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We consider the notion of monotonic independence in a more general frame,
similar to the construction of operator-valued free probability. The paper
presents constructions for maps with similar properties to the H and K
transforms from the literature, semi-inner-product bimodule analogues for
the monotone and weakly monotone product of Hilbert spaces, an ad-hoc
version of the Central Limit Theorem, an operator-valued arcsine distribu-
tion as well as a connection to operator-valued conditional freeness.

1. Introduction

An important notion in noncommutative probability is monotonic independence,
introduced by P. Y. Lu and Naofumi Muraki. Since its beginning, the study of this
notion of independence was done by constructions, techniques and developments
similar to the theory of free probability. R. Speicher [1998] developed an operator-
valued analogue of free independence. The present paper addresses problems sim-
ilar to ones discussed in that work, but in the context of monotonic independence.

Other motivation is that while for the free Fock space over a Hilbert space there
is a straightforward analogous semi-inner-product bimodule construction, as illus-
trated in [Pimsner 1997; Speicher 1998], there are no similar constructions for
its various deformations, such as the q-Fock spaces [Effros and Popa 2003]. As
shown in Section 4, the monotone and weakly monotone Fock-like spaces, which
are strongly connected to monotonic independence, admit analogous semi-inner-
product bimodules.

The paper is structured in six sections. Section 2 presents the definition of the
monotonic independence over an algebra. In Section 3 there are constructed maps
with similar properties to the maps H and K from the theory of monotonic inde-
pendence, as introduced in [Muraki 2000; Bercovici 2005b]. Section 4 deals with
semi-inner-product bimodule analogues of the monotone and weakly monotone
products of Hilbert spaces and algebras of annihilation operators, as introduced in
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[Muraki 2000; 2001; Wysoczański 2005]. Section 5 presents a Central Limit The-
orem in the frame of monotonic independence over a C∗-algebra and a positivity
result concerning it. Since in the scalar-valued case the density of the limit distribu-
tion is the arcsine function [Lu 1997; Muraki 2000], the limit in Theorem 5.3 can
be regarded as an “operator-valued arcsine law”. Section 6 introduces a notion of
conditionally free product of conditional expectations extending the definition and
positivity results from [Młotkowski 2002] and shows the connection to monotonic
independence analogous to [Franz 2005, Proposition 3.1].

2. Preliminaries

Let B be an algebra (not necessarily unital). Within this paper, the notation
B+〈 ξ1, . . . , ξn〉 will stand for the free noncommutative algebra generated by B

and the symbols ξ1, . . . , ξn . For the smaller algebra B+〈 ξ1, . . . , ξn〉 	 B we will
use the notation B〈 ξ1, . . . , ξn〉.

If B is a ∗-algebra, we can consider ∗-algebra structures on B+〈 ξ〉 and B〈 ξ〉

either by letting (ξ)∗ = ξ (that is, the symbol ξ is self-adjoint) or considering
B+〈 ξ, ξ∗

〉 with (ξ)∗ = ξ .
We also need to consider an extended notion of nonunital complex algebra. A

will be called a B-algebra if A is an algebra such that B is a subalgebra of A or
there exists an algebra Ã containing B as a subalgebra such that Ã = AtB. Note
that the symbol t stands for disjoint union.

A map 8 : A −→ B is said to be B-linear if

8(b1xb2 + y)= b18(x)b2 +8(y)

for all x, y ∈ A and b1, b2 ∈ B.
If B is a subalgebra of A and 8(b) = b for all b ∈ B, then 8 will be called a

conditional expectation.

Definition 2.1. Suppose that A is a B-algebra and I is a totally ordered set.
A family { A j } j∈I of subalgebras of A is said to be monotonically independent

over B if given X j ∈ A j ( j ∈ I ), the following conditions are satisfied:

(a) for all i < j > k in I and A, B ∈ A:

8(AX i X j Xk B)=8(AX i8(X j )Xk B);

(b) for all im > · · ·> i1 < k1 < · · ·< kn in I :

8(X im · · · X i1)=8(X im ) · · ·8(X i1),

8(Xk1 · · · Xkn )=8(Xk1) · · ·8(Xkn ),

8(X im · · · X i1 Xk1 · · · Xkn )=8(X im ) · · ·8(X i1)8(Xk1) · · ·8(Xkn ).
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The elements X j ( j ∈ I ) from A are said to be monotonically independent over
B if the subalgebras of A generated by X j and B are monotonically independent
over B.

Following [Muraki 2000] or [Muraki 2001], one may consider the stricter defi-
nition of monotonic independence by replacing the first condition with

(a′) X i X j Xk = X i8(X j )Xk whenever i < j > k.

Yet, Definition 2.1 (similar to that in [Franz 2005]) suffices for the results within
this paper.

3. The maps κ , ρ and h

Two important instruments in monotonic probability are the maps HX and K X

associated to a selfadjoint element X from a unital ∗-algebra A with a C-linear
functional ϕ such that ϕ(1)= 1. Namely HX is reciprocal Cauchy transform

HX (z)= (G X (z))−1,

where G X is the Cauchy transform corresponding to X

G X (z)= ϕ
(
(z − X)−1)

and the map K X is given by

K X (z)=
ψX (z)

1 +ψX (z)
,

where
ψX (z)= ϕ

(
zX (1 − zX)−1).

