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SER PEOW TAN, YAN LOI WONG AND YING ZHANG

In 1998, Greg McShane demonstrated a remarkable identity for the lengths
of simple closed geodesics on cusped hyperbolic surfaces. In 2006, we gener-
alized this to hyperbolic cone-surfaces, possibly with cusps and/or geodesic
boundary. In this paper, we generalize the identity further to the case of
classical Schottky groups. As a consequence, we obtain some surprising new
identities in the case of Fuchsian Schottky groups. For classical Schottky
groups of rank 2, we also give generalizations of the Weierstrass identities,
given by McShane in 2004.

1. Introduction

Greg McShane [1998] demonstrated a striking identity for the lengths of simple
closed geodesics on cusped hyperbolic surfaces. In [Tan et al. 2006a], we gave
a generalization of McShane’s identity to hyperbolic cone-surfaces, possibly with
cusps and/or geodesic boundary; a version for compact hyperbolic surfaces with
geodesic boundary was also given independently by M. Mirzakhani [2007]. To
state the generalization, we first define two functions G(x, y, z) and S(x, y, z).

Definition 1.1. For x, y, z ∈ C, we define

G(x, y, z) := 2 tanh−1
( sinh(x)

cosh(x)+exp(y+z)

)
,

S(x, y, z) := tanh−1
( sinh(x) sinh(y)

cosh(z)+cosh(x) cosh(y)

)
.

Note that here tanh−1(x) for a complex number x is defined to have imaginary
part in (−π/2, π/2], and hence the functions G(x, y, z) and S(x, y, z) are analytic
in the arguments x , y and z in their respective domains of definition.
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Recall, as defined in [Tan et al. 2006a], that a compact hyperbolic cone-surface
is a compact topological surface M equipped with a hyperbolic cone structure so
that each boundary component of M is a smooth geodesic, and there is a finite
number of points in the topological interior of M , which form the set of cusps
and cone points. The geometric boundary of M consists of all the cusps, cone
points and boundary geodesics. The complement of the geometric boundary in M
is its geometric interior. Recall also that (a) a geometric boundary component of
a compact hyperbolic cone-surface M is either a cusp, a cone point or a bound-
ary geodesic; (b) an interior generalized simple closed geodesic is either a simple
closed geodesic in the geometric interior of M or a degenerate one which is the
double cover of a simple geodesic arc connecting two angle π cone points; (c) a
generalized simple closed geodesic is either an interior one as in (b) or a boundary
one, namely, a geometric boundary component.

The generalized identity in [Tan et al. 2006a] for compact hyperbolic cone-
surfaces can be stated as follows.

Theorem 1.2 [Tan et al. 2006a, Theorem 10.3]. For a compact hyperbolic cone-
surface M with all cone angles in (0, π], let 10, 11, . . . ,1m be its geometric
boundary components with complex lengths L0, L1, . . . , Lm , respectively. If 10 is
a cone point or a boundary geodesic then

(1)
∑
α,β

G
( 1

2 L0,
1
2 |α|, 1

2 |β|
)
+

m∑
j=1

∑
β

S
( 1

2 L0,
1
2 L j ,

1
2 |β|

)
=

1
2 L0,

where the first sum is taken over all unordered pairs of generalized simple closed
geodesics α and β on M that such that α and β bound with 10 an embedded
pair of pants on M (note that one of α and β might be a geometric boundary
component) and the subsum in the second sum is taken over all interior simple
closed geodesics β such that β bounds with 1 j and 10 an embedded pair of pants
on M. Furthermore, all the infinite series in (1) converge absolutely.

Remark 1.3. (i) |α| denotes the complex length of the generalized simple closed
geodesic α, which is the usual hyperbolic length if α is a geodesic, is equal
to iθ if α is a cone point of cone angle θ , and is 0 if α is a cusp point.
Similarly, L i is strictly positive, pure imaginary, or 0 depending on whether
1i is a geodesic boundary, cone point, or cusp, respectively.

(ii) As explained in [Tan et al. 2006a], the above identity unifies all the various
known versions of McShane’s identity in the real case by using the complex
lengths of the geometric boundary components. A version for surfaces with
geodesic boundary and no cone points was also given by Mirzakhani [2007].
See also [ Akiyoshi et al. 2004; 2006; Bowditch 1996; 1997; 1998; McShane
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2004; Sakuma 1999] for other variations and generalizations of the original
identity.

