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GIUSEPPINA D’AMBRA AND MAHUYA DATTA

Let M be a smooth manifold of dimension n with two Riemannian metrics
g1, g2 which are related by a2 g1 < g2 < b2 g1. Let R q be the Euclidean space
with two Euclidean metrics h1, h2 such that h1 − h2 has distinct eigenval-
ues. Further, suppose that c2h1 − h2 is nondegenerate for each c ∈ (a, b),
and r±(a2h1 − h2) ≥ 2n, where r+ and r− denote respectively the positive
and the negative ranks of an indefinite metric. Under these conditions we
show that there exists an almost everywhere differentiable (Lipschitz) map
f : M −→ R q satisfying (d fx)

∗hi = gi for i = 1, 2 for almost all x ∈ M.

1. Introduction

It is a classical result due to Nash and Kuiper that a Riemannian manifold (M, g)
admitting a C∞-immersion in R q also admits a C1-immersion f : M → R q such
that f ∗h =g provided q>n, where h is the canonical metric on R q . Gromov gener-
alised this result via the method of convex integration by showing that if there exists
a strictly short immersion of (M, g) into another Riemannian manifold (N , h) then
there exists an isometric C1-immersion f : M → N , when dim N > dim M . He
further proved that in the equidimensional case, there are almost everywhere differ-
entiable (Lipschitz) maps whose derivatives d f are isometric almost everywhere on
M . By an abuse of language, such maps will be referred as the Lipshcitz isometric
maps ; classically, the Lipschitz maps which preserve the lengths of all rectifiable
curves relative to the given metrics are referred as isometric maps. Our notion of
Lipschitz isometric maps satisfy a much weaker condition; in fact, such an f may
collapse a submanifold of positive codimension in M to a single point.

In this paper we generalise the above mentioned result of Gromov when both
the manifolds M and N come with a pair of Riemannian metrics.
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Let M be a smooth manifold of dimension n. Let R q be the q-dimensional
Euclidean space with two Euclidean metrics h1 and h2 which satisfy the following
conditions: There exist two numbers 0< a < b such that

(1) c2h1 − h2 is a nondegenerate indefinite form for each real number c lying in
[a, b];

(2) r+(a2h1 −h2)≥ 2n and r−(b2h1 −h2)≥ 2n, where r+ and r− denote respec-
tively the positive and the negative ranks of an indefinite metric; and

(3) if A : R q
→ R q is the unique linear isomorphism given by h2(v,w) =

h1(Av,w) for all v,w ∈ R q , then A has distinct eigenvalues.

Theorem 1.1. Let g1, g2 be two Riemannian metrics which are related by a2g1 <

g2<b2g1. Then under assumptions (1)–(3) mentioned above, there exists an almost
everywhere differentiable (Lipschitz) map f : M → R q satisfying (d fx)

∗hi = gi

for i = 1, 2 for almost all x ∈ M. Moreover, such maps are C0-dense in the space
of strictly (g1, g2)-short maps (see Definition 5.1).

We further observe that if M is a one-dimensional manifold, then (under the
same hypothesis) there exists a C1-map f : M → R q such that f ∗hi = gi for
i = 1, 2.

The maps f obtained in Theorem 1.1 will be referred as Lipschitz isometric
maps for pairs of metrics. If R q is replaced by a general manifold N in Theorem 1.1
we may have to presuppose the existence of strictly (g1, g2)-short maps in order to
conclude the existence of Lipschitz isometric maps [Gromov 1986, 2.4.9 (A)]. It
may be observed that (g1, g2)-short maps always exist for N = R q (see Proposition
5.2).

In our earlier paper [D’Ambra and Datta 2002] we proved the existence of iso-
metric C1-immersions M → R q for pairs of Riemannian metrics when

r±(c2h1 − h2)≥ 3n + 2

for all c ∈ [a, b], generalizing the Nash–Kuiper C1-immersion theorem. The proof
was based on Nash’s technique for obtaining isometric C1-immersions.

In the present paper, we have substantially relaxed the restrictions on r±, how-
ever, at the cost of C1-regularity of solutions. Our study of Lipschitz isometric
maps f : (M, g1, g2)→ (R q , h1, h2) relies extensively on the convex integration
theory which incorporates the essence of the approach of Kuiper [1955]. The
key idea of the method of convex integration can be stated as follows: If A is
a connected subset of R q such that the interior of the convex hull of A con-
tains the origin then there is a C1-map f : S1

→ R q whose derivative maps S1

into A. This can be viewed as the convex integration over a circle. However,
in this paper we obtain only Lipschitz solutions in contrast with C1-solutions in
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[D’Ambra and Datta 2002]. The reason behind this is that we are unable to solve
the connectivity problem for the subsets of the form S1 ∩ S2 ∩ T , where S1 and S2

are two spheres in R q relative to the metrics h1 and h2 respectively and T is an
affine subspace in R q .

We organize the paper as follows. We devote Section 2 to review the basic
language of h-principle theory and convex integration techniques to deal with open
first order partial differential relations. In Section 3 we introduce the notion of
(h1, h2)-regularity for C1-maps f : M → R q and study the geometry underlying
the regularity condition which plays a crucial role in our treatment. In Section 4
we prove the Main Lemma (Lemma 4.1) leading to Theorem 1.1 and in Section
5 we prove the existence of an approximate solution to our problem. The proof
of the Main Theorem (Theorem 1.1) is given in Section 6. The one-dimensional
case is separately studied in Section 7 where we show that there exists, in fact, a
C1-solution.

