such that 9Base(8−1

u ) = 8−1
u for a generic u ∈ Bn . The

equation 8 ◦ 9 = Id defines a relation on Pn
Bn

× Pn
Bn

; this induces a generically
one to one correspondence on Bn × Bn . �

Lemma 3. We have

dim H0(JX (k)) =


0 if k < n,

n + 1 if k = n,

n2
+ n + 1 if k = n + 1.

Proof. By [Pan and Russo 2005, Proposition 1.2], we only need to prove case
k = n + 1. From Equation (2) we obtain an exact sequence

0 // H0(On) // H0(On+1(1)) // H0(JX (n + 1)) // 0,

from which the assertion follows. �

Note that a generic h ∈ H0(JX (n +1)) is irreducible. In fact H0(JX (k)) = 0 for
k < n, and the set of degree n +1 forms that are the product of a form of degree n
and a linear one is contained in a proper subvariety of PH0(JX (n + 1)).

Fix an irreducible g ∈ H0(JX (n + 1)), and denote by S = V (g) ⊆ Pn the sub-
scheme defined by g. Take an irreducible element V of the homaloidal linear
system 3X . Then the scheme-theoretical equality S ∩ V = X ∪ X ′ holds, where X ′

is linked to X , and hence it is also a codimension 2 ACM scheme.

Remark 4. By Hartshorne’s connectedness theorem, X ∩ X ′ is of codimension 3
in Pn .

Lemma 5. We have X ′
∈ Un .

Proof. As we know, V = V ( f ) for an f ∈ H0(JX (n)). Then

g =
∑

i λi1i and f =
∑

i µi1i ,

where λ0, . . . , λn are linear forms and µ0, . . . , µn ∈ C.
The ideal sheaf JX ′ is generated by the maximal minors of a matrix M ′ obtained

from MX by adding the 2 × (n + 1) matrix(
λ0 λ1 · · · λn

µ0 µ1 · · · µn

)
.

The minors of M ′ are invariants, up to multiplication by a nonzero constant, by
the natural (right) action of GL(n + 1). Hence one may suppose that µ0 = 1 and
µi = 0 for i = 1, . . . , n. Thus we may replace M ′ by the matrix obtained from it
by taking off the first column and the last row, and the proof is complete. �

Proposition 6. Let X ∈ Un . The following statements hold:
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(a) deg X = n(n + 1)/2.

(b) If X ′
∈ Un is linked to X , then it is done by way of a complete intersection of

hypersurfaces of degree n and n + 1.

(c) The set of X ′
∈ Un that are linked to X is constructible and irreducible of

dimension n2
+ n.

(d) If X is smooth and X ′ is general among the schemes as in (c), then n ∈{3, 4, 5}

and X ′ is also smooth. In this case, a general hypersurface V ∈ 3X (or
S ∈ PH0(JX (n + 1))) is smooth at points of codimension 2, and points of
codimension 3 have multiplicity ≤ 2; S is certainly singular if n = 5.

Proof. Claim (a) follows directly from resolution (2). In particular, deg(X ∪ X ′) =

n(n + 1). Since H0(JX (k)) = H0(JX ′(k)) = 0 if k < n (Lemma 3), this proves
claim (b).

For the proof of (c), suppose X∪X ′
= S∩V = S′

∩V ′ holds scheme-theoretically,
where S, S′ have degree n +1 and V, V ′ have degree n; set S = V (g), S′

= V (g′),
V = V ( f ), and V ′

= V ( f ′). Thus X ∪ X ′
⊆ V ∩ V ′, from which V = V ′ by (a).

We deduce that g′
∈ (g, f ), that is, there exist α ∈ C and a linear form λ such that

g′
= αg + λ f . Then the set

{S′
∈ PH0(JX (n + 1)) : S′

∩ V = X ∪ X ′
}

is a projective space of dimension n.
Denote by P1 and P2 the projective spaces of forms on (n+1) variables that van-

ish on X and are of degree n+1 and n, respectively. The assertion (c) follows from
a direct computation of dimensions involving the following commutative diagram
and from using Lemma 3:

(4) Un × P1 × P2

pr1 &&LLLLLLLLLLL
pr2

++WWWWWWWWWWWWWWWWWWWWWWWWWWW {(X ′, S, V ) : S ∩ V ⊇ X ∪ X ′
}? _oo

pr1|

uullllllllllllllll
pr2|

��
Un P1

Here pr1 and pr2 denote the canonical projections, and pr1| and pr2| are their
restrictions to the incidence variety.

