Pacific Journal of Mathematics

SPHERICAL NILPOTENT ORBITS IN POSITIVE **CHARACTERISTIC**

RUSSELL FOWLER AND GERHARD RÖHRLE

Volume 237 No. 2 Contract 2008

SPHERICAL NILPOTENT ORBITS IN POSITIVE CHARACTERISTIC

RUSSELL FOWLER AND GERHARD RÖHRLE

Let *G* be a connected reductive linear algebraic group defined over an algebraically closed field of characteristic *p*. Assume that *p* is good for *G*. In this note we classify all the spherical nilpotent *G*-orbits in the Lie algebra of *G*. The classification is the same as in the characteristic zero case obtained by D. I. Panyushev [1994]: for *e* a nilpotent element in the Lie algebra of *G*, the G -orbit $G \cdot e$ is spherical if a[nd only if the](#page-43-0) height of e is at most 3.

1. Introduction

Let *G* be a connected reductive linear algebraic group defined over an algebraically closed field *k* of characteristic $p > 0$. With the exception of Section 4.5, we assume throughout that *p* is *good* for *G* (see Section 2.1 for a definition).

A *[sphe](#page-44-0)[rical G](#page-44-1)*-variety *X* is an (irreducible) algebraic *G*-variety on which a Borel subgroup *B* of *G* acts with a dense orbit. Homogeneous spherical *G*-varieties *G*/*H*, for *H* a closed subgroup of *G*, are of particular interest. They include flag varieties (when *H* is a parabolic subgroup of *G*[\) as](#page-44-2) well as symmetric spaces (when *H* is the fixed point subgroup of an invol[utive](#page-45-0) automorphism of *G*). We refer the reader to [Brion 1987; 1995] for more information on spherical varieties and for their representation-theoretic significance. These varieties enjoy a remarkable property: a Borel subgroup of *G* acts on a spherical *G*-variety only with a finite number of or[bits. T](#page-45-1)his fundamental result is due to M. Brion [1986] and E. B. Vinberg $[1986]$ independently in characteristic 0, and to F. Knop $[1995, 2.6]$ in arbitrary character[istic.](#page-35-0)

Let $g =$ Lie *G* be the Lie algebra of *G*. The aim of this note is to classify the spherical nilpotent *G*-orbits in g. In case *k* is of characteristic zero, this classification was obtained by D. I. Panyushev [1994]. The classification is the same in case the characteristic of *k* is good for *G*: for $e \in \mathfrak{g}$ nilpotent, $G \cdot e$ is spherical if and only if the height of *e* is at most 3 (Theorem 3.38). The height of *e* is the

MSC2000: primary 20G15, 14L30; secondary 17B50.

Keywords: spherical orbit, nilpotent orbit, associated cocharacter.

The first author acknowledges funding by the EPSRC.

highest degree in the grading of g afforded by a cocharacter of *G* associated to *e* (Definition 2.25).

The methods employed by Panyushev [1994] do not apply in positive characteristic, that is, parts of the argument are based on the concept of "stabilizers in general [p](#page-9-0)osition"; it is unknown whether these exist generically in positive characteristic. Thus a different approach is needed to address the question in this case.

[We briefly sket](#page-45-2)ch the con[tents of the pa](#page-45-3)per. In Section 2 we collect the preliminary results we require. In particular, we discuss the concepts of complexity and sphericity, and more specifically the question of complexity of homogeneous spaces. In Section 2.5 [we recall th](#page-13-0)e basic results of Kempf–Rousseau Theory and in [Section 2.](#page-13-1)6 we recall the fundamental concepts of associated cocharacters for nilpotent elements from [Jantzen 2004, § 5] and [Premet 2003]. There we also recall the grading of g afforded by a cocharacter associated to a given nilpotent element and define the notion of the height of a nilpotent element as the highest occurring degree of such a grading (see Definition 2.25). The complexity of fibre bundles is discussed in Section 2.7, which is crucial for the sequel. In particular, in Theorem 2.32 we show that the complexity of a fixed nilpotent orbit $G \cdot e$ is given by the complexity [of a smaller re](#page-16-0)ductive group acting on a linear space. Precisely, let λ be a cocharacter of *G*, that is associated to *e*. Then P_{λ} is the destabilizing parabolic subgroup *P*(*e*) defined by *e*, in the sense of Geometric Invariant Theory. Moreover,

$$
L = C_G(\lambda(k^*))
$$

is a Levi subgroup of $P(e)$. We show in Theorem 2.32 that the complexity of $G \cdot e$ equals the complexity of the action of *L* on the subalgebra

$$
\bigoplus_{i\geqslant 2}\mathfrak{g}(i,\lambda)
$$

of g where the grading

$$
\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}(i, \lambda)
$$

is afforded by λ . In Section 2.8 we recall the concept of a weighted Dynkin diagram associated to a nilpotent orbit from [Carter 1985, § 5]. There we also present the classification of the parabolic subgroups *P* of a simple algebraic group *G* admitting a dense action of a Borel subgroup of a Levi subgroup of *P* on the unipotent radical of *P* [acco](#page-35-0)rding to [Bru[ndan](#page-21-0) 199[8, T](#page-24-0)heorem 4.1]. There we also remind the reader of the classification of the parabolic subgroups of *G* with an abelian unipotent radical.

In Section 3 we give the classification of the spherical nilpotent orbits in good characteristic: a nilpotent element e in $\mathfrak g$ is spherical if and only if the height of *e* is at most 3 (Theorem 3.38). In Sections 3.1 and 3.3 we show that orbits of height 2 are spherical and orbits of height at least 4 are not, respectively. The remainder of Section 3 deals with the cases of height 3 nilpotent classes. For classical groups these only occur for the orthogonal groups. For the exceptional groups the height 3 cases are handled in Section 3.7 with the aid of a computer programme of S. [M. Goodwin.](#page-39-0)

In Section 4 we discuss some furthe[r results and some appli](#page-45-4)cations of the classification. In Section 4.1 [we discuss the](#page-41-0) spherical nilpotent orbits that are distinguished and in Section 4.2 we extend a result of Panyushev in characteristic zero to good positive characteristic: a characterization of the spherical nilpotent orbits in terms of [pairwise orthogonal s](#page-44-3)imple [roots, see](#page-44-4) Theorem 4.14.

In Section 4.3 we discuss generalizations of results from [Panyushev and Röhrle 2001; 2005] to positive characteristic. In Theorem 4.18 we show that if α is an abelian ideal of a Borel subalgebra b of $\mathfrak g$, then $G \cdot \mathfrak a$ is a spherical variety. In Section 4.4 we describe a geometric characterization of spherical orbits in simple algebraic groups from [C[antarini et al. 2005\] and \[Car](#page-46-0)novale 2006]. Finally, in [Section 4.5](#page-44-5) we very briefly touch on the issue of spherical nilpotent orbits in bad characteristic.

Thanks to the fact that a Springer isomorphis[m betw](#page-44-6)een the unipotent variety of *G* and the nilpotent variety of g affords [a bijec](#page-45-2)tion between the unipotent *G*classes in *G* and the nilpotent *G*-orbits in g (see [Springer and Steinberg 1970, III, 3.12] and [Bardsley and Richardson 1985, Corollary 9.3.4]), there is an analogous classification of the spherical unipotent conjugacy classes in *G*.

For results on algebraic groups we refer the reader to Borel's book [1991] and for information on nilpotent classes we cite Jantzen's monograph [2004].

2. Preliminaries

2.1. *Notation.* Let *H* be a linear algebraic group defined over an algebraically closed field *k*. We denote the Lie algebra of *H* by Lie *H* or by h. We write H° for the identity component of *H* and $Z(H)$ for the centre of *H*. The derived subgroup of *H* is denoted by $\mathfrak{D}H$ and we write rank *H* for the dimension of a maximal torus of *H*. The unipotent radical of *H* is denoted by $R_u(H)$. We say that *H* is reductive provided H° is reductive. Let *K* be a subgroup of *H*. We write $C_H(K) = \{h \in H \mid hxh^{-1} = x \text{ for all } x \in K\}$ for the centralizer of *K* in *H*.

Suppose *H* acts morphically on an algebraic variety *X*. Then we say that *X* is an *H*-variety. Let $x \in X$. Then $H \cdot x$ denotes the *H*-orbit of *x* in *X* and $C_H(x) =$ ${h \in H \mid h \cdot x = x \text{ for all } h \in H}$ is the stabilizer of *x* in *H*.

For $e \in \mathfrak{h}$ we denote the centralizers of e in H and \mathfrak{h} by

$$
C_H(e) = \{ h \in H \mid \text{Ad}(h)e = e \},
$$

\n
$$
\mathfrak{c}_h(e) = \{ x \in \mathfrak{h} \mid [x, e] = 0 \}.
$$

For *S* a subset of *H* we write

$$
\mathfrak{c}_{\mathfrak{h}}(S) = \{ x \in \mathfrak{h} \mid \mathrm{Ad}(s)x = x \text{ for all } s \in S \}
$$

for the centralizer of *S* in h.

Suppose G is a connected reductive algebraic group. By $\mathcal N$ we denote the nilpo[tent cone](#page-44-7) of g. Let *T* be a maximal torus of *G*. Let $\Psi = \Psi(G, T)$ denote the set of roots of *G* with respect to *T* . Fix a Borel subgroup *B* of *G* containing *T* and let $\Pi = \Pi(G, T)$ be the set of simple roots of Ψ defined by *B*. Then $\Psi^+ = \Psi(B, T)$ is the set of positive roots of *G* with respect to *B*. For $I \subset \Pi$, we denote by P_I and *L^I* the *standard* parabolic and *standard* Levi subgroups of *G* defined by *I*, [respectively; see \[Cart](#page-46-0)er 1985, §2].

For $\beta \in \Psi^+$ write

$$
\beta = \sum_{\alpha \in \Pi} c_{\alpha\beta} \alpha
$$

with $c_{\alpha\beta} \in \mathbb{N}_0$. A prime *p* is said to be *good* for *G* if it does not divide $c_{\alpha\beta}$ for any α and β [Springer and Steinberg 1970, Definition 4.1]. Let $U = R_u(B)$ and set $u =$ Lie *U*. For a *T*-stable Lie subalgebra m of u we write

$$
\Psi(\mathfrak{m})=\{\beta\in\Psi^+\mid\mathfrak{g}_\beta\subseteq\mathfrak{m}\}
$$

for the set of roots of m (with respect to *T*).

For every root $\beta \in \Psi$ we choose a generator e_{β} for the corresponding root space \mathfrak{g}_{β} of \mathfrak{g} . Any element $e \in \mathfrak{u}$ can be uniquely written as

$$
e = \sum_{\beta \in \Psi^+} c_{\beta} e_{\beta},
$$

where $c_{\beta} \in k$. The *support* of *e* is defined as

$$
supp(e) = \{ \beta \in \Psi^+ \mid c_{\beta} \neq 0 \}.
$$

The variety of all Borel subgroups of G is denoted by \mathcal{B} . Note that \mathcal{B} is a single conjugacy class $\mathcal{B} = \{B^g \mid g \in G\}$. Also note the isomorphism $\mathcal{B} \cong G/B$.

Let $Y(G) = \text{Hom}(k^*, G)$ be the set of *cocharacters* (one-parameter subgroups) of *G*. Likewise, for a closed subgroup *H* of *G*, we set $Y(H) = \text{Hom}(k^*, H)$ for the set of cocharacters of *H*. For $\lambda \in Y(G)$ and $g \in G$ we define $g \cdot \lambda \in Y(G)$ by

$$
(g \cdot \lambda)(t) = g \lambda(t) g^{-1}
$$

for $t \in k^*$; this gives [a left action](#page-44-6) of *G* on $Y(G)$. For $\mu \in Y(G)$ we write $C_G(\mu)$ for the centralizer of μ under this action of *G* which coincides with $C_G(\mu(k^*))$.

By a Levi subgroup of *G* we mean a Levi subgroup of a parabolic subgroup of *G*. The Levi subgroups of *G* are precisely the subgroups of *G* which are of the form $C_G(S)$ where *S* is a torus of *G* [Borel 1991, Theorem 20.4]. Note that for *S* a torus of *G* the group $C_G(S)$ is connected [Borel 1991, Corollary 11.12].

2.2. *[Comple](#page-45-0)xity.* [Suppose the lin](#page-45-5)[ear algebraic gro](#page-45-1)up *H* [act](#page-46-1)s morphically on the (irreducible) algebraic variety *X*. Let *B* be a Borel subgroup of *H*. Recall that the *complexity of X* (with respect to the H [-action on](#page-45-6) X) is defined as

$$
\kappa_H(X) := \min_{x \in X} \operatorname{codim}_X B \cdot x
$$

(see also [Brion 1995; Knop 1995; Luna and Vust 1983; Panyushev 1994; Vinberg 1986]).

Since the Borel subgroups of *H* are conjugate in *H* [Humphreys 1975, Theorem 21.3], the complexity of the variety *X* is well defined.

Since a Borel subgroup of *H* is connected, we have $\kappa_H(X) = \kappa_{H} \circ (X)$. Thus for considering the complexity of an *H*-action, we may assume that *H* is connected.

Concerning basic properties of complexity, we refer the reader to [Vinberg 1986, §9].

We return to the general situation of a linear algebraic group *H* acting on an algebraic variety *X*. For a Borel subgroup *B* of *H*, we define

$$
\Gamma_X(B) := \{ x \in X \mid \operatorname{codim}_X B \cdot x = \kappa_H(X) \} \subseteq X.
$$

Then we set

$$
\Gamma_X := \bigcup_{B \in \mathcal{B}} \Gamma_X(B) \subseteq X.
$$

For $x \in X$, we define

$$
\Lambda_H(x) := \{ B \in \mathcal{B} \mid \operatorname{codim}_X B \cdot x = \kappa_H(X) \} \subseteq \mathcal{B}.
$$

Remark 2.1. The following statements are immediate from the definitions.

- (i) If *H* acts transitively on *X*, then $\Gamma_X = X$.
- (ii) $B \in \Lambda_H(x)$ if and only if $x \in \Gamma_X(B)$.
- (iii) $\Lambda_H(x) = \emptyset$ if and only if $x \notin \Gamma_X$.

The complexity of a reducible variety can easily be determined from the compl[exities of its irredu](#page-45-6)cible components: Since a Borel subgroup *B* of *G* is connected, it stabilizes each irreducible component of *X* [Humphreys 1975, Proposition 8.2(d)]. Let $x \in \Gamma_X(B)$ and choose an irreducible component X' of X such that $x \in X'$. Then $\kappa_G(X) = \kappa_G(X') + \text{codim}_X X'$. Therefore, from now on we may assume that *X* is irreducible.

Next we recall from [Humphreys 1975, Proposition 4.4] that the dimension is upper semicontinuous.

Proposition 2.2. *Let* φ : $X \to Y$ *be a dominant morphism of irreducible varieties. For* $x \in X$, let $\varepsilon_{\varphi}(x)$ *be the maximal dimension of any component of* $\varphi^{-1}(\varphi(x))$ *passing through x. Then* $\{x \in X \mid \varepsilon_{\varphi}(x) \geq n\}$ *is closed in X, for all n* $\in \mathbb{Z}$ *.*

Corollary 2.3. Let *X* be an *H*-variety. The set $\{x \in X \mid \dim H \cdot x \leq n\}$ is closed in *X* for all $n \in \mathbb{Z}$. In particular, the union of all H-orbits of maximal dimension in *X is an open subset of X.*

Lemma 2.4. *For every* $B \in \mathcal{B}$, *we have* $\Gamma_X(B)$ *is a nonempty open subset of* X.

Proof. Note that $\Gamma_X(B)$ is the union of *B*-orbits of maximal dimension. Thus, by Corollary 2.3, $\Gamma_X(B)$ is open in *X*.

Corollary 2.5. Γ_X *is open in X.*

Next we need an easy but useful lemma; the proof is elementary.

[Lemma 2.6](#page-45-6). Let $\varphi : X \to Y$ be an H-equivariant dominant morphism of irre*ducible H*-varieties. For $x \in X$, set $F_{\varphi(x)} = \varphi^{-1}(\varphi(x))$. Then $F_{\varphi(x)}$ is $C_H(\varphi(x))$ *stable.*

Before we can prove the next major result we need another preliminary:

Theorem 2.7 [Humphreys 1975, Theorem 4.3]. Let $\varphi : X \to Y$ be a dominant *morphism of irreducible varieties. Set r* =dim *X*−dim *Y . Then there is a nonempty open subset V of Y such that* $V \subseteq \varphi(X)$ *and if* $Y' \subseteq Y$ *is closed, irreducible and meets* V and Z is a component of $\varphi^{-1}(Y)$ which meets $\varphi^{-1}(V)$, then dim Z = $\dim Y' + r$. In particular, if $v \in V$, then $\dim \varphi^{-1}(v) = r$.

For the remainder of this section let *G* be connected reductive. Let $\varphi : X \to Y$ be a *G*-equivariant dominant morphism of irreducible *G*-varieties. Then

$$
\kappa_G(Y)\leqslant \kappa_G(X)
$$

(see [Vinberg 1986, §9]). In our next result we give an interpretation for the difference $\kappa_G(X) - \kappa_G(Y)$ in terms of the complexity of a smaller subgroup acting on a fibre of φ .

Theorem 2.8. Let $\varphi : X \to Y$ be a G-equivariant dominant morphism of irre*ducible G-varieties. For* $x \in X$ *set* $F_{\varphi(x)} = \varphi^{-1}(\varphi(x))$ *. Then for every* $B \in \mathcal{B}$ *there [exists](#page-6-0)* $x \in \Gamma_X(B)$ $x \in \Gamma_X(B)$ $x \in \Gamma_X(B)$ *such that for* $H = C_B(\varphi(x))^{\circ}$ *we have*

$$
\kappa_G(X) = \kappa_G(Y) + \kappa_H(Z),
$$

where Z is an irreducible component of $F_{\varphi}(x)$ passing through *x*.

Proof. Let $B \in \mathcal{B}$. Let *V* be a nonempty open subset of *Y* which satisfies the conditions in Theorem 2.7. Since *Y* is irreducible, Lemma 2.4 implies that

$$
\Gamma_Y(B) \cap V \neq \emptyset.
$$

For $y \in \Gamma_Y(B) \cap V$, Theorem 2.7 implies that any component of $\varphi^{-1}(y)$ has dimension $r = \dim X - \dim Y$, in particular, $\dim \varphi^{-1}(y) = r$. Since $\varphi^{-1}(\Gamma_Y(B) \cap V)$ is open in *X*, we have

$$
\varphi^{-1}(\Gamma_Y(B) \cap V) \cap \Gamma_X(B) \neq \varnothing,
$$

by Lemma 2.4. Now choose

$$
x \in \varphi^{-1}(\Gamma_Y(B) \cap V) \cap \Gamma_X(B).
$$

In particular, dim $F_{\varphi(x)} = r$. Lemma 2.6 implies that $F_{\varphi(x)}$ is $C_B(\varphi(x))$ -stable. Clearly, $C_B(x)$ is the stabilizer of *x* in $C_B(\varphi(x))$. Thus we obtain

$$
\begin{aligned}\n\operatorname{codim}_{F_{\varphi(x)}} C_B(\varphi(x)) \cdot x \\
&= \dim F_{\varphi(x)} - \dim C_B(\varphi(x)) \cdot x \\
&= r - \dim C_B(\varphi(x)) + \dim C_B(x) \\
&= \dim X - \dim Y - \dim C_B(\varphi(x)) + \dim C_B(x) + \dim B - \dim B \\
&= \dim X - \dim B + \dim C_B(x) - (\dim Y - \dim B + \dim C_B(\varphi(x))) \\
&= \kappa_G(X) - \kappa_G(Y),\n\end{aligned}
$$

where the last equality holds because $x \in \Gamma_X(B)$ and $\varphi(x) \in \Gamma_Y(B)$.

Let *Z* be an irreducible component of $F_{\varphi}(x)$ which passes through *x*. Theorem 2.7 implies that *Z* has the same dimension as $F_{\varphi}(x)$. The connected group $H = C_B(\varphi(x))^{\circ}$ stabilizes *Z*. Note that for each $z \in Z$ we have $\varphi(z) = \varphi(x)$ and $C_B(z) = C_{C_B(\varphi(x))}(z)$ (observed for $z = x$ above). Since $x \in \Gamma_X(B)$, dim $C_B(x)$ is minimal among groups of the form $C_B(z)$ for $z \in Z$. Therefore, because $C_B(z)$ = $C_{C_B(\varphi(x))}(z)$, we see that dim $C_{C_B(\varphi(x))}(x)$ is minimal among groups of the form $C_{C_B(\varphi(z))}(z)$ for $z \in Z$. We deduce that $x \in \Gamma_Z(H)$. Consequently,

$$
\kappa_H(Z) = \dim Z - \dim C_B(\varphi(x))^{\circ} + \dim C_{C_B(\varphi(x))^{\circ}}(x)
$$

= $\operatorname{codim}_{F_{\varphi(x)}} C_B(\varphi(x)) \cdot x.$

2.3. *Spherical varieties.* A *G*-variety *X* is called *spherical* if a Borel subgroup of *G* acts on *X* with a dense orbit, that is, $\kappa_G(X) = 0$. We recall some standard facts concerning spherical varieties [Brion 1995; Knop 1995; Panyushev 1994].

First we recall an important result due to \acute{E} . B. Vinberg [1986] and M. Brion [1986] independently in characteristic zero and F. Knop [1995, Corollary 2.6] in arbitrary characteristic. Let *B* be a Borel subgroup of *G*.

Theorem 2.9. *A spherical G-variety consists only of a finite number of B-orbits.*

We have an immediate corollary.

