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Given a sufficiently nice collection of sheaves on an algebraic variety V,
Bondal explained how to build a quiver Q along with an ideal of relations
in the path algebra of Q such that the derived category of representations of
0 subject to these relations is equivalent to the derived category of coherent
sheaves on V. We consider the case in which these sheaves are all locally free
and study the moduli spaces of semistable representations of our quiver
with relations for various stability conditions. We show that V can often
be recovered as a connected component of such a moduli space, and we
describe the line bundle induced by a GIT construction of the moduli space
in terms of the input data. In certain special cases, we interpret our results
in the language of topological string theory.

An algebraic variety V is completely determined by the abelian category Coh(V)
of coherent sheaves on V [Gabriel 1962], and it is therefore a natural problem to
find a way to describe this category in concrete terms. If V' is affine, then Coh(V)
is nothing more than the category of finitely generated modules over the algebra
of global functions on V. If we have a presentation of this algebra, this may be
interpreted as a “presentation” of the category Coh(V). In the projective case,
it is unreasonable to expect Coh(V) to be equivalent to the category of modules
over any ring. It is sometimes the case, however, that such an equivalence can be
constructed after passing to the bounded derived category %” Coh(V'). The derived
category carries less information than the abelian category Coh(V), but it is enough
to reconstruct such invariants as cohomology, K-theory, and higher Chow groups,
as well as a great deal of information about the birational geometry of V. If V
is Calabi—Yau, then an object of %” Coh(V) may be thought of as a D-brane in
type 1IB topological string theory on V [Aspinwall and Donagi 1998; Douglas
2001; Sharpe 1999]. This category is therefore of significant physical interest, and
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is a fundamental ingredient in the formulation of homological mirror symmetry
[Kontsevich 1995].

Let us describe more concretely how one might attempt to construct such an
equivalence. Given an object E of Coh(V), there is a natural functor F from
Coh(V) to the category of finitely generated right modules over the endomorphism
algebra End(E), or left modules over the opposite algebra End(E)°P, taking a sheaf
% to the module Hom(E, %). This functor will almost never be either faithful or
essentially surjective, but if E satisfies certain technical conditions, then Rickard
shows that the right derived functor R F' from 9P Coh(V) to the bounded derived
category of left modules over End(E)° will be an equivalence. (See Definition
1.2 and Theorem 1.3 for more details.) If E decomposes as a direct sum of smaller
objects E = @;_, E;, then End(E)°" may be expressed as the path algebra of
a quiver with n nodes, modulo certain relations (which may not be admissible).
One should think of the description of such a quiver along with its relations as an
analogue of a presentation of the coordinate ring of an affine variety.

Much work has gone into finding such collections of sheaves on projective
varieties. The goal of this paper is not to find these collections, but rather to
assume that one is given, and to study various moduli spaces of representations
of the corresponding algebra. If the sheaves in the collection are vector bundles,
there is a tautological map from V to the moduli stack of quiver representations,
taking a point p to F(0,), a representation in which the vector space associated
to the node i is equal to the dual of the fiber of E; at p. Thus, we restrict to
representations in which the dimension of the vector space at node i is the rank of
the vector bundle E;. Our goal is to consider coarse moduli spaces of semistable
representations for various choices of stability condition and to relate these spaces
to V. The representation stack may be presented as the quotient of an affine variety
by the action of an algebraic group G, so these moduli spaces can be constructed
as geometric invariant theory (GIT) quotients with respect to some character x of
G. In general, V need not map to such a space as the representations in the image
of the tautological map may not be semistable. Even if V does map to one of
these moduli spaces, the map may not be an inclusion, as representations whose
closures in the stack intersect in a semistable representation are identified in the
moduli space. In Section 2, the main section of this paper, we address the problem
of determining when this map exists, and when it does, we study its structure. The
GIT construction gives us not just a moduli space, but a moduli space equipped with
an ample line bundle. Under suitable hypotheses, we show that V may be identified
with (a connected component of) the moduli space of stable quiver representations,
and we identify the induced line bundle on V in terms of x and the vector bundles
with which we started (Theorem 2.4).

Section 3 is devoted to a case of physical interest, in which V is the total space
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of the dual of an ample line bundle L on a projective variety X, and the collection
on V is pulled back from a particularly nice collection of line bundles on the base.
In this case we study the affine quotient My and prove that it has an irreducible
component whose canonical reduced subvariety is isomorphic to Vj, the affine
variety obtained from V by collapsing the zero section of the bundle. If L is the
anticanonical bundle on a Fano survace, this result may be interpreted in the lan-
guage of topological string theory as in the physics paper [Bergman and Proudfoot
2006]. The quiver moduli space M, parameterizes ground states of a quantum
field theory that describes the behavior of open strings ending on a certain D-brane
supported at the tip of the Calabi—Yau cone Vj. In general, the quantum field theory
associated to a D-brane contains fields that are sections of the normal cone to the
support of the D-brane. In this case, the normal cone is Vj itself, and a section is
simply a point in Vj. For physical reasons, it is expected that the space of sections
of this normal cone should be a component of the moduli space of vacua in the
quantum field theory, and therefore that Vj should be a component of the quiver
moduli space. Up to the issue of reducedness of My, this is now a theorem.

A special case of the situation discussed above occurs when the collection on X
is a simple helix (see Example 1.12). In Section 4, we construct the Fano variety X
with its anticanonical line bundle as a GIT quotient of a smooth variety with respect
to a canonical polarization (Theorem 4.3). In particular, we obtain a result along
the lines of those of Section 2 while eliminating the dependence on the choice of
character y.