2. Review of convex integration techniques

In this section we recall the terminology of the theory of h-principle and discuss
in brief the main result of convex integration technique following [Eliashberg and
Mishachev 2002].

Let f be the germ of some local Cr -map at x ∈ M . The r -jet of f at x is by
definition the ordered tuple

jr
f (x)=

(
x, f (x), D f (x), . . . , Dr f (x)

)
,

where Dk f denotes the derivative map of f of order k. The collection of all such
r -jets constitutes the total space of a fibre bundle over M which is denoted by
pr

: J r (M, N ) → M . The bundle is referred as the r -jet bundle associated with
the space of Cr -maps from M to N .

If r = 1 then
j1

f (x)=
(
x, f (x), D f (x)

)
and J 1(M, N ) can be identified with the total space of the bundle Hom (T M, T N ).

A continuous map σ : M → J 1(M, N ) is said to be a section if pr
◦ σ = idM .

If f : M → N is a Cr -map then its r -jet map jr
f defined by

jr
f (x)=

(
x, f (x), D f (x), . . . , Dr f (x)

)
is a section of pr .

Definition 2.1. An r-th order partial differential relation is a subset R of J r(M,N ).
A Cr -map f : M −→ N is said to be a solution of R if its r -jet map jr

f maps M
into R.
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A section of pr whose image is contained in R is called a formal solution of
the differential relation. A formal solution of R is said to be holonomic if it is the
r -jet map of some Cr -map f : M → N .

A differential relation R is said to satisfy the h-principle if every formal solution
σ can be homotoped to a holonomic section in the space of all formal solutions.

Definition 2.2. Let � be an open subset of a manifold M . A continuous map
f from � into a manifold N is said to be piecewise Cr if there exists a countable
system of mutually disjoint open sets� j ⊂� which cover� up to a set of measure
zero and the restriction of f to each � j is Cr .

Let R ⊂ J r (M, N ) be an r -th order differential relation. A piecewise Cr -map
f : M → N is said to be a piecewise Cr -solution of R if jr

f (x) ∈ R for all x ∈ M
where the r -th derivative of f exists.

The convex integration technique gives solutions to h-principle for some dif-
ferential relations which satisfy certain convexity condition. The key idea of the
convex integration technique is stated in the following lemma.

Lemma 2.3 [Gromov 1986, 2.4.1]. Let A be a connected subset of R q and let 0
belong to the interior of the convex hull of A. Then there exists a C1-map f :

[0, 1] → R q such that f ′(t) ∈ A for all t ∈ [0, 1]. Moreover, f can be made to lie
in an arbitrary small neighbourhood of 0.

If the connectivity condition on A is dropped in the above lemma then it delivers
a piecewise linear map f such that f (0) = f (1) = 0 and f ′(t) ∈ A whenever f
is differentiable [Eliashberg and Mishachev 2002, §17.4(D)]. More generally we
obtain:

Proposition 2.4. Let R be an open subset of J 1(R,R q) and let f : [0, 1] → R q be
a continuous function which is C1 on (0, 1). Suppose that j1

f (x) lies in the convex
hull of Rb(x) for all x ∈ (0, 1), where

b(x)= (x, f (x)) ∈ J 0(R,R q).

Then f can be homotoped to a piecewise C1-solution f1 of R in any C0-neighbour-
hood of f such that f1(0)= f (0) and f1(1)= f (1).

Proof. Consider any ε > 0. Appealing to one-dimensional convex integration
[Eliashberg and Mishachev 2002, §17.3] we can construct a piecewise linear map
f 1 on the interval [ε, 1 − ε] which coincides with f at the boundary points and is
a piecewise C1-solution of R on (ε, 1−ε). Next consider, for each n ≥ 1, a pair of
disjoint intervals In = [ε/2n, ε/2n−1

] and Jn = [1−ε/2n−1, 1−ε/2n
]. The interior

of these sets cover [0, 1] up to a set of measure zero. Now, applying [Eliashberg
and Mishachev 2002, §17.3] again to the restriction of f to In ∪ Jn we obtain a
piecewise linear map f n on In ∪ Jn which coincides with f at the endpoints and
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satisfies the differential relation except at the points where the derivative does not
exist. Further, we can choose f n to be ε/2n-close to f on the set. Now all these
maps patch together to give a piecewise linear map f1 on (0, 1). Further, this map
extends continuously to the closed interval [0, 1] and the extended map satisfies
the desired conditions. �

Remark. If f is a solution of R on a neighbourhood of some closed subset K , then
the homotopy remains constant on some (possibly smaller) open neighbourhood
of K .

The result above may be generalised to a parametric version following [Eliash-
berg and Mishachev 2002, §17.5.1].

Proposition 2.5. Let R be an open subset of I l
× J 1(R,R q) and

Rp = p × J 1(R,R q)∩ R.

Let f : I l
× I → R q be a continuous function which is C1 in the interior of I l

× I .
Let f p denote the restriction of f to p × I and suppose that for each p, the pair
( f p,Rp) satisfies the hypothesis of Proposition 2.4. Then f can be homotoped to
a piecewise C1-map f1 in any C0-neighbourhood of f such that

(1) ( f1)p is a piecewise C1-solution of Rp;

(2) f1 = f on I l
× {0, 1};

(3) the first order derivatives of f1(p, t) with respect to p are arbitrarily C0 close
to the respective derivatives of f (p, t).

Further, if f p is a genuine solution of Rp for p ∈ Op ∂ I l then the homotopy
can be kept constant for p ∈ Op ∂ I l . (The notation Op ∂ I l is used to denote a
nonspecified open neighbourhood of ∂ I l which may become smaller in the course
of the argument.)