In this paper, motivated by the idea of the complexification of the boundary
lengths, we extend Theorem 1.2 to classical Schottky groups by analytic contin-
uation. This is possible because, first, the marked classical Schottky space, ap-
propriately parametrized, is a connected open subset of the parametrization space.
Second, both sides of the identity (1) are analytic functions of the parameters for
the marked classical Schottky space. Finally, all the infinite series on the left side
of (1) converge absolutely in the marked classical Schottky space. However, we
will need to reinterpret |α| as the complex length of α in the formula, and there
are some subtleties involved as we will need a specific choice of the half lengths
(recall that the complex length is defined up to multiples of 2π i and that there
are two possible choices for the half lengths, up to multiples of 2π i). The exact
statement, Theorem 3.4, requires a choice of a lift from a representation of the free
group Fn into PSL(2, C) to SL(2, C) (the exact choice of the lift is not important);
a reformulation of Theorem 1.2 to a more algebraic form; precise definitions for
a marked classical Schottky group, the marked classical Schottky space; and a
Fuchsian marking for the marked classical Schottky space. The basic idea is that a
Fuchsian marking corresponds to a hyperbolic surface M with geodesic boundary.
After we fix a boundary component 10 for M , the identity (1) holds. Now as
we deform away from the Fuchsian marking to an arbitrary point in the marked
classical Schottky space, the identity continues to hold by analytic continuation,
provided we can show that the infinite series converge absolutely and uniformly on
compact subsets of the marked classical Schottky space. In particular, if we deform
to a different Fuchsian-marked classical Schottky group, the original identity still
holds even though the corresponding hyperbolic surface M ′ may be of a different
topological type from the original surface M (or it may be of the same topological
type but with a completely different marking). This gives new identities for the
surface M ′. For example, in the case when the Schottky group is of rank 2, M may
be the hyperbolic one-holed torus and M ′ the hyperbolic three-holed sphere (pair
of pants), so that we obtain new identities for the hyperbolic pair of pants with
geodesic boundary, which are different from the trivial identity obtained by a direct
application of Theorem 1.2.

The rest of this paper is organized as follows. In Section 2, we give some
basic facts about classical Schottky groups and give a precise definition of marked
classical Schottky space, as well as a parametrization for the space. In Section 3, we
state and prove the main result, Theorem 3.4. In Section 4, we state and discuss the
Weierstrass identity for marked rank 2 classical Schottky groups (Theorem 4.1).
Finally, in Section 5, we analyze an example to show that our generalization of
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McShane’s identity to classical Schottky groups does give some surprising new
identities for hyperbolic surfaces with geodesic boundary.

2. Marked classical Schottky groups

In this section we state some basic facts about marked classical Schottky groups.
See [Marden 1974; Maskit 2000; 2002; Button 1998; 2003] for a more complete
study of various Schottky spaces. Note that the terminology is not completely
standardized; we use the terminology which is best suited for our purposes. In
particular, we need to pay special attention to the marking in order to get a clean
and precise statement of our result. Hence, we define a marked classical Schottky
group and marked classical Schottky space in a way analogous to that of marked
hyperbolic structures and Teichmüller space.

Fix n ≥2, and let Fn =〈a1, . . . , an〉 be a free group of rank n, where {a1, . . . , an}

is a (fixed) distinguished, ordered set of generators for Fn , which will provide the
marking. Let C∞ be the extended complex plane, which we also identify with the
Riemann sphere and also the ideal boundary of H3.

Definition 2.1. A (marked) classical Schottky group (of rank n) is a discrete, faith-
ful representation ρ : Fn → PSL(2, C) such that there is a region D ⊂ C∞, where
D is bounded by 2n disjoint geometric circles C1, C ′

1, . . . , Cn, C ′
n in C∞, such

that ρ(ai )(Ci ) = C ′
i and ρ(ai )(D) ∩ D = ∅ for i = 1, . . . , n. It is Fuchsian if the

representation can be conjugated to a representation into PSL(2, R).

Note that the circles Ci and C ′
i are not uniquely determined by ρ. Also, ρ(ai )

is strictly loxodromic, with an attracting and repelling ideal fixed point, denoted
by Fix+ ρ(ai ) and Fix− ρ(ai ), respectively. The image 0 := ρ(Fn) is often re-
ferred to in the literature as a classical Schottky group; it is a Schottky group if we
only require Ci and C ′

i to be disjoint simple closed curves for i = 1, . . . , n. Two
(marked) classical Schottky groups ρ1 and ρ2 are equivalent if the representations
are conjugate to each other.

If ρ is a marked classical Schottky group, we denote by ρ̃ any lift of ρ to a
representation into SL(2, C). Note that since Fn is free, ρ can always be lifted,
and there are 2n possible lifts.

Remark 2.2. It was shown by Marden [1974] that there exist nonclassical Schottky
groups for every n ≥ 2. An explicit example of a nonclassical Schottky group was
constructed by Yamamoto [1991]. On the other hand, Button [1998] has proved
that all Fuchsian Schottky groups are classical (but in general not on every set of
generators).

Definition 2.3. The space of equivalence classes of (marked) classical Schottky
groups is called the marked classical Schottky space; we denote it by Smc

alg.
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Note that we define (marked) classical Schottky groups in terms of representa-
tions rather than the subgroup ρ(Fn) of PSL(2, C), and we define the space Smc

alg
as the space of such representations, modulo conjugation. In particular, two repre-
sentations ρ1 and ρ2 may have the same image in PSL(2, C) modulo conjugation
but still represent different points of Smc

alg because of the marking. To simplify
notation, we denote elements of Smc

alg by ρ instead of the more cumbersome [ρ];
there should be no confusion since the traces and complex lengths are well defined
on the equivalence classes.

Next we give a natural parametrization of the marked classical Schottky space
Smc

alg by the ideal fixed points and the square of the traces or the complex lengths
of ρ(ai ) for i = 1, . . . , n.

We may normalize ρ by conjugation so that

Fix− ρ(a1) = 0, Fix+ ρ(a1) = ∞, Fix− ρ(a2) = 1.