1. Bondal quivers

Let O be a directed graph with finitely many nodes {1, ..., n}, and let £ be an
algebraically closed field. Let P;;(Q) denote the £-vector space spanned by the set
of all paths in Q from the node i to the node j, including the path of length zero at
each vertex. The direct sum P(Q) = &p P;;(Q) is naturally an algebra over £ with
multiplication Pj; ® P;; — P given by concatenation of paths. Let I € P(Q)
be a two-sided homogeneous ideal contained in the square of the ideal of paths
of nonzero length; such an ideal is called admissible. The pair Q = (Q, I) with
I admissible is called a guiver with relations. The algebra P(Q) := P(Q)/I is
called the path algebra of Q and inherits a grading P(Q) = @ P;;(Q).

To any quiver with relations Q, we may associate a ¢-linear category €(Q) with
objects {1, ..., n}, and morphisms from i to j equal to P;;(Q). A representation
of Q is defined to be a functor of ¢-linear categories from 6(Q) to the category
Vecte of E-vector spaces. Equivalently, it is a left module over the path algebra
P(Q). Let Rep(Q) denote the abelian category of representations of Q.
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Let <€ be a t-linear abelian category and consider a finite collection Ey, ..., E,
of objects in 6. The algebra A := End¢ (6 E;)°P has a distinguished collection
{e;} of idempotents, where e; acts as §;; times the identity endomorphism on E;.
Suppose that A is equipped with a grading by the natural numbers, with each
graded piece finite-dimensional, and that the degree zero part Ao is spanned by the
idempotents {e;}. It then makes sense to define the one-dimensional representation

Sit=A /AL +te;|j#i)

on which e; acts as the identity, and all other idempotents and all elements of
positive degree act by zero. Let Q be a quiver on n vertices with arrows from i to
J given by a basis for Extil(S,-, S;)V. There is a map

Ext (@5, ©5)" — D (Ext) @S, #5)*) ™,
k>2
given by the A, structure on Ext$, (®S;, @S;), whose image generates an admissi-
ble ideal I € P(Q). Let Q be the corresponding quiver with relations; we refer to
Q as the Bondal quiver for the collection Eq, ..., E,. The following proposition
may have been known to the experts for some time, but the first proof of it of which
we are aware has recently been given by Segal [2007, 2.13].

Proposition 1.1. The path algebra P (Q) is isomorphic to A.

There is a natural functor F : ¢ — Rep(Q) taking an object ¥ € 6 to a repre-
sentation of Q in which the node i is mapped to the vector space Hom¢ (E;, ).
This functor is left exact and thus (provided that there exists a nice class of com-
plexes adapted to F) induces a right-derived functor RF : 9(€) — % Rep(Q) on
unbounded derived categories.

Definition 1.2. An object E of %(€) is compact if the functor Homg ) (E, - ) com-
mutes with infinite direct sums. The derived category % () is said to be spanned
by a set of objects if for all nonzero objects F' of % (%), there exists an object E in
that set such that Homg ) (E, F) # 0.

Theorem 1.3 [Rickard 1989, 6.4]. Suppose that the objects E, ..., E, are com-
pact objects that span D(€), and that for all i and j, we have Extf‘g(E,-, E))=0
forall k #0. Then RF is an equivalence of triangulated categories.

Remark 1.4. Rickard’s theorem further states that the equivalence RF restricts
to an equivalence of the full subcategories of compact objects (which are triangu-
lated). If € = QCoh(V) for an algebraic variety V over €, then the compact objects
of 9(6) are those which are locally quasi-isomorphic to bounded complexes of
locally free sheaves of finite rank. If V is smooth, this is simply the class of all
complexes quasi-isomorphic to a bounded complex of coherent sheaves. Thus, the
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full subcategory of compact objects is equivalent to %?(Coh(V)), and the connec-
tion to the categories appearing in the introduction is apparent.

We will be interested in the case in which € = QCoh(V) is the category of
quasicoherent sheaves on a (not necessarily smooth) algebraic variety V over €. In
order to endow Endy (6 E;)°P with an appropriate grading from which to construct
a Bondal quiver, we need some extra structure on V and extra conditions on the
sheaves Eq, ..., E,.

Definition 1.5. A variety V equipped with an action of the multiplicative group G,,
is called nearly projective if it is projective over its affinization Vo = Spec I'(Oy),
the G3,,, action on Vj has a unique fixed point, and G,, retracts Vj to that fixed point.
Algebraically, this means that we may write V = Proj R for an NxZ-graded ring
R with Ry; =0 fori < 0 and Rygo = ¢. Here the N-grading is used to construct
Proj, and the Z-grading gives the G,, action on V.

Example 1.6. Any projective variety V is nearly projective with respect to the
trivial G,,, action.

Example 1.7. Suppose that X is projective with an ample line bundle L~!, and let
V be the total space of L. Then V is nearly projective with respect to the scaling
action of (3, along the fibers.

Definition 1.8. Let V be nearly projective, and let E, ..., E, be G,,-equivariant
vector bundles on V. We call this collection decent if End(E;) = I'(Oy) for all i,
Gy, acts on the vector space Hom(E;, E;) with nonnegative weights for all pairs
i, j, and it acts with positive weights if j <.

Let A =Endy (BE;)°P, and write

A= P 4y,

I=<i,j=n,
reZ
where Afj is the r-eigenspace of Hom(E;, E;) with respect to the action of G,,.
We define a grading on A by assigning degree j —i +nr to A} ;- The following
proposition says that this grading has all of the properties required to define the
Bondal quiver Q of the collection {E1, ..., E,}.