We shall now state the main result on convex integration which yields piecewise
C1-solutions to certain open relations. Before stating it we need to recall the basic
language of ⊥-jets.

Let τ be an integrable hyperplane field on R n . With respect to this τ we define
an equivalence relation ∼ on J 1(R n,R q) as follows: If (x, y, α), (x, y, β) lie in
the same fibre over (x, y) ∈ J 0(R n,R q), then

α ∼ β if and only if α|τ = β|τ .

The equivalence class of (x, y, α), denoted as Pα, is an affine subspace of di-
mension q in the jet space. Indeed, if we fix a vector field v on R n transversal
to τ , then (x, y, β) ∈ Pα is completely determined by β(v) ∈ R q . Thus relative
to τ we can slice the 1-jet space into q-dimensional affine subspaces Pα. Pα is
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called the principal subspace through (x, y, α) corresponding to τ . The set of
equivalence classes is denoted by J⊥(R n,R q) and there is a canonical projection
p : J 1(R n,R q)→ J⊥(R n,R q) which takes a 1-jet onto its equivalence class. Let
j⊥

f = p ◦ j1
f .

Identifying j1
f (x) with ( j⊥

f (x), d fx(v)) we can write

J 1(R n,R q)= J⊥(R n,R q)× R q .

Note that when n = 1, J⊥(R 1,R q)= J 0(R 1,R q)= R × R q .

Theorem 2.6. Let R be an open subset of J 1(R n,R q). Let f0 : I n
→ R q be a

piecewise C1-function such that j1
f0
(x) lies in the convex hull of Rb(x) whenever the

derivative exists, where b(x) = j⊥

f0
(x). Then there exists a piecewise C1-solution

of R, f1 : I n
→ R q , which is homotopic to f0. Moreover, the homotopy can be

made to lie in an arbitrary C0-neighbourhood of f0.
Further, if f0 is a piecewise C1-solution of R on some open neighbourhood

of a compact set K ⊂ I n , then the homotopy remains constant on some (possibly
smaller) neighbourhood of K .

For the sake of completeness we include the proof from [Eliashberg and Misha-
chev 2002].

Proof. Consider the splitting of the cube I n as I n−1
× I . Form a relation

R1
⊂ I n−1

× J 1(R,R q)

fibred over I n−1 as follows:
For each x ∈ I n let P

(
j⊥

f (x)
)

denote the principal subspace through j1
f (x) cor-

responding to the splitting I n−1
× I . Let �( f (p, t)) be the subset defined by{

j⊥

f (p, t)
}
×�( f (p, t))= P

(
j⊥

f (p, t)
)
∩ R.

By the given hypothesis, ∂t f (p, t) belongs to the convex hull of �( f (p, t)) in
P

(
j⊥

f (x)
)
. Since R is open there is an open neighbourhood Dq

ε ( f (p, t)) of f (p, t)
in R q and an open subset �′( f (p, t)) contained in �( f (p, t)) such that

(1) �′( f (p, t)) contains ∂t f (p, t) in its convex hull and

(2) {(p, t)}×Dq
ε ( f (p, t))×{∂p f (p, t)}×�′( f (p, t))⊂R for all (p, t)∈ I n−1

×I .

In the above, ∂t and ∂p respectively denote the derivatives of the function with
respect to the coordinates t and p.

For each p ∈ I n−1 define a relation R1
p ⊂ J 1(R,R q) as

R1
p =

{
(t, y, v) ∈ I × R q

× R q
: y ∈ Dq

ε ( f (p, t)), v ∈�′( f (p, t))
}
.

Then R1
=

⋃
p {p}×R1

p is a fibred relation in I n−1
× J 1(R,R q) which is defined

over an open neighbourhood of the graph of the section f in I n
× R q .
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Further for an appropriate choice of �′( f (p, t)) we may assume that R1 is an
open fibred relation in I n−1

× J 1(R,R q).
Also note that for a fixed p ∈ I n−1, t 7→ f (p, t) is a short solution of R1

p.
We now apply the parametric one-dimensional convex integration to obtain a

piecewise C1-homotopy fτ of fibrewise “short” (see [Eliashberg and Mishachev
2002] for the definition) solutions of R1 which is C0 close to f and satisfies

fτ (p, 0)= f (p, 0) and fτ (p, 1)= f (p, 1)

for all p ∈ I n−1. Furthermore, the first order derivatives of f1(p, t) with respect to
the parameter p (wherever exist) are arbitrarily C0 close to the respective deriva-
tives of f (p, t). Hence,(

f1(p, t), ∂p f (p, t), ∂t f1(p, t)
)
∈ R.

Since R is open and since the derivatives of f1 with respect to p are arbitrarily
close to the respective derivatives of f it follows that(

f1(p, t), ∂p f1(p, t), ∂t f1(p, t)
)
∈ R.

Thus f1 is a solution of R with the desired properties. �

Remark 2.7. We refer the reader to [Gromov 1986, p. 218] for a general result
on the existence of (almost everywhere differentiable) Lipschitz solutions to some
differential relations.

3. (h1, h2) regularity and underlying geometry

Throughout this section h1 and h2 will denote two positive definite symmetric
bilinear forms on R q . For any subspace V of R q , we shall denote its orthogonal
complement with respect to hi by V ⊥ i for i = 1, 2.

Definition 3.1. A subspace V of R q is said to be (h1, h2)-regular if V ⊥1 is transver-
sal to V ⊥2 .

