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Let G be a connected reductive linear algebraic group defined over an alge-
braically closed field of characteristic p. Assume that p is good for G. In
this note we classify all the spherical nilpotent G-orbits in the Lie algebra of
G. The classification is the same as in the characteristic zero case obtained
by D. I. Panyushev [1994]: for e a nilpotent element in the Lie algebra of G,
the G-orbit G · e is spherical if and only if the height of e is at most 3.

1. Introduction

Let G be a connected reductive linear algebraic group defined over an algebraically
closed field k of characteristic p > 0. With the exception of Section 4.5, we assume
throughout that p is good for G (see Section 2.1 for a definition).

A spherical G-variety X is an (irreducible) algebraic G-variety on which a Borel
subgroup B of G acts with a dense orbit. Homogeneous spherical G-varieties
G/H , for H a closed subgroup of G, are of particular interest. They include
flag varieties (when H is a parabolic subgroup of G) as well as symmetric spaces
(when H is the fixed point subgroup of an involutive automorphism of G). We
refer the reader to [Brion 1987; 1995] for more information on spherical varieties
and for their representation-theoretic significance. These varieties enjoy a remark-
able property: a Borel subgroup of G acts on a spherical G-variety only with a
finite number of orbits. This fundamental result is due to M. Brion [1986] and
É. B. Vinberg [1986] independently in characteristic 0, and to F. Knop [1995, 2.6]
in arbitrary characteristic.

Let g = Lie G be the Lie algebra of G. The aim of this note is to classify the
spherical nilpotent G-orbits in g. In case k is of characteristic zero, this classifi-
cation was obtained by D. I. Panyushev [1994]. The classification is the same in
case the characteristic of k is good for G: for e ∈ g nilpotent, G · e is spherical
if and only if the height of e is at most 3 (Theorem 3.38). The height of e is the
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highest degree in the grading of g afforded by a cocharacter of G associated to e
(Definition 2.25).

The methods employed by Panyushev [1994] do not apply in positive character-
istic, that is, parts of the argument are based on the concept of “stabilizers in general
position”; it is unknown whether these exist generically in positive characteristic.
Thus a different approach is needed to address the question in this case.

We briefly sketch the contents of the paper. In Section 2 we collect the pre-
liminary results we require. In particular, we discuss the concepts of complexity
and sphericity, and more specifically the question of complexity of homogeneous
spaces. In Section 2.5 we recall the basic results of Kempf–Rousseau Theory and
in Section 2.6 we recall the fundamental concepts of associated cocharacters for
nilpotent elements from [Jantzen 2004, § 5] and [Premet 2003]. There we also
recall the grading of g afforded by a cocharacter associated to a given nilpotent
element and define the notion of the height of a nilpotent element as the highest
occurring degree of such a grading (see Definition 2.25). The complexity of fibre
bundles is discussed in Section 2.7, which is crucial for the sequel. In particular, in
Theorem 2.32 we show that the complexity of a fixed nilpotent orbit G · e is given
by the complexity of a smaller reductive group acting on a linear space. Precisely,
let λ be a cocharacter of G, that is associated to e. Then Pλ is the destabilizing
parabolic subgroup P(e) defined by e, in the sense of Geometric Invariant Theory.
Moreover,

L = CG(λ(k∗))

is a Levi subgroup of P(e). We show in Theorem 2.32 that the complexity of G ·e
equals the complexity of the action of L on the subalgebra⊕

i>2

g(i, λ)

of g where the grading
g =

⊕
i∈Z

g(i, λ)

is afforded by λ. In Section 2.8 we recall the concept of a weighted Dynkin diagram
associated to a nilpotent orbit from [Carter 1985, § 5]. There we also present the
classification of the parabolic subgroups P of a simple algebraic group G admitting
a dense action of a Borel subgroup of a Levi subgroup of P on the unipotent radical
of P according to [Brundan 1998, Theorem 4.1]. There we also remind the reader
of the classification of the parabolic subgroups of G with an abelian unipotent
radical.

In Section 3 we give the classification of the spherical nilpotent orbits in good
characteristic: a nilpotent element e in g is spherical if and only if the height of
e is at most 3 (Theorem 3.38). In Sections 3.1 and 3.3 we show that orbits of
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height 2 are spherical and orbits of height at least 4 are not, respectively. The
remainder of Section 3 deals with the cases of height 3 nilpotent classes. For
classical groups these only occur for the orthogonal groups. For the exceptional
groups the height 3 cases are handled in Section 3.7 with the aid of a computer
programme of S. M. Goodwin.

In Section 4 we discuss some further results and some applications of the classifi-
cation. In Section 4.1 we discuss the spherical nilpotent orbits that are distinguished
and in Section 4.2 we extend a result of Panyushev in characteristic zero to good
positive characteristic: a characterization of the spherical nilpotent orbits in terms
of pairwise orthogonal simple roots, see Theorem 4.14.

In Section 4.3 we discuss generalizations of results from [Panyushev and Röhrle
2001; 2005] to positive characteristic. In Theorem 4.18 we show that if a is an
abelian ideal of a Borel subalgebra b of g, then G · a is a spherical variety. In
Section 4.4 we describe a geometric characterization of spherical orbits in simple
algebraic groups from [Cantarini et al. 2005] and [Carnovale 2006]. Finally, in
Section 4.5 we very briefly touch on the issue of spherical nilpotent orbits in bad
characteristic.

Thanks to the fact that a Springer isomorphism between the unipotent variety
of G and the nilpotent variety of g affords a bijection between the unipotent G-
classes in G and the nilpotent G-orbits in g (see [Springer and Steinberg 1970, III,
3.12] and [Bardsley and Richardson 1985, Corollary 9.3.4]), there is an analogous
classification of the spherical unipotent conjugacy classes in G.

For results on algebraic groups we refer the reader to Borel’s book [1991] and
for information on nilpotent classes we cite Jantzen’s monograph [2004].

2. Preliminaries

2.1. Notation. Let H be a linear algebraic group defined over an algebraically
closed field k. We denote the Lie algebra of H by Lie H or by h. We write
H◦ for the identity component of H and Z(H) for the centre of H . The derived
subgroup of H is denoted by DH and we write rank H for the dimension of a
maximal torus of H . The unipotent radical of H is denoted by Ru(H). We say
that H is reductive provided H◦ is reductive. Let K be a subgroup of H . We write
CH (K ) = {h ∈ H | hxh−1

= x for all x ∈ K } for the centralizer of K in H .
Suppose H acts morphically on an algebraic variety X . Then we say that X is

an H -variety. Let x ∈ X . Then H · x denotes the H -orbit of x in X and CH (x) =

{h ∈ H | h · x = x for all h ∈ H} is the stabilizer of x in H .
For e ∈ h we denote the centralizers of e in H and h by

CH (e) = {h ∈ H | Ad(h)e = e},

ch(e) = {x ∈ h | [x, e] = 0}.
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For S a subset of H we write

ch(S) = {x ∈ h | Ad(s)x = x for all s ∈ S}

for the centralizer of S in h.
Suppose G is a connected reductive algebraic group. By N we denote the nilpo-

tent cone of g. Let T be a maximal torus of G. Let 9 = 9(G, T ) denote the set
of roots of G with respect to T . Fix a Borel subgroup B of G containing T and let
5 = 5(G, T ) be the set of simple roots of 9 defined by B. Then 9+

= 9(B, T )

is the set of positive roots of G with respect to B. For I ⊂ 5, we denote by PI

and L I the standard parabolic and standard Levi subgroups of G defined by I ,
respectively; see [Carter 1985, §2].

For β ∈ 9+ write
β =

∑
α∈5

cαβα

with cαβ ∈ N0. A prime p is said to be good for G if it does not divide cαβ for
any α and β [Springer and Steinberg 1970, Definition 4.1]. Let U = Ru(B) and
set u = Lie U . For a T -stable Lie subalgebra m of u we write

9(m) = {β ∈ 9+
| gβ ⊆ m}

for the set of roots of m (with respect to T ).
For every root β ∈ 9 we choose a generator eβ for the corresponding root space

gβ of g. Any element e ∈ u can be uniquely written as

e =

∑
β∈9+

cβeβ,

where cβ ∈ k. The support of e is defined as

supp(e) = {β ∈ 9+
| cβ 6= 0}.

The variety of all Borel subgroups of G is denoted by B. Note that B is a single
conjugacy class B = {Bg

| g ∈ G}. Also note the isomorphism B ∼= G/B.
Let Y (G) = Hom(k∗, G) be the set of cocharacters (one-parameter subgroups)

of G. Likewise, for a closed subgroup H of G, we set Y (H) = Hom(k∗, H) for
the set of cocharacters of H . For λ ∈ Y (G) and g ∈ G we define g · λ ∈ Y (G) by

(g · λ)(t) = gλ(t)g−1

for t ∈ k∗; this gives a left action of G on Y (G). For µ ∈ Y (G) we write CG(µ)

for the centralizer of µ under this action of G which coincides with CG(µ(k∗)).
By a Levi subgroup of G we mean a Levi subgroup of a parabolic subgroup of

G. The Levi subgroups of G are precisely the subgroups of G which are of the
form CG(S) where S is a torus of G [Borel 1991, Theorem 20.4]. Note that for S
a torus of G the group CG(S) is connected [Borel 1991, Corollary 11.12].
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2.2. Complexity. Suppose the linear algebraic group H acts morphically on the
(irreducible) algebraic variety X . Let B be a Borel subgroup of H . Recall that the
complexity of X (with respect to the H -action on X ) is defined as

κH (X) := min
x∈X

codimX B · x

(see also [Brion 1995; Knop 1995; Luna and Vust 1983; Panyushev 1994; Vinberg
1986]).

Since the Borel subgroups of H are conjugate in H [Humphreys 1975, Theo-
rem 21.3], the complexity of the variety X is well defined.

Since a Borel subgroup of H is connected, we have κH (X) = κH◦(X). Thus for
considering the complexity of an H -action, we may assume that H is connected.

Concerning basic properties of complexity, we refer the reader to [Vinberg 1986,
§9].

We return to the general situation of a linear algebraic group H acting on an
algebraic variety X . For a Borel subgroup B of H , we define

0X (B) := {x ∈ X | codimX B · x = κH (X)} ⊆ X.

Then we set
0X :=

⋃
B∈B

0X (B) ⊆ X.

For x ∈ X , we define

3H (x) := {B ∈ B | codimX B · x = κH (X)} ⊆ B.

Remark 2.1. The following statements are immediate from the definitions.

(i) If H acts transitively on X , then 0X = X .

(ii) B ∈ 3H (x) if and only if x ∈ 0X (B).

(iii) 3H (x) = ∅ if and only if x /∈ 0X .

The complexity of a reducible variety can easily be determined from the com-
plexities of its irreducible components: Since a Borel subgroup B of G is con-
nected, it stabilizes each irreducible component of X [Humphreys 1975, Proposi-
tion 8.2(d)]. Let x ∈ 0X (B) and choose an irreducible component X ′ of X such
that x ∈ X ′. Then κG(X) = κG(X ′)+codimX X ′. Therefore, from now on we may
assume that X is irreducible.

Next we recall from [Humphreys 1975, Proposition 4.4] that the dimension is
upper semicontinuous.

Proposition 2.2. Let ϕ : X → Y be a dominant morphism of irreducible varieties.
For x ∈ X , let εϕ(x) be the maximal dimension of any component of ϕ−1(ϕ(x))

passing through x. Then {x ∈ X | εϕ(x) > n} is closed in X , for all n ∈ Z.
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Corollary 2.3. Let X be an H-variety. The set {x ∈ X | dim H · x 6 n} is closed in
X for all n ∈ Z. In particular, the union of all H-orbits of maximal dimension in
X is an open subset of X.

Lemma 2.4. For every B ∈ B, we have 0X (B) is a nonempty open subset of X.

Proof. Note that 0X (B) is the union of B-orbits of maximal dimension. Thus, by
Corollary 2.3, 0X (B) is open in X . �

Corollary 2.5. 0X is open in X.

Next we need an easy but useful lemma; the proof is elementary.

Lemma 2.6. Let ϕ : X → Y be an H-equivariant dominant morphism of irre-
ducible H-varieties. For x ∈ X , set Fϕ(x) = ϕ−1(ϕ(x)). Then Fϕ(x) is CH (ϕ(x))-
stable.

Before we can prove the next major result we need another preliminary:

Theorem 2.7 [Humphreys 1975, Theorem 4.3]. Let ϕ : X → Y be a dominant
morphism of irreducible varieties. Set r =dim X−dim Y . Then there is a nonempty
open subset V of Y such that V ⊆ ϕ(X) and if Y ′

⊆ Y is closed, irreducible and
meets V and Z is a component of ϕ−1(Y ′) which meets ϕ−1(V ), then dim Z =

dim Y ′
+ r . In particular, if v ∈ V , then dim ϕ−1(v) = r .

For the remainder of this section let G be connected reductive. Let ϕ : X → Y
be a G-equivariant dominant morphism of irreducible G-varieties. Then

κG(Y ) 6 κG(X)

(see [Vinberg 1986, §9]). In our next result we give an interpretation for the dif-
ference κG(X) − κG(Y ) in terms of the complexity of a smaller subgroup acting
on a fibre of ϕ.

Theorem 2.8. Let ϕ : X → Y be a G-equivariant dominant morphism of irre-
ducible G-varieties. For x ∈ X set Fϕ(x) = ϕ−1(ϕ(x)). Then for every B ∈ B there
exists x ∈ 0X (B) such that for H = CB(ϕ(x))◦ we have

κG(X) = κG(Y ) + κH (Z),

where Z is an irreducible component of Fϕ(x) passing through x.