Proposition 1.9. If'V is nearly projective and E1, . . ., E, is decent, then this grad-
ing is nonnegative, the graded pieces are finite-dimensional, and the degree zero
part is spanned by the idempotents {e1, .. ., e,}.

Proof. The nonnegativity follows immediately from decency of Ey, ..., E,. To
establish the finite dimensionality of the graded pieces, it is sufficient to show that
Al y is finite-dimensional for all 7, j, r. Let mg : V — V{ be the natural projection.
Then A7 y is equal to the r-eigenspace of sections of the sheaf (1) #om(E;, E )
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on Vy. Let us write V = Proj R, and let Ry be the degree zero piece with respect to
the N-grading. Then Vy = Spec Ry, and the G, action on V) induces an N-grading
on Ry with degree zero piece Ry o equal to €. A G,,-equivariant coherent sheaf on
Vo corresponds to a finitely generated graded Rp-module, and A7 ; 1s canonically
isomorphic the degree r part, which must be finite-dimensional.

The degree zero part of A is equal to the direct sum P, A?i. Since our collection
is decent, A;; = Endy (E;)°P is the free Ry-module of rank one generated in degree
zero by a single class, namely e;. U

Definition 1.10. For any £-linear abelian category ‘6, an object E in 6 is called
exceptional if End¢(E) = ¢ and Ext!é (E, E)=0fork#0. Acollection Ey, ..., E,
is called exceptional if each E; is exceptional and Exty,(E;, E;) =0foralli > j. An
exceptional collection is called full if it spans %(6), and strong if Extf‘@ (Ei, Ej)=0
for all k #0 and all i, j.

Example 1.11. Let V be an irreducible projective variety equipped with the trivial
G, action, and let Eq, ..., E, be a full, strong, exceptional collection of vec-
tor bundles on V equipped with the trivial G,, action. Then the collection is
decent, the Bondal quiver makes sense, and the hypotheses of Theorem 1.3 are
satisfied. Such collections are known to exist on projective spaces of arbitrary
dimension [Beilinson 1978], and on all odd-dimensional, smooth, quadric hyper-
surfaces [Kapranov 1986]. They are conjectured to exist on complete flag varieties
of semisimple groups [Kuznetsov 2006, 1.2]. King [1997] shows that they exist
on all smooth, Fano, toric surfaces, and Craw and Smith [2007] extend this result
to smooth, Fano, toric 3-folds. Costa and Mir6-Roig [2004] have found more toric
examples in arbitrary dimension. King [1997, 9.3 and 9.4] conjectured that such a
full, strong, exceptional collection exists on every smooth, projective toric variety,
and (more generally) on any variety that may be obtained as a GIT quotient of a
vector space by a linear action of a reductive group, provided that a polarization
is chosen for which the notions of stability and semistability coincide. Kawamata
[2006] showed that every smooth, projective toric variety admits a full exceptional
collection, but not necessarily a strong one. Hille and Perling [2006] have recently
constructed a toric counterexample to King’s conjecture, but the question of how
common such collections are is still wide open.

Example 1.12. Let E4, ..., E, be a full, strong, exceptional collection of vector
bundles on a smooth, projective variety X, and let L be a line bundle on X such
that L=! is ample. We extend our collection infinitely in both directions via the
formula

E,_,=E;®L forallieZ.
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Such an infinite collection will be called a spiral with respect to L. A spiral will
be called simple if it satisfies the equation

(D) Ext]%(E,-,E.,-)=O forallk #0andi < j.

A simple spiral with respect to the canonical bundle with n = dim X + 1 will
be called a simple helix. This notion will become important in Remark 2.9 and
Section 4. !

Suppose that Ey, ..., E, generate a simple spiral with respect to L. Let V
denote the total space of L, and let w : V — X be the projection; V is nearly
projective by Example 1.7. For any pair 7, j, we have

Homy (7*E;, 7*E;) = Homy(E;, m, " E;) = @ Homx(E;, E;®@ L™"),

r>0

where r is the eigenvalue for the action of G,,,. Thus the collection 7*E1, ..., 7*E,
is decent, and the Bondal quiver is well defined.
For any & € 9(QCoh(V)), we have

Ext}, (& *E;, F) = Ext} (B E;, 1.F),

which is trivial if and only if % = 0. Hence 7*E1, ..., 7*E, span Z(QCoh(V)).
The condition (1) ensures that the bundles 7*E, ..., 7*E, have no higher Ext
groups between them, so Theorem 1.3 applies to this collection.

We henceforth assume that V is nearly projective and that Ey, ..., E, is a decent
collection of vector bundles with Bondal quiver Q. We do nor assume that the
derived functor R F is an equivalence, unless we say so explicitly. Let o; =rank E;
be a vector of natural numbers, and let Rep,, (Q) denote the substack of the moduli
stack of representations of Q for which the vector space associated to the node i
has dimension «;. Over each point in the variety V, the fiber of the vector bundle
@ E;’ is naturally a left-module over the algebra Endy (6D E;)°® = P(Q). Thus,
V parametrizes a family of representations, and we have a tautological map

T:V — QRep, (Q).

On the level of points, we have T (p) = F(0,), where O, is the structure sheaf of
the point p € V.

Theorem 1.13. If V is smooth and RF is an equivalence of derived categories,
then T is injective and induces an isomorphism on tangent spaces.

LOur definition of a simple helix agrees with that of [Bridgeland 2005, Section 3]; the same
structure is called a geometric helix in [Bondal and Polishchuk 1993, Section 1]. “Helix” by itself is
used inconsistently in the literature, and we will never use it. The term “spiral” is our own.
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Proof. The facts that each E; is a vector bundle and O, has zero-dimensional
support tell us that all of the higher right-derived functors of F' vanish on O,.
Hence RF(0,) = F(0,) is an honest representation rather than a complex of
representations. The injectivity of T then follows from the fact that the objects
{0, | p € V} are all nonisomorphic in % QCoh(V) = % Rep(Q) and, hence, in the
full subcategory Rep(Q).