Then it is not difficult to see that we can parameterize ρ by

(Fix+ ρ(a2), Fix− ρ(a3), Fix+ ρ(a3), . . . , Fix+ ρ(an); tr2 ρ(a1), . . . , tr2 ρ(an)),

which belongs to C2n−3
∞

× Cn , or, alternatively, by

(Fix+ ρ(a2), Fix− ρ(a3), Fix+ ρ(a3), . . . , Fix+ ρ(an); l(ρ(a1)), . . . , l(ρ(an))),

which belongs to ∈ C2n−3
∞

× (C/2π iZ)n . Here the complex lengths l(ρ(a)) are
related to the traces by the formula l(ρ(a)) = 2 cosh−1(tr ρ(a)/2) and can be cho-
sen to have positive real part (since all elements are strictly loxodromic). Then
the lengths are defined up to multiples of 2π i , and depend only on ± tr ρ(a) or
tr2 ρ(a). We shall see later that to define the half length we will be choosing a lift
of the representation and using the negative of the trace on the right side of the
formula. With this normalized parametrization we have the following.

Lemma 2.4 [Maskit 2002]. The marked classical Schottky space Smc
alg is a path

connected open subset of C2n−3
∞

× (C/2π iZ)n .

Proof. We only sketch the proof; see Maskit [2002] for details. We use the con-
formal ball model of hyperbolic 3-space H3. The ideal sphere is then the unit
sphere S∞. Consider a marked classical Schottky group ρ so that 0 = ρ(Fn) ⊂

Isom+(H3). Then, for j = 1, . . . , n, there exists open disks D j and D′
j on the

ideal sphere whose boundary circles are denoted C j and C ′
j , respectively, such

that ρ(a j )(C j ) = C ′

j and ρ(a j )(D j )∩ D′
j = ∅. Now we may find a one parameter

family ρt of deformations of ρ in Smc
alg such that the ideal fixed points of all the

ρt(a j ) are unchanged but the real part of l(ρt(a j )) → ∞ (that is, the translation
length of ρt(a j ) approaches ∞). We may assume that, under the deformation, the
circles C j and C ′

j shrink towards the respective ideal fixed points of ρ(a j ), so that
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their sizes become arbitrarily small. This gives us room to continue to deform the
marked classical Schottky group in Smc

alg continuously to one whose fixed points
are in some fixed standard configuration, say, with all of them lying on a circle.
Finally, keeping the ideal fixed points fixed, we can deform the lengths to some
predetermined quantities, with sufficiently large real part. Since any marked clas-
sical Schottky group can be so deformed, the space Smc

alg is path connected. That
Smc

alg is open is easily seen from the definition and parametrization. �

With the parametrization, for each g ∈ Fn , ρ(g) ∈ PSL(2, C) is completely
determined by the parameters, where ρ is the normalized representation. Hence,
tr2(ρ(g)) and l(ρ(g)) are analytic functions of the parameters for each g ∈ Fn .
Furthermore, if we start with a Fuchsian Schottky group, we may define all the
lengths to be real and positive, and if we extend the definition of the complex
lengths by analytic continuation on the space Smc

alg, then the following proposition
states that R(l(ρ(g))) > 0 for all ρ ∈ Smc

alg and g ∈ Fn .

Proposition 2.5. If ρ0 ∈ Smc
alg is Fuchsian, we may define l(ρ0(g)) so that l(ρ0(g))

is positive real for all g ∈ Fn . Then if l(ρ(g)) is defined by analytic continuation
along a path in the space Smc

alg, we have R(l(ρ(g))) > 0 for all ρ ∈ Smc
alg in the path

and all g ∈ Fn .

Proof. If ρ0 is Fuchsian, then it is well known that |tr ρ0(g)| > 2 for all g ∈ Fn so
that l(ρ0(g)) is positive real. If ρ ∈ Smc

alg and ρt for 0 ≤ t ≤ 1 is a path from ρ0 to ρ,
then we claim that R(l(ρt(g))) > 0 for all g ∈ Fn and 0 ≤ t ≤ 1. Otherwise, we
will have R(l(ρt(g))) = 0 for some g ∈ Fn and t ∈ [0, 1], which is impossible as
all elements are strictly loxodromic in a classical Schottky group. �

Finally let us say a few words about the fundamental domain in H3 of a classical
Schottky group. Let 0 = ρ(Fn) be the image of a classical Schottky group, with
the set of disjoint discs D j and D′

j defined as in the proof of Lemma 2.4. Suppose
the circles C j and C ′

j bound respectively geodesic planes E j and E ′
j in H3. For

j = 1, . . . , n, let H j be the open half space of H3 bounded by D j and E j , and
similarly for H ′

j . Then D := H3
−

⋃n
j=1 H j −

⋃n
j=1 H ′

j is a fundamental domain
in H3 of 0. Note that D = D ∩ C∞ is the fundamental domain in the extended
complex plane C∞ of 0 as described at the beginning of this section. It is well
known that the quotient hyperbolic 3-manifold H = H3/0 = D/0 is a handlebody
of genus n. Note that C∞/0 = D/0 is a conformal surface of genus n and is the
conformal boundary of the handlebody H.

3. McShane’s identity for Schottky groups

In this section we state and prove our main theorem, Theorem 3.4. We start with
the following definition.
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Definition 3.1. A Fuchsian marking in Smc
alg is a representation ρ0 ∈ Smc

alg that is
Fuchsian (see Definition 2.1), and the circles Ci and C ′

i can all be taken to be
circles that are orthogonal to R.