Proof. Let B ∈ B. Let V be a nonempty open subset of Y which satisfies the
conditions in Theorem 2.7. Since Y is irreducible, Lemma 2.4 implies that

0Y (B) ∩ V 6= ∅.
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For y ∈ 0Y (B) ∩ V , Theorem 2.7 implies that any component of ϕ−1(y) has di-
mension r = dim X −dim Y , in particular, dim ϕ−1(y)= r . Since ϕ−1(0Y (B) ∩ V )

is open in X , we have

ϕ−1(0Y (B) ∩ V ) ∩ 0X (B) 6= ∅,

by Lemma 2.4. Now choose

x ∈ ϕ−1(0Y (B) ∩ V ) ∩ 0X (B).

In particular, dim Fϕ(x) = r . Lemma 2.6 implies that Fϕ(x) is CB(ϕ(x))-stable.
Clearly, CB(x) is the stabilizer of x in CB(ϕ(x)). Thus we obtain

codimFϕ(x)
CB(ϕ(x)) · x

= dim Fϕ(x) − dim CB(ϕ(x)) · x

= r − dim CB(ϕ(x)) + dim CB(x)

= dim X − dim Y − dim CB(ϕ(x)) + dim CB(x) + dim B − dim B

= dim X − dim B + dim CB(x) −
(
dim Y − dim B + dim CB(ϕ(x))

)
= κG(X) − κG(Y ),

where the last equality holds because x ∈ 0X (B) and ϕ(x) ∈ 0Y (B).
Let Z be an irreducible component of Fϕ(x) which passes through x . Theo-

rem 2.7 implies that Z has the same dimension as Fϕ(x). The connected group
H = CB(ϕ(x))◦ stabilizes Z . Note that for each z ∈ Z we have ϕ(z) = ϕ(x) and
CB(z) = CCB(ϕ(x))(z) (observed for z = x above). Since x ∈ 0X (B), dim CB(x) is
minimal among groups of the form CB(z) for z ∈ Z . Therefore, because CB(z) =

CCB(ϕ(x))(z), we see that dim CCB(ϕ(x))(x) is minimal among groups of the form
CCB(ϕ(z))(z) for z ∈ Z . We deduce that x ∈ 0Z (H). Consequently,

κH (Z) = dim Z − dim CB(ϕ(x))◦ + dim CCB(ϕ(x))◦(x)

= codimFϕ(x)
CB(ϕ(x)) · x . �

2.3. Spherical varieties. A G-variety X is called spherical if a Borel subgroup of
G acts on X with a dense orbit, that is, κG(X) = 0. We recall some standard facts
concerning spherical varieties [Brion 1995; Knop 1995; Panyushev 1994].

First we recall an important result due to É. B. Vinberg [1986] and M. Brion
[1986] independently in characteristic zero and F. Knop [1995, Corollary 2.6] in
arbitrary characteristic. Let B be a Borel subgroup of G.

Theorem 2.9. A spherical G-variety consists only of a finite number of B-orbits.

We have an immediate corollary.
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Corollary 2.10. The following are equivalent.

(i) The G-variety X is spherical.

(ii) There is an open B-orbit in X.

(iii) The number of B-orbits in X is finite.

2.4. Homogeneous spaces. Let H be a closed subgroup of G. Since G/H is a
G-variety, we may consider the complexity κG(G/H). Let B be a Borel subgroup
of G. The orbits of B on G/H are in bijection with the (B, H)-double cosets of
G. We have that

κG(G/H) = codimG/H BgH/H

for gH ∈ 0G/H (B). Clearly, G acts transitively on G/H , so Remark 2.1(i) implies
that we can choose a Borel subgroup B such that B ∈ 3G(1H). Thus, for this
choice of B, we have

(2-1) κG(G/H) = codimG/H B H/H = dim G/H − dim B H/H

= dim G/H − dim B/B ∩ H

= dim G − dim H − dim B + dim B ∩ H.

Following M. Krämer [1979], a subgroup H of G is called spherical if

κG(G/H) = 0.

Since κG(G/H) = κG(G/H◦), by (2-1), in considering the complexity of ho-
mogeneous spaces G/H we may assume that the subgroup H is connected.

We have an easy lemma.

Lemma 2.11. Let G be connected reductive and let H be a subgroup of G which
contains the unipotent radical of a Borel subgroup of G. Then H is spherical. In
particular, a parabolic subgroup of G is spherical.

Proof. Let B be a Borel subgroup of G such that U = Ru(B) 6 H . Denote by B−

the opposite Borel subgroup to B, relative to some maximal torus of B [Humphreys
1975, §26.2, Corollary C]. The big cell B−U is an open subset of G [Humphreys
1975, Proposition 28.5]. We have B−U ⊆ B−H , so B−H is a dense subset of G.
Thus, G/H is spherical. �

Remark 2.12. If both G and H are reductive, then G/H is an affine variety
[Richardson 1977, Theorem A]. This case has been studied greatly. The classi-
fication of spherical reductive subgroups of the simple algebraic groups in char-
acteristic zero was obtained by M. Krämer [1979] and was shown to be the same
in positive characteristic by J. Brundan [1998]. M. Brion [1987] classifies all the
spherical reductive subgroups of an arbitrary reductive group in characteristic zero.
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In positive characteristic no such classification is known. However, the classifi-
cation of the reductive spherical subgroups in simple algebraic groups in positive
characteristic follows from the work of T. A. Springer [1985] (see also [Seitz 1998;
Brundan 1998; Lawther 1999]).

Important examples of reductive spherical subgroups are centralizers of invo-
lutive automorphisms of G: Suppose that char k 6= 2 and let θ be an involutive
automorphism of G. Then the fixed point subgroup CG(θ) = {g ∈ G | θ(g) = g}

of G is spherical [Springer 1985, Corollary 4.3.1].

For more on the complexity and sphericity of homogeneous spaces see [Brion
1986; Luna and Vust 1983; Panyushev 1990].

Remark 2.13. In order to compute the complexity of an orbit variety, it suffices
to determine the complexity of a homogeneous space. Suppose that G acts on an
algebraic variety X . Let x ∈ X . Since G is connected, the orbit G ·x is irreducible.
The map

πx : G/CG(x) → G · x, πx(gCG(x)) = g · x

is a bijective G-equivariant morphism [Jantzen 2004, §2.1]. Thus, by applying
Theorem 2.8 to πx , we have

(2-2) κG(G/CG(x)) = κG(G · x).

The relevance of (2-2) is that the left hand side is easier to compute, since calcu-
lating κG(G/CG(x)) only requires the study of groups of the form CB(x), where
B is a Borel subgroup of G (compare (2-1)).

2.5. Kempf–Rousseau Theory. Next we require some standard facts from Geo-
metric Invariant Theory [Kempf 1978] (also see [Premet 2003, §2] and [Richardson
1982, §7]). Let X be an affine variety and φ : k∗

→ X be a morphism of algebraic
varieties. We say that limt→0 φ(t) exists if there exists a morphism φ̂ : k → X
such that φ̂|k∗ = φ. If such a limit exists, we set

lim
t→0

φ(t) = φ̂(0).

Note that if such a morphism φ̂ exists, it is necessarily unique.
Let λ be a cocharacter of G. Define

Pλ =
{

x ∈ G
∣∣ lim

t→0
λ(t)xλ(t)−1 exists

}
.

Then Pλ is a parabolic subgroup of G, the unipotent radical of Pλ is given by

Ru(Pλ) =
{

x ∈ G
∣∣ lim

t→0
λ(t)xλ(t)−1

= 1
}
,
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and a Levi subgroup of Pλ is the centralizer

GG(λ) = CG(λ(k∗))

of the image of λ in G [Springer 1998, §8.4].
Let the connected reductive group G act on the affine variety X and suppose

x ∈ X is a point such that G · x is not closed in X . Let C denote the unique closed
G-orbit in the closure of G · x (see [Richardson 1977, Lemma 1.4]). Set

3(x) :=
{
λ ∈ Y (G)

∣∣ lim
t→0

λ(t) · x exists and lies in C
}
.

Then there is a so-called optimal class �(x) ⊆ 3(x) of cocharacters associated to
x . The following theorem is due to G. R. Kempf [1978, Theorem 3.4] (see also
[Rousseau 1978]).

Theorem 2.14. Assume as above. Then we have the following:

(i) �(x) 6= ∅.

(ii) There exists a parabolic subgroup P(x) of G such that P(x) = Pλ for every
λ ∈ �(x).

(iii) �(x) is a single P(x)-orbit.

(iv) For g ∈ G, we have �(g·x)= g·�(x) and P(g·x)= g P(x)g−1. In particular,
CG(x) 6 NG(P(x)) = P(x).

Frequently, P(x) in Theorem 2.14 is called the destabilizing parabolic subgroup
of G defined by x ∈ X .

2.6. Associated cocharacters. Here we closely follow [Premet 2003] (also see
[Jantzen 2004, §5]). We recall that p is a good prime for G throughout this section.

Every cocharacter λ ∈ Y (G) induces a grading of g:

g =

⊕
i∈Z

g(i, λ),

where
g(i, λ) = {x ∈ g | Ad(λ(t))(x) = t i x for all t ∈ k∗

}

(see [Jantzen 2004, §5.1]). For Pλ as in Section 2.5, we have the following equal-
ities:

Lie Pλ =

⊕
i>0

g(i, λ), Lie Ru(Pλ) =

⊕
i>0

g(i, λ), and Lie CG(λ) = g(0, λ).

Frequently, we write g(i) for g(i, λ) once we have fixed a cocharacter λ ∈ Y (G).
Let H be a connected reductive subgroup of G. A nilpotent element e ∈ h is

called distinguished in h provided each torus in CH (e) is contained in the centre
of H [Jantzen 2004, §4.1].
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The following characterization of distinguished nilpotent elements in the Lie
algebra of a Levi subgroup of G can be found in [Jantzen 2004, §4.6, §4.7].

Proposition 2.15. Let e ∈ g be nilpotent and let L be a Levi subgroup of G. Then
e is distinguished in Lie L if and only if L = CG(S), where S is a maximal torus of
CG(e).

Next we recall the definition of an associated cocharacter [Jantzen 2004, §5.3].

Definition 2.16. A cocharacter λ : k∗
→ G is associated to e ∈ N if e ∈ g(2, λ)

and there exists a Levi subgroup L of G such that e is distinguished in Lie L , and
λ(k∗) 6 DL .

Remark 2.17. In view of Proposition 2.15, the last two conditions in Definition
2.16 are equivalent to the existence of a maximal torus S of CG(e) such that λ(k∗)6
DCG(S). We will use this fact frequently in the sequel.

Let e ∈ N. A. Premet [2003, §2.4, Proposition 2.5] explicitly defines a cocharac-
ter of G which is associated to e. Moreover, Premet [2003, Theorem 2.3] shows that
each of these associated cocharacters belongs to the optimal class �(e) determined
by e. He shows this under the so-called standard hypotheses on G; see [Jantzen
2004, §2.9]. These restrictions were subsequently removed by G. McNinch [2004,
Proposition 16] so that this fact holds for any connected reductive group G in good
characteristic. It thus follows from [McNinch 2004, Proposition 16], Theorem
2.14(iv), and the fact that any two associated cocharacters are conjugate under
CG(e), [Jantzen 2004, Lem. 5.3], that all the cocharacters of G associated to e ∈ N

belong to the optimal class �(e) defined by e (see also [McNinch 2004, Proposi-
tion 18, Theorem 21]). This motivates and justifies the following notation which
we use in the sequel.

Definition 2.18. Let e ∈ g be nilpotent. Then we denote the set of cocharacters of
G associated to e by

�a
G(e) := {λ ∈ Y (G) | λ is associated to e} ⊆ �(e).

Further, if H is a (connected) reductive subgroup of G with e ∈ h nilpotent we also
write �a

H (e) to denote the cocharacters of H that are associated to e.

As indicated above, in good characteristic, associated cocharacters are known
to exist for any nilpotent element e ∈ g; more precisely, we have the following (see
[Jantzen 2004, §5.3]):

Proposition 2.19. Suppose that p is good for G. Let e ∈ g be nilpotent. Then
�a

G(e) 6= ∅. Moreover, if λ ∈ �a
G(e) and µ ∈ Y (G), then µ ∈ �a

G(e) if and only if
µ and λ are conjugate by an element of CG(e).
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Fix a nilpotent element e ∈ g and an associated cocharacter λ ∈ �a
G(e) of G.

Set P = Pλ. By Theorem 2.14(ii), P only depends on e and not on the choice of
the associated cocharacter λ. Note that CG(λ) stabilizes g(i) for every i ∈ Z. For
n ∈ Z>0 we set

g>n =

⊕
i>n

g(i) and g>n =

⊕
i>n

g(i).

Then we have
g>0 = Lie P and g>0 = Lie Ru(P).

Also, CG(e) = CP(e), by Theorem 2.14(iv).
The next result is [Jantzen 2004, Proposition 5.9(c)].

Proposition 2.20. The P-orbit of e in g>2 is dense in g>2.

Corollary 2.21. The CG(λ)-orbit of e in g(2) is dense in g(2).

Definition 2.22. Let e ∈ N and let λ ∈ �a
G(e). Then set

CG(e, λ) := CG(e) ∩ CG(λ).

Corollary 2.23. Let e ∈ N. Then

(i) dim CG(e) = dim g(0) + dim g(1),

(ii) dim Ru(CG(e)) = dim g(1) + dim g(2), and

(iii) dim CG(e, λ) = dim g(0) − dim g(2).