Corollary 2.10. *The following are equivalent.*

- (i) *The G-variety X is spherical.*
- (ii) *There is an open B-orbit in X.*
- (iii) *The number of B-orbits in X is finite.*

2.4. *Homogeneous spaces.* Let *H* b[e a closed s](#page-5-0)[ubg](#page-5-1)roup of *G*. Since *G*/*H* is a *G*-variety, we may consider the complexity $\kappa_G(G/H)$. Let *B* be a Borel subgroup of *G*. The orbits of *B* on G/H are in bijection with the (B, H) -double cosets of *G*. We have that

$$
\kappa_G(G/H) = \operatorname{codim}_{G/H} BgH/H
$$

for $gH \in \Gamma_{G/H}(B)$. Clearly, *G* acts transitively on G/H , so Remark 2.1(i) implies that we can choose a Borel subgroup *B* such that $B \in \Lambda_G(1H)$. Thus, for this cho[ice of](#page-45-7) *B*, we have

(2-1)
$$
\kappa_G(G/H) = \operatorname{codim}_{G/H} BH/H = \dim G/H - \dim BH/H
$$

$$
= \dim G/H - \dim B/B \cap H
$$

$$
= \dim G - \dim H - \dim B + \dim B \cap H.
$$

Following M. Krämer [1979], a subgroup *H* of *G* is called *spherical* if

$$
\kappa_G(G/H)=0.
$$

Since $\kappa_G(G/H) = \kappa_G(G/H)$, by (2-1), in considering the complexity of homogeneous spaces G/H we may assume that the subgroup H is connected.

We have an easy lemma.

Lemma 2.11. *Let G be connected reductive an[d let H be a](#page-45-6) subgroup of G which contains the unipotent radical of a Borel subgroup of G. Then H is spherical. In particular*, *a parabolic subgroup of G is spherical.*

Proof. Let *B* be a Borel subgroup of *G* such that $U = R_u(B) \le H$. Denote by $B^$ the opposite Borel subgroup to *B*, relative to some maximal torus of *B* [Humphreys 1975, §26.2, Corollary C]. The *big cell B*−*U* is an open subset of *G* [Humphreys 1975, Proposition 28.[5\]. We](#page-45-7) have $B^-U \subseteq B^-H$, so B^-H is a dense subset of *G*. Thus, G/H is sph[erical.](#page-44-8)

Remark 2.12. If both *G* and *H* are reductive, then *G*/*H* is an affine variety [Richardson 1977, Theorem A]. This case has been studied greatly. The classification of spherical reductive subgroups of the simple algebraic groups in characteristic zero was obtained by M. Krämer $[1979]$ and was shown to be the same in positive characteristic by J. Brundan [1998]. M. Brion [1987] classifies all the spherical reductive subgroups of an arbitrary reductive group in characteristic zero. In positive characteristic no such classification is known. However, the classification of the reductive spherical subgroups in simple algebraic groups in positive [characterist](#page-46-2)ic follows from the work of T. A. Springer [1985] (see also [Seitz 1998; Brundan 1998; Lawther 1999]).

Im[portant examples](#page-45-8) of reductive spherical subgro[ups are](#page-44-2) centralizers of invo[lutive](#page-45-5) automorphisms of *G*: Suppose that char $k \neq 2$ and let θ be an involutive automorphism of *G*. Then the fixed point subgroup $C_G(\theta) = \{g \in G \mid \theta(g) = g\}$ of *G* is spherical [Springer 1985, Corollary 4.3.1].

For more on the complexity and sphericity of homogeneous spaces see [Brion] 1986; Luna and Vust 1983; Panyushev 1990].

Remark 2.13. In order to compute the complexity of an orbit variety, it suffices to determine the c[omplexity of a](#page-45-2) homogeneous space. Suppose that *G* acts on an algebraic variety *X*. Let $x \in X$. Since *G* is connected, the orbit $G \cdot x$ is irreducible. The map

$$
\pi_x: G/C_G(x) \to G \cdot x, \quad \pi_x(gC_G(x)) = g \cdot x
$$

[is a](#page-9-1) bijective *G*-equivariant morphism [Jantzen 2004, §2.1]. Thus, by applying Theorem 2.8 to π_x [, we](#page-8-0) have

$$
(2-2) \t\t \kappa_G(G/C_G(x)) = \kappa_G(G \cdot x).
$$

[The relevance](#page-45-9) of $(2-2)$ i[s that the left](#page-45-3) hand side [is easier to c](#page-46-3)ompute, since calculating $\kappa_G(G/C_G(x))$ only requires the study of groups of the form $C_B(x)$, where *B* is a Borel subgroup of *G* (compare $(2-1)$).

2.5. *Kempf–Rousseau Theory.* Next we require some standard facts from Geometric Invariant Theory [Kempf 1978] (also see [Premet 2003, §2] and [Richardson 1982, §7]). Let *X* be an affine variety and ϕ : $k^* \rightarrow X$ be a morphism of algebraic varieties. We say that $\lim_{t\to 0} \phi(t)$ exists if there exists a morphism $\widehat{\phi}: k \to X$ such that $\widehat{\phi}|_{k^*} = \phi$. If such a limit exists, we set

$$
\lim_{t\to 0}\phi(t)=\widehat{\phi}(0).
$$

Note that if such a morphism $\widehat{\phi}$ exists, it is necessarily unique.

Let λ be a cocharacter of *G*. Define

$$
P_{\lambda} = \{ x \in G \mid \lim_{t \to 0} \lambda(t) x \lambda(t)^{-1} \text{ exists} \}.
$$

Then P_λ is a parabolic subgroup of *G*, the unipotent radical of P_λ is given by

$$
R_u(P_\lambda) = \left\{ x \in G \mid \lim_{t \to 0} \lambda(t) x \lambda(t)^{-1} = 1 \right\},\
$$

and a Levi subgroup of P_{λ} is the centralizer

$$
G_G(\lambda) = C_G(\lambda(k^*))
$$

of the image of λ in *G* [Springer 1998, §8.4].

Let the connected reductive group *G* act on the affine variety *X* and suppose $x \in X$ is a point such that $G \cdot x$ [is no](#page-45-9)t closed in *X*. Let *C* denote the unique closed *G*-orbit in the closure of $G \cdot x$ (see [Richardson 1977, Lemma 1.4]). Set

$$
\Lambda(x) := \left\{ \lambda \in Y(G) \mid \lim_{t \to 0} \lambda(t) \cdot x \text{ exists and lies in } C \right\}.
$$

Then there is a so-called *optimal class* $\Omega(x) \subseteq \Lambda(x)$ of cocharacters associated to *x*. The following theorem is due to G. R. Kempf [1978, Theorem 3.4] (see also [Rousseau 1978]).

Theorem 2.14. *Assume as above. Then we have the following*:

- (i) $\Omega(x) \neq \emptyset$.
- (ii) *[There exist](#page-10-0)s a parabolic subgroup* $P(x)$ *of G such that* $P(x) = P_\lambda$ *for every* $\lambda \in \Omega(x)$.
- (iii) $\Omega(x)$ *is a single P(x)-orbit.*
- (iv) *For* $g \in G$, *we have* $\Omega(g \cdot x) = g \cdot \Omega(x)$ *and* $P(g \cdot x) = g P(x)g^{-1}$ *. In particular*, $C_G(x) \le N_G(P(x)) = P(x)$.

Frequently, $P(x)$ in Theorem 2.14 is called the *destabilizing* parabolic subgroup of *G* defined by $x \in X$.

2.6. *Associated cocharacters*. Here we closely follow [*Premet 2003*] (also see [Jantzen 2004, §5]). We recall that *p* is a good prime for *G* throughout this section.

Every cocharacter $\lambda \in Y(G)$ induces a grading of g:

$$
\mathfrak{g}=\bigoplus_{i\in\mathbb{Z}}\mathfrak{g}(i,\lambda),
$$

where

$$
\mathfrak{g}(i,\lambda) = \{x \in \mathfrak{g} \mid \text{Ad}(\lambda(t))(x) = t^i x \text{ for all } t \in k^*\}
$$

(see [Jantzen 2004, §5.1]). For P_λ as in Section 2.5, we have the following equalities:

Lie
$$
P_{\lambda}
$$
 = $\bigoplus_{i \geq 0} \mathfrak{g}(i, \lambda)$, Lie $R_u(P_{\lambda}) = \bigoplus_{i > 0} \mathfrak{g}(i, \lambda)$, and Lie $C_G(\lambda) = \mathfrak{g}(0, \lambda)$.

Frequently, we write $g(i)$ for $g(i, \lambda)$ once we have fixed a cocharacter $\lambda \in Y(G)$.

Let *H* be a connected reductive subgroup of *G*. A nilpotent element $e \in \mathfrak{h}$ is called *distinguished in* h provided each torus in $C_H(e)$ is contained in the centre of *H* [Jantzen 2004, §4.1].

The following characterization of distinguished nilpotent elements in the Lie algebra of a Levi subgroup of *G* can be [found in \[Jan](#page-45-2)tzen 2004, §4.6, §4.7].

Proposition 2.15. *Let e* \in g *be nilpotent and let L be a Levi subgroup of G. Then e* is distinguished in Lie *L* if and only if $L = C_G(S)$, where *S* is a maximal torus of $C_G(e)$.

N[ext we recall the d](#page-11-0)efinition of an associated c[ocharacter](#page-11-1) [Jantzen 2004, §5.3].

Definition 2.16. A cocharacter $\lambda : k^* \to G$ is *associated* to $e \in \mathcal{N}$ if $e \in \mathfrak{g}(2, \lambda)$ and there exists a Levi subgroup *L* of *G* such that *e* is distinguished in Lie *L*, and $\lambda(k^*) \leqslant \mathfrak{D}L$.

Remark 2.17. In view of [Proposit](#page-45-3)ion 2.15, the last two conditions in Definition 2.16 are equivalent to the existence [of](#page-45-2) a maximal torus *S* of $C_G(e)$ such that $\lambda(k^*) \leq$ $\mathfrak{D}C_G(S)$. We will use this fact frequently in the seque[l.](#page-45-11)

Let $e \in \mathcal{N}$. A. Premet [2003, §2.4, Proposition 2.5] explicitly defines a cocharacter of *G* which is [associated to](#page-45-11) *e*. Moreover, Premet [\[2003, Th](#page-10-0)eorem 2.3] shows that each of these associated cocharacters belongs to the optimal class $\Omega(e)$ determined [b](#page-45-2)y *e*. He shows this under the so-called *standard hypotheses* on *G*; see [Jantzen 2004, §2.9]. These restrictions wer[e subsequently r](#page-45-11)emoved by G. McNinch [2004, Proposition 16] so that this fact holds for any connected reductive group *G* in good characteristic. It thus follows from [McNinch 2004, Proposition 16], Theorem 2.14(iv), and the fact that any two associated cocharacters are conjugate under $C_G(e)$, [Jantzen 2004, Lem. 5.3], that all the cocharacters of *G* associated to $e \in \mathcal{N}$ belong to the optimal class $\Omega(e)$ defined by *e* (see also [McNinch 2004, Proposition 18, Theorem 21]). This motivates and justifies the following notation which we use in the sequel.

Definition 2.18. Let $e \in \mathfrak{g}$ be nilpotent. Then we denote the set of cocharacters of *G* associated to *e* by

$$
\Omega_G^a(e) := \{ \lambda \in Y(G) \mid \lambda \text{ is associated to } e \} \subseteq \Omega(e).
$$

Further, if *H* is a (connected) reductive subgroup of *G* with $e \in \mathfrak{h}$ nilpotent we also write $\Omega_H^a(e)$ to denote the cocharacters of *H* that are associated to *e*.

As indicated above, in good characteristic, associated cocharacters are known to exist for any nilpotent element $e \in \mathfrak{g}$; more precisely, we have the following (see [Jantzen 2004, §5.3]):

Proposition 2.19. Suppose that p is good for G. Let $e \in \mathfrak{g}$ be nilpotent. Then $\Omega_G^a(e) \neq \emptyset$. Moreover, if $\lambda \in \Omega_G^a(e)$ and $\mu \in Y(G)$, then $\mu \in \Omega_G^a(e)$ if and only if μ *and* λ *are conjugate by an element of* $C_G(e)$ *.*

Fix a nilpotent element $e \in \mathfrak{g}$ and an associated cocharacter $\lambda \in \Omega_G^a(e)$ of *G*. Set $P = P_{\lambda}$. By Theorem 2.14(ii), P only depends on *e* and not on the choice of the associated cocharacter λ . Note that $C_G(\lambda)$ stabilizes $g(i)$ for every $i \in \mathbb{Z}$. For $n \in \mathbb{Z}_{\geqslant 0}$ we set

$$
\mathfrak{g}_{\geqslant n} = \bigoplus_{i \geqslant n} \mathfrak{g}(i) \quad \text{and} \quad \mathfrak{g}_{> n} = \bigoplus_{i > n} \mathfrak{g}(i).
$$

Then we have

$$
\mathfrak{g}_{\geqslant 0} = \text{Lie } P
$$
 and $\mathfrak{g}_{>0} = \text{Lie } R_u(P)$.

Also, $C_G(e) = C_P(e)$, by Theorem 2.14(iv).

The next result is [Jantzen 2004, Proposition 5.9(c)].

Proposition 2.20. *The P-orbit of e in* $\mathfrak{g}_{\geqslant 2}$ *is dense in* $\mathfrak{g}_{\geqslant 2}$ *.*

Corollary 2.21. *The* $C_G(\lambda)$ *-orbit of e in* $\mathfrak{g}(2)$ *is dense in* $\mathfrak{g}(2)$ *.*

Definition 2.22. Let $e \in \mathcal{N}$ and let $\lambda \in \Omega_G^a(e)$. Then set

$$
C_G(e,\lambda) := C_G(e) \cap C_G(\lambda).
$$

Corollar[y 2.2](#page-12-0)3. *Let* $e \in \mathcal{N}$ $e \in \mathcal{N}$ $e \in \mathcal{N}$ *. Then*

(i) dim $C_G(e) = \dim g(0) + \dim g(1)$,

(ii) dim $R_u(C_G(e)) = \dim g(1) + \dim g(2)$, and

(iii) [dim](#page-12-1) $C_G(e, \lambda) = \dim g(0) - \dim g(2)$.

Proof. As $C_G(e) = C_P(e)$, part (i) is immediate from Proposition 2.20. Using the fact that

$$
\operatorname{Ad}(R_u(P)-1)(e) \subseteq \mathfrak{g}_{\geqslant 3}
$$

(see [Jantzen 2004, §5.10]) and Proposition 2.20, we see that

$$
\dim \mathrm{Ad}(R_u(P))(e) = \dim \mathfrak{g}_{\geqslant 3}
$$

and so

$$
\dim C_{R_u(P)}(e) = \dim \mathfrak{g}(1) + \dim \mathfrak{g}(2).
$$

Finally, part (iii) follows from the first two. \Box

The following basic result regarding the structure of $C_G(e)$ can be found in [Premet 2003, Theorem A].

Proposition 2.24. *If* char *k is good for G*, *then CG*(*e*) *is the semidirect product of* $C_G(e, \lambda)$ *and* $C_G(e) \cap R_u(P)$ *. Moreover,* $C_G(e, \lambda)$ [°] *is reductive and* $C_G(e) \cap R_u(P)$ *is the unipotent radical of* $C_G(e)$ *.*

Definition 2.25. Let $e \in \mathfrak{g}$ be nilpotent. The *height* of e with respect to an associated cocharacter $\lambda \in \Omega_G^a(e)$ is defined to be

$$
\mathrm{ht}(e) := \max_{i \in \mathbb{N}} \{i \mid \mathfrak{g}(i, \lambda) \neq 0\}.
$$

Thanks to Proposition 2.19, the height of *e* does not depend on the choice of $\lambda \in$ $\Omega_G^a(e)$. Since conjugate nilpotent elements have the same height, we may speak of the height of a given nilpotent orbit. Since $\lambda \in \Omega_G^a(e)$, we have ht $(e) \geq 2$ for any nilpotent element $e \in \mathfrak{g}$; see Definition 2.16.

Let α be classical with natural module *V*. Set $n = \dim V$. We write a partition π of *n* in one of the following two ways:

- (i) $\pi = (d_1, d_2, \dots, d_r)$ with $d_1 \geqslant d_2 \geqslant \dots \geqslant d_r \geqslant 0$ and $\sum_{i=1}^r d_i = n$, or
- (ii) $\pi = [1^{r_1}, 2^{r_2}, \dots]$ with $\sum_i ir_i = n$.

These two notations are related by $r_i = |\{j \mid d_i = i\}|$ for $i \ge 1$.

For g classical with natural module *V*, it is straightforward to determine the height of a nilpotent orbit from the corresponding partition of dim *V*. We leave the proof of the next proposition to the reader.

Proposition 2.26. *[Let e](#page-13-2)* \in g *be nilpotent with par[tition](#page-45-12)* $\pi_e = (d_1, d_2, \ldots, d_r)$ *.*

(i) If
$$
\mathfrak{g} = \mathfrak{gl}(V)
$$
, $\mathfrak{sl}(V)$ or $\mathfrak{sp}(V)$, then $\text{ht}(e) = 2(d_1 - 1)$.
\n(ii) If $\mathfrak{g} = \mathfrak{so}(V)$, then $\text{ht}(e) = \begin{cases} 2(d_1 - 1) & \text{if } d_1 = d_2, \\ 2d_1 - 3 & \text{if } d_1 = d_2 + 1, \\ 2(d_1 - 2) & \text{if } d_1 > d_2 + 1. \end{cases}$

Remarks 2.27. (i) For char $k = 0$, Proposition 2.26 was proved in [Panyushev] 1999, Theorem 2.3].

(ii) If *e* is a nilpotent element in $\mathfrak{gl}(V)$, $\mathfrak{sl}(V)$ or $\mathfrak{sp}(V)$, then $\mathfrak{ht}(e)$ is even. If *e* is a nilpotent element in $\mathfrak{so}(V)$, then $\operatorname{ht}(e)$ is odd if and only if $d_2 = d_1 - 1$.

2.7. *Fibre bundles.* Let *H* be a closed subgroup of *G*. Suppose that *H* acts on an affine variety *Y*[. Define a morphic ac](#page-45-13)tion of *H* [on the affine](#page-45-14) variety $G \times Y$ by

$$
h \cdot (g, y) = (gh, h^{-1} \cdot y)
$$

for $h \in H$, $g \in G$ and $y \in Y$. Since *H* acts fixed [point freely](#page-45-15) on $G \times Y$, every *H*orbit in $G \times Y$ has dimension dim *H*. There exists a surjective quotient morphism ρ : $G \times Y \rightarrow (G \times Y)/H$ (see [Mumford and Fogarty 1982, §1.2] and [Parshin and Shafarevich 1994, §4.8]). We denote the quotient $(G \times Y)/H$ by $G *_{H} Y$, the *fibre bundle* associated to the *principal bundle* π : $G \rightarrow G/H$ defined by $\pi(g) = gH$ and *fibre Y*. We denote the element $(g, y)H$ of $G*_H Y$ simply by $g * y$ [Richardson 1967, §2]. Let *X* be a *G*-variety and $Y \subseteq X$ be an *H*-subvariety. The *collapsing* of the fibre bundle $G *_{H} Y$ is the morphism $G *_{H} Y \to G \cdot Y \subseteq X$ defined by $g * y \to g \cdot y$.

Define an action of *G* on $G *_{H} Y$ by $g \cdot (g' * y) = (gg') * y$ for $g, g' \in G$ and *y* ∈ *Y*. We then have a *G*-equivariant surjective morphism φ : $G*$ _{*H*} *Y* → G/H by $\varphi(g * y) = gH$. Note that $\varphi^{-1}(gH) \cong Y$ for all $gH \in G/H$.

[Propositi](#page-6-2)on 2.28. *Let H be a closed subgroup of G and let Y be an H -variety. Suppose that B is a Borel subgroup of G such that* dim *B* ∩ *H is minimal* (*among* all subgroups of the form $B' \cap H$ for B' ranging over \Re). Then we have

$$
\kappa_G(G*_H Y) = \kappa_G(G/H) + \kappa_{B \cap H}(Y).
$$

Proof. We apply Theorem 2.8 to the morphism φ : $G*_HY \to G/H$. Thus, for a Borel subgroup *B* of *G* and $g * y \in \Gamma_{G * H}$ (*B*), we have that

$$
\kappa_G(G*_H Y) = \kappa_G(G/H) + \kappa_K(Z),
$$

where *Z* is an irreducible component of $\varphi^{-1}(\varphi(g*y))$ passing through *g* * *y* and $K = C_B(gH)^\circ$. Note that $C_B(gH) = B \cap gHg^{-1}$. So, since $g * y \in \Gamma_{G * H'}(B)$, the dimension of

$$
g^{-1}C_B(gH)g = g^{-1}Bg \cap H
$$

is minimal. Now, as $G*_{H}Y$ is a fibre bundle, for $x \in G$ we have

$$
Y_x := \varphi^{-1}(\varphi(x * y)) \cong Y.
$$

Define a morphism

$$
\phi: Y_x \to Y, \quad \phi(g*y) = x^{-1}g \cdot y.
$$

Clearly, xhx^{-1} ∈ *B*∩ xHx^{-1} acts on $g*y \in Y_x$ as $xhx^{-1} (g*y) = xhx^{-1} g*y$. Since $g = xh'$ for some $h' \in H$, we have $xhx^{-1} \cdot (g*y) = xhh'*y$. So $\phi(xhh'*y) = hh'\cdot y$. Thus, if we define an action of $B \cap x H x^{-1}$ on *Y* by $x h x^{-1} \cdot y = h \cdot y$, the morphism $\phi: Y_x \to Y$ becomes a $(B \cap x Hx^{-1})$ -equivariant isomorphism. It follows that $\kappa_{B \cap x H x^{-1}}(Y_x) = \kappa_{B \cap x H x^{-1}}(Y)$. Since $x^{-1}(B \cap x H x^{-1})x = x^{-1} B x \cap H$, we finally get

$$
\kappa_{B \cap x H x^{-1}}(Y) = \kappa_{x^{-1} B x \cap H}(Y).
$$

N[ext we need a](#page-8-1) technical lemma.