Finally, let us consider now the situation of smooth X ∈ Un . Since 3X is homa-
loidal, we deduce n = 3, 4 or 5 according to [Ein and Shepherd-Barron 1989,
Theorem 3.2]. Following [Peskine and Szpiro 1974, Proposition 4.1, parts (4) and
(6)] we may choose S and V general enough so that X ′, X ∩ X ′, S \ (X ∩ X ′) and
V \ (X ∩ X ′) are all smooth.

Arguing as above, we may take V, V ′
∈ 3X general enough so that Y , X ∩ Y ,

V ′
\ (X ∩ Y ) and V \ (X ∩ Y ) are all smooth, where V ∩ V ′

= X ∪ Y .
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Fix a closed point p ∈ X ∩ Y (analogously for X ∩ X ′) and take a general 2-
plane 5 passing through p. The traces of V and V ′ on 5 define curves C and
C ′, respectively, passing through p. Since 5 intersects X and Y transversely, we
conclude that p is a point of length 2 in 5∩(X ∪ X ′). Thus p can not be a common
singular point of V and V ′ (respectively V and S). In particular:

• V does not have a singular point of codimension 2 since, by Bertini’s theorem,
such a point corresponds to an irreducible component of X ∩ Y and is also
singular for V ′; the same argument works for S.

• A point of codimension 3 of V has multiplicity ≤ 2; it corresponds to a sub-
variety of codimension 3 of V contained in X ∩ Y .

In the case of S that is a general determinantal variety, we need to show that
singularities must appear in codimension 3 points.

Let N = (n + 1)2
− 1. Denote by Mk ⊂ PN for k ≤ n + 1 the determinantal

variety of matrices of rank at most k; here Mn+1 = PN . It is well known that
Mk is the singular locus of Mk+1 and that it has codimension (n − k + 1)2 in PN ;
see for example [Arbarello et al. 1985, Chap. II]. On the other hand, the matrix
defining S induces an embedding µ : S → Mn . Therefore Sing(S) ⊇ µ−1(Mn−1).
We conclude the proof by considering the case n = 5. �

Remark 7. (a) We do not know if singularities of S must appear in codimension
3, though the study of this kind of variety is a very classical subject.

(b) The indeterminancy of the linear system PH0(JX (n+1)) is resolved by blow-
ing up Pn along X : indeed, if 3X = P(〈 f0, . . . , fn〉), this holds for the linear
subsystem

P(〈x0 f0, . . . , xn f0, . . . , x0 fn, . . . , xn fn〉) ⊆ PH0(JX (n + 1))

because the homogeneous ideals (x0 f0, . . . , xn f0, . . . , x0 fn, . . . , xn fn) and
( f0, . . . , fn) have the same saturation.

3. The main results

Definition 1. Let X1, X2 ⊆ Pn be two subschemes. We say that the pairs (Pn, X1)

and (Pn, X2) are birational equivalent if there exists a commutative diagram

Pn
φ //___ Pn

X1

� ?

OO

ϕ //___ X2,
� ?

OO

where φ : Pn //___ Pn and ϕ : X1 //___ X2 are birational maps.
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We denote by Bir(X) the group of birational maps from X to X , and by Aut(X)

the subgroup of automorphisms of X .
Let W be a normal projective variety. A Weil canonical divisor KW of W is the

closure of a canonical divisor of W \Sing(W ). Suppose there exists a positive m ∈Z

such that mKW is a Cartier divisor, and that for some desingularization π : Z → W
there exists a divisor F , with π∗(F) = 0, such that mK Z ∼ π∗(mKW )+ F . Under
these hypotheses, we say that W has canonical singularities if F is effective; see
[Debarre 2001, Section 7.2] or [Kollár and Mori 1998, Section 2.3]. When F = 0
the desingularization is said to be crepant; see [Kollár and Mori 1998, Def. 6.22].
We now state and prove our main results.

Theorem 8. Given n ∈ {3, 4, 5}, let X ∈ Un be a smooth codimension 2 subvariety;
for n > 3 we suppose in addition that X is in general position. Then there exists a
Cremona transformation φ : Pn //___ Pn such that

(a) the restriction of φ to X induces a birational morphism η : X → Y , where Y
is a hyperplane section of a determinantal hypersurface of degree n + 1;

(b) η is an isomorphism in codimension 1, which is an isomorphism if n = 3, 4
and, at worst, a crepant resolution of a finite number of double points if n = 5.