Proof. As CG(e) = CP(e), part (i) is immediate from Proposition 2.20. Using the
fact that

Ad(Ru(P) − 1)(e) ⊆ g>3

(see [Jantzen 2004, §5.10]) and Proposition 2.20, we see that

dim Ad(Ru(P))(e) = dim g>3

and so
dim CRu(P)(e) = dim g(1) + dim g(2).

Finally, part (iii) follows from the first two. �

The following basic result regarding the structure of CG(e) can be found in
[Premet 2003, Theorem A].

Proposition 2.24. If char k is good for G, then CG(e) is the semidirect product of
CG(e, λ) and CG(e)∩Ru(P). Moreover, CG(e, λ)◦ is reductive and CG(e)∩Ru(P)

is the unipotent radical of CG(e).
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Definition 2.25. Let e ∈ g be nilpotent. The height of e with respect to an associ-
ated cocharacter λ ∈ �a

G(e) is defined to be

ht(e) := max
i∈N

{i | g(i, λ) 6= 0}.

Thanks to Proposition 2.19, the height of e does not depend on the choice of λ ∈

�a
G(e). Since conjugate nilpotent elements have the same height, we may speak

of the height of a given nilpotent orbit. Since λ ∈ �a
G(e), we have ht(e) > 2 for

any nilpotent element e ∈ g; see Definition 2.16.

Let g be classical with natural module V . Set n = dim V . We write a partition
π of n in one of the following two ways:

(i) π = (d1, d2, . . . , dr ) with d1 > d2 > · · · > dr > 0 and
∑r

i=1 di = n, or

(ii) π = [1r1, 2r2, . . . ] with
∑

i iri = n.

These two notations are related by ri = |{ j | d j = i}| for i > 1.
For g classical with natural module V , it is straightforward to determine the

height of a nilpotent orbit from the corresponding partition of dim V . We leave the
proof of the next proposition to the reader.

Proposition 2.26. Let e ∈ g be nilpotent with partition πe = (d1, d2, . . . , dr ).

(i) If g = gl(V ), sl(V ) or sp(V ), then ht(e) = 2(d1 − 1).

(ii) If g = so(V ), then ht(e) =


2(d1 − 1) if d1 = d2,

2d1 − 3 if d1 = d2 + 1,

2(d1 − 2) if d1 > d2 + 1.

Remarks 2.27. (i) For char k = 0, Proposition 2.26 was proved in [Panyushev
1999, Theorem 2.3].

(ii) If e is a nilpotent element in gl(V ), sl(V ) or sp(V ), then ht(e) is even. If e is
a nilpotent element in so(V ), then ht(e) is odd if and only if d2 = d1 − 1.

2.7. Fibre bundles. Let H be a closed subgroup of G. Suppose that H acts on an
affine variety Y . Define a morphic action of H on the affine variety G × Y by

h · (g, y) = (gh, h−1
· y)

for h ∈ H , g ∈ G and y ∈ Y . Since H acts fixed point freely on G × Y , every H -
orbit in G × Y has dimension dim H . There exists a surjective quotient morphism
ρ : G ×Y → (G ×Y )/H (see [Mumford and Fogarty 1982, §1.2] and [Parshin and
Shafarevich 1994, §4.8]). We denote the quotient (G × Y )/H by G∗H Y , the fibre
bundle associated to the principal bundle π : G → G/H defined by π(g) = gH
and fibre Y . We denote the element (g, y)H of G∗H Y simply by g∗ y [Richardson
1967, §2]. Let X be a G-variety and Y ⊆ X be an H -subvariety. The collapsing of
the fibre bundle G∗H Y is the morphism G∗H Y → G ·Y ⊆ X defined by g∗y → g·y.
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Define an action of G on G∗H Y by g · (g′
∗ y) = (gg′) ∗ y for g, g′

∈ G and
y ∈ Y . We then have a G-equivariant surjective morphism ϕ : G∗H Y → G/H by
ϕ(g ∗ y) = gH . Note that ϕ−1(gH) ∼= Y for all gH ∈ G/H .

Proposition 2.28. Let H be a closed subgroup of G and let Y be an H-variety.
Suppose that B is a Borel subgroup of G such that dim B ∩ H is minimal (among
all subgroups of the form B ′

∩ H for B ′ ranging over B). Then we have

κG(G∗H Y ) = κG(G/H) + κB∩H (Y ).

Proof. We apply Theorem 2.8 to the morphism ϕ : G∗H Y → G/H . Thus, for a
Borel subgroup B of G and g ∗ y ∈ 0G∗HY (B), we have that

κG(G∗H Y ) = κG(G/H) + κK (Z),

where Z is an irreducible component of ϕ−1(ϕ(g ∗ y)) passing through g ∗ y and
K = CB(gH)◦. Note that CB(gH) = B ∩ gHg−1. So, since g ∗ y ∈ 0G∗HY (B), the
dimension of

g−1CB(gH)g = g−1 Bg ∩ H

is minimal. Now, as G∗H Y is a fibre bundle, for x ∈ G we have

Yx := ϕ−1(ϕ(x ∗ y)) ∼= Y.

Define a morphism

φ : Yx → Y, φ(g ∗ y) = x−1g · y.

Clearly, xhx−1
∈ B∩x H x−1 acts on g∗y ∈Yx as xhx−1

·(g∗y)= xhx−1g∗y. Since
g = xh′ for some h′

∈ H , we have xhx−1
·(g∗y)= xhh′

∗y. So φ(xhh′
∗y)=hh′

·y.
Thus, if we define an action of B ∩x H x−1 on Y by xhx−1

· y = h · y, the morphism
φ : Yx → Y becomes a (B ∩ x H x−1)-equivariant isomorphism. It follows that
κB∩x H x−1(Yx) = κB∩x H x−1(Y ). Since x−1(B ∩ x H x−1)x = x−1 Bx ∩ H , we finally
get

κB∩x H x−1(Y ) = κx−1 Bx∩H (Y ). �

Next we need a technical lemma.

Lemma 2.29. Let P be a parabolic subgroup of G. Then for B ranging over B,
the intersection B ∩ P is minimal if and only if B ∩ P is a Borel subgroup of a Levi
subgroup of P.

Proof. We may choose a Borel subgroup B of G so that B P is open dense in
G (compare the proof of Lemma 2.11). Then the P-orbit of the base point in
G/B ∼= B is open dense in B. Consequently, the stabilizer of this base point in P ,
P ∩ B, is minimal among all the isotropy subgroups P ∩ B ′ for B ′ in B. Clearly,
B is opposite to a Borel subgroup of G contained in P . Thanks to [Borel 1991,
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Corollary 14.13], P ∩ B contains a maximal torus T of G. Let L be the unique
Levi subgroup of P containing T . Then [Carter 1985, Theorem 2.8.7] implies that

P ∩ B = T (Ru(B) ∩ L).

Clearly, T (Ru(B)∩L) is solvable and thus lies in a Borel subgroup of L . A simple
dimension counting argument, using Theorem 2.7 applied to the multiplication
map B × P → B P and the fact that dim B P = dim G, shows that P ∩ B is a Borel
subgroup of L .

Reversing the argument in the previous paragraph shows that if P ∩ B is a Borel
subgroup of L , then B P is dense in G and thus P ∩ B is minimal again in the sense
of the statement. �

Next we consider a special case of Proposition 2.28.

Lemma 2.30. Let P be a parabolic subgroup of G and let Y be a P-variety. Then

κG(G∗PY ) = κL(Y ),

where L is a Levi subgroup of P.

Proof. Proposition 2.28 implies that

κG(G∗PY ) = κG(G/P) + κB∩P(Y ),

where dim B ∩ P is minimal. Lemmas 2.11 and 2.29 imply that κG(G/P) = 0 and
B ∩ P is a Borel subgroup of a Levi subgroup of P . The result follows. �

Let e∈N be a nonzero nilpotent element, λ∈�a
G(e) be an associated cocharacter

of e and g =
⊕

i∈Z g(i) be the grading of g induced by λ. Also let P be the
destabilizing parabolic subgroup of G defined by e (see Section 2.5). In particular,
we have Lie P = g>0 (see Section 2.6).

Lemma 2.31. Let e ∈ N. Then

G · g>2 = G · e.

In particular, dim G · g>2 = dim G · e.

Proof. Since g>2 is P-stable, G ·g>2 is closed [Humphreys 1995, Proposition 0.15].
Thus, since e ∈ g(2) ⊆ g>2, we have

G · e ⊆ G · g>2.

By Proposition 2.20, P · e = g>2. Since P · e ⊆ G · e, we thus have g>2 ⊆ G · e.
Finally, as G · e is G-stable,

G · g>2 ⊆ G · e. �
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Theorem 2.32. Let e ∈ N. Then

κG(G · e) = κL(g>2),

where L is a Levi subgroup of P.

Proof. We have κG(G ·e)= κG(G/CG(e))= κG(G/CP(e)), thanks to (2-2) and the
fact that GG(e) = CP(e). Moreover, since G∗P P/CP(e) ∼= G/CP(e), it follows
from Lemma 2.30 that κG(G/CP(e)) = κL(P/CP(e)). Finally, thanks to Proposi-
tion 2.20 and (2-2), we obtain κL(P/CP(e)) = κL(g>2). The result follows. �

Remark 2.33. For char k = 0, Theorem 2.32 was proved by Panyushev [1999,
Theorem 4.2.2].

Remark 2.34. Thanks to Theorem 2.32, in order to determine whether a nilpotent
orbit is spherical, it suffices to show that a Borel subgroup of a Levi subgroup of
P acts on g>2 with a dense orbit. In our classification we pursue this approach.

2.8. Borel subgroups of Levi subgroups acting on unipotent radicals. Let e ∈ g

be a nonzero nilpotent element and let λ ∈ �a
G(e) be an associated cocharacter for

e. Let P = Pλ be the destabilizing parabolic subgroup defined by e. We denote
the Levi subgroup CG(λ) of P by L . Our next result is taken from [Jantzen 2004,
§3]. We only consider the case when G is simple, the extension to the case when
G is reductive is straightforward.

Proposition 2.35. Let G be a simple classical algebraic group and 0 6= e ∈ g be
nilpotent with corresponding partition πe =[1r1, 2r2, 3r3, . . . ]. Let ai , bi , s, t ∈Z>0

such that

ai + 1 =

∑
j>i

r2 j+1, bi + 1 =

∑
j>i

r2 j , 2s =

∑
j>0

r2 j+1, and 2t + 1 =

∑
j>0

r2 j+1.

Then the structure of DL is as follows.

(i) If G is of type An , then DL is of type
∏

i>0 Aai ×
∏

i>1 Abi .

(ii) If G is of type Bn , then DL is of type
∏

i>1 Aai ×
∏

i>1 Abi × Bt .

(iii) If G is of type Cn , then DL is of type
∏

i>1 Aai ×
∏

i>1 Abi × Cs .

(iv) If G is of type Dn , then DL is of type
∏

i>1 Aai ×
∏

i>1 Abi × Ds .

We use the conventions that

A0 = B0 = C0 = D0 = {1}, D1 ∼= k∗, and D2 = A1 × A1.

In order to describe the Levi subgroups CG(λ) for the exceptional groups we
need to know more about associated cocharacters. Let T be a maximal torus of G
such that λ(k∗) 6 T . Now let GC be the simple, simply connected group over C

with the same root system as G. Let gC be the Lie algebra of GC. For a nilpotent
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element e ∈ gC we can find an sl2-triple containing e. Let h ∈ gC be the semisimple
element of this sl2-triple. Note that h is the image of 1 under the differential of
λC ∈ GC (corresponding to λ) at 1. Then there exists a set of simple roots 5 of 9

such that α(h) > 0 for all α ∈ 9+ and α(h) = mα ∈ {0, 1, 2} for all α ∈ 5 [Carter
1985, §5.6]. For each simple root α ∈ 5 we attach the numerical label mα to the
corresponding node of the Dynkin diagram. The resulting labels form the weighted
Dynkin diagram 1(e) of e. We denote the set of weighted Dynkin diagrams of G
by D(5). For e, e′

∈ gC nilpotent, we have that 1(e) = 1(e′) if and only if e and
e′ are in the same GC-orbit.

In order to determine the weighted Dynkin diagram of a given nilpotent orbit
we refer to the method outlined in [Carter 1985, §13] for the classical groups, and
to the tables in the place cited for the exceptional groups.

We return to the case when the characteristic of k is good for G. In this case the
classification of the nilpotent orbits does not depend on the field k [Carter 1985,
§5.11]. Recently, Premet [2003] gave a proof of this fact for the unipotent classes
of G which is free from case-by-case considerations. This applies in our case,
since the classification of the unipotent conjugacy classes in G and of the nilpotent
orbits in N is the same in good characteristic [Carter 1985, §9 and §11]. First
assume that G is simply connected and that G admits a finite-dimensional rational
representation such that the trace form on g is nondegenerate; see [Premet 2003,
§2.3] for the motivation of these assumptions. Under these assumptions, given
1 ∈ D(5), there exists a cocharacter λ = λ1 of G which is associated to e, where
e lies in the dense L-orbit in g(2, λ), for L = CG(λ), such that

(2-3) Ad(λ(t))(e±α) = t±mα e±α and Ad(λ(t))(x) = x

for all α ∈ 5, e±α ∈ g±α, x ∈ t and t ∈ k∗ [Premet 2003, §2.4]. We extend this
action linearly to all of g. Now return to the general simple case. Let Ĝ be the
simple, simply connected group with the same root datum as G. Then there exists
a surjective central isogeny

π : Ĝ → G

(see [Carter 1985, §1.11]). Also, an associated cocharacter for e = dπ(̂e) in g

is of the form π ◦ λ̂, where λ̂ is a cocharacter of Ĝ that is associated to ê in ĝ.
This implies that (2-3) holds for an arbitrary simple algebraic group, when the
characteristic of k is good for G.