For ρ0 a Fuchsian marking, H2/ρ0(Fn) is a complete hyperbolic surface. Its
convex core M0 is a hyperbolic surface with geodesic boundary, which we call the
hyperbolic surface corresponding to the Fuchsian marking. Let 10, 11, . . . ,1m

be the boundary components of M0. The image ρ(Fn), and hence Fn , can be
identified with π1(M0), and if we define an equivalence relation ∼ on Fn by g ∼ h
if g is conjugate to h or h−1, then there is a bijection f : Fn/∼ → C from Fn/∼

to the set C of free homotopy classes of closed curves on M0. Note that there is a
unique geodesic representative for each nontrivial element of C.

Definition 3.2. For a fixed Fuchsian marking ρ0, let M0 be the corresponding
hyperbolic surface. Let 10, 11, . . . ,1n be the boundary components of M0, and
let [di ] ∈ Fn/∼ for i = 0, . . . , m be the equivalence class corresponding to the
boundary component 1i , that is, f[di ] = 1i .

We define P to be the set of all unordered pairs {[g], [h]} of elements in Fn/∼

such that f[g] and f[h] are free homotopy classes of simple closed curves that
bound together with 10 an embedded pair of pants in M0 (note that it is possible
that f[g] = 1k for some 1 ≤ k ≤ m).

For j = 1, . . . , m, we define B j to be the set of elements [g] ∈ Fn/∼ such that
f[g] bounds together with 10 and 1 j an embedded pair of pants in M0.

We will also need to define the half lengths, for which we need representations
into SL(2, C) instead of PSL(2, C).

Definition 3.3. If ρ ∈ Smc
alg and ρ̃ is a lift of ρ to SL(2, C), then for an element

g ∈ Fn , we define the half length l(ρ̃(g))/2 ∈ C/2π iZ of ρ̃(g) by

(2) cosh 1
2 l(ρ̃(g)) = −

1
2 tr ρ̃(g),

with Rl(ρ(g)) > 0.

Note that the real part of the half length is just half of the real part of the length,
and both are positive, while the above choice fixes the imaginary part, up to multi-
ples of 2π i . The minus sign on the right side of (2) is crucial; see Remark 3.5(iv).

Our main theorem can then be stated as follows.

Theorem 3.4. Let ρ ∈ Smc
alg, and let ρ̃ be any lift of ρ to SL(2, C). Suppose ρ0

is a Fuchsian marking, with corresponding hyperbolic surface M0, with boundary
components 10, . . . ,1m . For j = 1, . . . , m, let P and B j be defined relative to
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M0 as in Definition 3.2. Then

(3)
∑

{[g],[h]}∈P

G
(1

2 l(ρ̃(d0)),
1
2 l(ρ̃(g)), 1

2 l(ρ̃(h))
)

+

m∑
j=1

∑
[g]∈B j

S
( 1

2 l(ρ̃(d0)),
1
2 l(ρ̃(d j )),

1
2 l(ρ̃(g))

)
=

1
2 l(ρ̃(d0)) mod π i.

Each series on the left side of (3) converges absolutely.

Remark 3.5. (i) In the case where ρ = ρ0, the above is just a reformulation
of Theorem 1.2 for the case of a hyperbolic surface with geodesic boundary
components, and is true without the modulo condition. In fact, the lift can be
chosen so that the right side is real and positive.

(ii) The identity (3) is true only modulo π i because we have fixed the choice of
the tanh−1 function in the definition of the functions G(x, y, z) and S(x, y, z)
(see Definition 1.1); this may differ from the values obtained by analytic con-
tinuation by some multiple of π i . Indeed, as we will see in Corollary 3.8 and
in the example in Section 5, there is a difference of 2π i in that example when
m = 0, that is, when M0 has a single boundary component.

(iii) The result is independent of the lift chosen. This is because if ρ̃ and ρ̄ are two
different lifts of ρ, then for each of the summands on the first series, either
tr ρ̃(g), tr ρ̃(h) and tr ρ̃(d0) are all equal to tr ρ̄(g), tr ρ̄(h) and tr ρ̄(d0), or
exactly two of them differ by their signs (and similarly for the summands in
the second series). In the latter case, two of the half lengths differ by π i , but
it can be easily checked that both G(x, y, z) and S(x, y, z) remain the same
if π i is added to two of the arguments.

(iv) The choice of the half length functions given above is not arbitrary but arises
from the computation of G(x, y, z) and S(x, y, z) as “gap” functions (this is
based on the convention adopted in [Fenchel 1989], see [Tan et al. 2006a] for
details; see also Goldman [2003], who uses a similar convention). Roughly
speaking, the relative positions of the axes for ρ̃(g), ρ̃(h) and ρ̃(d0) are com-
pletely determined by their traces. These axes form the nonadjacent sides of a
right angled hexagon in H3, and the half lengths basically arise as the lengths
of these sides of the hexagon.