To see that T induces an isomorphism on tangent spaces, we note that we have
a sequence of isomorphisms

T,V = Exty (0, 0,) = Homy qconv) (0, 0,[11)
= Homg rep) (RF(0,), RF(0,)[1])
= EXtyepo(F(0). F(0)))
= Tr(p) Rep, Q.

2

Let D = Spec £[€]/(€?). Then tangent vectors to V and %ep, Q are represented
respectively by maps e : D — V and families of quiver representations over ), and
the differential of T sends e € T,V to @ e*E,” € Tr(p) Rep, Q. It remains only
to show that this map coincides with the isomorphism of (2).

Consider the Cartesian square

D %
exidl \LA
VxD - VxV,
idxe

andletw : VxD — D and p: V xD — V denote the projections. An element
of T,V = Ext{,(@p, 0,) may be regarded as a family of coherent sheaves on V
parameterized by D, or, equivalently, as a coherent sheaf on V x D. In these terms,
the element represented by e : D — V may be identified with the coherent sheaf

(id x €)* A0y = (e x id),e*Oy.
Then the family of quiver representations obtained by applying F is

7, Homy «p (P p*Ei, (e x id),e*0y) = . (e x id) Homp (D e*E;, e*Oy)
= %On’l@ (@ e*E,-, e*@v)
=@e'E),

which is precisely the tangent vector to Rep, Q obtained by applying the differen-
tial of T to e. Thus the isomorphism of (2) is indeed the one induced by T. Il
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2. Semistable representations

As in Section 1, let Ey, ..., E, be a decent collection of G,,-equivariant vector
bundles on a nearly projective algebraic variety V over ¢, and let o; =rank E;. Let
R, (Q) be the set of representations of Q in which the node i is mapped to a fixed
coordinate vector space £ . This set has the structure of an affine algebraic variety
over €.

Example 2.1. Let V = P2, and let E; = 0, E; = 0(1), and E3 = 0(2). The
following picture represents the category €(Q), with each arrow labeled by the
vector space of morphisms between the corresponding objects.

2
r(@(i))/ w(@(l»
S
1 roQ)) 3

The quiver itself consists of three arrows from 2 to 1 and three arrows from 3 to 2,
representing bases for the vector space I'(0(1)). There are no arrows from 3 to 1,
because the multiplication map

¥ T(O() @ T'(0(1)) — I'(0(2))

is surjective. An element of R, (Q) consists of a pair of vectors a1, a3 € ['(0(1))Y
such that aj; ® ap3 lies in the image of . In concrete terms, this means that a;,
and a3 must be proportional.

Let G =[[; GL(x) / aniag . This group acts naturally on R, (Q) by the formula

(81, -+ &n) - (aip) = (giaijg; ),

and two representations are isomorphic if and only if they lie in the same G-orbit.
Any representation of Q in which all nodes are mapped to vector spaces of the
given dimension is isomorphic to an element of R,(Q); this is just the statement
that all finite-dimensional vector spaces of a given dimension are isomorphic. It
follows that the stack Rep, (Q), considered in the previous section, is represented
by the quotient [R,(Q)/G].

Let x = (x1,---, xn) be an ordered n-tuple of integers satisfying ) x;o; = 0.
We may interpret y as a multiplicative character of the group G by the formula
g > det(g)* ---det(g,)*. Let M, = Ry(Q) Iy G be the semiprojective GIT
quotient of Ry(Q) by G with respect to the character x. This quotient has two
equivalent interpretations, which we describe below.”

2Geometric invariant theory was originally developed by Mumford [1994], but what we need is
summarized in the short survey [Proudfoot 2005].
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Let B be the affine coordinate ring of R, (Q). The action of G on R, (Q) induces
an action on B. For any character 0 of G, let B(6) be the 6-eigenspace of B, and
let B, =D, ., B(rx). The GIT quotient M, is defined as Proj B,.. This definition
makes it clear that M x 1s a variety equipped with an ample line bundle, making
M, projective over its affinization My = Spec BC.

An element a of R, (Q) is called y-semistable if there is a function f € B(ry)
for some r > 0 such that f(a) # 0. The locus of semistable points is an open
subset of R, (Q) and will be denoted R, (Q)*~**. Such a representation is called
x -stable if its stabilizer is finite and its G-orbit is closed in R, (Q) *~*%. The locus
of stable points is an open subset of R, (Q)*** and will be denoted R, (Q) *~*'.
Two semistable representations are called S-equivalent if the closures of their G-
orbits intersect in R, (Q)***. There is a surjective map from R,(Q)* ™% to M,
whose fibers are precisely the S-equivalence classes, so M, may be thought of as
the moduli space of semistable representations of Q with dimension vector «, up
to S-equivalence.

Recall the tautological map T : V — QRep, Q. The variety M, is a quotient of
an open substack of Rep,, Q, so T induces arational map 7, : V — M, . If T, is in
fact regular, meaning that every tautological representation 7 (p) is x-semistable,
we will say that the character x is good. If in fact T (p) is y-stable for all p, we
will say that y is great.

As a first step to analyzing the map T, for various values of x, we must consider
the case where x = 0. In this case, T x factors through the affinization map

mo:V — Vy:=SpecT'(Oy)

via the map

@o : Vo = My = Spec BS = Spec I' (Ogrep, @)

obtained by pulling back global functions from %ep, Q to V. We note that every
element of R,(Q) is semistable with respect to the trivial character, so x = 0 is
always good.