After these deliberations we can use the tables in [Carter 1985, §13] to determine
the structure of the Levi subgroups CG(λ) for the exceptional groups. Recall that
Lie CG(λ) = g(0) and g(0) is the sum of the root spaces gα, where α ∈ 9 with
〈α, λ〉 = 0. Let 50 = {α ∈ 5 | mα = 0}, the set of nodes α of the corresponding
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weighted Dynkin diagram with label mα = 0. Then

CG(λ) = 〈T, U±α | α ∈ 50〉.

It is straightforward to determine the height of a nilpotent orbit from its asso-
ciated weighted Dynkin diagram. Let α̃ =

∑
α∈5 cαα be the highest root of 9.

For each simple root α ∈ 5 we have gα ⊆ g(mα) where mα is the corresponding
numerical label on the weighted Dynkin diagram, by (2-3).

Lemma 2.36. Let α̃ be the highest root of 9 and set d = ht(e). Then gα̃ ⊆ g(d).

Proof. Clearly, we have gα̃ ⊆ g(i) for some i > 0. The lemma is immediate,
because if

α̃ =

∑
α∈5

cαα, and β =

∑
α∈5

dαα

is any other root of 9, then cα > dα for all α ∈ 5. �

Lemma 2.36 readily implies

(2-4) ht(e) =

∑
α∈5

mαcα.

The identity (2-4) is also observed in [Panyushev 1994, §2.1].
For the remainder of this section we assume that G is simple. The generalization

of each of the subsequent results to the case when G is reductive is straightforward.
For P a parabolic subgroup of G we set pu = Lie Ru(P).

Proposition 2.37. Let P = L Ru(P) be an arbitrary parabolic subgroup of G,
where L is a Levi subgroup of P. Then

κG(G/L) = κL(P/L) = κL(Ru(P)) = κL(pu).

Proof. Thanks to Lemma 2.30, we have κG(G/L) = κG(G∗P P/L) = κL(P/L).
If we write P = Ru(P)L , then the bijection P/L = Ru(P)L/L ∼= Ru(P) gives

a canonical L-equivariant isomorphism φ : P/L → Ru(P) defined by φ(x L) = y,
where x = yz with y ∈ Ru(P) and z ∈ L . Thus, we have κL(P/L) = κL(Ru(P)).

A Springer isomorphism between the unipotent variety of G and N restricts to
an L-equivariant isomorphism Ru(P) → pu [Goodwin 2005b, Corollary 1.4], so
that κL(Ru(P)) = κL(pu). �

Remarks 2.38. (i) While the first two equalities of Proposition 2.37 hold in arbi-
trary characteristic, the third equality requires the characteristic of the underlying
field to be zero or a good prime for G; this assumption is required for the existence
of a Springer isomorphism (see [Goodwin 2005b, Corollary 1.4]).

(ii) [Brundan 1998, Lemma 4.2] states that there is a dense L-orbit on G/B if and
only if there is a dense BL -orbit on Ru(P), where BL is a Borel subgroup of L .



SPHERICAL NILPOTENT ORBITS IN POSITIVE CHARACTERISTIC 259

Notice that there is a dense L-orbit on G/B if and only if there is a dense B-orbit
on G/L . In other words, κG(G/L) = 0 if and only if κL(Ru(P)) = 0. Thus,
Proposition 2.37 generalizes [Brundan 1998, Lemma 4.2].

By Proposition 2.37, the problem of determining κL(Ru(P)) is equivalent to
the problem of determining κG(G/L). In particular, a Borel subgroup of L acts
on Ru(P) with a dense orbit if and only if L is a spherical subgroup of G. In
fact, the latter have been classified. In characteristic zero this result was proved by
M. Krämer [1979] and extended to arbitrary characteristic by J. Brundan [1998,
Theorem 4.1].

Theorem 2.39. Let L be a proper Levi subgroup of a simple group G. Then L is
spherical in G if and only if (G, DL) is one of

(An, Ai−1 An−i ), (Bn, Bn−1), (Bn, An−1), (Cn, Cn−1),

(Cn, An−1), (Dn, Dn−1), (Dn, An−1), (E6, D5), (E7, E6).

We also recall the classification of the parabolic subgroups of G with an abelian
unipotent radical (see [Richardson et al. 1992, Lemma 2.2]).

Lemma 2.40. Let G be a simple algebraic group and P be a parabolic subgroup
of G. Then Ru(P) is abelian if and only if P is a maximal parabolic subgroup of G
which is conjugate to the standard parabolic subgroup PI of G, where I = 5\{α}

and α occurs in the highest root α̃ with coefficient 1.

Let 5 = {α1, α2, . . . , αn} be a set of simple roots of the root system 9 of G.
Using Lemma 2.40, we can readily determine the standard parabolic subgroups PI

of G with an abelian unipotent radical. For G simple we gather this information in
Table 1 along with the structure of the corresponding standard Levi subgroup L I

of PI . Set Pα′

i
= P5\{αi }. Here the simple roots are labelled as in [Bourbaki 1968,

Planches I–IX].
Note that if G is of type E8, F4 or G2, then G does not admit a parabolic

subgroup with an abelian unipotent radical. Also compare the list of pairs (G, DL)

from Table 1 with the list in Theorem 2.39.

Type of G PI Type of DL I

An Pα′

i
for 1 6 i 6 n Ai−1 An−i

Bn Pα′

1
Bn−1

Cn Pα′
n

An−1

Dn Pα′

1
, Pα′

n−1
and Pα′

n
Dn−1 or An−1

E6 Pα′

1
and Pα′

6
D5

E7 Pα′

7
E6

Table 1. Parabolic subgroups with abelian unipotent radical.
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Our next result is immediate from [Brundan 1998, Theorem 4.1, Lemma 4.2].

Proposition 2.41. If P = L Ru(P) is a parabolic subgroup of G with Ru(P)

abelian, then κL(Ru(P)) = 0.

Proof. If Ru(P) is abelian, then using Table 1 we see that all the possible pairs
(G, DL) appear in the list of spherical Levi subgroups given in Theorem 2.39, that
is, κG(G/L) = 0. Proposition 2.37 then implies that κL(Ru(P)) = 0. �

Corollary 2.42. If P is a parabolic subgroup of G with Ru(P) abelian, then
κL(pu) = 0.

Let 9 be the root system of G and let 5 ⊆ 9 be a set of simple roots of 9.
Let P = PI (I ⊆ 5) be a standard parabolic subgroup of G. Let 9I be the root
system of the standard Levi subgroup L I , that is, 9I is spanned by I . Define
9+

I = 9I ∩ 9+. For any root α ∈ 9 we can uniquely write α = αI + αI ′ where

αI =

∑
β∈I

cββ, and αI ′ =

∑
β∈5\I

dββ.

We define the level of α (relative to P or relative to I ) to be

lv(α) :=

∑
β∈5\I

dβ

(see [Azad et al. 1990]). Let d be the maximal level of any root in 9. If 2i > d,
then

(2-5) Ai :=

∏
lv(α)=i

Uα

is an abelian unipotent subgroup of G. Note Ad is the centre of Ru(P). Since L
normalizes each Ai , we can consider κL(Ai ).

Proposition 2.43. If P is a parabolic subgroup of G and 2i > d , then κL(Ai ) = 0.

Proof. We maintain the setup from the previous paragraph. Set Ai as in (2-5) and

A−

i =

∏
lv(α)=−i

Uα.

Let H be the subgroup of G generated by Ai , A−

i , and L . Then H is reductive,
with root system

9I ∪ {α ∈ 9 | lv(α) = ±i},

and L Ai is a parabolic subgroup of H . Since Ai is abelian, we can invoke Propo-
sition 2.41 to deduce that κL(Ai ) = 0. �
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There is a natural Lie algebra analogue of Proposition 2.43: Maintaining the
setup from above, for 2i > d, we see that

ai :=

⊕
lv(α)=i

gα

is an abelian subalgebra of g. Since Lie Uα = gα for all α ∈9, we have Lie Ai = ai .
Thanks to [Goodwin 2005b, Corollary 1.4], we obtain the following consequence
of Proposition 2.43.

Corollary 2.44. If P is a parabolic subgroup of G and 2i > d , then κL(ai ) = 0.

Remarks 2.45. (i) Corollary 2.44 was first proved, for a field of characteristic zero,
in [Panyushev 1994, Proposition 3.2]; the proof there is somewhat different from
ours.

(ii) Propositions 2.41 and 2.43 suggest that if A is an abelian subgroup of Ru(P)

which is normal in P , then κL(A) = 0. It is indeed the case that P acts on A with
a dense orbit [Röhrle 1998, Theorem 1.1]. However, this is not the case when we
consider instead the action of a Borel subgroup of a Levi subgroup of P on A. For
example, it follows from [Röhrle 1998, Table 1] that if G is of type An , then the
dimension of a maximal normal abelian subgroup A of a Borel subgroup B of G
is i(n + 1 − i), where 1 6 i 6 n. Clearly, for 1 6= i 6= n we have dim A > rk G.
Thus, a maximal torus of B cannot act on A with a dense orbit. Using [Röhrle
1998, Table 1], it is easy to construct further examples.

3. The classification of the spherical nilpotent orbits

3.1. Height two nilpotent orbits. We will now show that height two nilpotent or-
bits are spherical. Let e ∈ g be nilpotent and let λ ∈ �a

G(e) be an associated
cocharacter of G. Define the following subalgebra of g:

(3-1) gE :=

⊕
i∈Z

g(2i).

Proposition 3.1. Let e ∈ N, λ ∈ �a
G(e), and let gE be the subalgebra of g defined

in (3-1).

(i) There exists a connected reductive subgroup G E of G such that Lie G E = gE .

(ii) There exists a parabolic subgroup Q of G E such that

Lie Q =

⊕
i>0

g(2i).
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Moreover, CG(λ) is a Levi subgroup of Q and

Lie Ru(Q) =

⊕
i>1

g(2i).

Proof. Fix a maximal torus T of G such that λ(k∗) 6 T . Set

8 = {α ∈ 9 | 〈α, λ〉 ∈ 2Z}.

So gE =
⊕

α∈8 gα.
Then 8 is a semisimple subsystem of 9. The subgroup G E generated by T and

all the one-dimensional root subgroups Uα with α ∈ 8 is reductive and has Lie
algebra gE .

Let Q = P ∩ G E , where P = Pλ. Since λ(k∗) 6 T 6 G E , we see that Q
is a parabolic subgroup of G E ; see the remarks preceding Theorem 2.14. Since
Lie CG(λ)= g(0), we have CG(λ)6 Q and so CG(λ) is a Levi subgroup of Q. The
remaining claims follow from the fact that Lie P = g>0, the parabolic subgroup P
has Levi decomposition P = CG(λ)Ru(P) and Lie Ru(P) = g>0. �

The following discussion and Lemma 3.2 allow us to reduce the determination
of the spherical nilpotent orbits to the case when G is simple. Since the centre of
G acts trivially on g, we may assume that G is semisimple. Let G̃ be semisimple
of adjoint type and π : G → G̃ be the corresponding isogeny. Let e ∈ g be nilpotent
and let ẽ = dπ1(e). Consider the restriction of dπ1 to the nilpotent variety of g.
Then dπ1 : N → Ñ is a dominant G-equivariant morphism, where Ñ is the nilpotent
variety of Lie G̃ and G acts on Ñ via Ãd◦π . It then follows from Theorem 2.8 that
κG(G · e) = κG̃(G̃ · ẽ). We therefore may assume that G is semisimple of adjoint
type.

Lemma 3.2. Let G be semisimple of adjoint type. Then G is a direct product of
simple groups G = G1G2 · · · Gr . If e ∈ g is nilpotent, then e = e1 + e2 + · · · + er

for ei nilpotent in gi = Lie Gi and κG(G · e) =
∑r

i=1 κGi (Gi · ei ).

Proof. Since G is semisimple of adjoint type, so that G is the direct product
G = G1G2 · · · Gr of simple groups Gi , we have Lie G = ⊕ Lie Gi . Let e ∈ g

be nilpotent. Clearly, any element x ∈ CG(e) is of the form x = x1x2 · · · xr where
xi ∈ Gi and we also have that e = e1 + e2 + · · · + er , where ei ∈ gi and each ei

must be nilpotent. We know that Ad(x)(e) = e so

Ad(x1) Ad(x2) · · · Ad(xr )(e1 + e2 + · · · + er ) = e1 + e2 + · · · + er .

For i 6= j we have Ad(xi )(e j ) = e j , so Ad(x)(ei ) = Ad(xi )(ei ). Therefore, as
Ad(xi ) stabilizes gi , we have Ad(xi )(ei ) = ei . Thus, we obtain the following
decomposition CG(e) = CG1(e1)CG2(e2) · · · CGr (er ). For B a Borel subgroup of
G we have B = B1 B2 · · · Br , where each Bi is a Borel subgroup of Gi and CB(e)=
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CB1(e1)CB2(e2) · · · CBr (er ). In particular, for B ∈0G(e) we have that dim CB(e) is
minimal. This implies that dim CBi (ei ) is minimal for each i and so Bi ∈ 0Gi (ei ).
Therefore, we have

κG(G · e) = dim G − dim CG(e) − dim B + dim CB(e)

=

r∑
i=1

dim Gi −

r∑
i=1

dim CGi (ei ) −

r∑
i=1

dim Bi +

r∑
i=1

dim CBi (ei )

=

r∑
i=1

(dim Gi − dim CGi (ei ) − dim Bi + dim CBi (ei ))

=

r∑
i=1

κGi (Gi · ei ). �

Lemma 3.3. Let G be a connected reductive algebraic group and e ∈ g be nilpo-
tent. If ht(e) = 2, then e is spherical.