(v) It can be shown that G(x, y, z) and S(x, y, z) can also be expressed as

G(x, y, z) = log exp(x)+exp(y+z)
exp(−x)+exp(y+z)

,(4)

S(x, y, z) =
1
2

log cosh(z)+cosh(x+y)

cosh(z)+cosh(x−y)
,(5)
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as used by Mirzakhani [2007] (with different notation), where the function
log is in the principal branch, that is, the imaginary parts of its images are in
(−π, π]. It would be interesting to see if her results on the Weil–Petersson
volumes can be generalized to the classical Schottky space.

Proof. Let ρt for 0 ≤ t ≤ 1 be a deformation from the Fuchsian marking to an
arbitrary marked classical Schottky group ρ, where ρ0 is the Fuchsian marking
and ρ1 = ρ; this is possible by Lemma 2.4. Let ρ̃t be a continuous lift of ρt .
We shall then prove that the series on the left side of (3) converge uniformly on
compact subsets of the marked classical Schottky space Smc

alg. Then each side of
(3) is a holomorphic function modulo π i on the space Smc

alg. By Theorem 1.2, the
identity (3) holds on the totally real subspace in a neighborhood of ρ0 in Smc

alg. Note
that for this to be true, the correct choice of the half length as given in (2) must be
used; see [Tan et al. 2006a] for details. Hence the identity also holds modulo π i
for each t ∈ [0, 1] by analytic continuation. This proves the identity for a particular
lift; that it holds for all lifts now follows from Remark 3.5(iii).

Given a compact subset K of Smc
alg, we have a constant κ > 0 such that for

each ρ ∈ K, ρ(Fn) has a fundamental domain D in H3 as described at the end of
Section 2, and the minimum hyperbolic distance between any pair of its bounding
geodesic planes E1, E ′

1, . . . , En, E ′
n is ≥ κ . Then we have the following length

estimate lemma for ρ ∈ K.

Lemma 3.6. If g ∈ Fn is a cyclically reduced word in the set of generators
a1, a−1

1 , . . . , an, a−1
n with word length ‖g‖, then the closed geodesic γ that ρ(g)

represents in the quotient hyperbolic 3-manifold D = H3/ρ(Fn) has hyperbolic
length ≥ κ‖g‖.

Proof. Choose in H3 an arbitrary lift γ̃ of the closed geodesic γ . Note that H3 is
tiled by the images of a fundamental domain D under the action of elements of
ρ(Fn), that is, H3

=
⋃

g′∈Fn
ρ(g′)(D). It can be shown that the line γ̃ in H3 passes

through ‖g‖ successive images of D “periodically” dictated by the word g. Thus
the hyperbolic length of γ , which equals the length of the part of γ̃ lying in the
union of these ‖g‖ successive images of D, is at least κ ‖g‖. �

Now we prove the uniform convergence of the first series in (3) for t ∈ [0, 1].
By the above lemma there is a constant κ > 0 such that for every t ∈ [0, 1] and
every g ∈ Fn , we have L(ρ̃t(g)) ≥ κ‖g‖, where L(ρ̃t(g)) is the hyperbolic length
of the closed geodesic that ρ̃t(g) represents in the quotient hyperbolic 3-manifold
H3/ρ̃t(Fn), and where ‖g‖ is the cyclically reduced word length of g in the letters
a±1

1 , . . . , a±1
n .

Note that the image of the Fuchsian marking ρ0(Fn) ⊂ PSL(2, R) has a fun-
damental domain D(0) in H3 whose intersection with H2

⊂ H3 is a fundamental
domain of H2/ρ0(Fn) in H2. Let P be the set of unordered pairs of elements
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{[g], [h]} of Fn/∼ as defined in Definition 3.2. Then the pairs {[g], [h]} ∈ P can
be ordered by using the sum of their (cyclically reduced) word lengths ‖g‖+‖h‖.
We have the following version of [Birman and Series 1985, Lemma 2.2]:

Lemma 3.7. There is a polynomial P( · ) such that the number of pairs {[g], [h]}

in P with ‖g‖ +‖h‖ = n is no greater than P(n).

Proof. We follow the proof of Birman and Series. We start with the fundamental
polygon D(0)∩H2. Then for each pair {[g], [h]} in P with ‖g‖+‖h‖ = n, we can
associate a simple diagram on D(0) ∩ H2 consisting of n disjoint arcs (note that
though the original argument is for just one simple geodesic, it works as well here
for the pair of disjoint simple closed geodesics on the surface M0 associated with
{[g], [h]}). Conversely, the diagram determines the pair {[g], [h]}. The number of
such simple diagrams is bounded by P(n) for a certain polynomial P( · ). �

Note that for t ∈ [0, 1] and a simple closed geodesic α on M0, the real part
Re l(α(t)) of the complex translation length l(α(t)) is equal to the hyperbolic
length L(α(t)) of the closed geodesic that α(t) represents in the quotient hyperbolic
manifold H3/0(t). Note also that for each simple closed geodesic γ on M0, there
exist constants c1(γ ) and c2(γ ) > 0 such that c1(γ ) ≤ Re l(γ (t)) ≤ c2(γ ) for all
t ∈ [0, 1].