Lemma 2.29. *Let P be a parabolic subgroup of G. Then for B ranging over* B, *the intersection B* ∩ *P is minimal if and only if B* ∩ *P is a Borel subgroup of a Levi subgroup of P.*

Proof. We may choose a Borel subgroup *B* of *G* so that *B P* is open dense in *G* (compare the proof of Lemma 2.11). Then the *P*-orbit of the base point in $G/B \cong \mathcal{B}$ is open dense in \mathcal{B} . Consequently, the stabilizer of this base point in *P*, *P* ∩ *B*, is minimal among all the isotropy subgroups *P* ∩ *B*^{\prime} for *B*^{\prime} in \Re . Clearly, *B* is opposite to a Borel subgroup of *G* contained in *P*. Thanks to [Borel 1991,

Corollary 14.13], $P \cap B$ [conta](#page-6-0)ins a maximal torus *T* of *G*. Let *L* be the unique Levi subgroup of *P* containing *T* . Then [Carter 1985, Theorem 2.8.7] implies that

$$
P \cap B = T(R_u(B) \cap L).
$$

Clearly, $T(R_u(B) \cap L)$ is solvable and thus lies in a Borel subgroup of L. A simple dimension counting argument, using Theorem 2.7 applied to the multiplication map $B \times P \rightarrow BP$ [and the fact th](#page-14-0)at dim $BP = \dim G$, shows that $P \cap B$ is a Borel subgroup of *L*.

Reversing the argument in the previous paragraph shows that if $P \cap B$ is a Borel subgroup of *L*, then *BP* is dense in *G* and thus $P \cap B$ is minimal again in the sense of the statement. \Box

Next we consider a special case of Proposition 2.28.

[Le](#page-14-0)mma 2.30. *Let P be a parabolic subgroup of G and let Y be a P-variety. Then*

$$
\kappa_G(G \ast_P Y) = \kappa_L(Y),
$$

where L is a Lev[i subg](#page-8-1)rou[p of P](#page-14-1).

Proof. Proposition 2.28 implies that

$$
\kappa_G(G *_{P} Y) = \kappa_G(G/P) + \kappa_{B \cap P}(Y),
$$

whe[re dim](#page-10-2) *B* \cap *P* is minimal. Le[mmas](#page-9-0) 2.11 and 2.29 imply that $\kappa_G(G/P) = 0$ and *B* ∩ *P* is a Borel subgroup of a Levi subgroup of *P*. The result follows.

Let *e* ∈ N be a nonzero nilpotent element, $\lambda \in \Omega_G^a(e)$ be an associated cocharacter of *e* and $\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}(i)$ be the grading of \mathfrak{g} induced by λ . Also let *P* be the destabilizing parabolic subgroup of *G* defined by *e* (see Section 2.5). In particular, we have Lie $P = \mathfrak{g}_{\geqslant 0}$ (see Section 2.6).

Lemma 2.31. *Let* $e \in \mathcal{N}$ *[. Then](#page-45-16)*

$$
G\cdot \mathfrak{g}_{\geqslant 2}=\overline{G\cdot e}.
$$

In particular, dim $G \cdot \mathfrak{g}_{\geqslant 2} = \dim G \cdot e$.

Proof. Since $g_{\geq 2}$ is *P*-stable, $G \cdot g_{\geq 2}$ is closed [Humphreys 1995, Proposition 0.15]. Thus, since $e \in \mathfrak{g}(2) \subseteq \mathfrak{g}_{\geqslant 2}$, we have

$$
\overline{G\cdot e}\subseteq G\cdot \mathfrak{g}_{\geqslant 2}.
$$

By Proposition 2.20, $\overline{P \cdot e} = \mathfrak{g}_{\geqslant 2}$. Since $\overline{P \cdot e} \subseteq \overline{G \cdot e}$, we thus have $\mathfrak{g}_{\geqslant 2} \subseteq \overline{G \cdot e}$. Finally, as $\overline{G \cdot e}$ is *G*-stable,

$$
G \cdot \mathfrak{g}_{\geqslant 2} \subseteq \overline{G \cdot e}.
$$

Theorem 2.32. *Let* $e \in \mathcal{N}$ *. Then*

$$
\kappa_G(G \cdot e) = \kappa_L(\mathfrak{g}_{\geqslant 2}),
$$

where L is [a Levi subgrou](#page-16-0)p of P.

Proof. W[e](#page-45-12) have $\kappa_G(G \cdot e) = \kappa_G(G/C_G(e)) = \kappa_G(G/C_P(e))$, thanks to (2-2) and the fact that $G_G(e) = C_P(e)$. Moreover, since $G *_{P} P/C_{P}(e) \cong G/C_{P}(e)$, it follows from [Lemma 2.30](#page-16-0) that $\kappa_G(G/C_P(e)) = \kappa_L(P/C_P(e))$. Finally, thanks to Proposition 2.20 and (2-2), we obtain $\kappa_L(P/C_P(e)) = \kappa_L(g_{\geq 2})$. The result follows.

Remark 2.33. For char $k = 0$, Theorem 2.32 was proved by Panyushev [1999,] Theorem 4.2.2].

Remark 2.34. Thanks to Theorem 2.32, in order to determine whether a nilpotent orbit is spherical, it suffices to show that a B[orel subgroup o](#page-45-2)f a Levi subgroup of *P* acts on $g_{\geq 2}$ with a dense orbit. In our classification we pursue this approach.

2.8. *Borel subgroups of Levi subgroups acting on unipotent radicals.* Let $e \in \mathfrak{g}$ be a nonzero nilpotent element and let $\lambda \in \Omega_G^a(e)$ be an associated cocharacter for *e*. Let $P = P_\lambda$ be the destabilizing parabolic subgroup defined by *e*. We denote the Levi subgroup $C_G(\lambda)$ of *P* by *L*. Our next result is taken from [Jantzen 2004, §3]. We only consider the case when *G* is simple, the extension to the case when *G* is reductive is straightforward.

Proposition 2.35. *Let G be a simple classical algebraic group and* $0 \neq e \in \mathfrak{g}$ *be nilpotent with corresponding partition* $\pi_e = [1^{r_1}, 2^{r_2}, 3^{r_3}, \dots]$ *. Let* $a_i, b_i, s, t \in \mathbb{Z}_{\geqslant 0}$ *such that*

$$
a_i + 1 = \sum_{j \geq i} r_{2j+1}, b_i + 1 = \sum_{j \geq i} r_{2j}, 2s = \sum_{j \geq 0} r_{2j+1}, and 2t + 1 = \sum_{j \geq 0} r_{2j+1}.
$$

Then the structure of $\mathfrak{D}L$ *is as follows.*

- (i) If G is of type A_n , then $\mathfrak{D}L$ is of type $\prod_{i\geqslant 0} A_{a_i} \times \prod_{i\geqslant 1} A_{b_i}$.
- (ii) If G is of type B_n , then $\mathfrak{D}L$ is of type $\prod_{i\geqslant 1} A_{a_i} \times \prod_{i\geqslant 1} A_{b_i} \times B_t$.
- (iii) If G is of type C_n , then $\mathfrak{D}L$ is of type $\prod_{i\geqslant 1} A_{a_i} \times \prod_{i\geqslant 1} A_{b_i} \times C_s$.
- (iv) If G is of type D_n , then $\mathfrak{D}L$ is of type $\prod_{i\geqslant 1} A_{a_i} \times \prod_{i\geqslant 1} A_{b_i} \times D_s$.

We use the conventions that

$$
A_0 = B_0 = C_0 = D_0 = \{1\},
$$
 $D_1 \cong k^*$, and $D_2 = A_1 \times A_1$.

In order to describe the Levi subgroups $C_G(\lambda)$ for the exceptional groups we need to know more about associated cocharacters. Let *T* be a maximal torus of *G* such that $\lambda(k^*) \leq T$. Now let $G_{\mathbb{C}}$ be the simple, simply connected group over \mathbb{C} with the same root system as *G*. Let $\mathfrak{g}_{\mathbb{C}}$ be the Lie algebra of $G_{\mathbb{C}}$. For a nilpotent element $e \in \mathfrak{g}_{\mathbb{C}}$ we can find an \mathfrak{sl}_2 -triple containing e . Let $h \in \mathfrak{g}_{\mathbb{C}}$ be the semisimple element of this \mathfrak{sl}_2 -triple. Note that *h* is the image of 1 under the differential of $\lambda_{\mathbb{C}} \in G_{\mathbb{C}}$ (corresponding to λ) at 1. Then there exists a set of simple roots Π of Ψ such that $\alpha(h) \geq 0$ for all $\alpha \in \Psi^+$ and $\alpha(h) = m_\alpha \in \{0, 1, 2\}$ for all $\alpha \in \Pi$ [Carter 1985, §5.6]. For each simple root $\alpha \in \Pi$ we attach the numerical label m_{α} to the correspondin[g node of the](#page-44-7) Dynkin diagram. The resulting labels form the *weighted Dynkin diagram* $\Delta(e)$ of *e*. We denote the set of weighted Dynkin diagrams of *G* by $\mathfrak{D}(\Pi)$. For $e, e' \in \mathfrak{g}_{\mathbb{C}}$ nilpotent, we have that $\Delta(e) = \Delta(e')$ if and only if *e* and e' are in the same $G_{\mathbb{C}}$ -orbit.

[In orde](#page-45-3)r to determine the weighted Dynkin diagram of a given nilpotent orbit we refer to the method outlined in [Carter 1985, §13] for the classical groups, and to the tables in the place cited for the exceptional groups.

We return to the case w[hen the charac](#page-44-7)teristic of *k* is good for *G*. In this case the classification of the nilpotent orbits does not depend on the field *k* [Carter 1985, §5.11]. Recently, Premet [2003] gave a proof [of this fact for](#page-45-3) the unipotent classes of *G* which is free from case-by-case considerations. This applies in our case, since the classification of the unipotent conjugacy classes in *G* and of the nilpotent orbits in $\mathcal N$ is the same in good characteristic [Carter 1985, §9 and §11]. First assume that *G* is simply connected and that *G* admits a finite-dimensional rational representation such that the trace form on g is nondegenerate; see [Premet 2003, §2.3] for the motivation of these assumptions. Under these assumptions, given $\Delta \in \mathcal{D}(\Pi)$, there exists [a cocharacter](#page-45-3) $\lambda = \lambda_{\Delta}$ of *G* which is associated to *e*, where *e* lies in the dense *L*-orbit in $g(2, \lambda)$, for $L = C_G(\lambda)$, such that

(2-3)
$$
\operatorname{Ad}(\lambda(t))(e_{\pm\alpha}) = t^{\pm m_{\alpha}}e_{\pm\alpha} \quad \text{and} \quad \operatorname{Ad}(\lambda(t))(x) = x
$$

for all $\alpha \in \Pi$, $e_{\pm \alpha} \in \mathfrak{g}_{\pm \alpha}$, $x \in \mathfrak{t}$ and $t \in k^*$ [Premet 2003, §2.4]. We extend this action linearly to all of g. Now return to the general simple case. Let \widehat{G} be the simple, simply connected group with the same root datum as *G*. Then there exists [a s](#page-17-0)urjective central isogeny

$$
\pi: \widehat{G} \to G
$$

(see [Carter 1985, §1.11]). Also, an associated cocharacter for $e = d\pi(\hat{e})$ in g is of the form $\pi \circ \widehat{\lambda}$, where $\widehat{\lambda}$ is a cocharacter of \widehat{G} that is associated to \widehat{e} in \widehat{g} . This implies that $(2-3)$ holds for an arbitrary simple algebraic group, when the characteristic of *k* is good for *G*.

After these deliberations we can use the tables in [Carter 1985, §13] to determine the structure of the Levi subgroups $C_G(\lambda)$ for the exceptional groups. Recall that Lie $C_G(\lambda) = \mathfrak{g}(0)$ and $\mathfrak{g}(0)$ is the sum of the root spaces \mathfrak{g}_{α} , where $\alpha \in \Psi$ with $\langle \alpha, \lambda \rangle = 0$. Let $\Pi_0 = {\alpha \in \Pi \mid m_\alpha = 0}$, the set of nodes α of the corresponding weighted Dynkin diagram with label $m_\alpha = 0$. Then

$$
C_G(\lambda) = \langle T, U_{\pm \alpha} \mid \alpha \in \Pi_0 \rangle.
$$

It is straightforward to determine the height of a nilpotent orbit from its associated weighted Dynkin diagram. Let $\tilde{\alpha} = \sum_{\alpha \in \Pi} c_{\alpha} \alpha$ be the highest root of Ψ . For each simple root $\alpha \in \Pi$ we have $\mathfrak{g}_{\alpha} \subseteq \mathfrak{g}(m_{\alpha})$ where m_{α} is the corresponding numerical label on the weighted Dynkin diagram, by $(2-3)$.

Lemma 2.36. *Let* $\tilde{\alpha}$ *be the highest root of* Ψ *and set* $d = \text{ht}(e)$ *. Then* $\mathfrak{g}_{\tilde{\alpha}} \subseteq \mathfrak{g}(d)$ *.*

Proof. Clearly, we have $\mathfrak{g}_{\tilde{\alpha}} \subseteq \mathfrak{g}(i)$ for some $i \geq 0$. The lemma is immediate, because if

$$
\tilde{\alpha} = \sum_{\alpha \in \Pi} c_{\alpha} \alpha
$$
, and $\beta = \sum_{\alpha \in \Pi} d_{\alpha} \alpha$

is any other root of Ψ [, then](#page-45-1) $c_{\alpha} \geq d_{\alpha}$ for all $\alpha \in \Pi$.

Lemma 2.36 readily implies

(2-4)
$$
\mathrm{ht}(e) = \sum_{\alpha \in \Pi} m_{\alpha} c_{\alpha}.
$$

The identity $(2-4)$ is also observed in [Panyushev 1994, §2.1].

For the remainder of this section we assume that *G* is simple. The generalization of each of the subsequent results to the case when *G* is reductive is straightforward.

[For](#page-15-0) *P* a parabolic subgroup of *G* we set $\mathfrak{p}_u = \text{Lie } R_u(P)$.

Proposition 2.37. Let $P = LR_u(P)$ be an arbitrary parabolic subgroup of G, *where L is a Levi subgroup of P. Then*

$$
\kappa_G(G/L) = \kappa_L(P/L) = \kappa_L(R_u(P)) = \kappa_L(\mathfrak{p}_u).
$$

Proof. Thanks to Lemm[a 2.30, we have](#page-44-9) $\kappa_G(G/L) = \kappa_G(G *_{P} P/L) = \kappa_L(P/L)$.

If we write $P = R_u(P)L$, then the bijection $P/L = R_u(P)L/L \cong R_u(P)$ gives a canonical *L*-equivariant iso[morphism](#page-18-0) $\phi: P/L \to R_u(P)$ defined by $\phi(xL) = y$, where $x = yz$ with $y \in R_u(P)$ and $z \in L$. Thus, we have $\kappa_L(P/L) = \kappa_L(R_u(P))$.

A Springer isomorphism between the unipotent variety of G and N restricts to an *L*-equi[variant isomorphis](#page-44-9)m $R_u(P) \to \mathfrak{p}_u$ [Goodwin 2005b, Corollary 1.4], so that $\kappa_L(R_u(P)) = \kappa_L(\mathfrak{p}_u).$

Remarks 2.38. (i) While the first two equalities of Proposition 2.37 hold in arbitrary characteristic, the third equality requires the characteristic of the underlying field to be zero or a good prime for *G*; this assumption is required for the existence of a Springer isomorphism (see [Goodwin 2005b, Corollary 1.4]).

(ii) [Brundan 1998, Lemma 4.2] states that there is a dense *L*-orbit on *G*/*B* if and only if there is a dense B_L -orbit on $R_u(P)$, where B_L is a Borel subgroup of L .

Notice that there is a dense *L*-orbit on *G*/*B* if and only if there is a dense *B*-orbit on G/L . In other words, $\kappa_G(G/L) = 0$ if and only if $\kappa_L(R_u(P)) = 0$. Thus, Proposition 2.37 generalizes [Brundan 1998, Lemma [4.2\].](#page-44-8)

By Proposition 2.37, the problem of determining $\kappa_L(R_u(P))$ is equivalent to the problem of determining $\kappa_G(G/L)$. In particular, a Borel subgroup of *L* acts on $R_u(P)$ with a dense orbit if and only if *L* is a spherical subgroup of *G*. In fact, the latter have been classified. In characteristic zero this result was proved by M. Krämer [1979] and extended to arbitrary characteristic by J. Brundan [1998, Theorem 4.1].

Theorem 2.39. *Let L be a proper Levi subgroup of a simple group G. Then L is s[pherical in G if and onl](#page-46-5)y if* $(G, \mathcal{D}L)$ *is one of*

$$
(A_n, A_{i-1}A_{n-i}), (B_n, B_{n-1}), (B_n, A_{n-1}), (C_n, C_{n-1}),
$$

 $(C_n, A_{n-1}), (D_n, D_{n-1}), (D_n, A_{n-1}), (E_6, D_5), (E_7, E_6)$

We also recall the classification of the parabolic subgroups of *G* with an abelian unipotent radical (see [Richardson et al. 1992, Lemma 2.2]).

Lemma 2.40. *Let G be a simple algebraic group and P be a parabolic subgroup of G. Then Ru*(*P*) *is abelian if and only if P is a maximal parabolic subgroup of G which is conjugate to the standard parabolic subgroup* P_I *of G, where* $I = \Pi \setminus \{\alpha\}$ *and* α *occurs in the highest root* α˜ *with coef[ficient](#page-44-10)* 1*.*

Let $\Pi = {\alpha_1, \alpha_2, \ldots, \alpha_n}$ be a set of simple roots of the root system Ψ of *G*. Using Lemma 2.40, we can readily determine the standard parabolic subgroups *P^I* of *G* with an abelian unipotent radical. For *G* simple we gather this information in Table 1 [along with th](#page-19-0)e structure of the corresponding standard Levi subgroup *L^I* of *P_I*. Set $P_{\alpha_i'} = P_{\Pi \setminus {\{\alpha_i\}}}$. Here the simple roots are labelled as in [Bourbaki 1968, Planches I–IX].

Note that if *G* is of type E_8 , F_4 or G_2 , then *G* does not admit a parabolic subgroup with an abelian unipotent radical. Also compare the list of pairs $(G, \mathcal{D}L)$ from Table 1 with the list in Theorem 2.39.

Type of G	P_I	Type of $\mathfrak{D}L_I$
A_n	$P_{\alpha_i'}$ for $1 \leq i \leq n$	$A_{i-1}A_{n-i}$
B_n	$P_{\alpha_1'}$	B_{n-1}
C_n	$P_{\alpha'_n}$	A_{n-1}
D_n	$P_{\alpha'_1}$, $P_{\alpha'_{n-1}}$ and $P_{\alpha'_n}$	D_{n-1} or A_{n-1}
E ₆	$P_{\alpha'_1}$ and $P_{\alpha'_6}$	Dς
Eπ	$P_{\alpha'_{7}}$	E_6

Table 1. Parabolic subgroups with abelian unipotent radical.

Our next result is immediate from [Br[undan 1998, Th](#page-19-0)eorem 4.1, Lemma 4.2].

[Proposition](#page-18-0) 2.41. *If* $P = LR_u(P)$ *is a parabolic subgroup of G with* $R_u(P)$ *abelian, then* $\kappa_L(R_u(P)) = 0$ *.*

Proof. If $R_u(P)$ is abelian, then using Table 1 we see that all the possible pairs $(G, \mathcal{D}L)$ appear in the list of spherical Levi subgroups given in Theorem 2.39, that is, $\kappa_G(G/L) = 0$. Proposition 2.37 then implies that $\kappa_L(R_u(P)) = 0$.

Corollary 2.42. *If P is a parabolic subgroup of G with Ru*(*P*) *abelian*, *then* $\kappa_L(\mathfrak{p}_u) = 0.$

Let Ψ be the root system of *G* and let $\Pi \subseteq \Psi$ be a set of simple roots of Ψ . Let $P = P_I$ ($I \subseteq \Pi$) be a standard parabolic subgroup of *G*. Let Ψ_I be the root system of the standard Levi subgroup L_I , that is, Ψ_I is spanned by *I*. Define $\Psi_I^+ = \Psi_I \cap \Psi^+$. For any root $\alpha \in \Psi$ we can uniquely write $\alpha = \alpha_I + \alpha_{I'}$ where

$$
\alpha_I = \sum_{\beta \in I} c_{\beta} \beta
$$
, and $\alpha_{I'} = \sum_{\beta \in \Pi \setminus I} d_{\beta} \beta$.

We define the *level of* α (*relative to* P or *relative to* I) to be

$$
\mathrm{lv}(\alpha) := \sum_{\beta \in \Pi \setminus I} d_{\beta}
$$

(see [Azad et al. 1990]). Let *d* be the maximal level of any root in Ψ . If $2i > d$, then

$$
(2-5) \t\t A_i := \prod_{\mathrm{lv}(\alpha)=i} U_\alpha
$$

is an abelian unipotent subgroup of *G*. Note A_d is the centre of $R_u(P)$. Since *L* normalizes each A_i , we can consider $\kappa_L(A_i)$.