Their key properties [Bercovici 2005a; Franz 2005] are that for X , Y , respectively
U − 1, V monotonically independent with respect to ϕ, one has

HX+Y = HX ◦ HY ,

KU V = KV U = KU ◦ KV .

In the scalar-valued case, the moment generating series of X can be recovered
from H and K . For the B-valued setting, the n-th moment of X is the multilinear
function

m X,n : Bn−1
−→ B

given by
m X,n(b1, . . . , bn−1)=8(Xb1 X · · · Xbn−1 X).

The mathematical object replacing the moment generating series is a multilinear
function series over B [Dykema 2007], that cannot be recovered from a B-valued
analytic map.
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The use of analytic tools (such as the Cauchy transform) is strongly impaired by
the previous considerations; hence the combinatorial approach is very convenient
in the present framework. We will first construct the B-valued analytic functions
h replacing H , κ and ρ replacing K . Based on these constructions, the second part
of the section will address the more general framework of multiplicative function
series over an algebra.

In this section we require A to be a ∗-algebra, B to be a C∗-algebra with norm
‖ · ‖, and 8 : A −→ B to be a positive conditional expectation. A will denote the
closure of A in the topology given by X 7→ ‖8(X∗X)‖. For simplicity, we will
denote the continuous extension of 8 to A also with 8.

Definition 3.1. For X ∈ A, consider the B-valued function hX :{
z ∈ B : ‖z‖< ‖X‖

−1}
3 z 7→ hX (z)= (1 − z8(X))−1z ∈ B.

Observe that h is an analytic function defined in a neighborhood of 0 ∈ B and
h(0)= 0.

Theorem 3.2. If X, Y ∈ A are monotonically independent, then

hX+Y (z)= hX ◦ hY (z)

for z in a neighborhood of 0 ∈ B.

Proof. First, note that, for X1, X2 ∈ A of sufficiently small norm, we have

(3-3)
∞∑

n=0

(X1 + X2)
n

=

∞∑
p=0

(( ∞∑
k=0

X k
2

)
X1

)p( ∞∑
m=0

Xm
2

)
.

Indeed,

∞∑
n=0

(X1 + X2)
n

=

∞∑
m=0

∑
α0,βm≥0

∑
α j ,β j ≥1

Xα0
1 Xβ0

2 · · · Xαm
1 Xβm

2

=

∞∑
n=0

(∑
β j ≥0

( n∏
j=0

Xβ j
2 X1

))( ∞∑
m=0

Xm
2

)

=

∞∑
p=0

(( ∞∑
k=0

X k
2

)
X1

)p( ∞∑
m=0

Xm
2

)
.

Substituting X1 = zX and X2 = zY in (3-3) we have

∞∑
n=0

(z(X + Y ))n =

∞∑
p=0

(( ∞∑
k=0

(zY )k
)

zX
)p( ∞∑

m=0

(zY )m
)
.
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And therefore

(1 − z(X + Y ))−1z =

∞∑
p=0

(( ∞∑
k=0

(zY )k
)

zX
)p( ∞∑

m=0

(zY )m
)

z.

We deduce that

8
(
(1 − z(X + Y ))−1z

)
=8

( ∞∑
p=0

(( ∞∑
k=0

(zY )k
)

zX
)p( ∞∑

m=0

(zY )m
)

z
)
.

Hence,

hX+Y (z)=8

( ∞∑
p=0

((
(1 − zY )−1z

)
X
)p
(1 − zY )−1z

)
.

Let
Z = (1 − zY )−1z ∈ A.

Z is in the closure of the algebra generated by Y and B. If X , Y are monotonically
independent over B, the continuity of 8 and Definition 2.1 (a) imply

8((Z X)p Z)=8(Z X Z · · · Z X Z)=8(Z X8(Z) · · ·8(Z)X Z).

Since X8(Z)X · · ·8(Z)X is in the algebra generated by X and B, Definition
2.1 (b) gives

8((Z X)p Z)= (8(Z)X)p8(Z).

Therefore,

hX+Y (z)=8

( ∞∑
p=0

(hY (z)X)phY (z)
)

= hX ◦ hY (z). �

Definition 3.3. For X ∈ A and z in a neighborhood of 0 ∈ B, define the maps

ϑX (z)=8
(
(1 − zX)−1zX

)
,

κX (z)= (1 +ϑX (z))−1ϑX (z),

%X (z)=8
(
Xz(1 − Xz)−1),

ρX (z)= %X (z)(1 + %X (z))−1.

These are B-valued analytic maps for which 0 is a fixed point.

Theorem 3.4. Let U, V ∈ A be such that U −1 and V are monotonically indepen-
dent over B. Then, for z in some neighborhood of 0 ∈ B,

κV U (z)= (κU ◦ κV )(z),

ρU V (z)= (ρU ◦ ρV )(z).



304 MIHAI POPA

Proof. With the notation U − 1 = X , we obtain

ϑV U (z)=8
(
(1 − zV U )−1zV U

)
=8

(
(1 − zV U )−1zV U

)
=8

( ∞∑
k=0

(zV U )kzV U
)

=8

( ∞∑
k=0

(zV (X + 1))kzV U
)

=8

( ∞∑
k=0

∑
α1+···+αp=k+1

α j ≥1

(zV )α1 X (zV )α2 X · · · (zV )αpU
)
.