Observe that if A : R q
−→ R q is the (unique) linear transformation defined by

h2(v,w)= h1(Av,w) for all v,w ∈ R q , then a subspace V in R q is regular if and
only if V + A(V ) has the maximum dimension.

Definition 3.2. A vector v ∈ R q is said to be (h1, h2)-regular provided the one-
dimensional subspace 〈v〉 spanned by v is a (h1, h2)-regular subspace of R q .

Observation 1. A vector v is (h1, h2)-regular if and only if v and Av are linearly
independent, A : R q

−→ R q being the unique linear map defined above. Con-
sequently, the set of nonregular vectors precisely consists of the eigen-vectors of
A.
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The following observation brings out the underlying geometry of the (h1, h2)-
regular vectors.

Observation 2. Let (R q , h1, h2) be as in the above. We shall denote the norms of
a vector w ∈ R q relative to h1 and h2 by ‖w‖1 and ‖w‖2 respectively. Let

Sr =
{
w ∈ R q

∣∣ ‖w‖1 = r
}

and Er =
{
w ∈ R q

∣∣ ‖w‖2 = r
}

denote the spheres of radius r in R q relative to the two metrics. Observe that, a
vector v∈ Sr ∩Er ′ is (h1, h2)-regular if and only if Sr and Er ′ intersect transversally
at v. Indeed, v is a regular vector if and only if v⊥1 is transversal to v⊥2 . If
v ∈ Sr ∩ Er ′ , then v⊥1 is tangent to Sr at v and v⊥2 is tangent to Er ′ at v. Therefore
it follows that Sr is transversal to Er ′ at v.

Observation 3. Let V be a (h1, h2)-regular subspace of R q of dimension (n − 1)
and let

X = V ⊥1 ∩ V ⊥2 = (V ⊕ A(V ))⊥1 .

Then X has codimension 2(n − 1) in R q . For any vector w ∈ R q , τ ⊕ 〈w〉 is
an (h1, h2)-regular subspace if and only if w⊥1 ∩ X is transversal to w⊥2 ∩ X in
X . Indeed, V ⊕ 〈w〉 is a (h1, h2)-regular subspace if and only if (V ⊕ 〈w〉)⊥1 is
transversal to (V ⊕ 〈w〉)⊥2 , that is, if and only if

codim
(
(V ⊕ 〈w〉)⊥1 ∩ (V ⊕ 〈w〉)⊥2

)
= 2n.

This is equivalent to saying X ∩w⊥1 ∩w⊥1 has codimension 2 in X . Thus w⊥1 ∩ X
is transversal to w⊥2 ∩ X .

Let T be a translate of X through w. Suppose that r = ‖w‖1 and r ′
= ‖w‖2.

Since w⊥1 ∩ X is the tangent space of Sr ∩T at w and w⊥2 ∩ X is the tangent space
of Er ′ ∩ T at w, it follows from the above that the sets Sr ∩ T and E ′

r ∩ T intersect
transversally in T at w.

In particular, we can show that if w is in X , then V ⊕ 〈w〉 is (h1, h2)-regular if
and only if w is (h̄1, h̄2)-regular, where h̄1 and h̄2 denote the restrictions of h1 and
h2 respectively to X .

Let A denote the unique linear transformation X → X such that

h̄2(v,w)= h̄1(Av,w) for v,w ∈ V .

Ifw∈ X is (h̄1, h̄2)-regular thenw and A(w) are linearly independent. Let A(w)=
x + x⊥, where x ∈ X and x⊥

∈ X⊥1 . Then

h2(w, v)= h1(Aw, v)= h1(x + x⊥, v)= h1(x, v)

for all v ∈ X . Hence x = A(w). This proves that Aw = Aw+ x⊥. Since w, Aw
are linearly independent in X and x⊥

6∈ X it follows that w and Aw are linearly
independent and consequently, V ⊕ 〈w〉 is (h1, h2)-regular.
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Definition 3.3. Let N be a smooth manifold with two Riemannian metrics h1 and
h2. A smooth map f : M → N will be called (h1, h2)-regular if for each x ∈ M ,
d fx(Tx M) is a (h1, h2)-regular subspace of T f (x)N .

Proposition 3.4 [D’Ambra and Datta 2002]. Let h1, h2 be two positive definite
symmetric bilinear forms on R q such that the eigen-values of A (as defined above)
are all distinct. Then a generic map f : M −→ R q is (h1, h2)-regular if q exceeds
3 dim M − 1.

4. The Main Lemma

Let M be a smooth manifold of dimension n. Let R q be the q-dimensional Eu-
clidean space. In what follows h1 and h2 will denote two Euclidean metrics on R q

which satisfy the following conditions:
There exist two numbers 0< a < b, such that

(1) c2h1 − h2 is a nondegenerate indefinite form for each real number c lying in
[a, b];

(2) r+(a2h1 −h2)≥ 2n and r−(b2h1 −h2)≥ 2n, where r+ and r− denote respec-
tively the positive and the negative ranks of an indefinite metric; and

(3) if A : R q
→ R q is the unique linear isomorphism given by h2(v,w) =

h1(Av,w) for all v,w ∈ R q , then A has distinct eigenvalues.

Lemma 4.1. Let g1 and g2 be two Riemannian metrics on M which are related by
a2g1 < g2 < b2g2. Let f : M → R q be an (h1, h2)-regular immersion such that

g1 − f ∗h1 = φ2dψ2 and g2 − f ∗h2 = c2φ2dψ2,

where φ, ψ are smooth functions on M , φ has compact support contained in an
open set U of M and a < c < b.