Proposition 2.2. The map ¢g : Vo — My is a closed embedding.

Proof. This is equivalent to the statement that 7* : ['(Ogep, @) — T'(Oy) is sur-
jective. Choose any node i. The isomorphism I'(Oy) = End(E;) coming from the
decency of the collection allows us to identify the ring of global functions on V
with the algebra of loops in Q based at i. For any function f € I'(Oy), let s; (f) be
the G-invariant function on R, (Q) taking a representation to 1/¢; times the trace
of the endomorphism obtained by going around the loop corresponding to f. Then

T*si(f)=f. O
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Remark 2.3. If o; =1, then s; is a homomorphism and induces a map o; : Mg — Vj
of which ¢y is a section. In general, however, s; fails to be an isomorphism because
trace is not multiplicative.

For any character yx, consider the line bundle
E, =det(E)® @ - @det(E,)®*".

Theorem 2.4. Suppose that V is smooth, RF induces an equivalence of derived
categories, and x is great. Then T, identifies V with a connected component of
M, , and E, with the line bundle induced by the GIT construction.

Proof. Since x is great, T, maps V to the stable locus of M, , which is isomorphic
to an open substack of Rep, Q. Theorem 1.13 tells us that T}, is injective on points
and induces an isomorphism on tangent spaces. Since V is smooth, this implies
that 7, is an isomorphism onto a Zariski open subset of M, .

Since V is nearly projective, it is projective over its affinization Vy, and M, is
projective over M. Since T, : V — M, covers the closed immersion Tg : Vo — My,
its image must be closed. Thus 7, is an isomorphism onto a connected component
of M,.

To prove the final statement, we note that the character yx defines an equivariant
structure on the trivial line bundle on R, (Q), which descends to a nontrivial line
bundle L, on the stack quotient [R,(Q)/G] = %Rep, Q. The GIT line bundle
on M, is obtained by restricting L, from Rep, Q, so it will suffice to show that
T*L,=E,.

Let 4 be the principal [ ]; GL(c;)-bundle on V associated to the vector bundle
E =P, E;, and let % be the principle G-bundle obtained by dividing @ by G%ag .
Then we have a pullback diagram of principal G-bundles

4 Ry (Q)

L,

V — > [R4(Q)/G],

and the line bundles E, and L, are the line bundles associated to these principle
bundles via the one-dimensional representation of G given by the character x. The
statement follows. UJ

Remark 2.5. More generally, the rational map 7, : V — M, factors through the
rational map 7, : V — V, via a third rational map ¢, : V, — M,. The maps 7,
and ¢, will both be regular if and only if x is good.

Remark 2.6. Craw and Smith [2007] obtain a result similar to Theorem 2.4, but
with different hypotheses. The most important differences are that they restrict
to collections of line bundles and that they assume that V is toric. In exchange,
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they are able to substantially weaken the assumption that F' is an equivalence of
categories.

The remainder of this section will be devoted to giving sufficient criteria for
Xx to be good or great in the case where each E; is a line bundle. There is a
simple description of stability and semistability of quiver representations due to
King [1994, Section 3], which we summarize in the special case of representations
that are one-dimensional at each node. For any subset S C {1,...,n}, let xs =
Y ics Xi- We define the support of a representation of Q to be the set of nodes that
map to nonzero vector spaces. A representation a € R, (Q) has a subrepresentation
with support § if and only if @;; = 0 for all i € §¢ and j € S. King tells us that a
is y-semistable if and only if x5 < O for all supports S of subrepresentations of a,
and a is y-stable if equality is obtained only by the trivial representation and a
itself.

Let {m;;} be a collection of nonnegative integers, and define x by the formula

x=Y_ mi-,...,0,—1,0,...,0,1,0,...,0),
i,J

where —1 appears in the i-th spot, and 1 in the j-th spot. Equivalently, we put

n n
X :Zmig—ngj for all £ < n.
i=1 =1

Proposition 2.7. If 3om(E;, E;) is generated by global sections for all i and j
such that m;; # 0, then x is good.

Proof. Let § be the support of a subrepresentation of 7'(p) for some p € V. We
need to show that xg < 0, where

n n
3 Xs=D) xe=)_ Y mu—) Y my.
tes tes i=1 j=1 tes
The condition that 3om(E;, E;) is generated by global sections says exactly that
T (p)ij (the part of the quiver representation that records the homomorphisms from
E/|, atnodei to EY|, at node j) is nonzero for all p € V. Thus if m;; # 0 and
j € S, then i must be in S as well. This tells us that every term that appears with
a plus sign above also appears with a minus sign, and therefore that xg <0. [J

We will say that {m;;} is sufficient if the following two conditions are satisfied:
(i) dom(E;, E;) is generated by global sections for all i, j such that m;; # 0.

(i1) Itis possible to get from any one vertex of Q to any other by traveling forward
along paths from j to i such that #om(E;, E;) is generated by global sections,
and backward along paths from j to i such that m;; # 0.
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Proposition 2.8. If {m;;} is sufficient, then x is great.