As in the proof of Theorem 3.2, using Definition 2.1 in the above equation we have

ϑV U (z)=8

( ∞∑
k=0

(ϑV (z)X)kϑV (z)U
)

=8
(
(1 −ϑV (z)X)−1ϑV (z)U

)
=8

(
(1 +ϑV (z)−ϑV (z)U )−1(1 +ϑV (z))(1 +ϑV (z))−1ϑV (z)U

)
=8

((
(1 +ϑV (z))−1(1 +ϑV (z)−ϑV (z)U )

)−1
(1 +ϑV (z))−1ϑV (z)U

)
=8

((
1 − (1 +ϑV (z))−1ϑV (z)U

)−1
κV (z)U

)
=8

(
(1 − κV (z)U )−1κV (z)U

)
= ϑU (κV (z)).

Therefore,

κV U (z)= (1 +ϑV U (z))−1ϑV U (z)= (1 +ϑU (κV (z)))−1ϑU (κV (z))= κU (κV (z)).

The identity for ρ follows analogously. �

The proofs of Theorems 3.2 and 3.4 do not use the analyticity of the maps h, κ ,
ρ, but only properties from Definition 2.1 and some combinatorial identities that
are true for any formal series. This leads to an easy reformulation of the results
in the more general frame, presented in [Dykema 2007], of multilinear function
series over an algebra.

In the following paragraphs we will briefly remind the reader the construction
and several results on multilinear function series.

Let B be an algebra. We set B̃ equal to B if B is unital and to the unitalization
of B otherwise. For n ≥ 1, we denote by Ln(B) the set of all multilinear mappings

ωn : B × · · · ×B︸ ︷︷ ︸
n times

−→ B.

A formal multilinear function series over B is a sequence ω = (ω0, ω1, . . . ),
where ω0 ∈ B̃ and ωn ∈ Ln(B) for n ≥ 1. According to [Dykema 2007], the set
of all multilinear function series over B will be denoted by Mul[[B]].
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For F,G ∈Mul[[B]], the sum F+G and the formal product FG are the elements
from Mul[[B]] defined by

(F + G)n(b1, . . . , bn)= Fn(b1, . . . , bn)+ Gn(b1, . . . , bn),

(FG)n(b1, . . . , bn)=

n∑
k=0

Fk(b1, . . . , bk)Gn−k(bk+1, . . . , bn)

for any b1, . . . , bn ∈ B.
If G0 = 0, then the formal composition F ◦ G ∈ Mul[[B]] is defined by

(F ◦ G)0 = F0,

(F ◦ G)n(b1, . . . , bn)=

n∑
k=1

∑
p1,...,pk≥1

p1+···+pk=n

Fk
(
G p1(b1, . . . , bp1), . . . ,

G pk (bqk+1, . . . , bqk+pk )
)

where q j = p1 + · · · + p j−1 for j ≥ 1.
With these operations, Mul[[B]] is an algebra with additional properties similar

to those of power series [Dykema 2007, Propositions 2.3, 2.6].

Proposition 3.5. Let E, F,G ∈ Mul[[B]]. Then

(i) 1 = (1, 0, 0, . . . ) ∈ Mul[[B]] is a multiplicative identity element;

(ii) F = (F0, F1, . . . ) has a multiplicative inverse if and only if F0 is an invertible
element of B̃;

(iii) if F0 = 0 and G0 = 0, then

(E ◦ F) ◦ G = E ◦ (F ◦ G);

(iv) if G0 = 0, then

(E + F) ◦ G = E ◦ G + F ◦ G, and (E F) ◦ G = (E ◦ G)(F ◦ G);

(v) I = (0, idB, 0, 0, . . . ) ∈ Mul[[B]] is an identity element for the formal com-
position;

(vi) F = (0, F1, F2, . . . ) ∈ Mul[[B]] has a compositional inverse, denoted F 〈−1〉,
if and only if F1 is an invertible element of L1(B);

(vii) if F = (0, F1, F2, . . . ) ∈ Mul[[B]], then

(1 − F)−1
= 1 +

∞∑
k=1

Fk .

For the next definitions and results, A will be a B-algebra (B and A are not
necessarily ∗-algebras).
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Definition 3.6. For X ∈ A consider HX = (HX,0,HX,1, . . . ) ∈ Mul[[B]], where

HX,0 = 0,

HX,1(b)= b,

HX,n(b1, . . . , bn)=8(b1 Xb2 · · · bn−1 Xbn),

for all b, b1, . . . , bn ∈ B, n ≥ 1.

Theorem 3.7. If X, Y ∈ A are monotonically independent over B, then

HX+Y = HX ◦ HY .

Proof. It suffices to show that

HX+Y,n = (HX ◦ HY )n

for all n ≥ 0.
For n = 0, 1, the assertion is trivial. For n ≥ 2,

(HX ◦ HY )n(b1, . . . , bn)

=

n∑
k=1

∑
HX,k

(
HY,p1(b1, . . . , bp1), . . . ,HY,pk (bqk+1, . . . , bn)

)
=8

( n∑
k=1

∑
HY,p1(b1, . . . , bp1)X · · · XHY,pk (bqk+1, . . . , bn)

)

=8

( n∑
k=1

∑
8(b1Y · · · Y bp1)X · · · X8(bqk+1Y · · · Y bn)

)
,

where q j = p1 + · · · + p j−1 and the second summation is over all p1, . . . , pk ≥ 1
such that p1 + · · · + pk = n.