Proposition 2.43. *If P is a parabolic subgroup of G and* $2i > d$, *then* $\kappa_L(A_i) = 0$ *.*

Proof. We maintain the setup from the previous paragraph. Set A_i as in (2-5) and

$$
A_i^- = \prod_{\substack{lv(\alpha)=-i}} U_\alpha.
$$

Let *H* be the subgroup of *G* generated by A_i , $A_i^ \overline{I}_i$, and *L*. Then *H* is reductive, with root system

$$
\Psi_I \cup \{\alpha \in \Psi \mid \mathrm{lv}(\alpha) = \pm i\},\
$$

and LA_i is a parabolic subgroup of H . Since A_i is abelian, we can invoke Proposition 2.41 to deduce that $\kappa_L(A_i) = 0$.

There is a natural Lie algebra analogue of Proposition 2.43: Maintaining the [setup f](#page-44-9)rom above, for $2i > d$, we see that

$$
\mathfrak{a}_i := \bigoplus_{\mathrm{lv}(\alpha) = i} \mathfrak{g}_\alpha
$$

[is an abelian](#page-21-1) subalgebra of $\mathfrak g$. Since Lie $U_\alpha = \mathfrak g_\alpha$ for all $\alpha \in \Psi$, we have Lie $A_i = \mathfrak a_i$. Thanks to [Goodwin 2005b, Corollary 1.4], we obtain the following consequence of Proposition 2.43.

Cor[ollary](#page-20-0) 2.44. *If P is a parabolic subgroup of G and* $2i > d$, *then* $\kappa_L(\mathfrak{a}_i) = 0$.

[Rema](#page-46-6)rks 2.45. (i) Corollary 2.44 was first proved, for a field of characteristic zero, in [Panyushev 1994, Proposition 3.2]; the proof there is somewhat different from ours[.](#page-46-6)

(ii) Propositions 2.41 and 2.43 suggest that if *A* is an abelian subgroup of $R_u(P)$ which is normal in *P*, then $\kappa_L(A) = 0$. It is indeed the case that *P* acts on *A* with a dense orbit $[R\ddot{o}h$ rle 1998, Theorem 1.1]. However, [this is n](#page-46-6)ot the case when we consider instead the action of a Borel subgroup of a Levi subgroup of *P* on *A*. For example, it follows from [Röhrle 1998, Table 1] that if *G* is of type A_n , then the dimension of a maximal normal abelian subgroup *A* of a Borel subgroup *B* of *G* is $i(n+1-i)$, where $1 \leq i \leq n$. Clearly, for $1 \neq i \neq n$ we have dim $A > \text{rk } G$. Thus, a maximal torus of *B* cannot act on *A* with a dense orbit. Using [Röhrle 1998, Table 1], it is easy to construct further examples.

3. The classification of the spherical nilpotent orbits

3.1. *Height two nilpotent orbits.* We will now show that height two nilpotent orbits are spherical. Let $e \in \mathfrak{g}$ be nilpotent and let $\lambda \in \Omega_G^a(e)$ be an associated cocharacter of *G*. Define the following subalgebra of g:

(3-1)
$$
\mathfrak{g}_E := \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}(2i).
$$

Proposition 3.1. *Let* $e \in \mathcal{N}$, $\lambda \in \Omega_G^a(e)$, and let \mathfrak{g}_E be the subalgebra of \mathfrak{g} defined *in* (3-1)*.*

- (i) *There exists a connected reductive subgroup* G_E *of G such that* Lie $G_E = \mathfrak{g}_E$.
- (ii) *There exists a parabolic subgroup Q of G^E such that*

$$
\text{Lie } Q = \bigoplus_{i \geqslant 0} \mathfrak{g}(2i).
$$

Moreover, $C_G(\lambda)$ *is a Levi subgroup of Q and*

$$
\text{Lie } R_u(Q) = \bigoplus_{i \geqslant 1} \mathfrak{g}(2i).
$$

Proof. Fix a maximal torus *T* of *G* such that $\lambda(k^*) \leq T$. Set

$$
\Phi = \{ \alpha \in \Psi \mid \langle \alpha, \lambda \rangle \in 2\mathbb{Z} \}.
$$

So $\mathfrak{g}_E = \bigoplus_{\alpha \in \Phi} \mathfrak{g}_\alpha$.

Then Φ is a semisimple subsystem of Ψ . The subgroup G_E generated by *T* and all the one-dimensional root subgroups U_α with $\alpha \in \Phi$ is reductive and has Lie algebra g*E*.

Let $Q = P \cap G_E$ $Q = P \cap G_E$ $Q = P \cap G_E$, where $P = P_\lambda$. Since $\lambda(k^*) \leq T \leq G_E$, we see that *Q* is a parabolic subgroup of G_E ; see the remarks preceding Theorem 2.14. Since Lie $C_G(\lambda) = \mathfrak{g}(0)$, we have $C_G(\lambda) \leq Q$ and so $C_G(\lambda)$ is a Levi subgroup of Q. The remaining claims follow from the fact that Lie $P = \mathfrak{g}_{\geq 0}$, the parabolic subgroup P has Levi decomposition $P = C_G(\lambda)R_u(P)$ and Lie $R_u(P) = \mathfrak{g}_{>0}$.

The following discussion and Lemma 3.2 allow us to reduce the determination of the spherical nilpotent orbits to the case [when](#page-6-2) *G* is simple. Since the centre of *G* acts trivially on g, we may assume that *G* is semisimple. Let \tilde{G} be semisimple of adjoint type and $\pi : G \to \tilde{G}$ be the corresponding isogeny. Let $e \in \mathfrak{g}$ be nilpotent and let $\tilde{e} = d\pi_1(e)$. Consider the restriction of $d\pi_1$ to the nilpotent variety of g. Then $d\pi_1 : \mathcal{N} \to \tilde{\mathcal{N}}$ is a dominant *G*-equivariant morphism, where $\tilde{\mathcal{N}}$ is the nilpotent variety of Lie \widetilde{G} and G acts on \widetilde{N} via $\widetilde{Ad} \circ \pi$. It then follows from Theorem 2.8 that $\kappa_G(G \cdot e) = \kappa_{\widetilde{G}}(\widetilde{G} \cdot \widetilde{e})$. We therefore may assume that *G* is semisimple of adjoint type.

Lemma 3.2. *Let G be semisimple of adjoint type. Then G is a direct product of simple groups* $G = G_1 G_2 \cdots G_r$. If $e \in \mathfrak{g}$ *is nilpotent, then* $e = e_1 + e_2 + \cdots + e_r$ *for* e_i *nilpotent in* $\mathfrak{g}_i = \text{Lie } G_i$ *and* $\kappa_G(G \cdot e) = \sum_{i=1}^r \kappa_{G_i}(G_i \cdot e_i)$ *.*

Proof. Since *G* is semisimple of adjoint type, so that *G* is the direct product $G = G_1 G_2 \cdots G_r$ of simple groups G_i , we have Lie $G = \bigoplus \text{Lie } G_i$. Let $e \in \mathfrak{g}$ be nilpotent. Clearly, any element $x \in C_G(e)$ is of the form $x = x_1x_2 \cdots x_r$ where $x_i \in G_i$ and we also have that $e = e_1 + e_2 + \cdots + e_r$, where $e_i \in \mathfrak{g}_i$ and each e_i must be nilpotent. We know that $Ad(x)(e) = e$ so

$$
Ad(x_1) Ad(x_2) \cdots Ad(x_r)(e_1 + e_2 + \cdots + e_r) = e_1 + e_2 + \cdots + e_r.
$$

For $i \neq j$ we have $\text{Ad}(x_i)(e_j) = e_j$, so $\text{Ad}(x)(e_i) = \text{Ad}(x_i)(e_i)$. Therefore, as Ad(x_i) stabilizes g_i , we have Ad(x_i)(e_i) = e_i . Thus, we obtain the following decomposition $C_G(e) = C_{G_1}(e_1)C_{G_2}(e_2)\cdots C_{G_r}(e_r)$. For *B* a Borel subgroup of *G* we have $B = B_1 B_2 \cdots B_r$, where each B_i is a Borel subgroup of G_i and $C_B(e)$

 $C_{B_1}(e_1)C_{B_2}(e_2)\cdots C_{B_r}(e_r)$. In particular, for $B \in \Gamma_G(e)$ we have that dim $C_B(e)$ is minimal. This implies that dim $C_{B_i}(e_i)$ is minimal for each *i* and so $B_i \in \Gamma_{G_i}(e_i)$. Therefore, we have

$$
\kappa_G(G \cdot e) = \dim G - \dim C_G(e) - \dim B + \dim C_B(e)
$$

= $\sum_{i=1}^r \dim G_i - \sum_{i=1}^r \dim C_{G_i}(e_i) - \sum_{i=1}^r \dim B_i + \sum_{i=1}^r \dim C_{B_i}(e_i)$
= $\sum_{i=1}^r (\dim G_i - \dim C_{G_i}(e_i) - \dim B_i + \dim C_{B_i}(e_i))$
= $\sum_{i=1}^r \kappa_{G_i}(G_i \cdot e_i).$

Lemma 3.3. Let G be a [connected redu](#page-16-0)ctive algeb[raic grou](#page-21-3)p and $e \in \mathfrak{g}$ be nilpo*tent. If* $ht(e) = 2$ *, then e is sphe[rical.](#page-20-1)*

Proof. First we assume that *G* is simple. Let $\lambda \in \Omega_G^a(e)$. Let \mathfrak{g}_E be the Lie subalgebra of g as defined in $(3-1)$ and let Q be the parabolic subgroup of G_E as in Proposition 3.1(ii). Since ht(*e*) = 2, we have $\mathfrak{g}_E = \mathfrak{g}(-2) \oplus \mathfrak{g}(0) \oplus \mathfrak{g}(2)$. Set $L = C_G(\lambda)$. Then $\kappa_G(G \cdot e) = \kappa_L(\mathfrak{g}(2))$, by Theorem 2.32. Also, by Proposition 3.1, Lie $R_u(Q) = g(2)$. Since $R_u(Q)$ is a[belian,](#page-22-0) Corollary 2.42 implies that $\kappa_L(\mathfrak{g}(2))=0.$

Now suppose that *G* is reductive. Let $\mathcal{D}G = G_1G_2 \cdots G_r$ be a commuting product of simple groups. For $e \in \mathfrak{g}$ we have $e = e_1 + e_2 + \cdots + e_r$, where $e_i \in \mathfrak{g}$ $\mathfrak{g}_i = \text{Lie } G_i$ and each e_i is nilpotent. Since $\text{ht}(e) = \max_{1 \leq i \leq r} \text{ht}(e_i)$, we have $\text{ht}(e_i) \leq \text{ht}(e) = 2 \text{ for all } i.$ Since $\kappa_G(G \cdot e) = \sum_{i=1}^r \kappa_{G_i}(G_i \cdot e_i)$, by Lemma 3.2, the result follows from the simple case just proved. \Box

3.2. *Even gradings*. Suppose that the given nilpotent element $e \in \mathfrak{g}$ satisfies

 $ht(e) \geq 4.$

Also assume that any $\lambda \in \Omega_G^a(e)$ induces an *even grading* on g, that is, $g(i, \lambda) = \{0\}$, whenever *i* is odd. As usual we denote $g(i, \lambda)$ simply by $g(i)$.

L[emma 3.4.](#page-44-11) *Let e* \in *N and* $\lambda \in \Omega_G^a(e)$ *be as above. Then* $\mathfrak{g}_{\geqslant 2}$ *is nonabelian.*

Proof. Set ht(*e*) = *d*. For the highest root $\tilde{\alpha} \in \Psi^+$ we have $\mathfrak{g}_{\tilde{\alpha}} \subseteq \mathfrak{g}(d)$. Write $\tilde{\alpha} = \alpha_1 + \alpha_2 + \cdots + \alpha_r$ as a sum of not necessarily distinct simple roots. The sequence of simple roots $\alpha_1, \alpha_2, \ldots, \alpha_r$ can be chosen so that $\alpha_1 + \alpha_2 + \cdots + \alpha_s$ is a root for all $1 \le s \le r$ [Humphreys 1972, Corollary 10.2.A]. Since the grading of g induced by λ is even, for all simple roots $\alpha \in \Pi$, we have $\mathfrak{g}_{\alpha} \subseteq \mathfrak{g}(i)$ with $i \in \{0, 2\}$ (compare (2-3)). Since $d \ge 4$, for at least one α_i we must have $\mathfrak{g}_{\alpha_i} \subseteq \mathfrak{g}(2)$. Let α_k

be the last simple root in the sequence $\alpha_1, \alpha_2, \ldots, \alpha_r$ with this property. Thus, for $\beta = \alpha_1 + \alpha_2 + \cdots + \alpha_{k-1}$ we have $\mathfrak{g}_{\beta} \in \mathfrak{g}(d-2) \subseteq \mathfrak{g}_{\geq 2}$ [. Sin](#page-18-0)ce chark is good for *G*[, we h](#page-16-0)ave $[\mathfrak{g}_{\beta}, \mathfrak{g}_{\alpha_k}] = \mathfrak{g}_{\beta'}$ where $\beta' = \beta + \alpha_k$. Therefore, $\mathfrak{g}_{\geqslant 2}$ is nonabelian. \square

Corollary 3.5. Let P be the destabilizin[g parabolic sub](#page-19-0)group of G defined by $e \in$ $N.$ Then $R_u(P)$ *is nonabelian.*

Set $\mathfrak{p}_u =$ Lie $R_u(P)$. Because the grading of g is even, $g_{\geq 2} = \mathfrak{p}_u$. Thus, by Proposition 2.37 and Theorem 2.32, we have $\kappa_G(G \cdot e) = \kappa_G(G/L)$, where $L = C_G(\lambda)$. Using the classification of the spherical Levi subgroups and the classification of the parabolic subgroups of *G* with abelian unipotent radical, Theorem 2.39 and Lemma 2.40, we see that there are only two cases, for *G* simple, when $R_u(P)$ is nonabelian and *L* is spherical, namely when *G* is of type B_n and $\mathfrak{D}L$ is of type *A*_{*n*−1} and when *G* is of type C_n and $\mathcal{D}L$ is of type C_{n-1} .

Lemma 3.6. *Let G be of type B_n or of type C_n. Let* $e \in \mathcal{N}$ *and* $\lambda \in \Omega_G^a(e)$ *. Set* $L = C_G(\lambda)$. If $\pi_e = [1^{r_1}, 2^{r_2}, \dots]$ *[is the correspond](#page-16-1)ing partition for e, then*

$$
\dim Z(L) = \left| \left\{ a_i, b_i \in \mathbb{Z}_{\geqslant 0} \; \middle| \; a_i + 1 = \sum_{j \geqslant i} r_{2j+1}, b_i + 1 = \sum_{j \geqslant i} r_{2j} \right\} \right|.
$$

Proof. Since *L* is reductive, $L = Z(L) \mathfrak{D}L$, and $Z(L) \cap \mathfrak{D}L$ is finite, we have $\dim L = \dim Z(L) + \dim \mathfrak{D}L$. The result follows from Proposition 2.35.

It is straightforward to deduce the following from Propositions 2.26 and 2.35.

Lemma 3.7. *Let* $e \in \mathcal{N}$ *and* $\lambda \in \Omega_G^a(e)$ *with* $h(t)e) \geq 4$ *. Set* $L = C_G(\lambda)$ *. If* G is of *type* B_n , *then* $\mathfrak{D}L$ *is not of type* A_{n-1} *and if* G *is of type* C_n *, then* $\mathfrak{D}L$ *is not of type Cn*−1*.*

Lemma 3.8. *[Let e](#page-24-2)* \in *N and supp[ose that](#page-19-0)* $\lambda \in \Omega_G^a(e)$ *[induces](#page-18-0) [a](#page-19-2)n even grading on* g. *If* $ht(e) \geq 4$ *, then e is nonspherical.*

Proof. First we observe that if *G* [is simpl](#page-23-0)e, then the statement follows from the facts that $R_u(P)$ is nonabelian (Corollary 3.5) and that $(G, \mathcal{D}L)$ is not one of the pairs (B_n, A_{n-1}) or (C_n, C_{n-1}) (Lemma 3.7). So by Theorem 2.39 and Lemma 2.40, we see that *L* is a nonsph[erical](#page-21-2) subgroup. Therefore, by Proposition 2.37, κ_L (g_{\geq 2}) > 0 and *e* is nonspherical.

In case *G* is [redu](#page-21-4)ctive, we argue as in the proof of Lemma 3.3 and reduce to the [simple case.](#page-21-3) \square

3.3. *Nilpotent orbits of height at least four.* Let $e \in \mathfrak{g}$ be nilpotent and let $\lambda \in$ $\Omega_G^a(e)$. Let \mathfrak{g}_E be the subalgebra of g as defined in (3-1). Also let G_E be the connected reductive algebraic group such that Lie $G_E = \mathfrak{g}_E$ and Q be the parabolic subgroup of G_E as in Proposition 3.1(ii).

Since $e \in \mathfrak{g}_E$ and $\lambda(k^*) \leq G_E$, it follows from [Fowler and Röhrle 2008, Theorem 1.1] that λ is a cocharacter of G_E which is associated to *e*, that is, $\lambda \in \Omega_{G_E}^a(e)$. Moreover, for $P = P_{\lambda}$, we have $Q = P \cap G_E$ is the destabilizing parabolic subgroup of G_F defined by *e*.

Let $\text{ht}_E(e)$ denote the height of $e \in \mathfrak{g}_E$. Now if $\text{ht}(e) \geq 4$ and $\text{ht}(e)$ is even, then $ht_E(e) = ht(e)$. The case when $ht(e) \ge 4$ and $ht(e)$ is odd is slightly more involved. First we need some preliminary results. A proof of the following can be found in [Panyushev 1999, Proposition 2.4].

Lemma 3.9. *Suppose that* char $k = 0$. If $e \in \mathcal{N}$ *with* $\text{ht}(e)$ *odd*, *then the weighted Dynkin diagram* Δ (*e*) *contains no* "2" *labels.*

If Π is a set of simple roots of Ψ relative to a maximal torus *T* which contains $\lambda(k^*)$, then for $\alpha \in \Pi$ we have

(3-2) g^α ⊆ g(*i*),

where $i \in \{0, 1\}$. To see this recall $(2-3)$: $Ad(\lambda(t))(e_{\alpha}) = t^{m_{\alpha}}e_{\alpha}$, for $e_{\alpha} \in \mathfrak{g}_{\alpha}$ and m_{α} is the corresponding label of the weighted Dynkin diagram $\Delta(e)$ of *e*. Thus, by Lemma 3.9, we have $m_\alpha \in \{0, 1\}.$

Lemma 3.10. *If* ht(*e*) = *d is odd*, *then* $\mathfrak{g}(d-1) \neq \{0\}$ *.*

Proof. The result follows easily, arguing as in the proof of Lemma 3.4 and using $(3-2)$ $(3-2)$.

Corollary 3.11. *If* $e \in \mathcal{N}$ *with* $h(t)e$ *odd*, *then* $h(t)e$ = $h(t)e$ - 1*.*

In particular, we have the following conclusion.

[Corollar](#page-44-12)y 3.12. *If* $e \in \mathcal{N}$ *with* $ht(e) \geq 4$ *, then* $ht_E(e) \geq 4$ *.*

Thus, by Lemma 3.8, Corollary 3.12, and the fact that

$$
\Omega_G^a(e) \cap Y(G_E) = \Omega_{G_E}^a(e)
$$

(see [Fowler and Röhrle 2008, Theorem 1.1]), we have $\kappa_L(g_{E,\geq 2}) > 0$, where

$$
\mathfrak{g}_{E,\geqslant 2} = \bigoplus_{i\geqslant 1} \mathfrak{g}(2i)
$$
 and $L = C_G(\lambda) = C_{G_E}(\lambda)$.

Lemma 3.13. *If a Borel subgroup* B_L *of L acts on* $\mathfrak{g}_{\geq 2}$ *with a dense orbit, then* B_L *acts on* g*E*,>² *with a dense orbit.*

Proof. This follows readily from Theorem 2.9. □

Combining Lemmas 3.8, 3.13 and Corollary 3.12, we get the main result of this section.

Proposition 3.14. *Let e* \in *N. If* $\text{ht}(e) \geq 4$, *then e is nonspherical.*

3.4. *Nilpotent orbits of height three.* Let $e \in \mathcal{N}$ and let $\lambda \in \Omega_G^a(e)$. Let $P = P(e)$ be the destabilizing parabolic subgroup defined by *e*. Then $P = LR_u(P)$ for $L =$ $C_G(\lambda)$. Let B_L be a Borel subgroup of *L* so that $\lambda(k^*) \le B_L$. Write $B_L = T U_L$ for a Levi decomposition of B_L , where $U_L = R_u(B_L)$ and T is a maximal torus of *G* containing $\lambda(k^*)$. Let $b_L = \text{Lie } B_L$, $n = \text{Lie } U_L$, and $t = \text{Lie } T$.

Lemma 3.15. *Let e* \in g *be nilpotent and* λ *be an associated cocharacter for e in* g*[. Then th](#page-16-0)e following are equivalent.*

- (i) *The [nilpo](#page-26-0)tent [elem](#page-26-1)ent e is spherical.*
- [\(ii\)](#page-3-0) *There exists* $e' \in \mathfrak{g}_{\geqslant 2}$ *<i>such that* $\overline{\text{Ad}(B_L)(e')} = \mathfrak{g}_{\geqslant 2}$ *.*
- (iii) *There exists e'* $\in \mathfrak{g}_{\geqslant 2}$ *such that* dim $C_{B_L}(e') = \dim B_L \dim \mathfrak{g}_{\geqslant 2}$ *.*

Proof. Thanks to Theorem 2.32, $\kappa_G(G \cdot e) = \kappa_L(g_{\geq 2})$. Thus (i) and (ii) are equivalent. The equivalence between (ii) and (iii) is clear.