Then there exists a piecewise C1-map f̄ which is a fine C0-approximation of f
and has the following properties:

(1) f̄ coincides with f outside U ;

(2) f̄ ∗hi is arbitrarily close to gi ( f̄ ∗hi ≈ gi ) for i = 1, 2 relative to the fine
C0-topology on each component where f̄ is C1.

Proof. Let I denote the subset of J 1(M,R q) consisting of all 1-jets (x, y, α) such
that α∗h1 = g1 and α∗h2 = g2. Let τ be the hyperplane field over U defined by
ker dψ . Then τ is integrable and its integral submanifolds are precisely the level
sets of the function ψ .

Consider the bundle

p1
⊥

: J (1)(U,R q)→ J⊥(U,R q)
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relative to the hyperplane distribution τ on U . An element b of J⊥(M,R q) is of
the form b = (x, y, β), where x ∈ U , y ∈ R q and β : τx → R q is a linear map. The
fibre over b consists of all linear maps α : Tx M → R q which restricts to β on τx .

To describe the intersection of the relation I with the principal subspaces of the
fibration p1

⊥
, we choose a vector field v0 on T U such that

‖v0‖1 =
√

g1(v0, v0)= 1 and g1(v0, τ )= 0

on U ⊃ supp φ. Let ‖v0‖2 =
√

g2(v0, v0) = r ; then r is a smooth function on U
satisfying the inequality a < r(x) < b for all x ∈ U . Let p′

: I → J⊥(M,R q)

denote the restriction of p1
⊥

to I. Recall that a 1-jet (x, y, α) in a principal subspace
J 1

b (U,R q) is completely determined by its value at v0. Moreover, if

(x, y, α) ∈ Ib = J (1)b (U,R q)∩ I,

then α(v0) is contained in the unique affine space

Tb =
{
w ∈ R q

∣∣ h1(w, β(τ))= 0 and h2(w, β(v))= g2(v0, v) for all v ∈ τ
}
,

where b = (x, y, β) ∈ J⊥(U,R q). Note that the equation h2(w, β(v))= g2(v0, v)

defines an affine subspace of R q which is a translate of β(τ)⊥2 . If α is (h1, h2)-
regular then, in particular, β(τx)

⊥1 is transversal to β(τx)
⊥2 and the same is true for

any translates of these spaces. Thus Tb is an affine plane of codimension 2(n −1).
Moreover, this is the translate of the vector subspace Xb = β(τx)

⊥1 ∩ β(τx)
⊥2 in

R q .
Thus J (1)(U,R q)∩I is contained in an affine subbundle of codimension 2(n−1)

(over some open subset of J⊥(U,R q)). Further, it follows that if

α ∈ J (1)b (U,R q)∩ I

then ‖α(v0)‖1 =1 and ‖α(v0)‖2 =r . Therefore we can characterize J (1)b (U,R q)∩I

as
J (1)b (U,R q)∩ I = {w ∈ Tb : ‖w‖1 = 1, ‖w‖2 = r}.

We shall now show that the pair ( f,I) satisfies the conditions stated in the
hypothesis of Theorem 2.6 except that I is not an open relation.

Notation. We fix the following notations for the subsequent discussion:

S = {w ∈ R q
: ‖w‖1 = 1}, E = {w ∈ R q

: ‖w‖2 = r}.

Sublemma 4.2. j1
f (x) lies in the convex hull of Ib(x) if r±(c2h1 − h2) ≥ 2n. In

other words, d fx(v0) lies in the convex hull of the set

{w ∈ Tb(x) : ‖w‖1 = 1, ‖w‖2 = r},

where b(x)= j⊥

f (x).
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Proof of Sublemma 4.2. Observe that

(1) d fx(v0) lies in Tb(x), and

(2) d fx(v0) satisfies the equation

c2(1 − ‖w‖
2
1)= r2

− ‖w‖
2
2

since g2 − f ∗h2 = c2(g1 − f ∗h1).

The above equation can be equivalently expressed as (c2h1 −h2)(w,w)= c2
−r2.

This represents a generalised hyperboloid H since r±(c2h1 − h2)≥ 2n. It may be
seen easily that H ∩ S = E ∩ S = H ∩ E .

Since r±(c2h1 − h2) ≥ 2n, H is generated by affine subspaces of dimension
2n − 1. To see this, let h be a nondegenerate symmetric bilinear form on R q of
signature (q+, q−). Let v ∈ H be such that h(v, v) = d 6= 0 and let V denote the
h-orthogonal complement of the subspace generated by v. Then V has dimension
n − 1 and

r+(h|V )≥ q+ − 1, r−(h|V )≥ q− − 1.

Consequently, V admits a regular h-isotropic subspace I of dimension

min(q+ − 1, q− − 1).

Here regularity means that I does not intersect the kernel of h|V . Consider the
affine subspace W = I + v. It is easy to see that h(w,w) = d for every w ∈ W .
This proves the above assertion.

Let Ax be an affine subspace in H which passes through d fx(v0). Since

codim Tx = 2(n − 1) < 2n − 1 = dim Ax ,

the intersection Tx ∩ Ax is an affine subspace of dimension at least 1. Since
d fx(v0) ∈ Tx ∩ Ax and ‖d fx(v0)‖1 < 1, Tx ∩ Ax ∩ S contains at least two points
and d fx(v0) lies in the convex hull of this intersection. Noting that

Tx ∩ Ax ∩ S ⊂ Tx ∩ E ∩ S,

we conclude that d fx(v0) lies in the convex hull of Tx ∩ E ∩ S. This completes the
proof of Sublemma 4.2. �

Now we conclude the proof of the Main Lemma (Lemma 4.1). Since I is not
an open relation we cannot directly apply Theorem 2.6 to the pair ( f,I). We take
an arbitrary small open neighbourhood Ĩ of I and apply Theorem 2.6 to the pair
( f, Ĩ). Thus we obtain a fine C0-approximation of f by a piecewise C1-solution
f̄ of Ĩ. Choosing Ĩ sufficiently small, we can make f̄ ∗h1 and f̄ ∗h2 arbitrarily C0

close to the pair (g1, g2) as desired. This completes the proof. �
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5. Approximate solution

We recall the definition of short maps from [D’Ambra and Datta 2002].