Now for each pair {α, β} in G, we have L(α(t)) + L(β(t)) ≥ κ(‖α‖ + ‖β‖)

for all t ∈ [0, 1], and hence Re l(α(t)) + Re l(β(t)) = L(α(t)) + L(β(t)) → +∞

uniformly as n = ‖α‖ +‖β‖ → ∞.
From the definition of G, we have

(6)

G
( 1

2 l(d0(t)), 1
2 l(α(t)), 1

2 l(β(t))
)

= log
(

exp 1
2 l(d0(t)) + exp

( 1
2 l(α(t)) +

1
2 l(α(t))

)
exp

(
−

1
2 l(d0(t))

)
+ exp

(1
2 l(α(t)) +

1
2 l(β(t))

) )
= log

(
1 +

2 sinh 1
2 l(d0(t))

exp
(
−

1
2 l(d0(t))

)
+ exp

( 1
2 l(α(t)) +

1
2 l(β(t))

))
.

On the other hand, we have∣∣exp
(
−

1
2 l(d0(t))

)
+ exp

( 1
2 l(α(t)) +

1
2 l(α(t))

)∣∣
≥

∣∣exp
( 1

2 l(α(t)) +
1
2 l(α(t))

)∣∣ − ∣∣exp
(
−

1
2 l(d0(t))

)∣∣(7)

= exp
( 1

2 Re l(α(t)) +
1
2 Re l(β(t))

)
− exp

(
−

1
2 Re l(d0(t))

)
(8)

≥ 1 − exp
(
−

1
2 Re l(d0(t))

)
≥ 1 − exp

(
−c1(d0)

)
.(9)

Since |log(1 + u)| ≤ 2|u| for all u ∈ C such that |u| ≤ 1/2, it follows from (6) and
(8) that there is a constant C > 0, depending only on the family {0(t)}t∈[0,1], such
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that for all but a finite number of pairs {α, β} in G we have

(10)

∣∣G( 1
2 l(d0(t)), 1

2 l(α(t)), 1
2 l(β(t))

)∣∣ ≤ C · exp
(
−

1
2(L(α(t)) + L(β(t)))

)
≤ C · exp

(
−

1
2(κ(‖α‖ +‖β‖))

)
.

The claim below tells us that the left side of (10) is always finite and hence, by
continuity, bounded. Hence (10) actually holds for all pairs {α, β} in G and with a
slightly larger constant C . It then follows from Lemma 3.7 that the first series in
(3) converges absolutely and uniformly for t ∈ [0, 1].

Claim. For each pair {α, β} in G and for all t ∈ [0, 1], we have

(11) exp
(
±

1
2 l(d0(t))

)
+ exp

( 1
2 l(α(t)) +

1
2 l(β(t))

)
6= 0.

Proof. First notice that when ± in (11) is − , the inequality follows from (9). The
remaining case follows from the equivalent inequality:

(12) 1
2 l(d0(t)) + π i 6=

1
2 l(α(t)) +

1
2 l(β(t)) mod 2π i.

To prove (12), suppose 1
2 l(d0(t)) + π i =

1
2 l(α(t)) +

1
2 l(β(t)) mod 2π i holds for

some t = t0 ∈ [0, 1]. We may assume (by replacing α and β by their inverses and/or
conjugates in 0(0) if necessary) that d0 = αβ and hence d0(t0) = α(t0)β(t0). Now
it is easy to see (say, by the cosine rule of Fenchel [1989]) that α(t0) and β(t0)
have the same axis in H3; hence either 0(t0) is not a discrete subgroup of SL(2, C)

or the representation ρ(t0) : 0 → SL(2, C) is not faithful. In either case we have a
contradiction. This proves (12) and hence the claim. �

The absolute and uniform convergence for the other series in (3) can be similarly
proved. This finishes the proof of Theorem 3.4. �

Corollary 3.8. If m = 0 in Theorem 3.4 (that is, the surface M0 has only one
boundary component), then

(13)
∑

{[g],[h]}∈P

G
( 1

2 l(ρ̃(d0)),
1
2 l(ρ̃(g)), 1

2 l(ρ̃(h))
)
=

1
2 l(ρ̃(d0)) mod 2π i,

and the series converges absolutely.

Note that (13) holds modulo 2π i instead of π i . Also, if m = 0, then d0 is
actually a commutator, so tr(ρ̃(d0)) is independent of the lift ρ̃; hence the right
side of (13) is independent of the lift chosen. In fact, it can be shown, with a little
bit of extra work, that for the Fuchsian marking ρ0, tr(ρ̃0(d0)) is always strictly
negative in this case; see for example [Goldman 2003]. Furthermore, for the more
general case where m 6= 0, we can always choose a lift ρ̃0 such that tr(ρ̃0(d0)) is
strictly negative.
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4. The Weierstrass identities

In this section, we consider rank 2 classical Schottky groups ρ : F2 → PSL(2, C).
For ease of notation, we denote the marked generators of F2 by a and b. Let ρ0

be a Fuchsian marking such that the corresponding surface M0 is the one-holed
torus with geodesic boundary 10. Let S be the set of nonperipheral simple closed
geodesics on M0, and let w1, w2 and w3 be the Weierstrass points on M0. Then
each element of S passes through exactly two of the Weierstrass points, and we
define the Weierstrass classes to be the subsets Ai for i = 1, 2, 3 of S consisting
of those geodesics that miss wi . Then S =

⊔3
i=1 Ai . Let

S := {[g] ∈ F2/∼ | f[g] ∈ S} and Ai := {[g] ∈ F2/∼ | f[g] ∈ Ai }

be the corresponding sets in F2/∼. Then [g] ∈ S if and only if any cyclically
reduced representative g forms with another element h a generating set for F2. The
set S can be identified with Q∪∞ by considering the slopes of the corresponding
simple closed curves on the torus (without the hole). The subsets Ai for i = 1, 2
and 3 can be identified with the subsets of Q∪∞ with numerator and denominator
odd, numerator odd and denominator even, and numerator even and denominator
odd, respectively; see [Tan et al. 2008] for details.