Recall from Section 2.1 the definition of the support of a nilpotent element in μ .

Lemma 3.16. *Let e* \in $\mathfrak{g}_{\geqslant 2}$ *. If supp(e) is linearly independent, then*

$$
\dim C_T(e) = \dim T - |\operatorname{supp}(e)|.
$$

Proof. Suppose that supp(*e*) is linearly independent. Then

$$
\dim \text{Ad}(T)(e) = |\text{supp}(e)|
$$

(see [Goodwin 2005a, Lemma 3.2]). The desired equality follows. \Box

The following is a standard consequence of orbit maps.

Lemma 3.17. *Let* $e' \in \mathfrak{g}_{\geqslant 2}$ *. Then*

$$
\dim C_{B_L}(e') \leqslant \dim \mathfrak{c}_{\mathfrak{b}_L}(e') \quad \text{and} \quad \dim C_{U_L}(e') \leqslant \dim \mathfrak{c}_{\mathfrak{n}}(e').
$$

Goodwin [2006b, Proposition 5.4] showed that each *U*-orbit in u admits a unique so-called *minimal* orbit representative; see [loc. cit., Definition 5.3]. (This depends on a suitable choice of an ordering of the positive roots compatible with the height function [loc. cit., Definition 3.1]. Moreover, a special case of [loc. cit., Proposition 7.7] gives

$$
C_B(e) = C_T(e)C_U(e)
$$

for *e* the minimal representative of [its](#page-27-0) *U*-orbit in u. Hence:

Lemma 3.18. Let $e' \in \mathfrak{g}_{\geqslant 2}$. Suppose that e' is the minimal representative of its *U*-orbit in **u**. Then $C_{B_L}(e') = C_T(e')C_{U_L}(e')$. In particular,

$$
\dim C_{B_L}(e') = \dim C_T(e') + \dim C_{U_L}(e').
$$

Proposition 3.19. *Let G be a simple algebraic group. Table 2 gives a complete list of the height* 3 *nilpotent orbits in* g*.*

Type of G	Orbits	Type of G	Orbits
A_n		G_2	
B_n	$[1^j, 2^{2i}, 3]$ with $i > 0$	F4	$A_1+\widetilde{A_1}$
C_n		E_6	$3A_1$
D_n	$[1^j, 2^{2i}, 3]$ with $i > 0$	E7	$(3A_1)'$, 4A ₁
		E_8	$3A_1, 4A_1$

Table 2. The nilpotent orbits of height 3.

Proof. For the classical groups we use Proposition 2.26. By Remarks 2.27, there are no height 3 nilpotent orbits in types A_n and C_n . Using the tables in [Carter 1985, §13] and $(2-4)$, one readily determines the desired orbits when *G* is exceptional. \Box

In Table 2 we either give the partition or the Bala–Carter label of the corre-sponding orbit; see [Carter [1985, §13\].](#page-45-2)

In the next three sections we concentrate on the height 3 orbits in types B_n , D_n , and the exceptional types, respectively.

3.5. *Height three nilpotent elements of* $\mathfrak{so}_{2n+1}(k)$ *.* Let *G* be of type B_n for $n \geq 3$ *,* so $\mathfrak{g} = \mathfrak{so}_{2n+1}(k)$. The nilpotent orbits in g are classified by the partitions of $2n+1$ with even parts occurring with even multiplicity [Jantzen 2004, Theorem 1.6]. By Proposition 2.26, the height 3 nilpotent orbits correspond to partitions of $2n + 1$ of the form $\pi_{r,s} = [1^s, 2^{2r}, 3]$, where $r \geq 1$, $s \geq 0$ and $2r + s + 1 = n$. Denote the corresponding nilpotent orbit by $\mathbb{O}_{r,s}$ and a representative of such an orbit by $e_{r,s}$.

Lemma 3.20. *There are precisely* $\left[\frac{n-1}{2}\right]$ 2 *distinct height* 3 *nilpotent orbits in* g*.*

Proof. By our comments above, we need to show that there are precisely $\left[\frac{n-1}{2}\right]$ $\frac{-1}{2}$] [p](#page-27-1)artitions of $2n + 1$ of the form $\pi_{r,s}$. This is equivalent to finding all partitions of $n-1$ of the form $[1^{\frac{s}{2}}, 2^r]$. Thus *r* satisfies $1 \leq r \leq \frac{n-1}{2}$ $\frac{-1}{2}$. Since *r* is an integer, the result follows.

Since the number $2r + 1$ appears frequently in the sequel, we set $\hat{r} = 2r + 1$. Using [Carter 1985, §13], we readily see that that $e_{r,s}$ has the weighted Dynkin diagram as in Figure 1.

$$
\Delta(e_{r,s})\mathpunct{:} \qquad \overset{\textstyle 1\qquad \ \ \, 0 \qquad 0 \qquad 1 \qquad 0 \qquad 0 \qquad 0}{\overset{\textstyle\cdot}{\hat{r}}\qquad \qquad \ \ \, \overset{\textstyle\cdot}{\bullet}\qquad \qquad \ \ \, \, \overset{\textstyle\cdot}{\bullet}\qquad \qquad \ \ \, \overset{\
$$

Figure 1. Labeling of $\Delta(e_{r,s})$.

Remark 3.21. Note that in $\Delta(e_{r,s})$ there are precisely two simple roots, α_1 and $\alpha_{\hat{r}}$ that are labeled with a "1" and that there is an odd number of simple roots between α_1 and $\alpha_{\hat{r}}$. Also, the short simple root is labeled with a "1" if and only if $s = 0$, and this can only happen when *n* is odd.

We refer to [Bourbaki 1968, Planche II] for information regarding the root system of type B_n . Let $\alpha_1, \ldots, \alpha_n$ be the simple roots of Ψ^+ and let

$$
\beta_{j,k} = \alpha_j + \dots + \alpha_k \quad \text{for } 1 \leq j \leq k \leq n,
$$

$$
\gamma_{j,k} = \alpha_j + \dots + \alpha_{k-1} + 2\alpha_k + \dots + 2\alpha_n \quad \text{for } 1 \leq j < k < n,
$$

where $\beta_{j,j} = \alpha_j$. Note that all the possible β 's and γ 's exhaust Ψ^+ .

For a *T* -stable Lie subalgebra m of u, recall the definition of the set of roots Ψ (m) of m with respect to *T* from Section 2.1.

Lemma 3.22. *For an associated cocharacter of er*,*^s in* g *we have*

- (i) $\Psi(\mathfrak{g}(2)) = \{\beta_{1,j}, \gamma_{i,m}, \gamma_{l,k} \mid 1 < l < k \leq \hat{r} \leq j \text{ and } 1 < i < m \leq \hat{r}\}\text{, and so}$ $\dim \mathfrak{g}(2) = 2r^2 - r + 2s + 1.$
- (ii) $\Psi(\mathfrak{g}(3)) = {\gamma_{1,k} | k \leq \hat{r}}$, *and so* dim $\mathfrak{g}(3) = 2r$.

Proof. For every $\delta \in \Psi$ we have that $\mathfrak{g}_{\delta} \subseteq \mathfrak{g}(i)$ for some $i \in \{0, \pm 1, \pm 2, \pm 3\}.$ For the simple roots this information can be read off from $\Delta(e_{r,s})$; see (2-3). Let $\delta = \sum_{\alpha \in \Pi} c_{\delta,\alpha} \alpha$ be a positive root.

Now $\mathfrak{g}_{\delta} \subseteq \mathfrak{g}(2)$ if and only if $c_{\delta, \alpha_1} + c_{\delta, \alpha_{\delta}} = 2$. All of the roots listed above satisfy this condition, and no others do. Finally, $\mathfrak{g}_{\delta} \subseteq \mathfrak{g}(3)$ if and only if $c_{\delta, \alpha_1} + c_{\delta, \alpha_2} = 3$. All of the roots listed above satisfy this condition, and no others do. \Box

Lemma 3.23. *For an associated cocharacter of er*,*^s in* g *we have*

(i) $\Psi(\mathfrak{b}_L) = {\beta_{i,k}, \gamma_{l,m} \mid \hat{r} < j \text{ or } 1 < j \leq k < \hat{r}, \hat{r} < l < m}.$

(ii) dim
$$
b_L = 2r^2 + s^2 + s + r + 1
$$
.

[Proof.](#page-27-1) For every $\delta \in \Psi$ we have that $\mathfrak{g}_{\delta} \subseteq \mathfrak{g}(i)$ for some $i \in \{0, \pm 1, \pm 2, \pm 3\}$. As mentioned above, for the simple roots this information can be read off from $\Delta(e_{r,s})$; see (2-3). Let $\delta = \sum_{\alpha \in \Pi} c_{\delta,\alpha} \alpha \in \Psi^+$. Then $\mathfrak{g}_{\delta} \subseteq \mathfrak{b}_L$ if and only if $c_{\delta,\alpha_1} + c_{\delta,\alpha_{\widehat{r}}} = 0$. All of the roots listed above satisfy this condition, and no others do. Consequently, dim $n = 2r^2 + s^2 - r$. Since dim $t = n$, we get dim $b_L = 2r^2 + s^2 + s + r + 1$. \Box

It follows from Figure 1 that *L* is of Dynkin type $A_{\hat{r}-1} \times B_s$. Accordingly, there is a natural partition of the roots of \mathfrak{b}_L into a union of two subsets, namely the positive roots of the $A_{\hat{r}-1}$ and B_s subsystems, respectively. Thus, we have $\Psi(\mathfrak{b}_L) = \Psi_1(\mathfrak{b}_L) \cup \Psi_2(\mathfrak{b}_L)$, where

$$
\Psi_1(\mathfrak{b}_L) = \{ \beta_{j,k} \mid 1 < j \leq k < \hat{r} \},
$$
\n
$$
\Psi_2(\mathfrak{b}_L) = \{ \beta_{j,k}, \gamma_{l,m} \mid \hat{r} < j \leq k, \hat{r} < l < m \}.
$$

Similarly, we can decompose the roots of $g_{\geq 2}$ into two sets as follows: $\Psi(g_{\geq 2}) =$ $\Psi_1(\mathfrak{g}_{\geqslant2})\cup\Psi_2(\mathfrak{g}_{\geqslant2}),$ where

$$
\Psi_1(\mathfrak{g}_{\geqslant 2}) = \{ \gamma_{j,k} \mid 1 \leqslant j < k \leqslant \hat{r} \},
$$
\n
$$
\Psi_2(\mathfrak{g}_{\geqslant 2}) = \{ \beta_{1,j}, \gamma_{1,k} \mid \hat{r} \leqslant j, \hat{r} < k \}.
$$

The sets $\Psi_i(\mathfrak{b}_L)$ and $\Psi_i(\mathfrak{g}_{\geq 2})$ satisfy the following property:

$$
(3-3) \qquad \delta \in \Psi_i(\mathfrak{b}_L), \ \eta \in \Psi_{3-i}(\mathfrak{g}_{\geqslant 2}) \implies \delta + \eta \notin \Psi, \ i \in \{1, 2\}.
$$

Denote by \mathfrak{b}_L^i the Lie subalgebras of \mathfrak{b}_L such that $\Psi(\mathfrak{b}_L^i) = \Psi_i(\mathfrak{b}_L)$ for $i = 1, 2$. For the rest of this section we show that the following element is a representative of the dense B_L -orbit in $\mathfrak{g}_{\geqslant 2}$; set

$$
e'_{r,s} := \sum_{j,k=0}^{r-1} (e_{\gamma_{\hat{r}-2j-1,\hat{r}-2j}} + e_{\gamma_{1,\hat{r}-2k}}) + e_{\gamma_{1,\hat{r}+1}} + e_{\beta_{1,\hat{r}}},
$$

where $e_{\delta} \in \mathfrak{g}_{\delta} \setminus \{0\}$ for $\delta \in \Psi(\mathfrak{g}_{\geqslant 2})$.

Recall from the paragraph before Lemma 3.18 the notion of minimal *U*-orbit representatives in u from [Goodwin 2006b].

Lemma 3.24. Each $e'_{r,s}$ is the minimal representative of its U-orbit in u, supp $(e'_{r,s})$ *is li[nearly independen](#page-44-13)t*, *and*

$$
|\operatorname{supp}(e'_{r,s})| = \begin{cases} 2r+2 & \text{if } s > 0; \\ 2r+1 & \text{if } s = 0. \end{cases}
$$

Proof. It is straightforward to check that $e'_{r,s}$ is the minimal representative of its *U*orbit in u in the sense of [Goodwin 2006b] and one easily computes $|\text{supp}(e'_{r,s})|$. Note that the root $\gamma_{1,\hat{r}+1}$ only occurs if $s > 0$.

Suppose there exist scalars τ_j , ξ_k , μ and ν such that

$$
\sum_{j=0}^{r-1} \tau_j \gamma_{\hat{r}-2j-1,\hat{r}-2j} + \sum_{k=0}^{r-1} \xi_k \gamma_{1,\hat{r}-2k} + \mu \gamma_{1,\hat{r}+1} + \nu \beta_{1,\hat{r}} = 0.
$$

Since the coefficients of α_1 , α_2 , and α_3 must be zero, we have

$$
\sum_{k=0}^{r-1} \xi_k + \mu + \nu = 0, \ \tau_{r-1} + \sum_{k=0}^{r-1} \xi_k + \mu + \nu = 0, \text{ and } \xi_{r-1} + 2\tau_{r-1} + \sum_{k=0}^{r-1} \xi_k + \mu + \nu = 0.
$$

These three equations imply that $\tau_{r-1} = 0 = \xi_{r-1}$. Continuing in this way, we see that $\tau_j = 0 = \xi_j$ for all *j*. Thus we are left to show that $\gamma_{1,\hat{r}+1}$ and $\beta_{1,\hat{r}}$ are linearly independent but this is obvious.

Thanks to Lemma 3.24 it is harmless to assume that $supp(e'_{r,s})$ is part of a Chevalley basis of g.

Lemma 3.25. dim $c_n(e'_{r,s}) = \begin{cases} (s-1)^2 & \text{if } s > 0, \\ 0 & \text{if } s = 0. \end{cases}$ 0 *if* $s = 0$.

Proof. Thanks to (3-3), we may consider the two summands

$$
\sum_{j,k=0}^{r-1} (e_{\gamma_{\tilde{r}-2j-1,\tilde{r}-2j}} + e_{\gamma_{1,\tilde{r}-2k}}) \text{ and } e_{\gamma_{1,\tilde{r}+1}} + e_{\beta_{1,\tilde{r}}}
$$

of $e'_{r,s}$ separately. Since $\gamma_{\hat{r}-2j-1,\hat{r}-2j} + \gamma_{1,\hat{r}-2k} \in \Psi_1(\mathfrak{g}_{\geq 2})$, we need only consider the root spaces \mathfrak{g}_{δ} for $\delta \in \Psi_1(\mathfrak{b}_L)$. So let $\beta_{i,m} \in \Psi_1(\mathfrak{b}_L)$. If $m = \hat{r} - 2l$ for some $0 \le l < r$, then, by the Chevalley commutator relations

$$
[e_{\gamma_{\hat{r}-2l+1,\hat{r}-2(l-1)}},\mathfrak{g}_{\beta_{i,\hat{r}-2l}}]=\mathfrak{g}_{\gamma_{i,\hat{r}-2(l-1)}},
$$

since char *k* is good for *G*. If $m = \hat{r} - 2l - 1$ for some $0 \le l < r$, then

$$
[e_{\gamma_{1,\hat{r}-2l}},\mathfrak{g}_{\beta_{i,\hat{r}-2l-1}}]=\mathfrak{g}_{\gamma_{1,i}}.
$$

Next we observe that all the β 's above exhaust the set $\Psi_1(\mathfrak{b}_L)$. Consequently,

$$
\mathfrak{c}_{\mathfrak{b}_L^1}\bigg(\sum_{j,k=0}^{r-1}(e_{\gamma_{\hat{r}-2j-1,\hat{r}-2j}}+e_{\gamma_{1,\hat{r}-2k}})\bigg)=\{0\}.
$$

Next we consider the summand $e_{\gamma_{1,\hat{r}+1}}+e_{\beta_{1,\hat{r}}}$. First observe that $[n, e_{\gamma_{1,\hat{r}+1}}]=\{0\},$ so $c_n(e_{\gamma_{1,\hat{r}+1}}) = n$. Second the root $\beta_{1,\hat{r}}$ lies in $\Psi_2(\mathfrak{g}_{\geqslant 2})$. Thanks to property (3-3), we need only consider roots $\delta \in \Psi_2(\mathfrak{b}_L)$. We see that the only roots $\delta \in \Psi_2(\mathfrak{b}_L)$ with $\delta + \beta_{1,\hat{r}} \in \Psi(\mathfrak{g}_{\geq 2})$ are of the form $\beta_{\hat{r}+1,i}$ or $\gamma_{\hat{r}+1,k}$ where $\hat{r}+1 \leq j \leq n$ and $\hat{r} + 1 < k \leq n$. Again the Chevalley commutator relations imply

$$
[\mathfrak{g}_{\beta_{\hat{r}+1,j}},e_{\beta_{1,\hat{r}}}] = \mathfrak{g}_{\beta_{1,j}}, \quad \text{and} \quad [\mathfrak{g}_{\gamma_{\hat{r}+1,k}},e_{\beta_{1,\hat{r}}}] = \mathfrak{g}_{\gamma_{1,k}}.
$$

We also observe that $\beta_{i,k}$ and $\gamma_{l,m}$ for $\hat{r} + 1 < j, l$ have the property that

$$
\beta_{1,\hat{r}+1} + \gamma_{l,m}, \ \beta_{1,\hat{r}+1} + \beta_{j,k} \notin \Psi_2(\mathfrak{g}_{\geq 2}).
$$

All the roots above exhaust $\Psi_2(\mathfrak{b}_L)$, so we conclude that all the roots $\beta_{j,k}$ and $\gamma_{l,m}$ for $\hat{r} + 1 < j, l$ of $\Psi_2(\mathfrak{b}_L)$ are all contained in $\Psi(\mathfrak{c}_n(e_{\beta_{1},\hat{r}}))$. If $s > 0$, these [roots form](#page-26-3) the set of positive roots of a root system of type B_{s-1} , there are exactly $(s-1)^2$ positive roots in a root system of type B_{s-1} and so $|\Psi(\mathfrak{c}_n(e_{\beta_{1,\hat{r}}}))| = (s-1)^2$. Therefore, dim $\mathfrak{c}_n(e'_{r,s}) = (s-1)^2$; clearly, if $s = 0$ then dim $\mathfrak{c}_n(e'_{r,s}) = 0$.

Proposition 3.26. *[The B](#page-29-0)_L*-*orbit of e*_{*r*,*s*} *[is dense i](#page-28-0)n* $\mathfrak{g}_{\geqslant 2}$ *.*

Proof. Thanks to Lemma 3.15, it is sufficient to show that

$$
\dim B_L = \dim C_{B_L}(e'_{r,s}) + \dim \mathfrak{g}_{\geqslant 2}.
$$

Lemma 3.22 implies that dim $g_{\geqslant 2} = 2r^2 + 2s + r + 1$ and Lemma 3.23 implies that $\dim B_L = 2r^2 + s^2 + s + r + 1$. By Lemma 3.24, $e'_{r,s}$ is the minimal representative of its *U*-orbit in u. Thus, by Lemma 3.18, we have

$$
\dim C_{B_L}(e'_{r,s}) = \dim C_T(e'_{r,s}) + \dim C_U(e'_{r,s}).
$$

Consequently, Lemmas 3.17, 3.24, and 3.25 imply that, for $s > 0$, dim $C_{B_L}(e'_{r,s}) \le$ $n-2r-2+(s-1)^2=s^2-s$. So

$$
\dim C_{B_L}(e'_{r,s}) + \dim \mathfrak{g}_{\geqslant 2} \leqslant s^2 - s + 2r^2 + r + 2s + 1 = \dim B_L.
$$

This clearly implies dim $B_L = \dim C_{B_L}(e'_{r,s}) + \dim \mathfrak{g}_{\geqslant 2}$. Similarly, if $s = 0$, we get dim $B_L = \dim C_{B_L}(e'_{r,s}) + \dim \mathfrak{g}_{\geqslant 2}.$

Corollary 3.27. dim $C_{B_L}(e'_{r,s}) = s(s-1)$ *.*

Finally, from Lemma 3.15 we obtain

Corollary 3.28. *If G is of type* B_n *and* $e \in \mathcal{N}$ *with* $h(e) = 3$ *, then e is spherical.*

[3.6](#page-13-2). *Height three nilpotent elements of* $\mathfrak{so}_{2n}(k)$ *.* Assume now that *G* is of type *D_n* for $n \geq 4$, so $g = \mathfrak{so}_{2n}$. We know that the nilpotent orbits in g are classified by the partitions of 2*n* with even part[s occurring w](#page-27-2)ith even parity; see [Jantzen 2004, Theorem 1.6]. We showed that the height three nilpotent orbits correspond to partitions of 2*n* of the form $\pi_{r,s} = [1^{2s+1}, 2^{2r}, 3]$ where $r \geq 1$, $s \geq 0$ and $2r+s+2=$ *n*; see Proposition 2.26. Similarly to the B_n case, we denote the corresponding [o](#page-44-7)rbit by $\mathbb{O}_{r,s}$ and a representative of such an orbit by $e_{r,s}$. Because the proofs of the results in this section [are virtua](#page-31-0)lly identical to the ones in Section 3.5, they are omitted.