Definition 5.1. Let M be a manifold with two Riemannian metrics g1 and g2. A
C1-map f0 : M −→ (R q , h1, h2) is (g1, g2)-short if the metrics g1 − f ∗

0 (h1) and
g2 − f ∗

0 (h2) on M are positive definite. This will be expressed by gi − f ∗

0 (hi ) > 0
or gi > f ∗

0 (hi ), for i = 1, 2.

Proposition 5.2. Let M be a C∞-manifold with two Riemannian metrics g1 and
g2 which are related by a2g1 < g2 < b2g1. Then there exists a (g1, g2)-short C∞-
immersion f0 : M −→ (R q , h1, h2) which also satisfies the inequalities

(5-1)
a2(g1 − f ∗

0 h1) < (g2 − f ∗

0 h2) < b2(g1 − f ∗

0 h1),

a2 f ∗

0 h1 < f ∗

0 h2 < b2 f ∗

0 h1.

Proof. For any number c with a < c < b, consider the nondegenerate form
h̄ = c2h1 − h2. By the hypothesis of Theorem 1.1, r+(h̄) ≥ 2n and r−(h̄) ≥ 2n.
Therefore, there exists a C1-immersion f : M → R q such that f ∗(h̄) = 0. (This
follows from an exercise in [Gromov 1986, 2.4.9, Corollary (2′)]). Such an f
clearly satisfies the relation a2 f ∗h1 < f ∗h2 < b2 f ∗h1. Moreover, without any
loss of generality we may assume that the map f satisfying the above inequality
is smooth, because if that is not the case we replace f by a C∞-immersion which
is sufficiently C1 close to f .

Now, if M is a closed manifold, then starting with an f as above we can obtain
the required f0 by scaling the map f with a suitable scalar (see the corresponding
result in [D’Ambra and Datta 2002]). To obtain such an f0 in the case of open
manifolds we have to employ the partition of unity techniques. �

Let F denote the set of all piecewise C1-maps f : M → R q which satisfy the
following conditions at each point x ∈ M where f is differentiable:

F1. f is (h1, h2)-regular;

F2. f is (g1, g2)-short;

F3. a2(g1 − f ∗h1) < g2 − f ∗h2 < b2(g1 − f ∗h1);

F4. a2 f ∗h1 < f ∗h2 < b2 f ∗h1.

Proposition 5.3. Let f0 : M → R q belong to F and let 0< ε < 1 be any positive
number. Then there exists a piecewise C1-map f1 ∈ F such that the following
conditions are satisfied:

(1) εg1 < f ∗

1 h1 < g1 on the set of points where f is differentiable;

(2) f1 is arbitrarily close to f0 in the fine C0-topology.
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Remark 5.4. Condition (1) in the above proposition implies that f1 is strictly g1-
short and the induced metric f ∗

1 h1 is sufficiently close to g1 when ε is close to
1.

Proof. Fix a locally finite open covering {Ui } of M by coordinate neighbourhoods.
Since the metrics g1 − f ∗h1 and g2 − f ∗h2 are related by the inequalities (5-1) we
can get simultaneous decomposition of g1 − f ∗h1 and g2 − f ∗h2 as

ε(g1 − f ∗h1)=

∑
i

φ2
i dψ2

i and ε(g2 − f ∗h2)=

∑
i

c2
i φ

2
i dψ2

i

where ci ’s are constants which lie between a and b, and φi ’s and ψi ’s are smooth
real valued functions. Further, for each i , the function φi has compact support
contained in Ui [D’Ambra and Datta 2002, Decomposition Lemma]. Let us define
two sequences of Riemannian metrics {gi

1} and {gi
2} as

gi
1 = gi−1

1 +φ2
i dψ2

i and gi
2 = gi−1

2 + c2
i φ

2
i dψ2

i ,

where g0
1 = f ∗h1 and g0

2 = f ∗h2. Clearly, gi
1 < g1 and gi

2 < g2 for each i . Further,
since a2 f ∗h1 < f ∗h2 < b2 f ∗h1 and a < ci < b for each i , a2gi

1 < gi
2 < b2gi

1 for
each i .

By applying the Main Lemma (Lemma 4.1) successively (with an appropriate
choice of Ĩ for each i) we obtain a sequence of piecewise C1-maps such that

f̄ ∗

i hα ≈ gi
α,

for α = 1, 2, i = 1, 2, . . . and f̄i lies in a given neighbourhood of f in the fine
C0-topology. Note that each f̄i satisfies conditions F2 and F4. Since supp φi ⊂ Ui

for each i , where {Ui } is a locally finite open covering of M , the sequence f̄i is
eventually constant near any point x ∈ M . Therefore the sequence converges to a
piecewise C1-map on V . Let

f1 = lim
i→∞

f̄i .

If f̄i
∗hα are sufficiently close to gi

α for α = 1, 2 and for all i , then f1 can be made
to satisfy F2, F3 and F4. Further,

g1 − f ∗

1 h1 ≈ g1 − ( f ∗h1 + ε(g1 − f ∗h1))= (1 − ε)(g1 − f ∗h1) < (1 − ε)g1.