Proof. Let S be the support of a nonzero subrepresentation of 7(p) for some
p €V, and suppose that xs =0. We need to show that S={1,...,n}. If j € Sand
#Hom(E;, E;) is generated by global sections, then 7' (p);; #0, and therefore i € S.
If i € S and m;; #0, then —m;; is a summand in Equation (3). Since every positive
summand is canceled by a negative one and x5 = 0, the term m;; must appear as
well, hence j € S. In this manner, we can conclude that the set S is closed under
the two operations described in condition (ii) above. Since S is nonempty, it must
contain all of {1, ..., n}. O

Remark 2.9. Suppose that Eq, ..., E, generate a simple helix on a projective
variety X, as in Example 1.12. Bondal and Polishchuk [1993, 2.5] show that for
all 1 <i <n—1, the object Rg,,, E; € 9 Coh(X) defined by the exact triangle

Eiy1 — Hom(E;, Ei+1)" @ Eix1 — R, E;

i+1
is pure; in other words, it lies in the abelian subcategory Coh(X). This is equiv-
alent to the statement that the first map in the triangle is injective, or that its dual
is surjective. This in turn is the statement that Fom(E;, E; 1) is generated by
global sections, and therefore so is dom(E;, E;) for all i < j. Furthermore, they
prove that the endomorphism algebra End(€p E;) is multiplicatively generated by
elements of the vector spaces Hom(E;, E;11), which implies that 1 is the unique
source of Q and 7 is the unique sink. In this case, therefore, {m;;} is sufficient if
and only if my, > 0.

Remark 2.9 gives us many examples of characters y that satisfy the hypotheses
of Theorem 2.4 when our collection generates a simple helix. This will apply to
the collection 0, O(1) ..., O0(n) on P" [Beilinson 1978], as well as to collections
on odd-dimensional quadrics [Kapranov 1986]. We conclude this section with an
example in which Remark 2.9 does not apply, but Propositions 2.7 and 2.8 do.

Example 2.10. Let V be the Hirzebruch surface [y, the blow-up of P? at a single
point. Consider the collection E; =0, E, =0(D), E3 =0(H), and E4 =0Q2H),
where H is the proper transform of a hyperplane class in P and D is the excep-
tional divisor. This collection is full, strong, and exceptional, and has the following
Bondal quiver, where the integers above the arrows indicate the number of distinct
arrows between the two nodes (unlabeled arrows occur with multiplicity one).
There are nontrivial relations among paths from 4 to 1 and among maps from
4to0 2.
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The only nonzero path in Q corresponding to a #om sheaf that is not generated
by global sections is the arrow from 2 to 1. Let m4 = my3 = 1, and set all other
m;; equal to zero. Then {m;;} is sufficient, so x = (=1, —1, 1, 1) is great. Then
Theorem 2.4 tells us that M, has a connected component that is isomorphic to V
in its projective embedding given by the anticanonical bundle £, = O(3H — D).

3. D-branes at the tip of a cone

In this section we continue to assume that z; = 1 for all i. Suppose that a collection
Ey, ..., E, of line bundles generates a simple spiral with respect to another line
bundle L on a smooth projective variety X, as in Example 1.12. Let V denote
the total space of L, and let Q be the Bondal quiver for the decent collection
n*Eq, ..., w*E, on V. Theorem 3.1 and Corollary 3.2 generalize the main result
of [Bergman and Proudfoot 2006].

Theorem 3.1. The map ¢q is generically an isomorphism. More precisely, there
exists a dense open subset U C Vyy such that @o|; is an isomorphism onto its image,
which is open in M.

Proof. We first observe that for all i and j, there exist elements

pij € Homy (*E;, m*E;) = @) Homy (E;, E; @ L"),
r>0
gij € Homy (m*E;, 7*E;) = (Y Homy (E;, E; @ L™")

r>0

with nonzero product B;; = ¢g;; - pij € Endy(7z*E;) = I'(Oy). This follows from
the ampleness of L~!, which ensures that the vector spaces on the right will be
nonzero for large values of r.

Recall from Remark 2.3 that for each node i we have a homomorphism s; :
I'(Oy) — I'(Opy,) inducing a map o; : Moy — Vj such that o; o g9 =idy. Le Bruyn
and Procesi [1990, Theorem 1] show that the images of sy, . . ., s, generate I'(Oyy,).
Furthermore, for any element r € Hom(E;, E;), we have

si(Bij) - sj(r) = si(qij - pij) - s;(r) = si(pij -1 - qij).

This means that s; becomes surjective after inverting the elements s (8;;) € I'(Opy,)
for all j. Geometrically, this tells us that there exists a dense open set U; of Vj
(the set on which 0 # ¢gs;(B;;) = B;j for all j) over which o; is an isomorphism.
Since ¢ is a section of o;, we are done. O

Corollary 3.2. The map ¢q identifies Vo with the canonical reduced subvariety of
an irreducible component of My. In particular, if My is reduced, then ¢q is an
isomorphism onto an irreducible component.



MODULI SPACES FOR BONDAL QUIVERS 215
Proof. This follows from Proposition 2.2 and Theorem 3.1. O

Remark 3.3. When X is a Fano surface and L = Ky, this example has an in-
terpretation in string theory. The quiver variety My is the moduli space of vacua
for ground states of open strings ending on a D-brane at the tip of the cone Vj;
see for example [Bergman and Proudfoot 2006]. Considerations from topological
string theory imply that one component of this moduli space should correspond
to deformations of the D-brane away from the tip, and this component is the one
picked out by Vj.

Remark 3.4. Suppose that a character x is good for the collection Ey, ..., E, on
X, in the sense of Section 2. Then  is also good for the collection 7 *Ey, ..., 7 *E,
on V. (This is because the quiver for the latter collection is obtained by adding
arrows to the quiver for the original collection, thus making it easier for repre-
sentations to be semistable.) The quiver variety M, for the collection on V is
projective over My, and the component into which V maps by the tautological
map is a partial resolution of Vy € My. It’s easy to check that this partial resolution
is an isomorphism away from the tip of the cone, and that the fiber over the tip is
isomorphic to the variety X, introduced in Section 2.