Proof. First we assume that G is simple. Let λ ∈ �a
G(e). Let gE be the Lie

subalgebra of g as defined in (3-1) and let Q be the parabolic subgroup of G E as
in Proposition 3.1(ii). Since ht(e) = 2, we have gE = g(−2) ⊕ g(0) ⊕ g(2). Set
L = CG(λ). Then κG(G · e) = κL(g(2)), by Theorem 2.32. Also, by Proposi-
tion 3.1, Lie Ru(Q) = g(2). Since Ru(Q) is abelian, Corollary 2.42 implies that
κL(g(2)) = 0.

Now suppose that G is reductive. Let DG = G1G2 · · · Gr be a commuting
product of simple groups. For e ∈ g we have e = e1 + e2 + · · · + er , where ei ∈

gi = Lie Gi and each ei is nilpotent. Since ht(e) = max16i6r ht(ei ), we have
ht(ei ) 6 ht(e) = 2 for all i . Since κG(G · e) =

∑r
i=1 κGi (Gi · ei ), by Lemma 3.2,

the result follows from the simple case just proved. �

3.2. Even gradings. Suppose that the given nilpotent element e ∈ g satisfies

ht(e) > 4.

Also assume that any λ∈�a
G(e) induces an even grading on g, that is, g(i, λ)={0},

whenever i is odd. As usual we denote g(i, λ) simply by g(i).

Lemma 3.4. Let e ∈ N and λ ∈ �a
G(e) be as above. Then g>2 is nonabelian.

Proof. Set ht(e) = d. For the highest root α̃ ∈ 9+ we have gα̃ ⊆ g(d). Write
α̃ = α1 + α2 + · · · + αr as a sum of not necessarily distinct simple roots. The
sequence of simple roots α1, α2, . . . , αr can be chosen so that α1 +α2 +· · ·+αs is
a root for all 1 6 s 6 r [Humphreys 1972, Corollary 10.2.A]. Since the grading of
g induced by λ is even, for all simple roots α ∈5, we have gα ⊆ g(i) with i ∈ {0, 2}

(compare (2-3)). Since d > 4, for at least one αi we must have gαi ⊆ g(2). Let αk
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be the last simple root in the sequence α1, α2, . . . , αr with this property. Thus, for
β = α1 + α2 + · · · + αk−1 we have gβ ∈ g(d − 2) ⊆ g>2. Since char k is good for
G, we have [gβ, gαk ] = gβ ′ where β ′

= β + αk . Therefore, g>2 is nonabelian. �

Corollary 3.5. Let P be the destabilizing parabolic subgroup of G defined by e ∈

N. Then Ru(P) is nonabelian.

Set pu =Lie Ru(P). Because the grading of g is even, g>2 =pu . Thus, by Propo-
sition 2.37 and Theorem 2.32, we have κG(G · e) = κG(G/L), where L = CG(λ).
Using the classification of the spherical Levi subgroups and the classification of
the parabolic subgroups of G with abelian unipotent radical, Theorem 2.39 and
Lemma 2.40, we see that there are only two cases, for G simple, when Ru(P) is
nonabelian and L is spherical, namely when G is of type Bn and DL is of type
An−1 and when G is of type Cn and DL is of type Cn−1.

Lemma 3.6. Let G be of type Bn or of type Cn . Let e ∈ N and λ ∈ �a
G(e). Set

L = CG(λ). If πe = [1r1, 2r2, . . . ] is the corresponding partition for e, then

dim Z(L) =

∣∣∣∣{ai , bi ∈ Z>0

∣∣∣∣ ai + 1 =

∑
j>i

r2 j+1, bi + 1 =

∑
j>i

r2 j

}∣∣∣∣.
Proof. Since L is reductive, L = Z(L)DL , and Z(L) ∩ DL is finite, we have
dim L = dim Z(L) + dim DL . The result follows from Proposition 2.35. �

It is straightforward to deduce the following from Propositions 2.26 and 2.35.

Lemma 3.7. Let e ∈ N and λ ∈ �a
G(e) with ht(e) > 4. Set L = CG(λ). If G is of

type Bn , then DL is not of type An−1 and if G is of type Cn , then DL is not of type
Cn−1.

Lemma 3.8. Let e ∈ N and suppose that λ ∈ �a
G(e) induces an even grading on g.

If ht(e) > 4, then e is nonspherical.

Proof. First we observe that if G is simple, then the statement follows from the
facts that Ru(P) is nonabelian (Corollary 3.5) and that (G, DL) is not one of the
pairs (Bn, An−1) or (Cn, Cn−1) (Lemma 3.7). So by Theorem 2.39 and Lemma
2.40, we see that L is a nonspherical subgroup. Therefore, by Proposition 2.37,
κL(g>2) > 0 and e is nonspherical.

In case G is reductive, we argue as in the proof of Lemma 3.3 and reduce to the
simple case. �

3.3. Nilpotent orbits of height at least four. Let e ∈ g be nilpotent and let λ ∈

�a
G(e). Let gE be the subalgebra of g as defined in (3-1). Also let G E be the

connected reductive algebraic group such that Lie G E = gE and Q be the parabolic
subgroup of G E as in Proposition 3.1(ii).
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Since e ∈ gE and λ(k∗) 6 G E , it follows from [Fowler and Röhrle 2008, Theo-
rem 1.1] that λ is a cocharacter of G E which is associated to e, that is, λ ∈ �a

G E
(e).

Moreover, for P = Pλ, we have Q = P∩G E is the destabilizing parabolic subgroup
of G E defined by e.

Let htE(e) denote the height of e ∈ gE . Now if ht(e) > 4 and ht(e) is even, then
htE(e) = ht(e). The case when ht(e) > 4 and ht(e) is odd is slightly more involved.
First we need some preliminary results. A proof of the following can be found in
[Panyushev 1999, Proposition 2.4].

Lemma 3.9. Suppose that char k = 0. If e ∈ N with ht(e) odd, then the weighted
Dynkin diagram 1(e) contains no “2” labels.

If 5 is a set of simple roots of 9 relative to a maximal torus T which contains
λ(k∗), then for α ∈ 5 we have

(3-2) gα ⊆ g(i),

where i ∈ {0, 1}. To see this recall (2-3): Ad(λ(t))(eα) = tmα eα, for eα ∈ gα and
mα is the corresponding label of the weighted Dynkin diagram 1(e) of e. Thus,
by Lemma 3.9, we have mα ∈ {0, 1}.

Lemma 3.10. If ht(e) = d is odd, then g(d − 1) 6= {0}.

Proof. The result follows easily, arguing as in the proof of Lemma 3.4 and using
(3-2). �

Corollary 3.11. If e ∈ N with ht(e) odd, then htE(e) = ht(e) − 1.

In particular, we have the following conclusion.

Corollary 3.12. If e ∈ N with ht(e) > 4, then htE(e) > 4.

Thus, by Lemma 3.8, Corollary 3.12, and the fact that

�a
G(e) ∩ Y (G E) = �a

G E
(e)

(see [Fowler and Röhrle 2008, Theorem 1.1]), we have κL(gE,>2) > 0, where

gE,>2 =

⊕
i>1

g(2i) and L = CG(λ) = CG E (λ).

Lemma 3.13. If a Borel subgroup BL of L acts on g>2 with a dense orbit, then BL

acts on gE,>2 with a dense orbit.

Proof. This follows readily from Theorem 2.9. �

Combining Lemmas 3.8, 3.13 and Corollary 3.12, we get the main result of this
section.

Proposition 3.14. Let e ∈ N. If ht(e) > 4, then e is nonspherical.



266 RUSSELL FOWLER AND GERHARD RÖHRLE

3.4. Nilpotent orbits of height three. Let e ∈ N and let λ ∈ �a
G(e). Let P = P(e)

be the destabilizing parabolic subgroup defined by e. Then P = L Ru(P) for L =

CG(λ). Let BL be a Borel subgroup of L so that λ(k∗) 6 BL . Write BL = T UL

for a Levi decomposition of BL , where UL = Ru(BL) and T is a maximal torus of
G containing λ(k∗). Let bL = Lie BL , n = Lie UL , and t = Lie T .

Lemma 3.15. Let e ∈ g be nilpotent and λ be an associated cocharacter for e in
g. Then the following are equivalent.

(i) The nilpotent element e is spherical.

(ii) There exists e′
∈ g>2 such that Ad(BL)(e′) = g>2.

(iii) There exists e′
∈ g>2 such that dim CBL (e

′) = dim BL − dim g>2.

Proof. Thanks to Theorem 2.32, κG(G · e) = κL(g>2). Thus (i) and (ii) are equiv-
alent. The equivalence between (ii) and (iii) is clear. �

Recall from Section 2.1 the definition of the support of a nilpotent element in u.

Lemma 3.16. Let e ∈ g>2. If supp(e) is linearly independent, then

dim CT (e) = dim T − | supp(e)|.

Proof. Suppose that supp(e) is linearly independent. Then

dim Ad(T )(e) = | supp(e)|

(see [Goodwin 2005a, Lemma 3.2]). The desired equality follows. �

The following is a standard consequence of orbit maps.

Lemma 3.17. Let e′
∈ g>2. Then

dim CBL (e
′) 6 dim cbL (e

′) and dim CUL (e
′) 6 dim cn(e′).

Goodwin [2006b, Proposition 5.4] showed that each U -orbit in u admits a unique
so-called minimal orbit representative; see [loc. cit., Definition 5.3]. (This depends
on a suitable choice of an ordering of the positive roots compatible with the height
function [loc. cit., Definition 3.1]. Moreover, a special case of [loc. cit., Proposi-
tion 7.7] gives

CB(e) = CT (e)CU (e)

for e the minimal representative of its U -orbit in u. Hence:

Lemma 3.18. Let e′
∈ g>2. Suppose that e′ is the minimal representative of its

U-orbit in u. Then CBL (e
′) = CT (e′)CUL (e

′). In particular,

dim CBL (e
′) = dim CT (e′) + dim CUL (e

′).

Proposition 3.19. Let G be a simple algebraic group. Table 2 gives a complete
list of the height 3 nilpotent orbits in g.
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Type of G Orbits

An -
Bn [1 j , 22i , 3] with i > 0
Cn -
Dn [1 j , 22i , 3] with i > 0

Type of G Orbits

G2 Ã1

F4 A1 + Ã1

E6 3A1

E7 (3A1)
′, 4A1

E8 3A1, 4A1

Table 2. The nilpotent orbits of height 3.

Proof. For the classical groups we use Proposition 2.26. By Remarks 2.27, there
are no height 3 nilpotent orbits in types An and Cn . Using the tables in [Carter 1985,
§13] and (2-4), one readily determines the desired orbits when G is exceptional. �

In Table 2 we either give the partition or the Bala–Carter label of the corre-
sponding orbit; see [Carter 1985, §13].

In the next three sections we concentrate on the height 3 orbits in types Bn , Dn ,
and the exceptional types, respectively.

3.5. Height three nilpotent elements of so2n+1(k). Let G be of type Bn for n >3,
so g = so2n+1(k). The nilpotent orbits in g are classified by the partitions of 2n +1
with even parts occurring with even multiplicity [Jantzen 2004, Theorem 1.6]. By
Proposition 2.26, the height 3 nilpotent orbits correspond to partitions of 2n +1 of
the form πr,s = [1s, 22r , 3], where r > 1, s > 0 and 2r + s + 1 = n. Denote the
corresponding nilpotent orbit by Or,s and a representative of such an orbit by er,s .

Lemma 3.20. There are precisely
[ n−1

2

]
distinct height 3 nilpotent orbits in g.

Proof. By our comments above, we need to show that there are precisely
[n−1

2

]
partitions of 2n + 1 of the form πr,s . This is equivalent to finding all partitions of
n − 1 of the form [1

s
2 , 2r

]. Thus r satisfies 1 6 r 6 n−1
2 . Since r is an integer, the

result follows. �

Since the number 2r + 1 appears frequently in the sequel, we set r̂ = 2r + 1.
Using [Carter 1985, §13], we readily see that that er,s has the weighted Dynkin
diagram as in Figure 1.

1(er,s): • • • >• • • •
1 0 1 00 0 0

r̂

Figure 1. Labeling of 1(er,s).

Remark 3.21. Note that in 1(er,s) there are precisely two simple roots, α1 and αr̂

that are labeled with a “1” and that there is an odd number of simple roots between
α1 and αr̂ . Also, the short simple root is labeled with a “1” if and only if s = 0,
and this can only happen when n is odd.
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We refer to [Bourbaki 1968, Planche II] for information regarding the root sys-
tem of type Bn . Let α1, . . . , αn be the simple roots of 9+ and let

β j,k = α j + · · · +αk for 1 6 j 6 k 6 n,

γ j,k = α j + · · · +αk−1 + 2αk + · · · + 2αn for 1 6 j < k < n,

where β j, j = α j . Note that all the possible β’s and γ ’s exhaust 9+.
For a T -stable Lie subalgebra m of u, recall the definition of the set of roots

9(m) of m with respect to T from Section 2.1.

Lemma 3.22. For an associated cocharacter of er,s in g we have

(i) 9(g(2)) = {β1, j , γi,m, γl,k | 1 < l < k 6 r̂ 6 j and 1 < i < m 6 r̂}, and so
dim g(2) = 2r2

− r + 2s + 1.

(ii) 9(g(3)) = {γ1,k | k 6 r̂}, and so dim g(3) = 2r .

Proof. For every δ ∈ 9 we have that gδ ⊆ g(i) for some i ∈ {0, ±1, ±2, ±3}.
For the simple roots this information can be read off from 1(er,s); see (2-3). Let
δ =

∑
α∈5 cδ,αα be a positive root.