In the last case, over each double point there is a unique rational curve.

Theorem 9. Given n ∈ {3, 4, 5}, let X ∈ Un be a smooth codimension 2 subvariety;
for n > 3 we suppose in addition that X is in general position. Then Aut(X) =

Bir(X).

Theorem 10. Given n ∈ {3, 4, 5}, let X1, X2 ∈ Un be two smooth codimension
2 subvarieties; for n > 3 we suppose in addition that X1 and X2 are in general
position. The following statements are equivalent:

(a) (Pn, X1) and (Pn, X2) are birational equivalents.

(b) X1 and X2 are birational equivalents.

(c) X1 and X2 are isomorphic.

For the proof of Theorem 10 we need some technical lemmas; along the way we
also prove Theorem 8 and then Theorem 9. First we explain our main argument.

Main construction. Fix X ∈ Un smooth and general for n ∈ {3, 4, 5}. Take two
general elements, V in the homaloidal linear system 3X and S ∈ PH0(JX (n + 1)).
Then S ∩ V = X ∪ X ′, where X ′

∈ Un is general as well; in particular it is
smooth. Therefore there exists a Cremona transformation φ : Pn //___ Pn for
which Base(φ) = X ′ and X ′′

:= Base(φ−1) ∈ Un is smooth.
Conversely, let φ : Pn //___ Pn be a determinantal Cremona transformation of

degree n that is general in the sense that Base(φ) is a general element in Un; also



SMOOTH CODIMENSION TWO DETERMINANTAL VARIETIES 145

suppose Base(φ−1) ∈ Un is smooth. Hence we may link φ to elements X ∈ Un in
general position.

The strategy for proving Theorem 8 is to restrict to X one of its linked Cremona
transformations in order to transform it into a hyperplane section of a general de-
terminantal hypersurface of degree n + 1.

As we saw, 3X ′ is also homaloidal (Proposition 1); note φ : Pn //___ Pn is
a Cremona transformation with associated linear system 3X ′ . Hence the strict
transform of V by φ is a hyperplane H ⊆ Pn .

Lemma 11. Let n ∈ {3, 4, 5}. The map that associates the strict transform φ̃(S) to
a general S ∈ PH0(JX ′(n + 1)) induces an isomorphism

PH0(JX ′(n + 1)) ' PH0(JX ′′(n + 1)).

Proof. Let p : Z → Pn be the blowup of Pn along X ′; denote by E its exceptional
divisor. Letting q be a birational morphism defined by the complete linear system
|p∗O(n) ⊗ O(−E)|, we have a commutative diagram

(5)

Z
p

~~}}
}}

}}
}} q

  A
AA

AA
AA

A

Pn
φ //_______ Pn.

Since X ′′
={y ∈Pn

:dim q−1(y)≥1} is smooth, it follows from [Ein and Shepherd-
Barron 1989, Theorem 1.1 and Lemma 2.4] that q is the blowup of Pn along X ′′

and q(E) is an irreducible variety of degree n2
− 1; this variety is the jacobian

of φ−1, that is, the hypersurface defined by the jacobian determinant associated to
the (n + 1) polynomials defining φ−1.

Let S be a general hypersurface of degree n + 1 containing X . It is singular at
points that have codimension 2 in X ; see Proposition 6(d). If H ⊆ Pn is a general
hyperplane, then p∗S is linearly equivalent to (n + 1)p∗H + E , from which we
conclude that q∗ p∗S is linearly equivalent to a hypersurface of degree (n + 1)n −

(n2
− 1) = n + 1 containing the base locus scheme of φ−1. �

Remark 12. We conclude that the strict transform of X by φ is a hypersurface of
H = Pn−1 of degree n +1. We denote this variety by Y = YX ⊆ Pn−1; observe that
(Pn, X) is then birationally equivalent to (Pn, Y ).

Proof of Theorem 8. The case n = 3 is an easy consequence of Lemma 11 and
Remark 12 because Y is a quartic plane curve of geometric genus 3 (and therefore
smooth). In what follows, we assume n > 3 and keep all notations from Lemma
11 and its proof.
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The commutative diagram in Equation (5) gives also a resolution of indeter-
minancies of the inverse map φ−1 of φ; let F = q−1(X ′′) denote the exceptional
divisor of q . As we know, q : Z → Pn is the blowup of the smooth variety X ′′.