Using Definition 2.1, this becomes

(HX ◦ HY )n(b1, . . . , bn)=

n∑
k=1

∑′

8(b1Y · · · Y bp1 X · · · Xbqk+1Y · · · Y bn)

=

∑
X i ∈{X,Y }

i=1,...,n−1

8(b1 X1 · · · Xn−1bn)

=8(b1(X + Y ) · · · (X + Y )bn),

where
∑

′ indicates the convention that if p j = 1 then bq j +1Y · · · Y bq j+p j
= bq j +1.

On the other hand,

HX+Y,n(b1, . . . , bn)=8(b1(X + Y ) · · · (X + Y )bn)
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and hence the conclusion follows. �

If the algebra A is unital, there also exist multilinear function series analogous
to κ , ρ. First, for X ∈ A, define the elements βX and γX of Mul[[B]] by

βX,0 = 0,

βX,n(b1, . . . , bn)=8(b1 Xb2 · · · bn X),

γX,0 = 0,

γX,n(b1, . . . , bn)=8(Xb1 X · · · Xbn).

From the property in Proposition 3.5 (ii), the multilinear function series KX and
rX are well-defined, where

KX = (1 +βX )
−1βX ,

rX = γX (1 + γX )
−1.

Theorem 3.8. Let U, V ∈ A be such that U −1 and V are monotonically indepen-
dent over B. Then

KV U = KU ◦ KV ,

rU V = rV ◦ rU .

The proof is a routine (though tedious) verification, using Proposition 3.5 and
the techniques from the proof of Theorems 3.4 and 3.7.

4. Semiinner product bimodules

The terminology used in this section is the one from [Lance 1995]. Let B be a
unital C∗-algebra. A semi-inner-product B-bimodule is a linear space E which is
a B-bimodule, together with a map: E × E −→ B, (x, y) 7→ 〈x, y〉 such that

(i) 〈x, αy +βz〉 = α〈x, y〉 +β〈x, z〉 for any x, y, z ∈ E, α, β ∈ C;

(ii) 〈x, ya〉 = 〈x, y〉 a for any x, y ∈ E, a ∈ B;

(iii) 〈y, x〉 = 〈x, y〉
∗ for any x, y ∈ E;

(iv) 〈x, x〉 ≥ 0 for any x ∈ E.

E is called an inner-product B-bimodule if 〈x, x〉 = 0 implies x = 0 and a
Hilbert B-bimodule if it is complete with respect to the norm ‖x‖0 = ‖〈x, x〉‖

1/2,
where the second norm is the C∗-algebra norm of B. The algebra of B-linear (not
necessarily bounded) operators on E will be denoted by L(E).
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4.1. Given a family {Ei }i∈I of semi-inner-product B-bimodules indexed by a to-
tally ordered set I ⊆ Z, we define, following [Muraki 2000; Pimsner 1997], the
monotonic product Em of {Ei }i∈I to be the semi-inner-product B-bimodule

Em
= B ⊕

(⊕
n≥1

⊕
(i1,...,in)∈bI,nc

Ei1 ⊗ Ei2 ⊗ · · · ⊗ Ein

)
where all the tensor products are with amalgamation over B and

bI, nc = {(i1, . . . , in) : i1, . . . , in ∈ I, i1 > · · ·> in},

with the inner-product given by

〈 f1 ⊗ · · · ⊗ fn, e1 ⊗ · · · ⊗ em〉 = δm,n〈 fn, 〈 fn−1, . . . , 〈 f1, e1〉 . . . en−1〉en〉.

Note that in general Em is not an inner-product B-bimodule even if Ei are inner-
product bimodules or Hilbert bimodules. For example, if 〈 f1, f1〉 = b∗b > 0 and
b f2 = 0, then

〈 f1 ⊗ f2, f1 ⊗ f2〉 = 〈 f2, 〈 f1, f1〉 f2〉 = 〈 f2, b∗b f2〉 = 0;

see also [Speicher 1998].
If i ∈ I is fixed, we have the natural identification

Em
=
(
(B ⊕ Ei )⊗B (B ⊕ Em

(<i))
)
⊕ Em

(>i)

where
Em
(<i) =

⊕
n≥1

⊕
(i1,...,in)∈bI,nc

i1<i

Ei1 ⊗ Ei2 ⊗ · · · ⊗ Ein ,

Em
(>i) =

⊕
n≥1

⊕
(i1,...,in)∈bI,nc

i1>i

Ei1 ⊗ Ei2 ⊗ · · · ⊗ Ein .

Based on this decomposition, one also has the (nonunital) ∗-representation

λi : L(B ⊕ Ei )−→ L(Em),

λi (A)=
(

A ⊗ IB⊕ Em
(<i)

)
⊕ 0 Em

(>i)
.

Theorem 4.1. With the above notations, λi (L(B⊕ Ei )) (i ∈ I ) are monotonically
independent in L(Em) with respect to the conditional expectation 8(·)= 〈1, ·1〉.