We have the following extension of the Weierstrass identities proved by Mc-
Shane [2004]; see also [Tan et al. 2006a].

Theorem 4.1. For any rank 2 classical Schottky group ρ ∈ Smc
alg, if A is a Weier-

strass class and ρ̃ is a lift of ρ, then∑
[g]∈A

tan−1
(

cosh 1
4 l(ρ̃(d0))

sinh 1
2 l(ρ̃(g))

)
=

π

2
mod π,(14)

where [d0] = [b−1a−1ba] ∈ F2/∼ corresponds to the boundary 10 of M0.

Note that there are two choices for the quarter-length l(ρ̃(d0))/4. We can choose
either, but the choice should be the same for all summands. The half length
l(ρ̃(g))/2 depends on the choice of the lift ρ.

We skip the proof as it is essentially the same as the proof for Theorem 3.4.
Here is a geometric interpretation of the above result. First note that the case of
the two generator group is very special since for a lift ρ̃, each of ρ̃(a1) and ρ̃(a2)

can be factored as a product of two involutions (half turns) as

ρ̃(a1) = −H3 H2 and ρ̃(a2) = −H1 H3,

where Hi ∈ SL(2, C) with H 2
i =−I and the axes li for Hi are such that l2 and l3 are

perpendicular to the axis for ρ(a1), and l3 and l1 are perpendicular to the axis for
ρ(a2) (the minus sign is the convention adopted in [Fenchel 1989]). Furthermore,
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in the case of the Fuchsian marking ρ0, the li are lines in H3 perpendicular to H2

and passing through lifts of the respective Weierstrass points wi . If we call the li

the Weierstrass axes, a deformation ρt will correspond to a deformation of the
relative positions of the Weierstrass axes.

Recall that in McShane’s geometric proof of his original identity for a once-
cusped hyperbolic torus, he had considered the set of simple geodesics emanating
from the cusp, which had a Cantor set structure. The summands of his identity
measure the sizes of the gaps in the complement of this Cantor set. Furthermore, the
boundary points of these gaps corresponded to simple geodesics spiraling around
simple closed geodesics on the cusped hyperbolic torus. We can reinterpret the
boundary of the gaps as simple geodesics emanating from the cusp and ending in
a fixed point of ρ(g), where ρ is the holonomy representation of the hyperbolic
structure, [g] varies over the set of simple closed geodesics, and the g are suitably
chosen representatives of [g]. So, the summands of his identity measure the sizes
of the gaps arising from the fixed points of ρ(g) for suitably chosen representatives
g of [g].

In this sense, the summands of the left side of (14) are then the (complex) lengths
of the gaps arising from the fixed points of ρ(g) (for certain representatives g
of [g]), but these lengths are now measured against the Weierstrass axis l corre-
sponding to the Weierstrass class A. That is, we are now considering geodesics
emanating normally from the Weierstrass axis l and ending at the fixed points
of ρ(g); see [Tan et al. 2006b, Corollary 1.10] for more details.

There are also generalizations of the variations and refinements of McShane’s
identity given by Bowditch [1997], Sakuma [1999], and Akiyoshi, Miyachi and
Sakuma [2004; 2006]. In those cases, the variations of McShane’s identity were
defined relative to a cusp, and these can be generalized to the case of identities
relative to a boundary geodesic. We can then study deformations (say in the space
of discrete, faithful representations) where the trace of the boundary component
remains real and with absolute value > 2. Most of the identities can then be
reinterpreted and generalized to this context.

5. An example: The three-holed sphere

As in the previous section, we consider rank 2 classical Schottky groups ρ ∈ Smc
alg,

with the same notation: F2 = 〈a, b〉; ρ0 is a Fuchsian marking of Smc
alg in which the

corresponding hyperbolic surface M0 is a one-holed torus with geodesic boundary
10; and S ⊂ F2/∼ consists of the equivalence classes corresponding to the non-
peripheral simple closed geodesics on M0. Let ρ1 ∈ Smc

alg correspond to another
Fuchsian marking, with corresponding hyperbolic surface M1, a pair of pants with
geodesic boundary, and let Ŝ be the set of closed geodesics on M1 corresponding
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∆′

0 → [a] ∆′

1 → [b]

∆′

2 → [ab]

δ0 → [b−1
a
−1

ba]

Figure 1. A commutator curve on M1.

to the elements of S. Note that the three boundary geodesics of M1 are elements
of Ŝ corresponding to [a], [b] and [ab] (with appropriate orientation). Apart from
these, all other elements of Ŝ are nonsimple geodesics on M1.

Suppose δ0 is the geodesic on M1 that corresponds to the commutator [d0] =

[b−1a−1ba]. Note that δ0 is not a simple geodesic on M1 — in fact, it has triple
self-intersection; see Figure 1.