Denote by X̃ , S̃ ⊆ Z the strict transforms by p−1 of X and S, respectively; we
may suppose that S̃ is smooth, since p resolves the indeterminancy of the linear
system PH0(JX (n + 1)); see Remark 7(b).

Since X ∩X ′ has codimension 1 in X (see Remark 4), p induces an isomorphism
from X̃ onto X ; then it suffices to show that q restricted to X̃ gives a birational
morphism η : X̃ → Y satisfying the required properties.

When we restrict q to X̃ \(F ∩ X̃), we obtain an isomorphism onto Y \(Y ∩ X ′′).
Now recall that q induces, by restriction, a projective line bundle q : F → X ′′.
Since X is general in Un , we may also assume by Proposition 6(d) and Lemma

11 that W := φ̃(S) = q(S̃) is smooth at codimension 2 points and has, at worst,
a finite number of double points of codimension 3; in particular, the singular set
Sing(W ) of W may intersect Y only for n = 5 and does it, at worst, at a finite
number of (closed) double points: indeed, since X is general, we may suppose S
and V to be generals containing X ′, and then Y is the intersection of W with a
general hyperplane. Denote U ′′

:= X ′′
− (X ′′

∩ Sing(W )).
On the other hand, the canonical exact sequence of vector bundles

0 // TU ′′ // TW |U ′′ // NU ′′ W // 0

associated to the normal line bundle NU ′′ W of U ′′ in W , induces, after projectiviza-
tion, a section of the projective line bundle q : q−1(U ′′) → U ′′. By construction,
the closure of the image of this section is S̃ ∩ F . Since X̃ = q̃−1(Y ) ⊆ S̃, we
conclude that q|X̃∩F : X̃ ∩ F → X̃ ′′ ∩ Y is an isomorphism if n = 4 and contracts
a fiber of F onto each double point of Y if n = 5.

Combining this result with that of the first part of the proof, we obtain a bira-
tional morphism η := q|X̃ : X̃ → Y that is essentially the one we want; it remains
to prove that, for n = 5, the resolution η is crepant.

First we observe that the Weil canonical divisor KY of Y is itself a Cartier
divisor: since Y is a hypersurface of degree 6 in P4, the divisor KY is the closure of
a hyperplane section HY ; we can then move HY and assume it lies in Y \Sing(Y ).

Finally, as η induces an isomorphism from X̃\η−1(Y \Sing(Y )) onto Y \Sing(Y )

and η−1(Sing(Y )) is a reunion of a finite number of lines, we have K X̃ = η∗KY ,
completing the proof. �

Remark 13. As shown in [Ein and Shepherd-Barron 1989, Proposition 2.3], the
image by p of the fibers Fx ′′ of q|F : F → X ′′ for x ′′

∈ X ′′ are the n-secant lines
of X . Then, for n = 5, we eventually reach a finite number of n-secant lines of X ′

which are contained in X and which will be contracted by φ to double points of Y .
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Therefore the existence of sectional singularities on S depends on the existence of
n-secant lines to X ′ that are contained in X (compare with Remark 7(a)).

We have the following lemma:

Lemma 14. Let m ≥ 3 be a positive integer. Let Y1, Y2 ⊆ Pm−1 be irreducible
hypersurfaces of the same degree r ≥ m +1 and ϕ : Y1 //___ Y2 a birational map.
Assume that Y1 and Y2 are smooth if m ≤ 4 and have at most isolated canonical
singularities if m ≥ 5. Then ϕ is an isomorphism. If r = m + 1 ≤ 5 or m ≥ 5, the
morphism ϕ extends to a linear automorphism of Pm−1.

In the case of smooth hypersurfaces, the lemma above follows, as a particular
case, from a theorem of Severi [1933], which it was generalized by C. Ciliberto
[1987] for the case of Castelnouovo varieties. As we will see, we will use the
lemma in a situation which is essentially covered by Ciliberto’s theorem [Ciliberto
1987, Theorem 3.1.1]; however, for the convenience of the reader, we will give a
complete proof, which leads with a slightly more general situation, though only
for hypersurfaces.