Proof. We need to show that the two conditions from Definition 2.1 for monotonic
independence are satisfied. In fact, it will be shown that the family{

λi (L(B ⊕ Ei ))
}

i∈I

satisfies (b) and the stricter condition (a′) of Definition 2.1.
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The proof is similar to the proof of [Muraki 2000, Theorem 2.1]. For i ∈ I ,
consider Ai ∈ L(B ⊕ Ei ) and X i = λi (Ai ).

We can write
X i 1 = αi + si ,

where 1 ∈ B ⊂ B ⊕ Ei, j , αi ∈ B, and si ∈ Ei .
If k < l,

Xk Xl1 = Xk(αl + sl)= Xk1αl = Xk〈1, Xl1〉;

therefore,
X j Xk1 · · · Xkn 1 = 〈1, X j 1〉〈1, Xk11〉 . . . 〈1, Xkn 1〉

whenever j < k1 < · · ·< kn .
Also, write

Em
= B ⊕ E0.

Note that Xl f ∈ E0 for any f ∈ E0 and any l ∈ I , and that, for k < l,

Xl Xk1 = Xl(αk + sk)= Xl1αk + Xl(1 ⊗ sk)

= Xl〈1, Xk1〉 + (αl + sl)⊗ sk = Xl〈1, Xk1〉 + f,

for some f ∈ E0.
Iterating the above relations for im > · · ·> i1 > j < k1 < · · ·< kn , we obtain

〈1, X im · · · X i1 X j Xk1 · · · Xkn 1〉

= 〈1, X im · · · X i11〉〈1, X j 1〉 . . . 〈1, Xkn 1〉

= (〈1, X im 1〉 . . . 〈1, X i11〉 + 〈1, f 〉)〈1, X j 1〉 . . . 〈1, Xkn 1〉

= 〈1, X im 1〉 . . . 〈1, Xkn 1〉,

that is, property (b).
For i < j > k, a direct computation gives

X i X j Xk1 = X i X j (αk + sk)= X i (X j 1)αk + X i X j (1 ⊗ sk)

= X i (α j + s j )αk + X i (α j + s j )⊗ sk

= X i (α jαk)+ X i (α j sk)+ X i (s j ⊗ sk)

= X iα j (αk + sk)= X i 〈1, X j 1〉Xk1,

so it remains to show (a′) on elements of the form

h̃ = hi1 ⊗ · · · ⊗ hin , hil ∈ Eil .

If i1 > i , then X2hi1 ⊗ · · · ⊗ hin = 0; therefore,

X1Y X2h̃ = 0 = X1〈1, Y 1〉X2h̃.
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If i1 = i , with the notations h0
= hi2 ⊗ · · · ⊗ hin and X2hi1 = θ ⊕ u for some

θ ∈ B, u ∈ Ei , one has

X1Y X2hi1 ⊗ · · · ⊗ hin = X1Y (θ ⊕ u)h0

= X1(βθ ⊕ tθ ⊕ (β⊕ t)⊗ u)⊗ h0

= X1(βθ +βu)⊗ h0
= X1β(θ ⊕ u)⊗ h0

= X1〈1, Y 1〉X2hi1 ⊗ · · · ⊗ hin .

The case i1 < i is similar. �

4.2. The weakly monotone product of the bimodules {Ei }i∈I is the semi-inner-
product B-bimodule

Ewm
= B ⊕

∞⊕
n=1

( ⊕
i1≥···≥in

Ei1 ⊗ · · · ⊗ Ein

)
.

If I has only one element i0, then Ewm is the full Fock bimodule over Ei0 , F(Ei0)

[Pimsner 1997; Speicher 1998].
For j ∈ I , let

J = {l ∈ I : l ≤ j}

and let Ewm( j) be the weakly monotonic product of {El}l∈J. We will also use the
notations

F0(E)= F(E)	 B,

Ewm
0 (E)= Ewm

	 B,

Ewm
0 ( j)= Ewm( j)	 B.

For f ∈ Ei , define the B-linear creation and annihilation maps a∗( f ) and a( f )
on Ewm by

a∗( f )1 = f,

a∗( f ) fi1 ⊗ · · · ⊗ fin =

{
f ⊗ fi1 ⊗ · · · ⊗ fin , if i ≥ i1,

0, if i < i1,

a( f )1 = 0,

a( f ) fi1 ⊗ · · · ⊗ fin =

{
〈 f, fi1〉 fi2 ⊗ · · · ⊗ fin , if i = i1,

0, if i 6= i1.

Note that a( f ) and a∗( f ) are adjoint to each other. Denote by G( f ) their sum,
G( f )= a( f )+a∗( f ), and by Ai the algebra generated over B by {G( f ) : f ∈ Ei }.

We will use the shorthand notation 8(·) for the B-valued functional 〈1, ·1〉 on
the set of all B-linear maps on Ewm . Also, for

ẽ = e1 ⊗ · · · ⊗ en,
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with el ∈ Ek , 1 ≤ l ≤ n, we will use the notations

A∗( ẽ )= a∗(e1) · · · a∗(en),

A( ẽ )= a(e1) · · · a(en).