Example 3.5. Let X = P! x P! with the exceptional collection £y = 0, E; =
0(0, 1), E3=0(1,0), and E4 = O(1, 1). This collection generates a simple spiral
(not a simple helix) with respect to the canonical bundle L = 0(—2, —2), and Vj
is isomorphic to the quotient of the conifold {xy — zw = 0} C C* by the diagonal
action of Z/2. For a more detailed exposition of this example, see [Bergman and
Proudfoot 2006, Section 4].

4. A canonical projective quotient

Suppose that E1, ..., E, are line bundles that generate a simple helix on a smooth
projective variety X. In other words, we are in the situation of Section 3 with
L = Kx the canonical bundle and » = dim X + 1. Let Q be the Bondal quiver
associated to the collection E, ..., E, on X, and Q' the Bondal quiver associated
to the collection 7*E}, ..., m*E, on the total space V of Kyx. Then the under-
lying quiver Q has arrows from i + 1 to i given by a basis for the vector space
Homy (E;, E;+1), and no arrows between nonadjacent vertices [Bridgeland 2005,
Section 4]. Similarly, Bridgeland shows that Q' is obtained from Q by adding
arrows from 1 to n given by a basis for Homy (E,, E; ® K;l).
By Theorem 1.3 and Example 1.12, the derived functors

RF : % QCoh(X) — % Rep(Q) and RF’':%QCoh(V)— % Rep(Q)
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are both equivalences of categories. Then by Theorem 1.13 and the fact that X and
V are smooth, the tautological maps

T:X— %Rep,Q and T :V — Rep, Q

are open immersions, and therefore the loci of points in R,(Q) and R, (Q") ly-
ing over the images of these maps are open. Let Ry (Q)wut and Ry (Q')iaue be the
closures of these loci; since X is irreducible, Ry (Q)ut and Ry (Q) iy are irre-
ducible components of R,(Q) and R,(Q’). We will introduce resolutions Ry (Q)
and Ry (Q) of Ry(Q)uu and Ry (Q')iui, respectively. We will then show that,
under certain hypotheses, R, (Q’) has the structure of a G-equivariant line bundle
over R, (Q), and that the GIT quotient of Ry (Q) with respect to this line bundle is
equal to X in its anticanonical projective embedding. We thus recover X as a GIT
quotient of a smooth variety by G, without having to make any choice of character.

Since «; = 1 for all i, the affine variety R,(Q) admits a particularly simple
explicit description. We have

Ro(Q) = {(ay) € [THom(Er, E) | wifi(a) =aiy @aje forall i, j.k
b and a;; (idg,) = 1},
where
Vijk : Homy (E;, E;) ® Homy (E;, Ex) — Homy (E;, Ey)
is the natural composition map and
wi\]/'k . HOIllx(El', Ek)v —> HOIle(E,', Ej)v ®H0mx(Ej, Ej)v
is its dual. Let
Ry(Q) ={(a, &) | aij € tij and W7, (Cix) = £ij @ Lj1}
€ Ry(Q) x [ [ P(Homy (E;, E;)),

i<j
where

W P(Homy (E;, Ex)) — P(Homy (E;, E;)) ® P(Homx (Ej, Ex))

is the projectivization of 7, Note that for W%, to be well defined, we need ;7
to be injective or equivalently /;;x to be surjective. This, however, is guaranteed
by the fact that P(Q) is generated by arrows between adjacent nodes. Note that
an element of R, (Q) is determined by the coordinates a; ;4 for all i < n, and an
element of R, (Q) is determined by these data along with the lines ¢;;, but for
notational purposes it is still useful to keep track of g;; and ¢;; for all i < j.



MODULI SPACES FOR BONDAL QUIVERS 217

The space R, (Q’) will be defined in a similar manner, but the fact that Q' has
loops makes the definition slightly more delicate. Recall that, for all i, j, we have

Homy (7" E;, 7 E;) = (P Homy (E;, E; ® Ky").
r>0

An element a € R,(Q') may be regarded as a collection (a] /.) of elements a; ; €
Homy (E;, E; ® K")" that satisfies the equations

\Y +
W (@) = aly @ iy,

where w{fk is the restriction of ¥;; to the (r, s)-graded piece of the product

Homy (7*E;, n*E ;) x Homy (7" E, m* Ey).
We then define

Ry(Q) = {(a. 0) | a; € €], and (¥]3)" (£}") = ¢]; ® €5, }

C Ry(Q)aw x [ | P(Homx (Ei, E; @ K")).,
L, ],r
where (\IJl.r]:"k)v is the projectivization of ( l.’]t‘k)v. Once again, these maps are well
defined because the maps 1//6:‘,( are surjective, whicll follows from Bridgeland’s de-
scription of Q’. As in the case of Q, an element of R, (Q’) is completely determined
by the data

a?iH € E?i+1 C Homy (n*E;, 7*E; 1)y = Homy(E;, E;+1)" foralli <n

anda!, e ¢!, CHomy (7*E,, 7*E;){ = Homy(E,, E; ® K;])v,
subject to certain relations.

Consider the G-equivariant projection from Ry (Q) to Ry (Q) given by remem-
bering only the degree zero parts a° and £°.

Proposition 4.1. Suppose that there exist nonnegative integers {m;;} such that
domy (E,, Ey® Ki') = (X) domy (E;, Ej)®".
i,j

Then the projection from R, Q) to Ry (Q) has the structure of an equivariant line
bundle.