Now gδ ⊆g(2) if and only if cδ,α1 +cδ,αr̂ = 2. All of the roots listed above satisfy
this condition, and no others do. Finally, gδ ⊆ g(3) if and only if cδ,α1 + cδ,αr̂ = 3.
All of the roots listed above satisfy this condition, and no others do. �

Lemma 3.23. For an associated cocharacter of er,s in g we have

(i) 9(bL) = {β j,k, γl,m | r̂ < j or 1 < j 6 k < r̂ , r̂ < l < m}.

(ii) dim bL = 2r2
+ s2

+ s + r + 1.

Proof. For every δ ∈ 9 we have that gδ ⊆ g(i) for some i ∈ {0, ±1, ±2, ±3}. As
mentioned above, for the simple roots this information can be read off from 1(er,s);
see (2-3). Let δ =

∑
α∈5 cδ,αα ∈ 9+. Then gδ ⊆ bL if and only if cδ,α1 +cδ,αr̂ = 0.

All of the roots listed above satisfy this condition, and no others do. Consequently,
dim n = 2r2

+ s2
− r . Since dim t = n, we get dim bL = 2r2

+ s2
+ s + r + 1. �

It follows from Figure 1 that L is of Dynkin type Ar̂−1 × Bs . Accordingly,
there is a natural partition of the roots of bL into a union of two subsets, namely
the positive roots of the Ar̂−1 and Bs subsystems, respectively. Thus, we have
9(bL) = 91(bL) ∪ 92(bL), where

91(bL) = {β j,k | 1 < j 6 k < r̂},

92(bL) = {β j,k, γl,m | r̂ < j 6 k, r̂ < l < m}.

Similarly, we can decompose the roots of g>2 into two sets as follows: 9(g>2) =

91(g>2) ∪ 92(g>2), where

91(g>2) = {γ j,k | 1 6 j < k 6 r̂},

92(g>2) = {β1, j , γ1,k | r̂ 6 j, r̂ < k}.
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The sets 9i (bL) and 9i (g>2) satisfy the following property:

(3-3) δ ∈ 9i (bL), η ∈ 93−i (g>2) ⇒ δ + η /∈ 9, i ∈ {1, 2}.

Denote by bi
L the Lie subalgebras of bL such that 9(bi

L) = 9i (bL) for i = 1, 2.
For the rest of this section we show that the following element is a representative
of the dense BL -orbit in g>2; set

e′

r,s :=

r−1∑
j,k=0

(eγr̂−2 j−1, r̂−2 j + eγ1, r̂−2k ) + eγ1, r̂+1 + eβ1, r̂ ,

where eδ ∈ gδ \ {0} for δ ∈ 9(g>2).
Recall from the paragraph before Lemma 3.18 the notion of minimal U -orbit

representatives in u from [Goodwin 2006b].

Lemma 3.24. Each e′
r,s is the minimal representative of its U-orbit in u, supp(e′

r,s)

is linearly independent, and

| supp(e′

r,s)| =

{
2r + 2 if s > 0;

2r + 1 if s = 0.

Proof. It is straightforward to check that e′
r,s is the minimal representative of its U -

orbit in u in the sense of [Goodwin 2006b] and one easily computes | supp(e′
r,s)|.

Note that the root γ1,r̂+1 only occurs if s > 0.
Suppose there exist scalars τ j , ξk , µ and ν such that

r−1∑
j=0

τ jγr̂−2 j−1,r̂−2 j +

r−1∑
k=0

ξkγ1,r̂−2k + µγ1,r̂+1 + νβ1,r̂ = 0.

Since the coefficients of α1, α2, and α3 must be zero, we have

r−1∑
k=0

ξk+µ+ν =0, τr−1+

r−1∑
k=0

ξk+µ+ν =0, and ξr−1+2τr−1+

r−1∑
k=0

ξk+µ+ν =0.

These three equations imply that τr−1 = 0 = ξr−1. Continuing in this way, we see
that τ j = 0 = ξ j for all j . Thus we are left to show that γ1,r̂+1 and β1,r̂ are linearly
independent but this is obvious. �

Thanks to Lemma 3.24 it is harmless to assume that supp(e′
r,s) is part of a

Chevalley basis of g.

Lemma 3.25. dim cn(e′
r,s) =

{
(s − 1)2 if s > 0,

0 if s = 0.
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Proof. Thanks to (3-3), we may consider the two summands

r−1∑
j,k=0

(eγr̂−2 j−1, r̂−2 j + eγ1, r̂−2k ) and eγ1, r̂+1 + eβ1, r̂

of e′
r,s separately. Since γr̂−2 j−1,r̂−2 j + γ1,r̂−2k ∈ 91(g>2), we need only consider

the root spaces gδ for δ ∈ 91(bL). So let βi,m ∈ 91(bL). If m = r̂ − 2l for some
0 6 l < r , then, by the Chevalley commutator relations

[eγr̂−2l+1, r̂−2(l−1)
, gβi, r̂−2l ] = gγi, r̂−2(l−1)

,

since char k is good for G. If m = r̂ − 2l − 1 for some 0 6 l < r , then

[eγ1, r̂−2l , gβi, r̂−2l−1] = gγ1, i .

Next we observe that all the β’s above exhaust the set 91(bL). Consequently,

cb1
L

( r−1∑
j,k=0

(eγr̂−2 j−1, r̂−2 j + eγ1, r̂−2k )

)
= {0}.

Next we consider the summand eγ1, r̂+1 +eβ1, r̂ . First observe that [n, eγ1, r̂+1]={0},
so cn(eγ1, r̂+1) = n. Second the root β1,r̂ lies in 92(g>2). Thanks to property (3-3),
we need only consider roots δ ∈ 92(bL). We see that the only roots δ ∈ 92(bL)

with δ + β1,r̂ ∈ 9(g>2) are of the form βr̂+1, j or γr̂+1,k where r̂ + 1 6 j 6 n and
r̂ + 1 < k 6 n. Again the Chevalley commutator relations imply

[gβr̂+1, j , eβ1,r̂ ] = gβ1, j , and [gγr̂+1, k , eβ1,r̂ ] = gγ1, k .

We also observe that β j,k and γl,m for r̂ + 1 < j, l have the property that

β1,r̂+1 + γl,m, β1,r̂+1 + β j,k /∈ 92(g>2).

All the roots above exhaust 92(bL), so we conclude that all the roots β j,k and
γl,m for r̂ + 1 < j, l of 92(bL) are all contained in 9(cn(eβ1,r̂ )). If s > 0, these
roots form the set of positive roots of a root system of type Bs−1, there are exactly
(s−1)2 positive roots in a root system of type Bs−1 and so |9(cn(eβ1,r̂ ))|= (s−1)2.
Therefore, dim cn(e′

r,s) = (s − 1)2; clearly, if s = 0 then dim cn(e′
r,s) = 0. �

Proposition 3.26. The BL -orbit of e′
r,s is dense in g>2.

Proof. Thanks to Lemma 3.15, it is sufficient to show that

dim BL = dim CBL (e
′

r,s) + dim g>2.

Lemma 3.22 implies that dim g>2 = 2r2
+2s +r +1 and Lemma 3.23 implies that

dim BL = 2r2
+ s2

+ s + r + 1. By Lemma 3.24, e′
r,s is the minimal representative



SPHERICAL NILPOTENT ORBITS IN POSITIVE CHARACTERISTIC 271

of its U -orbit in u. Thus, by Lemma 3.18, we have

dim CBL (e
′

r,s) = dim CT (e′

r,s) + dim CU (e′

r,s).

Consequently, Lemmas 3.17, 3.24, and 3.25 imply that, for s > 0, dim CBL (e
′
r,s) 6

n − 2r − 2 + (s − 1)2
= s2

− s. So

dim CBL (e
′

r,s) + dim g>2 6 s2
− s + 2r2

+ r + 2s + 1 = dim BL .

This clearly implies dim BL = dim CBL (e
′
r,s)+dim g>2. Similarly, if s = 0, we get

dim BL = dim CBL (e
′
r,s) + dim g>2. �

Corollary 3.27. dim CBL (e
′
r,s) = s(s − 1).

Finally, from Lemma 3.15 we obtain

Corollary 3.28. If G is of type Bn and e ∈ N with ht(e) = 3, then e is spherical.

3.6. Height three nilpotent elements of so2n(k). Assume now that G is of type
Dn for n > 4, so g = so2n . We know that the nilpotent orbits in g are classified
by the partitions of 2n with even parts occurring with even parity; see [Jantzen
2004, Theorem 1.6]. We showed that the height three nilpotent orbits correspond to
partitions of 2n of the form πr,s =[12s+1, 22r , 3] where r >1, s >0 and 2r +s+2=

n; see Proposition 2.26. Similarly to the Bn case, we denote the corresponding
orbit by Or,s and a representative of such an orbit by er,s . Because the proofs of
the results in this section are virtually identical to the ones in Section 3.5, they are
omitted.

Lemma 3.29. There are precisely
[ n−2

2

]
distinct height 3 nilpotent orbits in g.

Using [Carter 1985, §13], we can easily calculate that for s > 0, er,s has the
weighted Dynkin diagram 1(er,s) as shown in Figure 2.

1(er,s): • • • • • •

•

•

...........
...........
...........
...........
...........
...........
..

.....................................................................

0 1 0
0

0

001

r̂

Figure 2. Labelling of 1(er,s) for s > 0.

Similarly, when s = 0, the labelling of 1(er,0) is shown in Figure 3.

1(er,0): • • • •

•

•

...........
...........
...........
...........
...........
...........
..

.....................................................................

1 0 0
1

1

0

Figure 3. Labelling of 1(er,0).
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Remark 3.30. Note that there is always an odd number of “0” labels between the
first and second “1” labels in 1(er,s). If s > 0, then there are s + 1 “0” labels to
the right of the second “1” label. Finally, s = 0 only if n is even.

We refer to [Bourbaki 1968, Planche IV] for information regarding the root
system of type Dn . We use the following notation for the positive roots 9+. Let
α1, . . . , αn be the set of simple roots of 9+ and let

β j,k = α j + · · · +αk for 1 6 j 6 k 6 n not j = n − 1, k = n,

β j = α j + · · · +αn−2 + αn for 1 6 j 6 n − 2,

γ j,k = α j + · · · +αk−1 + 2αk + · · · + 2αn−2 + αn−1 + αn for 1 6 j < k < n − 2.

Here we again use the convention β j, j = α j . Note that all the possible β’s and γ ’s
exhaust 9+.

Next we consider the structure of the abelian Lie subalgebra g>2 = g(2)⊕g(3).

Lemma 3.31. An associated cocharacter for er,s affords the following.

(i) 9(g(2)) =

{
{β1, j , β1, γl,k, γ1,m | 1 < l < k 6 r̂ 6 j, r̂ < m} if s > 0,

{β1,n−1, β1, βi,n, γ j,k | 2 6 i < r̂ , 1 < j < k < r̂} if s = 0.
In

particular, dim g(2) = 2r2
− r + 2s + 2.

(ii) 9(g(3)) =

{
{γ1,k | k 6 r̂} if s > 0,

{β1,n, γ1,k | 2 6 k < r̂} if s = 0.
In particular, dim g(3) = 2r .

Next we look at the structure of the Lie subalgebra bL of g(0).

Lemma 3.32. An associated cocharacter for er,s affords the following.

9(bL) =

{
{βi , β j,k, γl,m | r̂ < j or 1 < j 6 k < r̂ , r̂ < i , r̂ < l < m} if s > 0,

{β j,k | 1 < j 6 k < r̂} if s = 0.

In particular, dim bL = 2r2
+ s2

+ r + 2s + 2.

Similarly to the Bn case, the roots of bL naturally form two distinct subsets,
namely the roots whose support lies strictly to the left of the second “1” label of
the weighted Dynkin diagram and those whose support lies strictly to the right of
the second “1” label of the weighted Dynkin diagram. More precisely, we have
9(bL) = 91(bL) ∪ 92(bL) where

91(bL) = {β j,k | 1 < j 6 k < r̂},

92(bL) = {β j,k, βi , γl,m | r̂ < j 6 k, r̂ < i, r̂ < l < m}.

Again we partition the roots of g>2 into two distinct subsets. More precisely,
we write 9(g>2) = 91(g>2) ∪ 92(g>2), where for s > 1, we define

91(g>2) = {γ j,k | 1 6 j < k 6 r̂},

92(g>2) = {β1, β1, j , γ1,k | r̂ 6 j, r̂ < k},
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and for s = 0, we define

91(g>2) = {γ j,k | 1 6 j < k 6 r̂},

92(g>2) = {β1, β1,n−1, β j,nγ1,k | j 6 r̂ < k}.

Again, we have the following property of these sets:

δ ∈ 9i (bL), η ∈ 93−i (g>2) ⇒ δ + η /∈ 9, i ∈ {1, 2}.

For s > 1, set

e′

r, s :=

r−1∑
j,k=0

(eγr̂−2 j−1, r̂−2 j + eγ1, r̂−2k ) + eγ1, r̂+1 + eβ1, r̂ ∈ g>2,

for s = 1, set

e′

r,1 :=

r−1∑
j,k=0

(eγr̂−2 j−1, r̂−2 j + eγ1, r̂−2k ) + eβ1, n + eβ1, r̂ ∈ g>2,

and for s = 0, set

e′

r,0 :=

r−1∑
j,k=1

(eγr̂−2 j−1, r̂−2 j + eγ1, r̂−2k ) + eβ1, n + eβ1, n−1 + eβn−2, n + eβ1 ∈ g>2.

Lemma 3.33. With the notation as above, we have | supp(e′
r,s)|= 2r +2, supp(e′

r,s)

is linearly independent, and dim cn(e′
r,s) = s(s − 1).