Hence f1 satisfies εg1 < f ∗

1 h1 < g1. �

6. Proof of the Main Theorem

We begin this section with some preliminaries on Lipschitz maps.

Definition 6.1. Let (X, d) and (Y, d ′) be two metric spaces and let f : X → Y be
a continuous map. The map f is said to be Lipschitz if there is a constant K > 0
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such that d ′( f (x), f (x ′)) < K d(x, x ′) for all x, x ′
∈ X . K is called the Lipscitz

constant for f .

A Riemannian metric g on a C∞-manifold M induces a canonical metric space
structure on M . If we denote this metric by dg, then the distance dg(x, x ′) between
two points x, x ′

∈ M is defined to be the infimum of the lengths of all piecewise
C1-paths in M joining x and x ′.

Definition 6.2. A continuous map f : (M, g)→ (N , h) from a Riemannian mani-
fold (M, g) into another Riemannian manifold (N , h) will be called Lipschitz if it
is a Lipschitz map relative to the metrics dg and dh on M and N respectively.

Example 6.3. A C1-isometric map f : (M, g) → (N , h) between Riemannian
manifolds is a Lipschitz map with a Lipschitz constant equal to 1. Hence, every
g-short map is also a Lipschitz map.

A Riemannian metric g on a manifold M induces a canonical volume measure
which we denote by µg. Measurability on (M, g) is therefore to be understood in
terms of this µg. Observe that if g′ is another Riemannian metric on M then a set
A in M has measure zero relative to µg if and only if it has measure zero relative
to µg′ .

We recall the following facts about Lipschitz maps between Riemannian mani-
folds from [Weaver 1999].

• Every Lipschitz map between Riemannian manifolds is almost everywhere
differentiable, since a Lipschitz map f : � → R q defined on some open
subset of R n is almost everywhere differentiable.

• The Lipschitz functions on a Riemannian manifold are precisely those which
have bounded measurable exterior derivative d f .

Definition 6.4. A Lipschitz map f : (M, g)→ (N , h) from a Riemannian manifold
(M, g) into another Riemannian manifold (N , h) will be called Lipschitz isometric
if d fx : Tx M → T f (x)N is isometric for almost all x ∈ M .

• If g1 and g2 are two Riemannian metrics on a manifold M satisfying a2g1 <

g2<b2g1 then a map f : M → R q is Lipschitz with respect to the pair (g1, h1)

if and only if it is Lipschitz with respect to the pair (g2, h2), where h1, h2 are
two linear metrics on R q . Therefore, there is no ambiguity when we speak of
almost everywhere differentiable Lipschitz maps in the context of Theorem
1.1.

Proof of Theorem 1.1. Since (h1, h2)-regular immersions are generic for q ≥

3 dim M , it follows from Proposition 5.2 that there is a (h1, h2)-regular immersion
f0 : M → R q which satisfies the inequalities in (5-1).

Let R denote the set of all 1-jets (x, y, α)which satisfy the following properties:
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(1) α is short relative to both (g1, h1) and (g2, h2);

(2) a2(g1 −α∗h1) < g2 −α∗h2 < b2(g1 −α∗h1);

(3) a2α∗h1 < α
∗h2 < b2α∗h1.

For every η > 0 define relations Rη by

Rη = R ∩ {(x, y, α) : (1 − η)g1 < α
∗h1 < g1}.

Let I denote the isometry relation

I = {(x, y, α) ∈ J 1(M,R q) : α∗h1 = g1, α
∗h2 = g2},

then:

• Each Rη is an open relation.

• The fibres of I over J 0(M,R q) are compact sets. Hence, the relations Rη are
uniformly bounded over compact sets in M .

• Let ηi be a sequence of positive numbers such that ηi → 0. If αi ∈ Rηi and
αi → α, then α ∈ I. (Compare with [Gromov 1986, p. 218].)

Let ηi be a sequence of constants converging to zero and δi be a sequence of
positive continuous functions on M such that the series

∑
i δi converges pointwise

on M . By applying Proposition 5.3 we obtain a sequence of piecewise C1-maps
fi : M → R q for i = 1, 2, . . . such that fi is a piecewise C1-solution of the
relation Rηi and the distance between fi (x) and fi+1(x) is less than δi (x) for all
x ∈ M . Thus the sequence { fi } converges (in the C0 compact open topology) to
a continuous function f on M . Since fi is a piecewise C1-solution of the rela-
tion Rηi , it is Lipschitz (relative to (g1, h1)) and the Lipschitz constants of fi are
uniformly bounded. Hence the limit function f is also a Lipschitz map [Weaver
1999]. Consequently, f is almost everywhere differentiable and the L∞ norm of
d f is finite on any coordinate neighbourhood of M .

We would further like to show that the sequence d fi , i = 1, 2, . . . , converges to
d f in L1(�) for any compact coordinate neighbourhood �. Since L1 convergence
of a sequence of functions guarantees the almost everywhere convergence of a
subsequence of the original sequence to d f , this would imply that f is a Lipschitz
solution of I on all of M (by a property of Rη discussed above).

However, to prove the desired L1 convergence we need to choose the functions
δi appropriately. First we fix a locally finite open covering of M by coordinate
neighbourhoods {�α : α = 1, 2, . . . }. For our convenience we choose each �α to
be compact. Suppose we have already constructed δi and fi for i = 1, 2, . . . , k.
Let {εα} be a sequence of positive numbers with 0< εα < 2−α such that

‖ d fi ∗ ρεα − d fi‖L1(�α) ≤ 2−α.
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The functions ρε are defined as in [Müller and Šverák 2003] by ρε = ε−nρ(x/ε),
where ρ : R n

→ R is the mollifying kernel, that is, a smooth nonnegative function
supported in the open unit disc in R n with

∫
ρ dx = 1.