Lemma 4.2. For any f1, . . . , fn ∈ Ek there are some sequences of elements of
Ewm

0 (k),

( ẽr )
N1
r=1, ( g̃s )

N2
s=1, ( h̃q )

N3
q=1, ( k̃q )

N3
q=1,

such that

P =

n∏
l=1

G( fl)

can be written as

(4-4) P =8(P)+
N1∑

r=1

A∗(̃er )+

N2∑
s=1

A(g̃s)+

N3∑
q=1

A∗(̃hq)A(̃kq).

Proof. Let (4-4)′ be the weaker form of (4-4) where 8(P) is replaced by some
element α ∈ B. Note that (4-4)′ is in fact equivalent to (4-4), since

8(P)= 〈1, P1〉

=

〈
1, α1 +

N1∑
r=1

A∗(̃er )1 +

N2∑
s=1

A(g̃s)1 +

N3∑
q=1

A∗(̃hq)A(̃kq)1
〉

=

〈
1, 1α+

N1∑
r=1

ẽr

〉
= α.

It remains to prove (4-4)′.
Note that

P =

n∏
l=1

G( fl)=

n∏
l=1

(
a∗( fl)+ a( fl)

)
=

∑
(ε1,...,εn)
εl∈{1,2}

aε1( f1) . . . aεn ( fn),

where a1 stands for a and a2 stands for a∗.
Also, for any f, g, h ∈ Ek , α ∈ B and ε ∈ {1, 2},

a( f ) a∗(g)= 〈 f, g〉I,

aε(h)〈 f, g〉 = aε(h〈 f, g〉),

αa( f )= a(α∗ f ),

αa∗( f )= a∗(α f ).
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It follows that in the expression of aε1( f1) . . . aεn ( fn), any a( f p) a∗( f p+1) can
be reduced to 〈 f p, f p+1〉 which can be included in the expression of the previous
or following factor. After finite steps of iteration, no summand will have factors of
the type a( fq) in front of factors of the type a∗( f p), so (4-4)′ is proved. �

Lemma 4.3. Any X ∈ Ai is satisfying the following properties:

(i) Ewm(i) is X-invariant;

(ii) X1 =8(X)+ s, for some s ∈ F0(Ei );

(iii) if u ∈ Ewm( j), j < i , then

Xu =8(X)u + t ⊗ u,

for some t ∈ F0(Ei );

(iv) if i < j and v ∈ F0(E j )⊗ Ewm(k), k < j , then Xv = 0.

Proof. (i) It is enough to verify that the property holds for X = G( f ), f ∈ Ei .
Indeed,

G( f )1 = f ∈ F(Ei )⊂ Ewm(i)

and for any f1 ⊗ · · · ⊗ fn ∈ Ewm(i),

G( f ) f1 ⊗ · · · ⊗ fn = f ⊗ f1 ⊗ · · · ⊗ fn + 〈 f, f1〉 f2 ⊗ · · · ⊗ fn ∈ Ewm(i).

(ii) If f, f1, . . . , fn ∈ F(Ei ),

G( f ) f1 ⊗ · · · ⊗ fn = f ⊗ f1 ⊗ · · · ⊗ fn + 〈 f, f1〉 f2 ⊗ · · · ⊗ fn ∈ F(Ei ).

It follows that F(Ei ) is invariant to Ai . Since 1 ∈ F(Ei ), we have X1 ∈ F(Ei ), and
the conclusion follows from the orthogonality of B and F0(Ei ).

(iii) It is enough to prove the relation for X = G( f1) · · · G( fn), fl ∈ Ei . First note
that for any f̃ ∈ F0(Ei ),

A∗( f̃ )u = f̃ ⊗ u,

A( f̃ )u = 0.

From Lemma 4.2, there are some sequences

( ẽr )
N1
r=1, ( g̃s )

N2
s=1, ( h̃q )

N3
q=1, ( k̃q )

N3
q=1
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of elements of F(Ei ) such that

Xu =8(X)u +

N1∑
r=1

A∗(̃er )u +

N2∑
s=1

A(g̃s)u +

N3∑
q=1

A∗(̃hq)A(̃kq)u

=8(X)u +

N1∑
r=1

ẽr ⊗ u

=8(X)u +

( N1∑
r=1

ẽr

)
⊗ u.

(iv) Similarly, it is enough to prove the relation for X = G( f1) · · · G( fn), fl ∈ Ei .
First note that for any f̃ ∈ F0(Ei )

A∗( f̃ )v = A( f̃ )v = 0.

From Lemma 4.2, there are some sequences

( ẽr )
N1
r=1, ( g̃s )

N2
s=1, ( h̃q )

N3
q=1, ( k̃q )

N3
q=1

of elements of F(Ei ) such that

Xv =8(X)v+

N1∑
r=1

A∗(̃er )u +

N2∑
s=1

A(g̃s)v+

N3∑
q=1

A∗(̃hq)A(̃kq)v

=8(X)v. �

Theorem 4.4. The algebras Ai (i ∈ I ) are monotonically independent with respect
to the B-valued functional 8(·)= 〈1, ·1〉.