Proposition 3.34. The BL -orbit of e′
r,s is dense in g>2.

Corollary 3.35. If G is of type Dn and e ∈ N with ht(e) = 3, then e is spherical.

3.7. Height three nilpotent elements of the exceptional Lie algebras. We fix an
ordering of the roots α1, . . . , αr of 9(g>2) such that αi ≺ α j for i < j . Define the
subalgebra mi of g>2 by setting

mi =

r⊕
j= i+1

gα j

and the quotient qi by qi = g>2/mi for 0 6 i 6 r . Let B be a Borel subgroup of G
such that g>2 ⊆ Lie Ru(B) = u. Note that each qi is a B-module.

The computer programme, DOOBS, devised by S. M. Goodwin allows us to
determine whether B acts on g>2 with a dense orbit. For details of the GAP4 [Gap
2004] computer algebra program, we refer the reader to [Goodwin 2005a; 2006a].
Working inductively, starting with i = 0, at each stage of the algorithm, DOOBS

determines a representative xi +mi , with supp(xi ) linearly independent of a dense
B-orbit on qi or decides that B does not act on qi with a dense orbit.
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DOOBS also keeps a record of the primes for which

dimp cu(xi + mi+1) > dim0 cu(xi + mi+1),

where dimp cu(xi +mi+1) and dim0 cu(xi +mi+1) denote the dimension of cu(xi +

mi+1) over a field of characteristic p and characteristic 0 respectively [Goodwin
2005a, Remark 3.2]. For these primes we cannot conclude that B acts on g>2 with
a dense orbit. If DOOBS determines that B acts on g>2 with a dense orbit, then
it calculates a representative of the dense orbit and a list of primes for which the
result is not necessarily valid.

There is a variant of DOOBS called DOOBSLevi [Goodwin 2006a]. This pro-
gram considers a parabolic subgroup P = L Ru(P) and determines whether a Borel
subgroup BL of L acts on an ideal of Lie Ru(P) with a dense orbit. The algorithm
used to determine whether BL acts on an ideal with a dense orbit is essentially the
same as the DOOBS algorithm, with BL replacing B. DOOBSLevi also records the
primes for which its conclusions are not necessarily valid.

Let e ∈ N of height 3 and let λ be a cocharacter of G that is associated to e. We
use the same numbering of the positive roots as in GAP4. Table 3 lists the roots
whose root subgroups together with T generate the Levi subgroup CG(λ) and we
also list the roots whose root subspaces generate g>2 (as a B-submodule of g)
for the 7 cases of height three nilpotent orbits for the simple exceptional groups;
see Proposition 3.19. These are determined by means of the weighted Dynkin
diagrams.

Type of G Bala–Carter label Generators for L Generators for g>2

G2 Ã1 α2 α4

F4 A1 + Ã1 5 \ {α4} α16

E6 3A1 5 \ {α4} α24

E7 (3A1)
′ 5 \ {α3} α37

E7 4A1 5 \ {α2, α7} α30, α53

E8 3A1 5 \ {α7} α74

E8 4A1 5 \ {α2} α69

Table 3. Height three nilpotent orbits in the exceptional Lie algebras.

The height 3 cases for the exceptional groups were analyzed using DOOBSLevi

algorithm. It turns out that there are no characteristic restrictions in these cases.

Lemma 3.36. If G is simple of exceptional type and e ∈ N with ht(e) = 3, then e
is spherical.

Corollaries 3.28 and 3.35 combined with Lemma 3.36 give the following result.
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Proposition 3.37. Let G be a connected reductive algebraic group and let e ∈ N.
If ht(e) = 3, then e is spherical.

Proof. If G is simple, then the statement follows from Corollaries 3.28 and 3.35
and Lemma 3.36. In the general case we argue as in Lemma 3.3 to reduce to the
simple case. �

3.8. The classification. Our main classification theorem now follows readily from
Lemma 3.3 and Propositions 3.14 and 3.37.

Theorem 3.38. Let G be a connected reductive algebraic group. Suppose that
char k is a good prime for G. Then a nilpotent element e ∈ g is spherical if and
only if ht(e) 6 3.

Remark 3.39. Let G be a simple algebraic group and let char k be a good prime
for G. Then the spherical nilpotent orbits are given in Table 4. We present the
orbits by listing the corresponding partition in the classical cases or by giving the
corresponding Bala–Carter label for the exceptional groups.

Type of G Spherical Orbits

An [1 j , 2i
]

Bn [1 j , 22i
], or [1 j , 22i , 3] with i > 0

Cn [12 j , 2i
]

Dn [1 j , 22i
], or [1 j , 22i , 3] with i > 0

G2 A1 or Ã1

F4 A1, Ã1, or A1 + Ã1

E6 A1, 2A1, or 3A1

E7 A1, 2A1, (3A1)
′, (3A1)

′′, or 4A1

E8 A1, 2A1, 3A1, or 4A1

Table 4. The spherical nilpotent orbits for G simple.

Remark 3.40. Using the fact that in good characteristic a Springer map affords a
bijection between the set of unipotent G-conjugacy classes and the set of nilpotent
G-orbits (see [Springer and Steinberg 1970, III, 3.12] and [Bardsley and Richard-
son 1985, Corollary 9.3.4]), Theorem 3.38 also gives a classification of the spher-
ical unipotent classes in G. Here we define the height of a unipotent element u of
G as the height of the image of u in N under a Springer isomorphism.

4. Applications and complements

Here we discuss applications of the main result and some further consequences.
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4.1. Spherical distinguished nilpotent elements. Recall that a nilpotent element
e ∈ N is distinguished in g if every torus contained in CG(e) is contained in the
centre of G. For now we assume that G is simple, so e is distinguished in g if
and only if any torus contained in CG(e) is trivial and hence CG(e)◦ is unipotent.
Further recall that κG(G · e) = κG(G/CG(e)◦) (see (2-2)). Since CG(e)◦ is con-
nected and unipotent, it is contained in the unipotent radical U of a Borel subgroup
B = T U of G. Let B−

= T U− be the unique opposite Borel subgroup to B = T U
relative to T [Humphreys 1975, §26.2]. Consequently,

B−
∩ CG(e)◦ ⊆ B−

∩ U = {1}.

Thus, by (2-1), we have

κG(G/CG(e)◦) = dim G − dim CG(e)◦ − dim B−
= dim U − dim CG(e),

or equivalently, κG(G · e) = |9+
| − dim CG(e). We summarize what we have just

shown.

Proposition 4.1. Let e ∈ N be a distinguished nilpotent element. Then

κG(G · e) = |9+
| − dim CG(e).

Remark 4.2. Proposition 4.1 was first observed for a field of characteristic zero
[Panyushev 1994, Corollary 2.4].

If G is a simple classical group, then the distinguished nilpotent elements are
given as follows [Jantzen 2004, Lemmas 4.1 and 4.2].

Lemma 4.3. Let e ∈ N and let πe be the corresponding partition of dim V .

(i) If G = SL(V ), then e is distinguished if and only if πe = [dim V ].

(ii) If G = Sp(V ), then e is distinguished if and only if πe consists only of distinct
even parts.

(iii) If G = SO(V ), then e is distinguished if and only if πe consists only of distinct
odd parts.

Corollary 4.4. If G = SO(V ) and e ∈ N is spherical and distinguished, then
ht(e) = 2.

Proof. Thanks to Proposition 3.19, the height 3 nilpotent elements have partitions
of the form π = [1s, 22r , 3], where r > 0. Thus such a partition has even parts and
so is not distinguished. So if e is spherical and distinguished, then ht(e) = 2. �

Proposition 2.26 and Lemma 4.3 imply the following result.

Proposition 4.5. Let e ∈ N be distinguished and πe be the corresponding partition
of dim V .

(i) If G = SL(V ), then ht(e) = 2 if and only if πe = [2].
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(ii) If G = Sp(V ), then ht(e) = 2 if and only if πe = [2].

(iii) If G = SO(V ), then ht(e) = 2 if and only if πe = [3] or πe = [1, 3].

Theorem 4.6. If G is a simple algebraic group and e ∈ N is spherical and distin-
guished, then G is of type A1.

Proof. For G simple classical, Proposition 4.5 implies that G is of type A1. For
G of exceptional type it follows from Remark 3.39 and the tables in [Carter 1985,
§13] that there are no nilpotent orbits in g that are both spherical and distinguished.

�

4.2. Orthogonal simple roots and spherical nilpotent orbits. Panyushev [1999,
Theorem 3.4] proved that if the characteristic of k is zero, then e ∈ N is spherical
if and only if there exist pairwise orthogonal simple roots α1, α2, . . . , αt in 5 such
that G · e contains an element of the form

∑t
i=1 eαi where eαi ∈ gαi \ {0}. By

pairwise orthogonal we mean that 〈 αi , α j 〉 = 0 for i 6= j . In this section we show
that this is also the case if the characteristic of k is good for G.

Lemma 4.7. Let DG be of type At
1 for some t > 1. Then there is precisely one

distinguished nilpotent orbit in N.

Proof. Since the nilpotent orbits of G in g are precisely the nilpotent orbits of DG
in Lie DG, we may assume that G is semisimple. Thus, G = G1G2 · · · Gr and each
Gi is of type A1. There is precisely one distinguished nilpotent orbit when Gi is
of type A1: the unique nonzero nilpotent orbit. Also G · e is distinguished in g if
and only if Gi · ei is distinguished in gi = Lie Gi for all i , where e = e1 +· · ·+ er

and ei ∈ gi is nilpotent. �

Lemma 4.8. Let e ∈ N and S be a maximal torus of CG(e). Then DCG(S) is of
type At

1 for some t > 1 if and only if there exist pairwise orthogonal simple roots
α1, α2, . . . , αt in 5 such that G ·e contains an element of the form

∑t
i=1 eαi , where

eαi ∈ gαi \ {0}.

Proof. Suppose that DCG(S) is of type At
1. Let α1, . . . , αt be simple roots of 8,

where 8 is the root system of CG(S) relative to a maximal torus T of CG(S). As
DCG(S) is of type At

1, the roots α1, . . . , αt are pairwise orthogonal. Clearly,

e ∈ Lie CG(S) = cg(S)

and e is distinguished in cg(S); see Proposition 2.15. By Lemma 4.7, an element of
the form

∑t
i=1 eαi is also distinguished in cg(S) and there is precisely one distin-

guished nilpotent orbit in cg(S). Thus, e and
∑t

i=1 eαi are in the same CG(S)-orbit;
hence they are in the same G-orbit. So G · e contains an element of the desired
form.
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Conversely, suppose that there exist pairwise orthogonal simple roots α1, α2,
. . . , αt ∈ 9 such that G · e contains an element of the form e′

=
∑t

i=1 eαi . Let
H be the subgroup of G generated by {T, U±αi | 1 6 i 6 t}, where T is as in the
previous paragraph. Then DH is of type At

1. By construction, e′ is distinguished
in h. By Proposition 2.15, H is of the form CG(S′), where S′ is a maximal torus
of CG(e′). Thus, DCG(S′) is of type At

1. Since e and e′ are G-conjugate, so are
CG(e) and CG(e′), as well as S and S′. Finally, we get that CG(S) and CG(S′) are
G-conjugate. The result follows. �

Lemma 4.9. If e ∈ N is spherical, then DCG(S) is of type At
1 for some t > 1.

Proof. Let λ be a cocharacter of GG(S) that is associated to e, that is, λ∈�a
CG(S)(e).

Then, since Lie CG(S) = cg(S), it follows from [Fowler and Röhrle 2008, Corol-
lary 3.21] that λ ∈ �a

G(e). As e is spherical in g, we have ht(e) 6 3, by Theorem
3.38. As λ ∈ �a

CG(S)(e), we also have ht(e) 6 3 when we regard e as an element of
cg(S). Thus, again by Theorem 3.38, e is spherical in cg(S). So e is distinguished
and spherical in cg(S) and so DCG(S) is of type At

1, by Theorem 4.6. �

In order to prove the reverse implication of Lemma 4.9 we first need to consider
the group CG(S). If G is classical, then the structure of CG(S) can be determined
from the partition πe corresponding to e; see [Jantzen 2004, §4.8] for the following
result.

Lemma 4.10. Let G be simple classical and e ∈ N with corresponding partition
πe.

(i) If G is of type An and πe = [1r1, 2r2, . . . ], then DCG(S) is of type
∏

i>1 Ari
i−1.

(ii) If G is of type Bn and πe = [12s1+ε1, 22s2, 32s3+ε3, . . . ], where si > 0 and
εi ∈ {0, 1}, then DCG(S) is of type

∏
i>1 Asi

i−1 × Bm , where 2m +1 =
∑

εi 6=0 i .

(iii) If G is of type Cn and πe = [12s1, 22s2+ε2, 32s3, 42s4+ε4, . . . ], where si > 0 and
εi ∈ {0, 1}, then DCG(S) is of type

∏
i>1 Asi

i−1 × Cm , where 2m =
∑

εi 6=0 i .

(iv) If G is of type Dn and πe = [12s1+ε1, 22s2, 32s3+ε3, . . . ], where si > 0 and
εi ∈ {0, 1}, then DCG(S) is of type

∏
i>1 Asi

i−1 × Dm , where 2m =
∑

εi 6=0 i .

Lemma 4.11. If G is simple classical and DCG(S) is of type At
1, then e is spheri-

cal.

Proof. First suppose that G is of type An . Since DCG(S) is of type At
1, it follows

from Lemma 4.10 that ri = 0 for all i > 3. Thus πe =[1r1, 2r2] and so e is spherical,
by Remark 3.39.