Lemma 3.29. *There are precisely* $\left[\frac{n-2}{2}\right]$ 2 *distinct height* 3 *nilpotent orbits in* g*.*

Using [Carter 1985, §13], we can easily calculate that for $s > 0$, $e_{r,s}$ has the weighted Dynkin diagram $\Delta(e_{r,s})$ as shown in Figure 2.

Figure 2. Labelling of $\Delta(e_{r,s})$ for $s > 0$.

Similarly, when $s = 0$, the labelling of $\Delta(e_{r,0})$ is shown in Figure 3.

Figure 3. Labelling of $\Delta(e_{r,0})$.

Remark 3.30. Note that there is always an odd number of "0" labels between the first and second "1" labels in $\Delta(e_{rs})$. If $s > 0$, then there are $s + 1$ "0" labels to the right of the second "1" label. Finally, $s = 0$ only if *n* is even.

We refer to [Bourbaki 1968, Planche IV] for information regarding the root system of type D_n . We use the following notation for the positive roots Ψ^+ . Let $\alpha_1, \ldots, \alpha_n$ be the set of simple roots of Ψ^+ and let

$$
\beta_{j,k} = \alpha_j + \dots + \alpha_k \quad \text{for } 1 \leq j \leq k \leq n \text{ not } j = n - 1, k = n,
$$

\n
$$
\beta_j = \alpha_j + \dots + \alpha_{n-2} + \alpha_n \quad \text{for } 1 \leq j \leq n - 2,
$$

\n
$$
\gamma_{j,k} = \alpha_j + \dots + \alpha_{k-1} + 2\alpha_k + \dots + 2\alpha_{n-2} + \alpha_{n-1} + \alpha_n \quad \text{for } 1 \leq j < k < n - 2.
$$

Here we again use the convention $\beta_{j,j} = \alpha_j$. Note that all the possible β 's and γ 's exhaust Ψ^+ .

Next we consider the structure of the abelian Lie subalgebra $\mathfrak{g}_{\geq 2} = \mathfrak{g}(2) \oplus \mathfrak{g}(3)$. Lemma 3.31. *An associated cocharacter for er*,*^s affords the following.*

- (i) 9(g(2)) = {β1,*j*, β1, γ*l*,*^k* , γ1,*^m* | 1 < *l* < *k* 6 *r*ˆ 6 *j*,*r*ˆ < *m*} *if s* > 0, ${\beta}_{1,n-1}, {\beta}_1, {\beta}_{i,n}, {\gamma}_{j,k} \mid 2 \leq i < \hat{r}, 1 < j < k < \hat{r}$ *if* $s = 0$. In *particular*, dim $g(2) = 2r^2 - r + 2s + 2$.
- (ii) $\Psi(\mathfrak{g}(3)) = \begin{cases} {\gamma_{1,k} | k \leq \hat{r}} \\ {0, k \leq 1, 0, 0} \end{cases} \quad \text{if } s > 0,$ ${g \choose 1,n}, \gamma_{1,k} \mid 2 \leq k < \hat{r} \}$ *if* $s = 0$. In particular, dim $g(3) = 2r$.

Next we look at the structure of the Lie subalgebra \mathfrak{b}_L of $\mathfrak{g}(0)$.

Lemma 3.32. *An associated cocharacter for er*,*^s affords the following.*

$$
\Psi(\mathfrak{b}_L) = \begin{cases} \{\beta_i, \beta_{j,k}, \gamma_{l,m} \mid \hat{r} < j \text{ or } 1 < j \leq k < \hat{r}, \hat{r} < i, \hat{r} < l < m\} & \text{if } s > 0, \\ \{\beta_{j,k} \mid 1 < j \leq k < \hat{r}\} & \text{if } s = 0. \end{cases}
$$

In particular, dim $b_L = 2r^2 + s^2 + r + 2s + 2$.

Similarly to the B_n case, the roots of b_L naturally form two distinct subsets, namely the roots whose support lies strictly to the left of the second "1" label of the weighted Dynkin diagram and those whose support lies strictly to the right of the second "1" label of the weighted Dynkin diagram. More precisely, we have $\Psi(\mathfrak{b}_L) = \Psi_1(\mathfrak{b}_L) \cup \Psi_2(\mathfrak{b}_L)$ where

$$
\Psi_1(\mathfrak{b}_L) = \{ \beta_{j,k} \mid 1 < j \leq k < \hat{r} \},
$$
\n
$$
\Psi_2(\mathfrak{b}_L) = \{ \beta_{j,k}, \beta_i, \gamma_{l,m} \mid \hat{r} < j \leq k, \hat{r} < i, \hat{r} < l < m \}.
$$

Again we partition the roots of $g_{\geq 2}$ into two distinct subsets. More precisely, we write $\Psi(\mathfrak{g}_{\geqslant2}) = \Psi_1(\mathfrak{g}_{\geqslant2}) \cup \Psi_2(\mathfrak{g}_{\geqslant2})$, where for $s \geqslant 1$, we define

$$
\Psi_1(\mathfrak{g}_{\geqslant 2}) = \{ \gamma_{j,k} \mid 1 \leqslant j < k \leqslant \hat{r} \},
$$
\n
$$
\Psi_2(\mathfrak{g}_{\geqslant 2}) = \{ \beta_1, \beta_{1,j}, \gamma_{1,k} \mid \hat{r} \leqslant j, \hat{r} < k \},
$$

and for $s = 0$, we define

$$
\Psi_1(\mathfrak{g}_{\geqslant 2}) = \{ \gamma_{j,k} \mid 1 \leqslant j < k \leqslant \hat{r} \},
$$
\n
$$
\Psi_2(\mathfrak{g}_{\geqslant 2}) = \{ \beta_1, \beta_{1,n-1}, \beta_{j,n} \gamma_{1,k} \mid j \leqslant \hat{r} < k \}.
$$

Again, we have the following property of these sets:

$$
\delta \in \Psi_i(\mathfrak{b}_L), \eta \in \Psi_{3-i}(\mathfrak{g}_{\geqslant 2}) \implies \delta + \eta \notin \Psi, \ i \in \{1, 2\}.
$$

For $s > 1$, set

$$
e'_{r,s} := \sum_{j,k=0}^{r-1} (e_{\gamma_{\hat{r}-2j-1,\hat{r}-2j}} + e_{\gamma_{1,\hat{r}-2k}}) + e_{\gamma_{1,\hat{r}+1}} + e_{\beta_{1,\hat{r}}} \in \mathfrak{g}_{\geqslant 2},
$$

for $s = 1$, set

$$
e'_{r,1} := \sum_{j,k=0}^{r-1} (e_{\gamma_{\hat{r}-2j-1,\hat{r}-2j}} + e_{\gamma_{1,\hat{r}-2k}}) + e_{\beta_{1,n}} + e_{\beta_{1,\hat{r}}} \in \mathfrak{g}_{\geqslant 2},
$$

and for $s = 0$, set

$$
e'_{r,0} := \sum_{j,k=1}^{r-1} (e_{\gamma_{r-2j-1,\hat{r}-2j}} + e_{\gamma_{1,\hat{r}-2k}}) + e_{\beta_{1,n}} + e_{\beta_{1,n-1}} + e_{\beta_{n-2,n}} + e_{\beta_1} \in \mathfrak{g}_{\geq 2}.
$$

Lemma 3.33. With the notation as above, we have $|\text{ supp}(e'_{r,s})| = 2r + 2$, $\text{supp}(e'_{r,s})$ *is linearly independent, and dim* $c_n(e'_{r,s}) = s(s-1)$ *.*

Proposition 3.34. *The B_L*-*orbit of e*_{*r*,*s*} *is dense in* $\mathfrak{g}_{\geqslant 2}$ *.*

Corollary 3.35. *If G is of type* D_n *and* $e \in \mathcal{N}$ *with* $ht(e) = 3$ *, then e is spherical.*

3.7. *Height three nilpotent elements of the exceptional Lie algebras.* We fix an ordering of the roots $\alpha_1, \ldots, \alpha_r$ of $\Psi(\mathfrak{g}_{\geq 2})$ such that $\alpha_i \prec \alpha_j$ for $i < j$. Define the subalgebra m_i of $g_{\geq 2}$ by setting

$$
\mathfrak{m}_i = \bigoplus_{j=i+1}^r \mathfrak{g}_{\alpha_j}
$$

and the quotient q_i by $q_i = g_{\geq 2}/m_i$ for $0 \leq i \leq r$. Let *B* be a Borel subgroup of *G* such that $g_{\geqslant 2} \subseteq \text{Lie } R_u(B) = \mathfrak{u}$. Note that each \mathfrak{q}_i is a *B*-module.

The computer programme, DOOBS, devised by S. M. Goodwin allows us to determine whether *B* acts on $g_{\geq 2}$ with a dense orbit. For details of the GAP4 [Gap 2004] computer algebra program, we refer the reader to [Goodwin 2005a; 2006a]. Working inductively, starting with $i = 0$, at each stage of the algorithm, DOOBS determines a representative $x_i + \mathfrak{m}_i$, with supp (x_i) linearly independent of a dense *B*-orbit on q_i or decides that *B* does not act on q_i with a dense orbit.

DOOBS also keeps a record of the primes for which

$$
\dim_p \mathfrak{c}_\mathfrak{u}(x_i + \mathfrak{m}_{i+1}) > \dim_0 \mathfrak{c}_\mathfrak{u}(x_i + \mathfrak{m}_{i+1}),
$$

where dim_p $c_u(x_i + m_{i+1})$ and dim₀ $c_u(x_i + m_{i+1})$ denote the dimension of $c_u(x_i + m_{i+1})$ m_{i+1}) over a field of characteristic p [and charac](#page-44-15)teristic 0 respectively [Goodwin 2005a, Remark 3.2]. For these primes we cannot conclude that *B* acts on $g_{\geq 2}$ with a dense orbit. If DOOBS determines that *B* acts on $g_{\geq 2}$ with a dense orbit, then it calculates a representative of the dense orbit and a list of primes for which the result is not necessarily valid.

There is a variant of DOOBS called DOOBSLevi [Goodwin 2006a]. This program considers a parabolic subgroup $P = LR_u(P)$ and determines whether a Borel subgroup B_L of L acts on an ideal of [Lie](#page-34-0) $R_u(P)$ with a dense orbit. The algorithm used to determine whether *B^L* acts on an ideal with a dense orbit is essentially the same as the DOOBS algorithm, with *B^L* replacing *B*. DOOBSLevi also records the primes for which its conclusions are not necessarily valid.

Let $e \in \mathcal{N}$ of height 3 and let λ be a cocharacter of *G* that is associated to *e*. We use the same numbering of the positive roots as in GAP4. Table 3 lists the roots whose root subgroups together with *T* generate the Levi subgroup $C_G(\lambda)$ and we also list the roots whose root subspaces generate $g_{\geq 2}$ (as a *B*-submodule of g) for the 7 cases of height three nilpotent orbits for the simple exceptional groups; see Proposition 3.19. These are determined by means of the weighted Dynkin diagrams.

Type of *G* Bala–Carter label Generators for *L* Generators for $\mathfrak{g}_{\geq 2}$

G_2	$\widetilde{A_1}$	α	α_4
F_4	$A_1+\widetilde{A_1}$	$\Pi \setminus {\alpha_4}$	α_{16}
E_6	$3A_1$	$\Pi \setminus {\alpha_4}$	α_{24}
E_7	$(3A_1)'$	$\Pi \setminus {\alpha_3}$	α_{37}
E_7	$4A_1$	$\Pi \setminus {\alpha_2, \alpha_7}$	α_{30}, α_{53}
E_8	$3A_1$	$\Pi \setminus {\alpha_7}$	α_{74}
E_8	$4A_1$	$\Pi \setminus {\alpha_2}$	α_{69}

Table 3. Height three nilpotent orbits in the exceptional Lie algebras.

[The](#page-33-1) height 3 cases [for the except](#page-34-1)ional groups were analyzed using DOOBSLevi algorithm. It turns out that there are no characteristic restrictions in these cases.

Lemma 3.36. *If G is simple of exceptional type and e* \in *N with* $\text{ht}(e) = 3$ *, then e is spherical.*

Corollaries 3.28 and 3.35 combined with Lemma 3.36 give the following result.

Proposition 3.37. Let G be a connected reductive algebraic group and let $e \in \mathcal{N}$. *If* $ht(e) = 3$ *, then e is spherical.*

Proof. If *[G](#page-25-1)* is si[mple,](#page-34-2) then the statement follows from Corollaries 3.28 and 3.35 and Lemma 3.36. In the general case we argue as in Lemma 3.3 to reduce to the simple case. \Box

3.8. *The classification.* Our main classification theorem now follows readily from Lemma 3.3 and Propositions 3.14 and 3.37.

Theorem 3.38. *Let G be a conn[ected red](#page-35-1)uctive algebraic group. Suppose that* char *k* is a good prime for G. Then a nilpotent element $e \in \mathfrak{g}$ is spherical if and *only if* $ht(e) \leq 3$ *.*

Remark 3.39. Let *G* be a simple algebraic group and let char *k* be a good prime for *G*. Then the spherical nilpotent orbits are given in Table 4. We present the orbits by listing the corresponding partition in the classical cases or by giving the corresponding Bala–Carter label for the exceptional groups.

Spherical Orbits
$[1^j, 2^i]$
$[1^j, 2^{2i}]$, or $[1^j, 2^{2i}, 3]$ with $i \ge 0$
$[1^{2j}, 2^i]$
$[1^j, 2^{2i}]$, or $[1^j, 2^{2i}, 3]$ with $i \ge 0$
A_1 or A_1
A_1 , $\widetilde{A_1}$, or $A_1 + \widetilde{A_1}$
A_1 , 2 A_1 , or 3 A_1
A_1 , 2 A_1 , (3 A_1)', (3 A_1)'', or 4 A_1
A_1 , 2 A_1 , 3 A_1 , or 4 A_1

[Table 4](#page-35-0). The spherical nilpotent orbits for *G* simple.

Remark 3.40. Using the fact that in good characteristic a Springer map affords a bijection between the set of unipotent *G*-conjugacy classes and the set of nilpotent *G*-orbits (see [Springer and Steinberg 1970, III, 3.12] and [Bardsley and Richardson 1985, Corollary 9.3.4]), Theorem 3.38 also gives a classification of the spherical unipotent classes in *G*. Here we define the height of a unipotent element *u* of *G* as the height of the image of u in N under a Springer isomorphism.

4. Applications and complements

Here we discuss applications of the main result and some further consequences.

4.1. *Spherical distinguished nilpotent elements.* Recall that a nilpotent element $e \in \mathcal{N}$ is distinguished in g if every torus contained in $C_G(e)$ is contained in the [centre of](#page-45-6) *G*. For now we assume that *G* is simple, so *e* is distinguished in g if and only if any torus contained in $C_G(e)$ is trivial and hence $C_G(e)^\circ$ is unipotent. Further recall that $\kappa_G(G \cdot e) = \kappa_G(G/C_G(e)^\circ)$ (see (2-2)). Since $C_G(e)^\circ$ is connected and unipotent, it is contained in the unipotent radical *U* of a Borel subgroup $B = TU$ of *G*. Let $B^- = TU^-$ be the unique opposite Borel subgroup to $B = TU$ relative to *T* [Humphreys 1975, §26.2]. Consequently,

$$
B^- \cap C_G(e)^\circ \subseteq B^- \cap U = \{1\}.
$$

Thus, by $(2-1)$, we have

$$
\kappa_G(G/C_G(e)^\circ) = \dim G - \dim C_G(e)^\circ - \dim B^- = \dim U - \dim C_G(e),
$$

[or equiva](#page-36-0)lently, $\kappa_G(G \cdot e) = |\Psi^+| - \dim C_G(e)$. We summarize what we have just shown.

Proposition 4.1. *Let e* \in *N be a distinguished nilpotent element. Then*

$$
\kappa_G(G \cdot e) = |\Psi^+| - \dim C_G(e).
$$

Remark 4.2. Proposition 4.1 was first observed for a field of characteristic zero [Panyushev 1994, Corollary 2.4].

If *G* is a simple classical group, then the distinguished nilpotent elements are given as follows [Jantzen 2004, Lemmas 4.1 and 4.2].

Lemma 4.3. *Let* $e \in \mathcal{N}$ *and let* π_e *be the corresponding partition of dim V.*

- (i) *If* $G = SL(V)$, *then e is distinguished if and only if* $\pi_e = [\text{dim } V]$ *.*
- (ii) *If* $G = Sp(V)$, *then e is distinguished if and only if* π_e *consists only of distinct even parts.*
- (iii) *If* $G = SO(V)$, *then e is distinguished if and only if* π_e *consists only of distinct odd parts.*

C[orollary 4.4](#page-36-1). *If* $G = SO(V)$ *and* $e \in N$ *is spherical and distinguished, then* $ht(e) = 2.$

Proof. Thanks to Proposition 3.19, the height 3 nilpotent elements have partitions of the form $\pi = [1^s, 2^{2r}, 3]$, where $r > 0$. Thus such a partition has even parts and so is not distinguished. So if *e* is spherical and distinguished, then $ht(e) = 2$. \Box

Proposition 2.26 and Lemma 4.3 imply the following result.

Proposition 4.5. *Let e* \in *N be distinguished and* π_e *be the corresponding partition of* dim *V .*

(i) *If* $G = SL(V)$, *then* $ht(e) = 2$ *if and only if* $\pi_e = [2]$ *.*

- (ii) *If* $G = Sp(V)$, *[then](#page-36-2)* $ht(e) = 2$ *if and only if* $\pi_e = [2]$ *.*
- (iii) *If* $G = SO(V)$, *[then](#page-35-2)* $ht(e) = 2$ *if and only if* $\pi_e = [3]$ $\pi_e = [3]$ $\pi_e = [3]$ *or* $\pi_e = [1, 3]$ *.*

Theorem 4.6. If G is a simple algebraic group and $e \in \mathcal{N}$ is spherical and distin*guished*, *then G is of type A*1*.*

Proof. For *G* simple classical, Proposition 4.5 [implies that](#page-45-12) *G* is of type *A*1. For *G* of exceptional type it follows from Remark 3.39 and the tables in [Carter 1985, §13] that there are no nilpotent orbits in g that are both spherical and distinguished. \Box

4.2. *Orthogonal simple roots and spherical nilpotent orbits.* Panyushev [1999, Theorem 3.4] proved that if the characteristic of *k* is zero, then $e \in \mathcal{N}$ is spherical if and only if there exist pairwise orthogonal simple roots $\alpha_1, \alpha_2, \ldots, \alpha_t$ in Π such that *G* · *e* contains an element of the form $\sum_{i=1}^{t} e_{\alpha_i}$ where $e_{\alpha_i} \in \mathfrak{g}_{\alpha_i} \setminus \{0\}$. By pairwise orthogonal we mean that $\langle \alpha_i, \alpha_j \rangle = 0$ for $i \neq j$. In this section we show that this is also the case if the characteristic of k is good for G .

Lemma 4.7. Let $\mathfrak{D}G$ be of type A_1^t for some $t \geq 1$. Then there is precisely one *distinguished nilpotent orbit in* N*.*

Proof. Since the nilpotent orbits of *G* in g are precisely the nilpotent orbits of $\mathfrak{D}G$ in Lie $\mathcal{D}G$, we may assume that *G* is semisimple. Thus, $G = G_1 G_2 \cdots G_r$ and each G_i is of type A_1 . There is precisely one distinguished nilpotent orbit when G_i is of type A_1 : the unique nonzero nilpotent orbit. Also $G \cdot e$ is distinguished in g if and only if $G_i \cdot e_i$ is distinguished in $\mathfrak{g}_i = \text{Lie } G_i$ for all *i*, where $e = e_1 + \cdots + e_r$ and $e_i \in \mathfrak{g}_i$ is nilpotent.

Lemma 4.8. Let $e \in \mathcal{N}$ and S be a maximal torus of $C_G(e)$. Then $\mathfrak{D}C_G(S)$ is of *type* A_1^t *for some* $t \geqslant 1$ *if and only if there exist pairwise orthogonal simple roots* $\alpha_1, \alpha_2, \ldots, \alpha_t$ in Π such that $G \cdot e$ contains an element of the form $\sum_{i=1}^t e_{\alpha_i}$, where $e_{\alpha_i} \in \mathfrak{g}_{\alpha_i} \setminus \{0\}.$

Proof. Supp[ose that](#page-11-0) $\mathcal{D}C_G(S)$ is o[f type](#page-37-0) A_1^t . Let $\alpha_1, \ldots, \alpha_t$ be simple roots of Φ , where Φ is the root system of $C_G(S)$ relative to a maximal torus *T* of $C_G(S)$. As $\mathcal{D}C_G(S)$ is of type A_1^t , the roots $\alpha_1, \ldots, \alpha_t$ are pairwise orthogonal. Clearly,

$$
e \in \text{Lie } C_G(S) = \mathfrak{c}_{\mathfrak{g}}(S)
$$

and *e* is distinguished in $c_g(S)$; see Proposition 2.15. By Lemma 4.7, an element of the form $\sum_{i=1}^{t} e_{\alpha_i}$ is also distinguished in $c_{\mathfrak{g}}(S)$ and there is precisely one distinguished nilpotent orbit in $\mathfrak{c}_{\mathfrak{g}}(S)$. Thus, *e* and $\sum_{i=1}^{t} e_{\alpha_i}$ are in the same $C_G(S)$ -orbit; hence they are in the same G -orbit. So $G \cdot e$ contains an element of the desired form.