Observing that there exists a positive continuous function ε on M which is
strictly less than εα on �α for each α = 1, 2, . . . , define

δi+1 = εδi .

Now we apply Proposition 5.3 to obtain a piecewise C1-solution of Rηi+1 such that
| fi+1 − fi |<δi+1. Proceeding this way we construct a sequence { fi }, i = 1, 2, . . . ,
which has all the desired property.

Now, arguing exactly as in [Müller and Šverák 2003, Theorem 3.2] we can prove
that d fi converges to the derivative map of f in L1(�α) for each α. This completes
the proof of the theorem. �

Remark 6.5. The proof of the main theorem begins with an immersion f0 : M→R q

satisfying the inequalities (5-1). If R q is replaced by a general manifold N then
such maps are no longer guaranteed. This is the main obstruction to generalise the
result for arbitrary manifold N in the place of R q . However, assuming the existence
of such maps we may possibly prove the existence of Lipschitz isometric maps for
pairs of Riemannian metrics [Gromov 1986, 2.4.9 (A)].

7. One-dimensional case

In this section we discuss the one-dimensional case which is the motivation to the
general problem.

Let M = S1 be the unit circle and let g1 = dθ2 be the canonical metric on S1.
Let g2 = c2g1. If f : S1

→ R q is a C1-immersion such that f ∗hi = gi for i = 1, 2
then ∥∥∥∂ f

∂θ

∥∥∥
1
= 1 and

∥∥∥∂ f
∂θ

∥∥∥
2
= c,

where ‖.‖i denote the norms relative to the metric hi for i = 1, 2. In other words,
∂ f
∂θ

∈ A, where A is given by

A =
{

y = (y1, . . . , yq) ∈ R q
:

∑
y2

i = 1 and
∑

λ2
i y2

i = c2 }
.

Lemma 7.1. Let h1 and h2 be two inner products on R q such that h1 − h2 is
nondegenerate. Let S1 and S2 denote the unit spheres relative to the metrics h1

and h2 respectively. Then S1 ∩ S2 has the same homotopy type as Sr+−1
× Sr−−1,

where r+ and r− are respectively the positive and the negative ranks of h1 − h2.
Consequently, if r± ≥ 2 then S1∩S2 is connected. Further the interior of the convex
hull of S1 ∩ S2 contains the origin.
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Proof. Let h1 − h2 be nondegenerate. Note that a nonzero vector v satisfies

(h1 − h2)(v, v)= 0

if and only if λv satisfies the same equation for all λ. This means that the one-
dimensional subspace `v containing v lies completely inside the solution space C
of h1 −h2 = 0. In other words, the solution space of this equation in R q is a cone.
Now, if h is an arbitrary positive definite quadratic form on R q then `v intersects
the unit sphere relative to h in exactly two points. Thus we see that S1 ∩ S2 has the
same homotopy type as the space of nonzero solutions of the equation h1 −h2 = 0.
Choose basis vectors in R q so that both h1 and h2 are in the diagonal form. The
set S1 ∩ S2 has the same homeomorphism type as the solution space of the system
of equations

x2
1 + · · · + x2

r+
+ y2

1 + · · · + y2
r−

= 1,

x2
1 + · · · + x2

r+
− y2

1 − · · · − y2
r−

= 0,

which is further equivalent to

x2
1 + x2

2 + · · · + x2
r+

=
1
2 ,

y2
1 + y2

2 + · · · + y2
r−

=
1
2 .

Therefore, S1 ∩ S2 has the homeomorphism type of Sr+−1
× Sr−−1, which is k-

connected for k ≤ min(r+ − 2, r− − 2). Thus if r± ≥ 2 then S1 ∩ S2 is con-
nected and nowhere flat. (Note that in the lowest admissible dimension the inter-
section is topologically equivalent to a torus embedded in S3.) Also note that
if (x̄1, . . . , x̄r+

, ȳ1, . . . , ȳr−
) ∈ S1 ∩ S2 then (±x̄1, . . . ,±x̄r+

,±ȳ1, . . . ,±ȳr−
) ∈

S1 ∩ S2, so that the convex hull of S1 ∩ S2 has nonempty interior and 0 belongs to
the interior convex hull of S1 ∩ S2. �

It follows from the above lemma that if r±(c2h1 − h2)≥ 2, then A is connected
and the interior of the convex hull of A contains the origin. Thus, by Lemma 2.3
there exists a C1-immersion f : S1

→ R q such that f ∗hi = gi for i = 1, 2 when
r±(c2h1 − h2)≥ 2.

On the other hand there does not exist any such isometric immersion if q ≤ 3
since it is observed in [Gromov 1986, 2.4.1(A) Example] that if f : S1

→ R q is
a C1-map whose derivative takes the unit circle S1 into a (connected) subset A,
then the convex hull of A must contain the origin. Indeed, if q = 3 and h1 − h2

is a nondegenerate indefinite form, then A is a disjoint union of two circles none
of which contains the origin in its convex hull, thereby ruling out the existence of
C1-immersion with the desired isometry property.

We conclude the paper with a conjecture:
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Conjecture. If r±(c2h1−h2)≥ 2n+1 for all c ∈ [a, b], then it is possible to obtain
a C1-solution of the general problem.
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