Proof. Let X i ∈ Ai , i ∈ I . We will prove that they satisfy the relations (b) and (a′)
from the definition of the monotonic independence. If k < l, from Lemma 4.3, we
have

Xk Xl1 = Xk(8(Xl)+ t) (for some t ∈ F0(El))

= Xk18(Xl),

since Xt = 0; therefore,

X j X i1 · · · Xkn 1 = X j 18(Xk1) · · ·8(Xkn )

whenever j < k1 < · · ·< kn . Similarly, for k < l,

Xl Xk1 = Xl(8(Xk)+ tk) (for some tk ∈ F0(Ek))

=8(Xl)8(Xk)+8(Xl)tk + tl ⊗ (8(Xk)+ tk) (for some tl ∈ F0(El))

=8(Xl)8(Xk)+ t (for some t ∈ Ewm
0 (l)).
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Using the above relations, we obtain

8(X i1 · · · X1n X j Xk1 · · · Xkm )=8(X i1 · · · X1n X j )8(Xk1) · · ·8(Xkm )

=8
(
8(X i1) · · ·8(X j )+ s

)
8(Xk1) . . . 8(Xkm )

=8
(
8(X i1) · · ·8(X j )+ s

)
8(Xk1) · · ·8(Xkm )

for some s ∈ Ewm
0 (km), that is, property (b).

Also, for i < j > k,

X i Xj Xk1

= X i X j (8(Xk)+ s) (for some s ∈ F0(Ek))

= (X i X j 1)8(Xk)+ X i X j s

= X i (8(X j )+t1)8(Xk)+ X i (8(X j )s + t2 ⊗ s) (for some t1, t2 ∈ F0(E j ))

= X i8(X j )8(Xk)+ X i8(X j )s

= X i8(X j )(8(Xk)+ s)

= X i8(X j )Xk1.

It remains to prove that X i X j Xk and X i8(X j )Xk coincide on vectors of the form

f̃ = fi1 ⊗ · · · ⊗ fim ,

where fik ∈ Eik for i1 ≥ · · · ≥ im .
If i1 > k, then Xk f̃ = 0, so the equality is trivial.
If i1 ≤ k, then Lemma 4.3 implies that Xk f̃ ∈ Ewm(k); therefore,

X i X j Xk f̃ = X i
(
8(X j )Xk f̃ + t ⊗ Xk f̃

)
(for some t ∈ F0(E j ))

= X i8(X j )Xk f̃ . �

Remark 4.5. An analogous construction can be done for creation and annihilation
maps on Em , and similar computations will lead to the monotonic independence
of the correspondent algebras [Muraki 2001].

5. Central Limit Theorem

In this section A will be a ∗-algebra, B a subalgebra of A which is also a C∗-
algebra and 8 : A −→ B a conditional expectation. B+〈 ξ〉 will be the ∗-algebra
generated by B and the selfadjoint symbol ξ , as described in Section 1.

As discussed in Section 2, given X as a selfadjoint element of A, the n-th mo-
ment of X is the multilinear function

m X,n : Bn−1
−→ B

given by
m X,n(b1, . . . , bn−1)=8(Xb1 X · · · Xbn−1 X).
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We define the moment function of X as

µX =

∞⊕
m=1

µ
(m)
X .

Before stating the main theorem of this section, we will begin with some combi-
natorial considerations on the joint moments of the family of selfadjoint elements
{Xn}n≥1 of A with the properties:

(1) for any i < j , X i and X j are monotonically independent over B;

(2) all Xk have the same moment function, denoted by µ.

Let NC(m) be the set of all noncrossing partitions of the ordered set

{1, 2, . . . ,m}.

For γ ∈ NC(m), let

B = {b1, b2, . . . , bp}, and C = {c1, c2, . . . , cq}

be two blocks of γ . We say that C is interior to B if there is an index

k ∈ {1, . . . , p − 1}

such that bk < c1, c2, . . . , cq < bk+1. B and C will be called adjacent if c1 = bp +1
or b1 = cq + 1. The block B will be called outer if it is not interior to any other
block of γ .

To each m-tuple (i1, . . . , im) of indices from {1, 2, , . . . }, we associate a unique
noncrossing partition nc [i1, . . . , im] ∈ NC(m) as follows:

(1) if m = 1, then nc [i1] = (1);

(2) if m > 1, put

B = { k : ik = min{i1, . . . , im}} = {k1, . . . , kp}

and define nc [i1, . . . , im] to be

B t nc [i1, . . . , ik1 − 1] t nc [ik1 + 1, . . . , ik2 − 1] t · · · t nc [ikp + 1, . . . , im].

Reciprocally, the m-tuple (i1, . . . , im) will be called an admissible configuration
for γ ∈ NC(m) if nc [i1, . . . , im] = γ .

Lemma 5.1. Suppose (i1, . . . , im) is an admissible configuration for γ ∈ NC(m)
and B = {k1, . . . , kp} is an outer block of γ . Then, for any b1, . . . , bm−1 ∈ B, with
µ the common moment function of {Xn}n , we have

8(X i1b1 X i2 · · · bm−1 X im )

= µ
(
8(X i1b1 · · · X ik1−1bk1−1),8(bk1 X ik1+1 · · · bk2), . . . , 8(bkp · · · X im )

)
.
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Proof. If γ has only one block, then the result is trivial. If γ has more than one
block, but only one outer block B, then

B = { k : ik = min{i1, . . . , im}} = {k1, . . . , kp}

since the last set always forms an outer block. Also this block must contain 1 and
m. The monotonic independence of {Xn}n≥1 over B implies

8(X i1b1 X i2 · · · bm−1 X im )

=8
(
X i18(b1 X i2b2 · · · X ik2−1bk2−1)X ik2

8(bk2 X ik2+1 · · · ) · · · X im

)
= µ

(
8(b1 X i2 · · · bk2−1), . . . , 8(bkp−1 X ik p−1+1 · · · bm−1)

)
.