Proof. The case m = 3 is clear. Suppose that m ≥ 4, and observe that the dualizing
sheaf ω0

Yi
of Yi is ω = OYi (`) = O(`), where ` = r − m ≥ 1, for i = 1, 2.

Case 1: m = 4. In this case, Yi ⊆ P3 for i = 1, 2 is a smooth surface of general
type. By Kodaira’s vanishing theorem,

H1(ω∨) = H1(ω⊗2) = 0,

and it follows that Yi is minimal for i = 1, 2; see [Barth et al. 1984, Proposition
VII.5.5]. Hence ϕ is well defined; see [Bădescu 2001, Theorem 10.21].

Moreover, if r = 5, the Riemann–Roch theorem implies

h0(ω) − h1(O) + h0(O) = 5.

From the exact sequence

0 // OP3(−5) // OP3 // O // 0,

we conclude that h1(O) = 0, and therefore h0(ω) = h0(O(1)) = 4. This means that
an isomorphism ϕ : Y1 → Y2 comes from a linear isomorphism of P3.

Case 2: m ≥ 5. Here Yi ⊆ P4 for i = 1, 2 is an (m−2)-fold of degree r ≥ m + 1.
Let Hi be a hyperplane section of Yi for i =1, 2. By the Grothendieck–Lefschetz

theorem (see for example [Hartshorne 1970, Corollary IV.3.2]), Pic(Yi ) = Z[Hi ],
where [Hi ] is the hyperplane class of Yi . Denote by Ki a divisor associated to the
dualizing sheaf ωo

Yi
for i = 1, 2; then Ki is linearly equivalent to `Hi . Observe

that, by construction, Ki is the Weil canonical divisor KYi of Yi ; then it is a Cartier
divisor.
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On the other hand, take a resolution of indeterminancies of ϕ that resolves also
the singularities of Y1, that is, a commutative diagram

Z
p

��~~
~~

~~
~ q

��@
@@

@@
@@

Y1
ϕ //_______ Y2,

where p and q are birational morphisms and Z is smooth. Take a canonical divisor
K Z of Z , and take HZ = q∗H2. Since Yi has at most canonical singularities, we
obtain K Z = q∗K2 + Eq = p∗K1 + E p, where Eq and E p are effective divisors
such that q∗(Eq) = 0 and p∗(E p) = 0.

Now, we have p∗q∗
[H2] = d[H1] for a positive integer d; it is the class of the

strict transform H0 of H2 by ϕ−1. In particular, HZ = p∗H0 − Fp, where Fp is an
effective divisor with p∗(Fp) = 0.

Hence we have the numerically equivalent relations

K Z − `HZ ≡ q∗(K2 − `H2) + Eq ≡ Eq

≡ p∗(K1 − `H0) + E p + `Fp

≡ p∗ ((` − d`)H1) + E p + `Fp,

Applying p∗ we finally obtain that (` − d`)H1 is numerically equivalent to an
effective divisor, from which d ≤ 1 and then d = 1. Finally, since a general section
of Yi is a smooth complete intersection, it is linearly normal; see [Hartshorne 1977,
Example II.8.4]. Hence it is also true for Yi , thus proving Lemma 14. �

Proof of Theorem 9. For n = 3, 4 the theorem follows directly from Theorem 8
and Lemma 14. For n = 5, the same results give a birational map ϕ : X //___ X
which is an isomorphism in codimension 1 and which extends, by construction, to
an automorphism of the crepant resolution η : X → Y . �

Proof of Theorem 10. The assertions “(a) implies (b)” and “(c) implies (b)” are
trivial, and “(b) implies (c)” follows directly from Theorem 8 and Lemma 14 as in
our proof of Theorem 9. Therefore it suffices to show that (b) implies (a).

There are Cremona transformations φ1, φ2 : Pn //___ Pn inducing, via restric-
tion to X1 and X2, respectively, birational maps to hypersurfaces Y1, Y2 ⊆ Pn−1

(see Theorem 8); in particular, Y1 and Y2 are birationally equivalents.
Now, by Lemma 14, a birational map from Y1 to Y2 extends to a linear auto-

morphism of Pn−1; hence it extends to a linear automorphism of Pn , which we
denote by ρ. Thus φ−1

2 ◦ρ ◦φ1 is a Cremona transformation mapping X1 onto X2

birationally. This completes the proof of Theorem 10. �
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