Let G be of type Bn . Since DCG(S) is of type At
1, it follows from Lemma 4.10

that si = 0 for i > 3 and m 6 1, so 2m + 1 6 3. Since 2m + 1 is a sum of distinct
odd integers, we either have 2m + 1 = 1 or 2m + 1 = 3. Thus πe = [12s1+1, 22s2]

or πe = [12s1, 22s2, 3] and so e is spherical, again by Remark 3.39.
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Let G be of type Cn . Since DCG(S) is of type At
1, it follows from Lemma

4.10 that si = 0 for i > 3 and m 6 1, so 2m 6 2. Since 2m is a sum of distinct
even integers, we either have 2m = 0 or 2m = 2. Thus πe = [12s1, 22s2] or πe =

[12s1, 22s2+1
] and so, by Remark 3.39, e is spherical.

Finally, let G be of type Dn . Since DCG(S) is of type At
1, it again follows from

Lemma 4.10 that si = 0 for i > 3 and m 6 2, so 2m 6 4. Since 2m is a sum of
distinct odd integers, we either have 2m = 0 or 2m = 1 + 3. Thus πe = [12s1, 22s2]

or πe = [12s1+1, 22s2, 3] and so, by Remark 3.39, e is spherical. �

All that remains is to check the exceptional cases. The Bala–Carter label of e∈N

gives the Dynkin type of a Levi subgroup L of G such that e is distinguished in
Lie DL . By Proposition 2.15, such a Levi subgroup is the centralizer of a maximal
torus of CG(e). Thus, the Bala–Carter label gives the type of DCG(S). It follows
from the tables in [Carter 1985, §13] and Remark 3.39 that any nilpotent orbit with
Bala–Carter label At

1 is spherical. We summarize this in Table 5.

Type Bala–Carter label Height Type Bala–Carter label Height

G2 A1 2 E7 A1 2
Ã1 3 2A1 2

F4 A1 2 (3A1)
′′ 2

Ã1 2 (3A1)
′ 3

A1 + Ã1 3 4A1 3
E6 A1 2 E8 A1 2

2A1 2 2A1 2
3A1 3 3A1 3

4A1 3

Table 5. Orbits in exceptional Lie algebras with DCG(S) of Type At
1.

Lemma 4.12. If G is a simple exceptional algebraic group and DCG(S) is of type
At

1, then e is spherical.

Lemma 4.13. Let e ∈ N. If DCG(S) is of type At
1, then e ∈ g is spherical.

Proof. For G simple, the result follows from Lemmas 4.11 and 4.12. In the general
case let DG = G1G2 · · · Gr be a commuting product of simple groups and e =

e1 +e2 +· · ·+er , where ei ∈ gi = Lie Gi and each ei is nilpotent. A maximal torus
S of CG(e) is of the form S1S2 · · · Sr , where Si is a maximal torus of CGi (ei ). The
simple case implies that DCGi (Si ) is of type At

1. �

Lemmas 4.13 and 4.8 now imply the main result of this section.

Theorem 4.14. Let e ∈ N and let S be a maximal torus of CG(e). Then the follow-
ing are equivalent.
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(i) e is spherical.

(ii) DCG(S) is of type At
1.

(iii) There exist pairwise orthogonal simple roots α1, α2, . . . , αt ∈5 such that G ·e
contains an element of the form

∑t
i=1 eαi , where eαi ∈ gαi \ {0}.

4.3. Spherical orbits and ad-nilpotent ideals. In this section we generalize some
results from [Panyushev and Röhrle 2001; 2005] to a field of good characteristic.

When G is simple and classical, Panyushev [1994, §4] gave simple algebraic
criteria for a nilpotent element e ∈ N to be spherical. We show that these criteria
are still valid for a field of good characteristic.

Lemma 4.15. Let G be a simple classical algebraic group and e ∈ N.

(i) Let e be a nilpotent matrix in sln or spn . Then e is spherical if and only if
e2

= 0.

(ii) Let e be a nilpotent matrix in son . Then e is spherical if and only if the rank
of e2 is at most one.

Proof. Let e be a nilpotent matrix in sln or spn . If e is spherical, then πe = [1 j , 2i
],

for appropriate i and j ; see Remark 3.39. By considering the corresponding Jordan
blocks for πe, we see that e2

= 0. Conversely, if e2
= 0, then e is conjugate to an

element e′ with partition πe′ = [1 j , 2i
] and so e is spherical, again by Remark 3.39.

Let e be a nilpotent matrix in son . If e is spherical, then πe = [1 j , 2i
] or

πe = [1 j , 2i , 3], for appropriate i and j ; see Remark 3.39. By considering the
corresponding Jordan blocks for πe, we see that either e2

= 0 or e2 has partition
πe2 = [1k, 2]. Thus the rank of e2 is either 0 or 1. Conversely, if the rank of e2

is at most 1, then e is conjugate to an element e′ with partition πe′ = [1 j , 2i
] or

πe′ = [1 j , 2i , 3] and so e is spherical, again by Remark 3.39. �

Panyushev and Röhrle [2001; 2005] gave a classification of the spherical ideals
of b = Lie B contained in bu = Lie Ru(B), where B is a Borel subgroup of G
in characteristic 0. An ideal c of b is ad-nilpotent if c is contained in bu . An ad-
nilpotent ideal c of b is called spherical if its G-saturation G ·c={x ·e | x ∈ G, e ∈ c}

is a spherical G-variety. First in [Panyushev and Röhrle 2001, Corollary 2.4] it
is proved that if a is an abelian ideal of b, then a is spherical. In [Panyushev
and Röhrle 2005, Proposition 4.1 and Theorem 4.2] it is proved that there are
nonabelian spherical ideals only if G is not simply-laced, that is, if the Dynkin
diagram of G has a multiple bond.

[Panyushev and Röhrle 2001, Theorem 2.3] states that any G-orbit meeting an
abelian ad-nilpotent ideal a is spherical. This is proved by means of the fact that an
orbit G·e is spherical if and only if ad(e)4

=0; see [Panyushev 1994, Corollary 2.2].
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Unfortunately, this equivalence is no longer true in positive characteristic; see Ex-
ample 4.17. However, the forward implication of this equivalence is still valid in
good characteristic.

Lemma 4.16. If e ∈ N is spherical, then ad(e)4
= 0.

Proof. If e is spherical, then by Theorem 3.38, ht(e) 6 3. Let g =
⊕3

i=−3 g(i)
be the grading of g afforded by an associated cocharacter in �a

G(e). We have that
e ∈ g(2). Consequently, ad(e)4(g(i)) ⊆ g(i + 8) = {0} for any −3 6 i 6 3. So
ad(e)4

= 0 on all of g. �

The next example shows that the converse of Lemma 4.16 is not true in general
in positive characteristic.

Example 4.17. Let G = SL3(k) and char k = 3. So g = sl3(k). Set e = e2,1 + e3,2,
where ei, j is the elementary matrix with a 1 in the (i, j) position and 0’s elsewhere.
So e is a regular nilpotent element in g. Consider the grading of g afforded by an
associated cocharacter in �a

G(e). We have g =
⊕2

i=−2 g(2i). In order to prove
ad(e)4

=0, it is sufficient to show that ad(e)4(g(−4))={0}. Clearly, g(−4)=ke1,3.
Now

ad(e)(e1,3) = e2,3 − e1,2 and ad(e)(e2,3 − e1,2) = e1,1 − 2e2,2 + e3,3.

Since char k = 3, we have

e1,1 − 2e2,2 + e3,3 = e1,1 + e2,2 + e3,3 and e1,1 + e2,2 + e3,3 ∈ Z(g).

Thus, ad(e)4
= 0. However, e is not spherical, as πe = [3]; see Remark 3.39.

We note that [Panyushev and Röhrle 2005, Proposition 4.1 and Theorem 4.2]
both also hold in good characteristic, as their proofs only require properties of the
underlying root system 9 and the results established in Lemmas 4.15 and 4.16.

So we are left to show that if a is an abelian ad-nilpotent ideal, then a is spherical.
Since G ·a is irreducible, it is the closure of some nilpotent orbit, say G · e = G · a.
The maximal abelian ad-nilpotent ideals of b are the same in good characteristic
as in characteristic zero; see [Röhrle 1998, Table 1] and [Panyushev and Röhrle
2001, Tables I and II, §4]. Using the description of the orbits in [Panyushev and
Röhrle 2001, Tables I and II, §4], we infer that the Bala–Carter label of G · e is of
the form At

1, so G · e is spherical, thanks to Theorem 4.14. Since G · e is open in
G · a, it follows that G · a is spherical. It is straightforward to get the sphericity of
G ·a for any abelian ideal a of b from the sphericity result of the maximal abelian
ideals. Thus we have established the following.

Theorem 4.18. Let a be an abelian ad-nilpotent ideal of b. Then a is spherical.

As a corollary of Theorem 4.18 we get [Röhrle 1998, Theorem 1.1] in good
characteristic.
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Corollary 4.19. Let P be a parabolic subgroup of G and let a be an abelian ideal
of Lie P in Lie Ru(P). Then P acts on a with finitely many orbits.

Remark 4.20. We note that Theorem 4.18 and Corollary 4.19 do in fact hold in
arbitrary characteristic; see [Röhrle 1998, Theorem 1.1].

Remark 4.21. If c is a spherical ideal of b, then clearly B acts on c with a finite
number of orbits. However, the converse does not hold. There are many additional
instances when B acts on a given ideal c of b only with a finite number of orbits
(see the results in [Hille and Röhrle 1999; Jürgens and Röhrle 2002]).

4.4. A geometric characterization of spherical orbits. We will now describe a
formula characterizing spherical G-orbits in a simple algebraic group G in terms
of elements of the Weyl group W of G that is proved in [Cantarini et al. 2005,
Theorem 1]. For x ∈ G the conjugacy class G · x is spherical if G · x is a spherical
variety. While this characterization in the place cited is based on case-by-case
arguments, recently, G. Carnovale [2006, Theorem 2] gave a proof of this result
which is free of case-by-case considerations and applies in good odd characteristic.
Using the arguments from [Cantarini et al. 2005] combined with our classification
of the spherical unipotent nilpotent orbits, Remark 3.40, we can generalize this
formula to good characteristic.

Let G be simple and suppose that p is good for G. Fix a Borel subgroup B of
G. Let W be the Weyl group of G and let BwB be the (B, B)-double coset of
G containing w ∈ W . The following was shown in [Cantarini et al. 2005] in an
argument independent of the characteristic of the underlying field: Suppose that O

is a conjugacy class in G which intersects the double coset BwB so that

dim O = `(w) + rk(1 − w)

holds. Then O is spherical. Here rk(1−w) denotes the rank of the linear map 1−w

in the standard representation of W and ` is the usual length function of W with
respect to a distinguished set of generators of W . Conversely, let O be a spherical
conjugacy class in G and let BwB be the (B, B)-double coset containing the dense
B-orbit in O. Then dim O = `(w) + rk(1 − w); see [Carnovale 2006, Theorem 2].
Consequently, this gives a geometric characterization of the spherical conjugacy
classes in G. For proofs we refer the reader to [Cantarini et al. 2005; Carnovale
2006]. Observe that as a consequence of the finiteness of the Bruhat decomposition
of G and the fact that any (B, B)-double coset and any conjugacy class of G are
irreducible subvarieties of G, for a given conjugacy class O in G there is a unique
w ∈ W such that O ∩ BwB is dense in O.

Theorem 4.22 [Cantarini et al. 2005, Theorem 1]. Let O be a conjugacy class in
G and let w ∈ W be such that O ∩ BwB is dense in O. Then O is spherical if and
only if dim O = `(w) + rk(1 − w).
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4.5. Bad primes and spherical nilpotent orbits. Finally, we briefly discuss the
situation when the characteristic of k is bad for G. In this case the classification
of the nilpotent orbits in N is different from that in good characteristic; see [Carter
1985, §5.11]. However, there is still only a finite number of nilpotent orbits [Holt
and Spaltenstein 1985]. Unfortunately, our methods do not allow us to give a
classification of the spherical nilpotent orbits in this case, for in our classification
we made use of the height of a nilpotent orbit, where the height is defined via an
associated cocharacter. However, it is not known whether associated cocharacters
always exist for all nilpotent elements in bad characteristic; see [Jantzen 2004,
§5.14, §5.15].

In principle one can still determine whether a given nilpotent orbit is spherical
by a case-by-case analysis. Next we give two examples of this. In particular, we
show that Theorem 4.14 fails in bad characteristic in general. These examples
show that there can be additional spherical nilpotent orbits in bad characteristic.

Examples 4.23. (i) Let G be of type B2 and char k = 2. Let α and β be the simple
roots of 9 with α the long root. Let e = eα+β + eα+2β . According to [Jantzen
2004, §5.14] the centralizer CG(e) is the unipotent radical of a Borel subgroup of
G. Thus, by Lemma 2.11, CG(e) is a spherical subgroup of G and so e is spherical.
Note that the G-orbit of e does not contain an element of the form eα or eβ , but
e is still spherical. Thus, Theorem 4.14 is no longer true in bad characteristic.
Moreover, e is distinguished in g [Jantzen 2004, §5.14]. This shows that Theorem
4.6 can also fail for bad characteristic.

(ii) Let G be of type G2 and char k = 3. Let α and β be the simple roots of 9

with α the long root. Let e = eα+2β +e2α+3β . According to [Jantzen 2004, §5.15],
the centralizer CG(e) is the unipotent radical of a Borel subgroup of G. Thus, by
Lemma 2.11, CG(e) is a spherical subgroup of G and so e is spherical. Again, the
G-orbit of e does not contain an element of the form eα or eβ , but e is spherical.
Again, e is distinguished in g [Jantzen 2004, §5.15].
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