Conversely, suppose that there exist pairwise orthogonal simple roots α_1 , α_2 , ..., $\alpha_t \in \Psi$ such that $G \cdot e$ contains an element of the form $e' = \sum_{i=1}^t e_{\alpha_i}$. Let *H* be the subgroup of *G* generated by $\{T, U_{\pm \alpha_i} \mid 1 \leq i \leq t\}$, where *T* is as in the previous paragraph. Then $\mathfrak{D}H$ is of type A_1^t . By construction, *e'* is distinguished in h. By Proposition 2.15, *H* is of the form $C_G(S')$, where S' is a maximal torus of $C_G(e')$. Thus, $\mathcal{D}C_G(S')$ is of type A_1^t . Since *e* and *e'* are *G*-conjugate, so are $C_G(e)$ and $C_G(e')$, as well as *S* and *S'*[. Finally, we](#page-44-12) [g](#page-44-12)[et that](#page-35-0) $C_G(S)$ and $C_G(S')$ are *G*-conjugate. The result follows. □

[Lemma 4.9.](#page-35-0) *If* $e \in \mathbb{N}$ *is spherical, then* $\mathfrak{D}C_G(S)$ *is of type* A_1^t *for some* $t \geq 1$ *.*

Proof. Let λ be a cocharacter of $G_G(S)$ [that is ass](#page-37-1)ociated to *e*, that is, $\lambda \in \Omega^a_{C_G(S)}(e)$. Then, since Lie $C_G(S) = c_g(S)$ [, it fo](#page-38-0)llows from [Fowler and Röhrle 2008, Corollary 3.21] that $\lambda \in \Omega_G^a(e)$. As *e* is spherical in g, we have ht $(e) \leq 3$, by Theorem 3.38. As $\lambda \in \Omega^a_{C_G(S)}(e)$ [, we also have](#page-45-2) ht $(e) \leq 3$ when we regard *e* as an element of $c_{\mathfrak{g}}(S)$. Thus, again by Theorem 3.38, *e* is spherical in $c_{\mathfrak{g}}(S)$. So *e* is distinguished and spherical in $c_{\mathfrak{g}}(S)$ and so $\mathfrak{D}C_G(S)$ is of type A_1^t , by Theorem 4.6.

In order to prove the reverse implication of Lemma 4.9 we first need to consider the group $C_G(S)$. If *G* is classical, then the structure of $C_G(S)$ can be determined from the partition π_e corresponding to *e*; see [Jantzen 2004, §4.8] for the following result.

Lemma 4.10. Let G be simple classical and $e \in \mathcal{N}$ with corresponding partition π*e.*

- (i) If G is of type A_n and $\pi_e = [1^{r_1}, 2^{r_2}, \dots]$, then $\mathfrak{D}C_G(S)$ is of type $\prod_{i \geqslant 1} A_{i-1}^{r_i}$.
- (ii) *If G is of type* B_n *and* $\pi_e = [1^{2s_1 + \epsilon_1}, 2^{2s_2}, 3^{2s_3 + \epsilon_3}, \dots]$, *where* $s_i \geq 0$ *and* $\epsilon_i \in \{0, 1\}$, then $\mathfrak{D}C_G(S)$ is of type $\prod_{i \geq 1} A_{i-1}^{s_i} \times B_m$, where $2m + 1 = \sum_{\epsilon_i \neq 0} i$.
- (iii) *If G is of type* C_n *and* $\pi_e = [1^{2s_1}, 2^{2s_2+\epsilon_2}, 3^{2s_3}, 4^{2s_4+\epsilon_4}, \dots]$, *where* $s_i \ge 0$ *and* $\epsilon_i \in \{0, 1\}$, then $\mathfrak{D}C_G(S)$ is of type $\prod_{i \geqslant 1} A_{i-1}^{s_i} \times C_m$, where $2m = \sum_{\epsilon_i \neq 0} i$.
- (iv) If G is of type D_n and $\pi_e = [1^{2s_1+\epsilon_1}, 2^{2s_2}, 3^{2s_3+\epsilon_3}, \dots]$, where $s_i \geq 0$ and $\epsilon_i \in \{0, 1\}$, then $\mathfrak{D}C_G(S)$ is of type $\prod_{i \geqslant 1} A_{i-1}^{s_i} \times D_m$, where $2m = \sum_{\epsilon_i \neq 0} i$.

Lemma 4.11. *If G is simple classical and* $\mathfrak{D}C_G(S)$ *[is of type](#page-38-1)* A_1^t *, then e is spherical.*

Proof. First suppose that *G* is of type A_n . Since $\mathfrak{D}C_G(S)$ is of type A_1^t , it follows from Lemma 4.10 that $r_i = 0$ for all $i \ge 3$. Thus $\pi_e = [1^{r_1}, 2^{r_2}]$ and so *e* is spherical, by Remark 3.39.

Let *G* be of type B_n . Since $\mathfrak{D}C_G(S)$ is of type A_1^t , it follows from Lemma 4.10 that $s_i = 0$ for $i \ge 3$ and $m \le 1$, so $2m + 1 \le 3$. Since $2m + 1$ is a sum of distinct odd integers, we either have $2m + 1 = 1$ or $2m + 1 = 3$. Thus $\pi_e = [1^{2s_1+1}, 2^{2s_2}]$ or $\pi_e = [1^{2s_1}, 2^{2s_2}, 3]$ and so *e* is spherical, again by Remark 3.39.

Let *G* be of type C_n . Since $\mathfrak{D}C_G(S)$ is of type A_1^t , it follows from Lemma 4.10 that $s_i = 0$ for $i \geq 3$ and $m \leq 1$, so $2m \leq 2$. Since $2m$ is a sum of distinct even integers[, we either ha](#page-35-2)ve $2m = 0$ or $2m = 2$. Thus $\pi_e = [1^{2s_1}, 2^{2s_2}]$ or $\pi_e =$ $[1^{2s_1}, 2^{2s_2+1}]$ and so, by Remark 3.39, *e* is spherical.

Finally, let *G* be of type D_n . Since $\mathfrak{D}C_G(S)$ is of type A_1^t , it again follows from [Lemma](#page-11-0) 4.10 that $s_i = 0$ for $i \geq 3$ and $m \leq 2$, so $2m \leq 4$. Since $2m$ is a sum of distinct odd integers, we either have $2m = 0$ or $2m = 1 + 3$. Thus $\pi_e = [1^{2s_1}, 2^{2s_2}]$ or $\pi_e = [1^{2s_1+1}, 2^{2s_2}, 3]$ $\pi_e = [1^{2s_1+1}, 2^{2s_2}, 3]$ $\pi_e = [1^{2s_1+1}, 2^{2s_2}, 3]$ [and so, b](#page-35-2)y Remark 3.39, *e* is spherical.

All that remains is to check the e[xception](#page-39-1)al cases. The Bala–Carter label of $e \in \mathcal{N}$ gives the Dynkin type of a Levi subgroup *L* of *G* such that *e* is distinguished in Lie $\mathfrak{D}L$. By Proposition 2.15, such a Levi subgroup is the centralizer of a maximal torus of $C_G(e)$. Thus, the Bala–Carter label gives the type of $\mathfrak{D}C_G(S)$. It follows from the tables in [Carter 1985, §13] and Remark 3.39 that any nilpotent orbit with Bala–Carter label A_1^t is spherical. We summarize this in Table 5.

Type				Bala-Carter label Height Type Bala-Carter label Height	
G_2		2	E_7	A_1	2
	$\frac{A_1}{A_1}$	3		$2A_1$	2
F_4	A_1	2		$(3A_1)''$	2
	$\widetilde{A_1}$	2		$(3A_1)'$	3
	$A_1 + A_1$	3		$4A_1$	3
E_6	A ₁	2	E_8	A ₁	
	$2A_1$	2		$2A_1$	2
	$3A_1$	3		$3A_1$	3
				$4A_1$	

Table 5. Orbits in except[ional](#page-38-2) Lie [algeb](#page-39-2)ras with $\mathcal{D}C_G(S)$ of Type A_1^t .

Lemma 4.12. *If G is a simple exceptional algebraic group and* $\mathfrak{D}C_G(S)$ *is of type A t* 1 , *then e is spherical.*

Lemma 4.13. *Let* $e \in \mathcal{N}$. *If* $\mathfrak{D}C_G(S)$ *is of type* A_1^t *, then* $e \in \mathfrak{g}$ *is spherical.*

[Pro](#page-37-2)of. For *G* simple, the result follows from Lemmas 4.11 and 4.12. In the general case let $\mathfrak{D}G = G_1G_2 \cdots G_r$ be a commuting product of simple groups and $e =$ $e_1 + e_2 + \cdots + e_r$, where $e_i \in \mathfrak{g}_i = \text{Lie } G_i$ and each e_i is nilpotent. A maximal torus *S* of $C_G(e)$ is of the form $S_1 S_2 \cdots S_r$, where S_i is a maximal torus of $C_{G_i}(e_i)$. The simple case implies that $\mathfrak{D}C_{G_i}(S_i)$ is of type A_1^t . — Первый процесс в постановки программа в серверном становки производительно становки производите с производ
В серверном становки производительно становки производительно становки производительно становки производительн

Lemmas 4.13 and 4.8 now imply the main result of this section.

Theorem 4.14. Let $e \in \mathcal{N}$ and let S be a maximal torus of $C_G(e)$. Then the follow*ing are equivalent.*

- (i) *e is spherical.*
- (ii) $\mathfrak{D}C_G(S)$ *[is of ty](#page-45-4)pe* A_1^t .
- (iii) *There exi[st pairwise orthogo](#page-45-1)nal simple roots* $\alpha_1, \alpha_2, \ldots, \alpha_t \in \Pi$ *such that* $G \cdot e$ *contains an element of the form* $\sum_{i=1}^{t} e_{\alpha_i}$, where $e_{\alpha_i} \in \mathfrak{g}_{\alpha_i} \setminus \{0\}$ *.*

4.3. *Spherical orbits and ad-nilpotent ideals.* In this section we generalize some results from [Panyushev and Röhrle 2001; 2005] to a field of good characteristic.

When *G* is simple and classical, Panyushev [1994, §4] gave simple algebraic criteria for a nilpotent element $e \in \mathcal{N}$ to be spherical. We show that these criteria are still valid for a field of good characteristic.

Lemma 4.15. *Let G be a simple classical algebraic group and* $e \in \mathcal{N}$ *.*

- (i) Let e be a nilpotent matrix in \mathfrak{sl}_n or \mathfrak{sp}_n . Then e is spherical if and only if $e^2 = 0.$ $e^2 = 0.$ $e^2 = 0.$
- (ii) *Let e be a nilpotent matrix in* so*n. Then [e is spherical](#page-35-2) if and only if the rank of e*² *is at most one.*

Proof. Let *e* be a nilpote[nt matrix in](#page-35-2) \mathfrak{sl}_n or \mathfrak{sp}_n . If *e* is spherical, then $\pi_e = [1^j, 2^i]$, for appropriate *i* and *j*; see Remark 3.39. By considering the corresponding Jordan blocks for π_e , we see that $e^2 = 0$. Conversely, if $e^2 = 0$, then *e* is conjugate to an element *e'* with partition $\pi_{e'} = [1^j, 2^i]$ and so *e* is spherical, again by Remark 3.39.

Let *e* be a nilpotent [matrix in](#page-35-2) \mathfrak{so}_n . If *e* is spherical, then $\pi_e = [1^j, 2^i]$ or $\pi_e = [1^j, 2^i, 3]$, for appropriate *i* and *j*; see Remark 3.39. By considering the [correspond](#page-45-4)[ing Jo](#page-45-17)rdan blocks for π_e , we see that either $e^2 = 0$ or e^2 has partition $\pi_{e^2} = [1^k, 2]$. Thus the rank of e^2 is either 0 or 1. Conversely, if the rank of e^2 is at most 1, then *e* is conjugate to an element *e'* with partition $\pi_{e'} = [1^j, 2^i]$ or $\pi_{e'} = [1^j, 2^i, 3]$ and so *e* [is spherical, again](#page-45-4) by Remark 3.39.

Panyushev and Röhrle [2001; 2005] gave a cla[ssification o](#page-45-17)f the spherical ideals of $\mathfrak{b} = \text{Lie } B$ contained in $\mathfrak{b}_u = \text{Lie } R_u(B)$, where *B* is a Borel subgroup of *G* in characteristic 0. An ideal c of b is *ad-nilpotent* if c is contained in b_u . An adnilpotent ideal c of b is called *spherical* if its *G*-saturation $G \cdot c = \{x \cdot e \mid x \in G, e \in c\}$ [is a spheri](#page-45-4)cal *G*-variety. First in [Panyushev and Röhrle 2001, Corollary 2.4] it is proved that if a is an abelian ideal of b, then a is spherical. In [Panyushev and Röhrle 2005, Propositi[on 4.1 and Theo](#page-45-1)rem 4.2 it is proved that there are nonabelian spherical ideals only if *G* is not simply-laced, that is, if the Dynkin diagram of *G* has a multiple bond.

[Panyushev and Röhrle 2001, Theorem 2.3] states that any *G*-orbit meeting an abelian ad-nilpotent ideal a is spherical. This is proved by means of the fact that an orbit *G* ·*e* is spherical if and only if $ad(e)^4 = 0$; see [Panyushev 1994, Corollary 2.2].

Unfortunat[ely, this equivale](#page-35-0)nce is no longer true in positive characteristic; see Example 4.17. However, the forward implication of this equivalence is still valid in good characteristic.

Lemma 4.16. *If* $e \in \mathcal{N}$ *is [spherical](#page-41-1), then* $ad(e)^4 = 0$ *.*

Proof. If *e* is spherical, then by Theorem 3.38, ht(*e*) ≤ 3 . Let $\mathfrak{g} = \bigoplus_{i=-3}^{3} \mathfrak{g}(i)$ be the grading of $\mathfrak g$ afforded by an associated cocharacter in $\Omega_G^a(e)$. We have that $e \in \mathfrak{g}(2)$. Consequently, $ad(e)^4(\mathfrak{g}(i)) \subseteq \mathfrak{g}(i+8) = \{0\}$ for any $-3 \leq i \leq 3$. So $\text{ad}(e)^4 = 0$ on all of g.

The next example shows that the converse of Lemma 4.16 is not true in general in positive characteristic.

Example 4.17. Let $G = SL_3(k)$ and char $k = 3$. So $g = \mathfrak{sl}_3(k)$. Set $e = e_{2,1} + e_{3,2}$, where $e_{i,j}$ is the elementary matrix with a 1 in the (i, j) position and 0's elsewhere. So *e* is a regular nilpotent element in g. Consider the grading of g afforded by an associated cocharacter in $\Omega_G^a(e)$. We have $\mathfrak{g} = \bigoplus_{i=-2}^2 \mathfrak{g}(2i)$. In order to prove ad(*e*)⁴ = 0, it is sufficient to show that ad(*e*)⁴($\mathfrak{g}(-4)$) = {0}. Clearly, $\mathfrak{g}(-4) = k e_{1,3}$. Now

 $ad(e)(e_{1,3}) = e_{2,3} - e_{1,2}$ $ad(e)(e_{1,3}) = e_{2,3} - e_{1,2}$ and $ad(e)(e_{2,3} - e_{1,2}) = e_{1,1} - 2e_{2,2} + e_{3,3}$.

Since char $k = 3$, we have

$$
e_{1,1} - 2e_{2,2} + e_{3,3} = e_{1,1} + e_{2,2} + e_{3,3}
$$
 and $e_{1,1} + e_{2,2} + e_{3,3} \in Z(\mathfrak{g})$.

Thus, $ad(e)^4 = 0$. However, *e* is not spherical, as $\pi_e = [3]$; see Remark 3.39.

We note that $[Panyushev]$ and Röhrle 2005, Proposition 4.1 and Theorem 4.2] both als[o hold in good](#page-46-6) characteristic, [as their proofs only req](#page-45-4)uire properties of the underlying root system Ψ and the results est[ablished in Lem](#page-45-4)mas 4.15 and 4.16.

So we are left to show that if a is an abelian ad-nilpotent ideal, then a is spherical. Since *G* \cdot a is irreducib[le, it is the closu](#page-39-0)re of some nilpotent orbit, say $\overline{G \cdot e} = G \cdot \mathfrak{a}$. The maximal abelian ad-nilpotent ideals of b are the same in good characteristic as in characteristic zero; see [Röhrle 1998, Table 1] and [Panyushev and Röhrle 2001, Tables I and II, §4]. Using the description of the orbits in [Panyushev and Röhrle 2001, Tables I and II, §4], we infer that the Bala–Carter label of $G \cdot e$ is of the form A_1^t , so $G \cdot e$ i[s spherical, th](#page-46-6)anks to Theorem 4.14. Since $G \cdot e$ is open in $G \cdot \mathfrak{a}$ [, it follow](#page-41-0)s that $G \cdot \mathfrak{a}$ is spherical. It is straightforward to get the sphericity of $G \cdot \mathfrak{a}$ for any abelian ideal \mathfrak{a} of \mathfrak{b} from the sphericity result of the maximal abelian ideals. Thus we have established the following.

Theorem 4.18. *Let* a *be an abelian ad-nilpotent ideal of* b*. Then* a *is spherical.*

As a corollary of Theorem 4.18 we get [Röhrle 1998, Theorem 1.1] in good characteristic.

Corollary 4.19. *Let P be a parabolic subgroup of G and let* a *be an abelian ideal of* Lie *P in* Lie *Ru*(*P*)*. Then P acts on* a *with finitely many orbits.*

[Remark 4.20.](#page-44-16) We note that [Theorem 4.18](#page-45-18) and Corollary 4.19 do in fact hold in arbitrary characteristic; see [Röhrle 1998, Theorem 1.1].

Remark 4.21. If c is a spherical ideal of b, then clearly *B* acts on c with a finite number of orbits. However, the conve[rse does not hold. Ther](#page-44-3)e are many additional instances when B acts on a given ideal c of b only with a finite number of orbits (see the results in [Hille and Röhrle 1999; Jürgens and Röhrle 2002]).

4.4. *A geom[etric c](#page-44-4)haracterization of spherical orbits.* We will now describe a formula characterizing spherical *G*-orbits in a simple algebraic group *G* in terms of el[ements of the Weyl g](#page-44-3)roup *W* of *G* that is proved in [Cantarini et al. 2005, Theorem 1]. For $x \in G$ [the conjugac](#page-35-3)y class $G \cdot x$ is spherical if $G \cdot x$ is a spherical variety. While this characterization in the place cited is based on case-by-case arguments, recently, G. Carnovale [2006, Theorem 2] gave a proof of this result which is free of case-by-case considerations and applies in good odd characteristic. Using the arguments from [Cant[arini et al. 2005\] comb](#page-44-3)ined with our classification of the spherical unipotent nilpotent orbits, Remark 3.40, we can generalize this formula to good characteristic.

Let *G* be simple and suppose that *p* is good for *G*. Fix a Borel subgroup *B* of *G*. Let *W* be the Weyl group of *G* and let *B*w*B* be the (*B*, *B*)-double coset of *G* containing $w \in W$. The following was shown in [Cantarini et al. 2005] in an argument independent of the characteristic of the underlying field: Suppose that $\mathbb O$ is a conjugacy class in *G* which intersects the double coset *B*w*B* so that

$$
\dim \mathbb{G} = \ell(w) + \text{rk}(1 - w)
$$

holds. Then \odot is spherical. Here rk(1-w) denotes the rank of the linear map 1-w in the standard representation of *W* and ℓ [is the](#page-44-3) [usual length](#page-44-4) function of *W* with respect to a distinguished set of generators of *W*. Conversely, let \mathbb{O} be a spherical conjugacy class in *G* and let *B*w*B* be the (*B*, *B*)-double coset containing the dense *B*-orbit in \mathbb{O} . Then dim $\mathbb{O} = \ell(w) + \text{rk}(1 - w)$; see [Carnovale 2006, Theorem 2]. Consequently, this gives a geometric characterization of the spherical conjugacy [classes in](#page-44-3) *G*. For proofs we refer the reader to [Cantarini et al. 2005; Carnovale 2006]. Observe that as a consequence of the finiteness of the Bruhat decomposition of *G* and the fact that any (*B*, *B*)-double coset and any conjugacy class of *G* are irreducible subvarieties of G , for a given conjugacy class \mathbb{O} in G there is a unique $w \in W$ such that $\mathcal{O} \cap BwB$ is dense in \mathcal{O} .

Theorem 4.22 [Cantarini et al. 2005, Theorem 1]. *Let* O *be a conjugacy class in G* and let $w ∈ W$ be such that $\mathbb{O} ∩ B w B$ is dense in \mathbb{O} . Then \mathbb{O} is spherical if and *only if* dim $\mathbb{O} = \ell(w) + \text{rk}(1 - w)$.

4.5. *Bad primes and spherical nilpotent orbits.* Finally, we briefly discuss the situation when the characteristic of k is bad for G . In this case the classification of the nilpotent orbits in N is different from that in good characteristic; see [Carter] 1985, §5.11]. However, there is still only a fi[nite number of](#page-45-2) nilpotent orbits [Holt and Spaltenstein 1985]. Unfortunately, our methods do not allow us to give a classification of the spherical nilpotent orbits in this case, for in our classification we made use of the height of a nilpotent orbit, where the height is defined via an [asso](#page-39-0)ciated cocharacter. However, it is not known whether associated cocharacters always exist for all nilpotent elements in bad characteristic; see [Jantzen 2004, §5.14, §5.15].