Proof. Given an element (a°, £°) € ﬁa (Q), we will show that the degree one line
€, S P(Homy (E,, E1®Ky"))

of a preimage is uniquely determined, and that any point arlll € E’lﬂ extends (a°, £°)
to an element of R, (Q). To see £ }ll is uniquely determined, let m = max; ;{m;;}.
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By composing maps of the form W; ; . 11, as we wrap m times around the quiver Q’,
we find that
e @)@ @ ), ® (4,)".

n—ln
The right side of the line above contains (5?2)‘8'"'2 R - ® (Zfl)_l n)®’””*1" ® 6,111
as a factor. The lines (£))®"2 ®...® (€2, )®™-1n and ¢!, are both contained
in P(Homy(E,, E; ® K ;1), and the symmetries of the compositions of the maps
W, i« imply that anything in their image is invariant under the interchanging of these
factors. Thus £}, must be equal to (£),)®"2 ®...® (£0_ Y&m-1n,

The defining equations for R,(Q’) are linear in agl, and therefore to see that
they are satisfied by every element a}ll € 6,1”, it will suffice to find one element
of Ry(Q') lying over (a’, £°) in which a!, is nonzero. Suppose that the image
of a® in the stack Rep, Q is equal to T(p) for some p € X. In other words, a®
is obtained from p by choosing an isomorphism E,’| p,=tforeachi. LetgeV
be a nonzero element of the fiber of Ky at p. Our choices of trivializations of
the vector spaces E;’| » induce trivializations of the pullbacks T*E)| 4> and thus
T'(q) € Rep, Q' lifts naturally to an element of R, (Q’) extending a’. In Remark
2.9, we observed that the helix condition ensures that #omy (E;, E;1) is generated
by global sections for all i. This observation applies equally well when i = n, so
#Homy (E,, E1 ® Ky 1 is also generated by global sections. It follows that 77(q)
lifts further to a unique element of R, (Q) extending @®,£% e R, (Q), and that
ai , #0.

We have now shown that the fibers of the map from R, (Q’) to R, (Q) are vector
spaces of dimension at most one, and that the dimension is equal to one over
those elements (a, £°) such that a° lies over the image of 7. But this is a dense
open condition, and the dimension of the fiber of an algebraic map is an upper
semicontinuous function. Hence the dimension of the fiber must always be exactly
one. O

Example 4.2. Consider the data of Example 2.1, in which X = P2 and R, (Q) is
the variety of pairs of proportional vectors in the three-dimensional vector space
[ (0(1))Y. The quiver Q' is obtained by adding arrows from node 1 to node 3
indexed by the vector space Hom (0(2), 6(3)) = I" (0(1)), and the relations tell
us that an element of R, (Q’) is a triple of proportional vectors in I' (0(1))". The
projection from R, (Q’) to R,(Q) has fibers which are generically lines, but the
fiber over zero is a vector space of dimension 3. After blowing up the origin of
" (0(1))Y, we obtain

Re(Q) = {an, a3 e € ST (O(1)},
Ry (Q) = {a},, ads, a3, e € ST (0(1))"},

and the fibers of the induced projection are all lines.
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If the conclusion of Proposition 4.1 holds, let & be the dual of the corresponding
line bundle.

Theorem 4.3. The GIT quotient of Ry (Q) with respect to the polarization & is
isomorphic to X, with line bundle K L

Proof. Let x,, be the character associated to the collection {m;;} as in Section 2, and
let x = xm+(=1,0,...,0, 1), so that E,, = K. The fact that #omy (E;, E; 1)
is generated by global sections ensures that the natural projection from Ry (Q) to
Ry (Q)¢aut s an isomorphism over R, (Q)éu;”, and this isomorphism identifies &
with the restriction of the trivial line bundle on R, (Q) twisted by the character y.
Thus Iéa (Q) /¢ G is isomorphic to the tautological component of Ry (Q) 1, G=
M, , which is isomorphic to X in its anticanonical embedding by Theorem 2.4,

Proposition 2.8, and Remark 2.9. U

Remark 4.4. We note that the collection {m;;} satisfying the hypotheses of Propo-
sition 4.1 may not be unique. In Example 2.1, we may take m, = 1 and mo3 =0,
or vice versa; these choices give us two different characters x which define the
same stability condition on R,(Q). Theorem 4.3, on the other hand, requires no
choices.

Remark 4.5. Since R, (Q’) is projective over R, (Q')iut, they have the same ring
of global functions. This tells us that

Spec I'(OF ) = Spec T (O (g1),,,) = Ra(Q)raut /o G.

the underlying reduced variety of which isomorphic to Vy by Theorem 3.1. Recall
that Vj is obtained from V by collapsing the zero section of Ky to a point. The
GIT quotient R,(Q) /¢ G is isomorphic to Proj @g @ which is obtained from

Spec r(q% ) =Vo

by throwing away the tip of the cone and dividing by the natural action of G,,. This
tells us that any nonreduced structure of Ry (Q’)taut /o G must be concentrated at the
tip of the cone. If we had known this fact a priori, then it would have constituted
an alternative proof of Theorem 4.3.

Remark 4.6. We have used the hypothesis that the collection E1, ..., E, generates
a simple helix throughout this section, but we remark that in some examples, our
methods may be applied to a simple spiral as well. Consider, for example, the
collection 0, 0(1,0), O(1, 1), 6(2,1) on P! x P!, extended to a simple spiral by
the canonical bundle O(—2, —2). (Note that this is not the same collection that we
used in Example 3.5.) In this case, Q has arrows only between adjacent nodes with
all composition maps surjective, and Q' is obtained from Q by adding arrows from
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the first node to the last. Thus we may define Ry (Q) and R, (Q)) exactly as we do
in the helix case, and Theorem 4.3 will still hold.
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