Let the three geodesic boundary components of M1 be denoted by 1′

0, 1′

1, 1′

2
with hyperbolic lengths L0 = l(1′

0) > 0, L1 = l(1′

1) > 0, L2 = l(1′

2) > 0,
respectively. Then for this hyperbolic surface, we have the trivial identity

(15) G
( 1

2 L0,
1
2 L1,

1
2 L2

)
+ S

( 1
2 L0,

1
2 L1,

1
2 L2

)
+ S

( 1
2 L0,

1
2 L2,

1
2 L1

)
=

1
2 L0.

There is, however, a nontrivial identity on M1 derived from the Fuchsian mark-
ing ρ0. Recall that the trace tr ρ[d0] is well defined and independent of the lift
of ρ, since d0 is a commutator. In fact, for ρ0, we have tr ρ0[d0] < −2, and for
ρ1, we have tr ρ1[d0] > 18 (see [Goldman 2003] for a detailed study of geometric
structures arising from two generator subgroups of PSL(2, C) with real character
varieties). In particular, the half length l(δ0)/2 of δ0 is well defined up to multiples
of 2π i , and l(δ0)/2 = |δ0|/2 + π i , where |δ0| is the usual hyperbolic length of δ0

on M1, since tr ρ1[d0] > 2 (recall the definition of the half length from (2)). From
Corollary 3.8, we have

(16)
∑
α∈Ŝ

G
( 1

2 l(δ0),
1
2 l(α), 1

2 l(α)
)
=

1
2 l(δ0) mod 2π i,
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or, equivalently,

(17)
∑
α∈Ŝ

2 tanh−1
(

sinh 1
2 l(δ0)

cosh 1
2 l(δ0) + exp l(α)

)
=

1
2 l(δ0) mod 2π i.

We see from the second expression that it does not matter which choice of the
two half lengths we use for α. It turns out that the three summands in the left
side of (16) or (17) corresponding to the three boundary components of M1 have
positive real part and imaginary part equal to π i , whereas all the other summands
are real and less than 0. As pointed out earlier, the right side is a complex number
with positive real part and imaginary part equal to π i .

If, as in [Tan et al. 2008], we define ν := l(δ0)/2 = cosh−1(−1
2 tr ρ1(d0)) and

the functions h(x) and h(x) by

(18) h(x) =
1
2

(
1 −

√
1 − 4/x2) and h(x) = log

( 1+(eν
−1)h(x)

1+(e−ν −1)h(x)

)
,

where the square root is always chosen to have nonnegative real part and we use
the principal branch for the log function (that is, with the imaginary part of log in
(−π, π]), then we can also express (17) as∑

[g]∈S

h(tr ρ1(g)) = ν mod 2π i.(19)

Remark 5.1. The identity (19) was derived in [Tan et al. 2008] with a different
proof and under much more general conditions, and was expressed in terms of the
µ-Markoff map corresponding to the µ-Markoff triple (x, y, z) = (tr a, tr b, tr ab).
[Tan et al. 2006b] gave conditions necessary and sufficient for the identity to hold.
For example, the identity still holds if some or all of the boundary components of
M1 degenerate to cusps.

We briefly describe the geometric interpretation of the above; see [Zhang 2004;
Tan et al. 2008] for more details. For each [g] ∈ S, we may choose representa-
tives g1 and g2 such that g1g2 = d0. Then each of the summands in the various
versions of the identity above can be interpreted as gaps from the attracting fixed
point of ρ1(g1) to the repelling fixed point of ρ1(g2) measured along the (directed)
axis of ρ1(d0). In the cases where [g] ∈ S corresponds to the three boundary
components of M1 (that is, [a], [b] and [ab]), the above fixed points lie on the
two different intervals of R ∪ ∞ separated by the fixed points of ρ1(d0), which
is why the summand has imaginary part π i in these three cases. For the other
summands, the fixed points lie on the same interval and the summands are real.
See Figure 2, where we have ρ1(a) = A and ρ1(b) = B, where A, B ∈ PSL(2, R),
and we use the notations A := A−1 and B := B−1. The picture is normalized so
that the fixed points of the commutator B AB A are 0 and ∞. In the figure, the gap
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Figure 2. Gaps for M1.

arising from [a] ∈ S corresponding to one of the boundary components of M1 is
measured by dropping perpendiculars from Fix+(A) and Fix+(B AB) to the axis
[0, ∞] of B AB A; hence this gap has positive real part and imaginary part π i . Note
that (B AB)−1 A =ρ1(d0). Similarly, the other two middle-sized dotted semicircles
in the figure show the gaps arising from [b] and [ab] corresponding to the other
two boundary components. Gaps for the other elements of S can be similarly
obtained by a recursive process using the Farey construction of the rationals; all
these gaps will be real and negative (they are represented by the solid semicircles
in the figure). For a proof of these assertions, via generalized Markoff maps, see
[Zhang 2004, Section 6.3].

Finally, we note that more generally, if the rank n ≥ 3, it is possible to have
two Fuchsian markings ρ0 and ρ1 such that the corresponding hyperbolic surfaces
M0 and M1 are homeomorphic even though the markings are different. Then ρ0

will induce identities for M1 that are different from those obtained from ρ1; for
example, the gaps may be measured against a geodesic on M1 that is not necessarily
a boundary geodesic, or even simple.
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