In principle one can still determine whether a giv[en nilpo](#page-45-2)tent orbit is spherical by a case-by-case analysis. Next we give two examples of this. In particular, we [show](#page-8-1) that Theorem 4.14 fails in bad characteristic in general. These examples show that there can be additional spherical nilpotent orbits in bad characteristic.

Exa[mples 4.23.](#page-39-0) (i) Let *G* be of type B_2 and char $k = 2$. Let α and β be the simple roots of Ψ with α [the lon](#page-45-2)g root. Let $e = e_{\alpha+\beta} + e_{\alpha+2\beta}$ [. A](#page-37-1)ccording to [Jantzen 2004, §5.14] the centralizer $C_G(e)$ is the unipotent radical of a Borel subgroup of *G*. Thus, by Lemma 2.11, *CG*(*e*) is a spherical subgroup of *G* and so *e* is spherical. Note that the *G*-orbit of *e* does not c[ontain an elem](#page-45-2)ent of the form e_{α} or e_{β} , but *e* is still spherical. Thus, Theorem 4.14 is no longer true in bad characteristic. Moreover, *e* is distinguished in g [Jantzen 2004, §5.14]. This shows that Theorem 4.6 can also fail for bad characteristic.

(ii) Let *G* [be of type](#page-45-2) G_2 and char $k = 3$. Let α and β be the simple roots of Ψ with α the long root. Let $e = e_{\alpha+2\beta} + e_{2\alpha+3\beta}$. According to [Jantzen 2004, §5.15], the centralizer $C_G(e)$ is the unipotent radical of a Borel subgroup of *G*. Thus, by Lemma 2.11, $C_G(e)$ is a spherical subgroup of G and so e is spherical. Again, the *G*-orbit of *e* does n[ot contain an](#page-33-0) element of the form e_{α} or e_{β} , but *e* is spherical. Again, *e* is distinguished in g [Jantzen 2004, §5.15].

Acknowledgements

We are grateful to S. M. Goodwin for providing the relative version DOOBSLevi of his program DOOBS that was used in Section 3.7 to determine the sphericity of the nilpotent orbits [of height 3 for the exceptional cases](http://dx.doi.org/10.1080/00927879008823931) and for very helpful discussions [and improve](http://www.ams.org/mathscinet-getitem?mr=91d:20048)[ments of the pa](http://www.emis.de/cgi-bin/MATH-item?0717.20029)per. We would also like to thank the referee for suggesting some improvements.

References

[[]Azad et al. 1990] H. Azad, M. Barry, and G. Seitz, "On the structure of parabolic subgroups", *Comm. Algebra* 18:2 (1990), 551–562. MR 91d:20048 Zbl 0717.20029

- [Bardsley and Richardson 1985] P. Bardsley and R. W. Richardson, "Étale slices for algebraic transformation groups in characteristic *p*", *Proc. London Math. Soc. (3)* 51:2 (1985), 295–317. [MR 86m](http://www.ams.org/mathscinet-getitem?mr=39:1590):14034 [Zbl 060](http://www.emis.de/cgi-bin/MATH-item?0186.33001)4.14037
- [Borel 1991] A. Borel, *[Linear algebraic groups](http://dx.doi.org/10.1007/BF01168684)*, 2nd ed., Graduate Texts in Mathematics 126, Sp[ringer, New York](http://www.ams.org/mathscinet-getitem?mr=87g:14054), 1991. [MR 92d:](http://www.emis.de/cgi-bin/MATH-item?0604.14048)20001 Zbl 0726.20030
- [\[Bourbaki 1968\]](http://www.numdam.org/item?id=CM_1987__63_2_189_0) N. Bourbaki, *Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de [Lie. Ch](http://www.ams.org/mathscinet-getitem?mr=89d:32068)[apitre IV: Groupe](http://www.emis.de/cgi-bin/MATH-item?0642.14011)s de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines*, Actualités Scientifiques et Industrielles 1337, Hermann, Paris, 1968. MR 39 #1590 Zbl 0186.33001
- [\[Brion](http://www.emis.de/cgi-bin/MATH-item?0862.14031) 1986] M. Brion, "Quelques propriétés des espaces homogènes sphériques", *Manuscripta Math.* 55:2 (1986), 191–198. MR 87g:14054 Zbl 0604.14048
- [Brion 1987] M. Brion, "Classification des espaces homogènes sphériques", *Compositio Math.* 63:2 (1987), 189–208. MR 89d:32068 Zbl [0642.14011](http://www.ams.org/mathscinet-getitem?mr=99k:20090)
- [Brion 1995] M. Brion, "Spherical varieties"[, pp. 753–760 in](http://dx.doi.org/10.1007/s00031-005-1002-z) *Proceedings of the International Congress of Mathematicians* (Zürich, 1[994\), vol. 2, edited](http://www.ams.org/mathscinet-getitem?mr=2005m:17020) [by S. D. Chatterji](http://www.emis.de/cgi-bin/MATH-item?1101.17006), Birkhäuser, Basel, 1995. MR 97f:14049 Zbl 0862.14031
- [Brundan 1998] [J. Brundan, "Den](http://arxiv.org/abs/math/0612408)se orbits and double cosets", pp. 259–274 in *Algebraic groups and their representations* (Cambridge, 1997), edited by R. W. Carter and J. Saxl, NATO Adv. Sci. Inst. [Ser. C Math. P](http://www.ams.org/mathscinet-getitem?mr=87d:20060)[hys. Sci.](http://www.emis.de/cgi-bin/MATH-item?0567.20023) 517, Kluwer Acad. Publ., Dordrecht, 1998. MR 99k:20090 Zbl 0933.20038
- [Cantarini et al. 2005] N. Cantarini, G. Carnovale, and M. Costantini, "Spherical orbits and representations of $\mathfrak{A}_{\epsilon}(\mathfrak{g})$ ", *Transform. Groups* 10:1 (2005), 29–62. MR 2005m:17020 Zbl 1101.17006
- [Carnovale 2006] [G. Carnovale, "Spheric](http://www-gap.dcs.st-and.ac.uk)al conjugacy classes and involutions in the Weyl group", preprint, 2006. To appear in *Math. Z.* arXiv math/0612408
- [Carter 1985] R. W. Carter, *[Finite groups of Lie type: Conjugac](http://dx.doi.org/10.1016/j.jpaa.2004.08.038)y classes and complex characters*, Wiley, New Y[ork, 1985.](http://www.ams.org/mathscinet-getitem?mr=2006c:14069) MR 87d:20060 [Zbl 0567](http://www.emis.de/cgi-bin/MATH-item?1066.14054).20023
- [Fowler [and Röhrle 2008\]](http://dx.doi.org/10.1016/j.jalgebra.2005.04.014) R. A. Fowler and G. Röhrle, "On cocharacters associated to nilpotent [elements of r](http://www.emis.de/cgi-bin/MATH-item?02196726)eductive groups", *Nagoya Mathematics Journal* 190 (2008), 105–128.
- [Gap 2004] [The Gap Group,](http://web.mat.bham.ac.uk/S.M.Goodwin/DOOBS/program/program.html) *Groups, Algorit[hms and Programming](http://web.mat.bham.ac.uk/S.M.Goodwin/DOOBS/program/program.html)*, Version 4.3, 2004, Available at [http://www-gap.dcs.st-and.ac.uk.](http://web.mat.bham.ac.uk/S.M.Goodwin/DOOBS/program/program.html)
- [Goodwin 2005a] S. Goodwin, ["Algorithmic testing for dense orbits of B](http://dx.doi.org/10.1007/s00031-005-1104-7)orel subgroups", *J. Pure Appl. Algebra* 197:1-3 (2005), 171–181. [MR 2006c:140](http://www.ams.org/mathscinet-getitem?mr=2006k:20096)69 [Zbl 1066.14](http://www.emis.de/cgi-bin/MATH-item?1118.20041)054
- [Goodwin 2005b] S. M. Goodwin, ["Relative Springer isomorphisms",](http://dx.doi.org/10.1007/BF01236661) *J. Algebra* 290:1 (2005), 266– 281. [MR 2006c:20095](http://dx.doi.org/10.1007/BF01236661) Zbl 02196726
- [\[](http://www.ams.org/mathscinet-getitem?mr=2000f:20072)[Goodwin 2006a\]](http://www.emis.de/cgi-bin/MATH-item?0924.20035) S. M. Goodwin, DOOBS *and* DOOBSLevi *programs*, available at http://web.mat. bham.ac.uk/S.M.Goodwin/DOOBS/program/program.html
- [Goodwin 2006b] S. M. Goodwin, "On the conjugacy classes in maximal unipotent subgroups of [simple a](http://www.ams.org/mathscinet-getitem?mr=86g:17007)[lgebraic groups"](http://www.emis.de/cgi-bin/MATH-item?0575.17007), *Transform. Groups* 11 (2006), 51–76. MR 2006k:20096 Zbl 1118.20041
- [Hille and Röhrle 1999] L. Hille and G. Röhrle, "A classification of parabolic subgroups of classical groups with a finite number [of orbits on th](http://www.ams.org/mathscinet-getitem?mr=48:2197)[e unipotent radic](http://www.emis.de/cgi-bin/MATH-item?0254.17004)al", *Transform. Groups* 4:1 (1999), 35–52. MR 2000f:20072 Zbl 0924.20035
- [Holt and Spaltenstein 1985] D. F. Holt and N. Spaltenstein, "Nilpotent orbits of exceptional Lie algebras over algebraically closed fields of bad characteristic", *J. Austral. Math. Soc. Ser. A* 38:3 (1985), 330–350. MR 86g:17007 Zbl 0575.17007
- [Humphreys 1972] J. E. Humphreys, *Introduction to Lie algebras and representation theory*, Graduate Texts in Mathematics 9, Springer, New York, 1972. MR 48 #2197 Zbl 0254.17004
- [Humphreys 1975] J. E. Humphreys, *Linear algebraic groups*, Graduate Texts in Mathematics 21, [Spring](http://www.ams.org/mathscinet-getitem?mr=2005c:14055)[er, New York, 1](http://www.emis.de/cgi-bin/MATH-item?02160654)975. MR 53 #633 Zbl 0325.20039
- [Humphreys 1995] J. E. Humphreys, *[Conjugacy classes in semisimple](http://projecteuclid.org/getRecord?id=euclid.em/1057860314) algebraic groups*, Mathematical Surveys and Monographs 43[, American M](http://www.ams.org/mathscinet-getitem?mr=2004a:20050)[athematical Socie](http://www.emis.de/cgi-bin/MATH-item?1050.20033)ty, Providence, RI, 1995. MR 97i:20057 [Zbl 0834.20048](http://dx.doi.org/10.2307/1971168)
- [\[Jantzen 2004](http://www.emis.de/cgi-bin/MATH-item?0406.14031)] J. C. Jantzen, "Nilpotent orbits in representation theory", pp. 1–211 in *Lie theory: [Lie algebras and representations](http://dx.doi.org/10.1007/BF02566009)*, edited by J.-P. Anker and B. Orsted, Progr. Math. 228, Birkhäuser, [Boston,](http://www.ams.org/mathscinet-getitem?mr=96c:14039) 2004. [MR 2005](http://www.emis.de/cgi-bin/MATH-item?0828.22016)c:14055 Zbl 02160654
- [Jürgens and Röhrle 2002] [U. Jürgens and G. Röhrle,](http://www.numdam.org/item?id=CM_1979__38_2_129_0) "MOP—algorithmic modality analysis for parabolic group actions", *[Experiment. M](http://www.ams.org/mathscinet-getitem?mr=80f:22011)ath.* 11[:1 \(2002\),](http://www.emis.de/cgi-bin/MATH-item?0402.22006) 57–67. MR 2004a:20050 Zbl 1050.20033
- [Kempf 1978] G. R. Kempf, "Instability in invariant theory", *Ann. of Math.* (2) 108:2 (1978), 299– [316.](http://www.ams.org/mathscinet-getitem?mr=2000f:20075) MR [80c:20057](http://www.emis.de/cgi-bin/MATH-item?1030.20029) [Zbl 0406.14031](http://dx.doi.org/10.1112/S0024611599012113)
- [Knop 1995] F. Knop, ["On the set of orbits for a Bor](http://dx.doi.org/10.1007/BF02564633)el subgroup", *Comment. Math. Helv.* 70:2 (1[995\), 285–309.](http://www.ams.org/mathscinet-getitem?mr=85a:14035) [MR 96c:14039](http://www.emis.de/cgi-bin/MATH-item?0545.14010) Zbl 0828.22016
- [Krämer 1979] M. Krämer, ["Sphärische Untergruppen in kompakte](http://dx.doi.org/10.1007/s00208-004-0510-9)n zusammenhängenden Liegruppen", *[Compositio M](http://www.ams.org/mathscinet-getitem?mr=2005j:17018)ath.* 38[:2 \(197](http://www.emis.de/cgi-bin/MATH-item?02123994)9), 129–153. MR 80f:22011 Zbl 0402.22006
- [Lawther 1999] R. Lawther, "Finiteness of double coset spaces", *Proc. London Math. Soc.* (3) 79:3 (1999), 605–625. MR 2000f:20075 Zbl 1030.20029
- [Luna and Vust 1983] D. Luna and T. Vust, "Plongement[s d'espaces hom](http://www.ams.org/mathscinet-getitem?mr=86a:14006)ogènes", *Comment. Math. Helv.* 58[:2 \(1983\), 186–245.](http://dx.doi.org/10.1007/BF00181688) MR 85a:14035 Zbl 0545.14010
- [\[McNinch 200](http://www.ams.org/mathscinet-getitem?mr=92e:14046)4] [G. J. McNinc](http://www.emis.de/cgi-bin/MATH-item?0706.14032)h, "Nilpotent orbits over ground fields of good characteristic", *Math. Ann.* 329[:1 \(2004\), 49–85.](http://dx.doi.org/10.1007/BF02567611) MR 2005j:17018 Zbl 02123994
- [\[Mumfor](http://www.ams.org/mathscinet-getitem?mr=95e:14039)[d and Fogarty 1](http://www.emis.de/cgi-bin/MATH-item?0822.14024)982] D. Mumford and J. Fogarty, *Geometric invariant theory*, 2nd ed., Ergebnis[se der Mathematik und ihrer Grenzgebiete](http://www.numdam.org/item?id=AIF_1999__49_5_1453_0) 34, Springer, Berlin, 1982. MR 86a:14006 Zbl 0504.1[4008](http://www.ams.org/mathscinet-getitem?mr=2000i:14072)
- [Panyushev 1990] D. I. Panyushev, ["Complexity and rank of homogeneou](http://dx.doi.org/10.1006/aima.2000.1959)s spaces", *Geom. Dedicata* 34:3 (19[90\), 249–269.](http://www.ams.org/mathscinet-getitem?mr=2002c:20073) MR [92e:14046](http://www.emis.de/cgi-bin/MATH-item?0993.22016) Zbl 0706.14032
- [Panyushev 1994] D. I. Panyushev, ["Complexity and nilpotent orbits",](http://dx.doi.org/10.1007/s00013-004-1092-1) *Manuscripta Math.* 83:3-4 (1994), 223–237. MR [95e:14039](http://www.ams.org/mathscinet-getitem?mr=2005k:14100) Zbl 082[2.14024](http://www.emis.de/cgi-bin/MATH-item?1076.14061)
- [Panyushev 1999] D. I. Panyushev, "On spherical nilpotent orbits and beyond", *Ann. Inst. Fourier* (*Grenoble*) 49:5 (1999), 1453–1476. MR 2000i:14072 [Zbl 0944.17013](http://www.ams.org/mathscinet-getitem?mr=95g:14002)
- [Panyushev and Röhrle 2001] D. Panyushev and G. Röhrle, "Spherical orbits and abelian ideals", *Adv. Math.* 159[:2 \(2001\), 229–246.](http://dx.doi.org/10.1016/S0021-8693(02)00662-2) MR 2002c:20073 Zbl 0993.22016
- [Panyush[ev and Röhrle 2005](http://www.ams.org/mathscinet-getitem?mr=2004i:17014)] [D. Panyushev](http://www.emis.de/cgi-bin/MATH-item?1020.20031) and G. Röhrle, "On spherical ideals of Borel subalgebras", *Arch. Math.* (*Basel*) 84[:3 \(2005\), 225–232.](http://dx.doi.org/10.2307/1970359) MR 2005k:14100 Zbl 1076.14061
- [Parshin [and Shafarevic](http://www.ams.org/mathscinet-getitem?mr=36:173)[h 1994\]](http://www.emis.de/cgi-bin/MATH-item?0153.04501) A. N. Parshin and I. R. Shafarevich (editors), *Algebraic geometry, IV*, E[ncyclopaedia of Mathematical Sciences](http://dx.doi.org/10.1112/blms/9.1.38) 55, Springer, Berlin, 1994. MR 95g:14002 Zbl 0788.00[015](http://www.ams.org/mathscinet-getitem?mr=55:10473)
- [Premet 2003] A. Premet, "Ni[lpotent orbits in g](http://www.emis.de/cgi-bin/MATH-item?0355.14020)ood characteristic and the Kempf–Rousseau theory", *J. Algebra* 260:1 (2003), 338–366. MR 2004i:17014 Zbl 1020.20031
- [Richardson 1967] R. W. Richardson, Jr., "Conjugacy classes in Lie algebras and algebraic groups", *Ann. of Math.* (2) 86 (1967), 1–15. MR 36 #173 Zbl 0153.04501
- [Richardson 1977] R. W. Richardson, "Affine coset spaces of reductive algebraic groups", *Bull. London Math. Soc.* 9:1 (1977), 38–41. MR 55 #10473 Zbl 0355.14020
- [Richardson 1982] R. W. Richardson, "On orbits of algebraic groups and Lie groups", *Bull. Austral. Math. Soc.* 25:1 [\(1982\), 1–28.](http://www.ams.org/mathscinet-getitem?mr=58:22063) [MR 83i:14041](http://www.emis.de/cgi-bin/MATH-item?0375.14013) Zbl 0467.14008
- [Richardson et al. 1992] R. Richardson, G. Röhrle, and R. Steinberg, "Parabolic subgroups with abelian unipotent radical", *Invent. Math.* 110:3 (1992), 649–671. MR 93j:20092 Zbl 0786.20029
- [Röhrle 1998] G. Röhrle, "On normal a[belian subgroup](http://www.ams.org/mathscinet-getitem?mr=99k:20096)[s in parabolic gr](http://www.emis.de/cgi-bin/MATH-item?0933.20039)oups", *Ann. Inst. Fourier* (*Grenoble*) 48:5 (1998), 1455–1482. MR 99i:20062 Zbl 0933.20034
- [Rousseau 1978] G. Rousseau, "Immeubles sphériques et théorie des invariants", *C. R. Acad. Sci. Paris Sér. A-B* 286[:5 \(1978\), A247–](http://www.ams.org/mathscinet-getitem?mr=86m:20050)A250. [MR 58 #](http://www.emis.de/cgi-bin/MATH-item?0628.20036)22063 Zbl 0375.14013
- [Seitz 1998] G. M. Seitz, "Double cosets in algebraic groups", pp. 241–257 in *Algebraic groups and [their represe](http://www.ams.org/mathscinet-getitem?mr=99h:20075)[ntations](http://www.emis.de/cgi-bin/MATH-item?0927.20024)* (Cambridge, 1997), edited by R. W. Carter and J. Saxl, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 517, Kluwer Acad. Publ., Dordrecht, 1998. MR 99k:20096 Zbl 0933.20039
- [Springer 1985] T. A. Springer, "Some results on algebraic groups with involutions", pp. 525–543 in *Algebraic grou[ps and related t](http://www.ams.org/mathscinet-getitem?mr=42:3091)opics* [\(Kyoto/Nag](http://www.emis.de/cgi-bin/MATH-item?0249.20024)oya, 1983), edited by R. Hotta, Adv. Stud. Pure Math. 6, North-Holland, Amsterdam, 1985. MR 86m:20050 Zbl 0628.20036
- [Springer 1998] [T. A. Sp](http://www.ams.org/mathscinet-getitem?mr=87j:14077)ringer, *[Linear al](http://www.emis.de/cgi-bin/MATH-item?0601.14038)gebraic groups*, 2nd ed., Progress in Mathematics 9, Birkhäuser, Boston, 1998. MR 99h:20075 Zbl 0927.20024
- [Springer and Steinberg 1970] T. A. Springer and R. Steinberg, "Conjugacy classes", pp. 167–266 in *Seminar on algebraic groups and related finite groups* (Princeton, N.J., 1968/69), Lecture Notes in Mathematics 131, Springer, Berlin, 1970. MR 42 #3091 Zbl 0249.20024
- [Vinberg 1986] È. B. Vinberg, "Complexity of actions of reductive groups", *Funktsional. Anal. i Prilozhen.* 20:1 (1986), 1–13, 96. MR 87j:14077 Zbl 0601.14038

Received December 7, 2007. Revised May 27, 2008.

RUSSELL FOWLER SCHOOL OF MATHEMATICS UNIVERSITY OF BIRMINGHAM BIRMINGHAM B15 2TT UNITED KINGDOM

fowlerra@maths.bham.ac.uk

GERHARD RÖHRLE FAKULTÄT FÜR M[ATHEMATIK](http://www.ruhr-uni-bochum.de/ffm/Lehrstuehle/Lehrstuhl-VI/rubroehrle.html) RUHR-UNIVERSITÄT BOCHUM UNIVERSITÄTSSTRASSE 150 44780 BOCHUM GERMANY

gerhard.roehrle@rub.de http://www.ruhr-uni-bochum.de/ffm/Lehrstuehle/Lehrstuhl-VI/rubroehrle.html