If γ has more than one outer block, the result comes by induction on the number
of blocks of γ . Suppose the result is true for less than r blocks and that γ has
exactly r blocks. Consider again B0 = { k : ik = min{i1, . . . , im}} = {k1, . . . , kp}.
Using again Definition 2.1, we obtain

8(X i1b1 X i2 · · · bm−1 X im )

=8
(
8(X i1b1 · · · bk1−1)X ik1

· · · X ikm
8(bkm X ikm+1 · · · X im )

)
= µ

(
8(X i1b1 · · · bk1−1), . . . , 8(bkm X ikm+1 · · · X im )

)
.

If B = B0, then the result is proved above. If B 6= B0, then without losing
generality we can suppose that B is at the right of B0, and hence

8(X i1b1 X i2 · · · bm−1 X im )

=8
(
8(X i1b1 · · · bk1−1)X ik1

· · · X ikm
8(bkm X ikm+1 · · · X im ))

=8(X i1b1 · · · X ik1−1)8(bk1−1 X ik1
· · · X im ).

And the result follows by applying the induction hypothesis to8(X i1b1 · · · X ik1−1).
�

Lemma 5.2. If (i1, . . . , im) and (l1, . . . , lm) are two admissible configurations for
γ ∈ NC(m), then for any b1, . . . , bm−1 ∈ B, one has

8(X i1b1 X i2 · · · bm−1 X im )=8(Xl1b1 Xl2 · · · bm−1 Xlm ).

Proof. Again, if γ is the partition with a single block, then i1 =· · ·= im , l1 =· · ·= lm

and

8(X i1b1 X i2 · · · bm−1 X im )=8(X i1b1 X i1 · · · bm−1 X i1)

= µ(b1, . . . , bm−1)=8(Xl1b1 Xl2 · · · bm−1 Xlm ).

The conclusion follows by induction on m.
If m = 1, then 8(X i1)=8(Xl1).
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Suppose the result is true for m ≤ N − 1 and that γ ∈ NC(N ) has more than
one block. Then let B = { k1, . . . , kp} be an outer block of γ . From Lemma 5.1,

8(X i1b1 X i2 · · · bm−1 X im )

= µ
(
8(X i1b1 · · · X ik1−1bk1−1),8(bk1 X ik1+1 · · · bk2), . . . , 8(bkp · · · X im )

)
= µ

(
8(Xl1b1 · · · Xlk1−1bk1−1),8(bk1 Xlk1+1 · · · bk2), . . . , 8(bkp · · · Xlm )

)
=8(Xl1b1 Xl2 · · · bm−1 Xlm ). �

Since the value8(X i1b1 X i2 · · · bm−1 X im ) is the same for all the admissible con-
figurations (i1, . . . , im), we will denote it by V (γ, b1, . . . , bm−1).

Theorem 5.3. Let {Xn}
∞

n=1 be a sequence of selfadjoint elements from A such that

(1) {Xn}n is a monotonically independent family;

(2) µX i = µX j for any i, j ≥ 1, n ≥ 0;

(3) 8(Xk)= 0.

Then there exists a conditional expectation ν : B+〈 ξ〉 −→ B with the property

(5-5) lim
N→∞

8
(

f
( X1 + · · · + X N

√
N

))
= ν( f )

for any f ∈ B+〈 ξ〉. Moreover ν( f ) depends only on the second order moments of
X i .

Proof. For convenience, we will use the notations µ for µX i (i ≥ 1), a(γ ) for
the set of all admissible configurations of γ , a(γ, N ) for the set of all admissible
configurations of γ with indices from {1, 2, . . . , N }, and P P(m) for the set of all
noncrossing pair partitions (partitions where each block has exactly two elements)
of {1, . . . ,m}.

It is enough to show the property for some arbitrary b1, . . . , bm−1 ∈ B and

f = ξb1ξ · · · bm−1ξ.

From Lemma 5.2, one has

8
(( X1 + · · · + X N

√
N

)
b1 · · · bm−1

( X1 + · · · + X N
√

N

))
=

1
N m/2

∑
(i1,...,im)

8(X i1b1 · · · bm−1 X im )

=
1

N m/2

∑
γ∈NC(m)

V (γ, b1, . . . , bm−1) card(a(γ, N )).

If γ contains blocks with only one element, the condition 8(X i ) = 0 (i ≥ 1)
and Lemma 5.1 imply that V (γ, b1, . . . , bm−1)= 0.
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Also, if γ has less than m/2 blocks, since

card(a(γ, N )) < N card(γ ) < N m/2,

we have that

lim
N→∞

1
N m/2 V (γ, b1, . . . , bm−1) card(a(γ, N ))= 0.

It follows that only the pair partitions contribute to the limit, that is,

lim
N→∞

8
(( X1 + · · · + X N

√
N

)
b1 · · · bm−1

( X1 + · · · + X N
√

N

))
= lim

N→∞

1
N m/2

∑
γ∈P P(m)

V (γ, b1, . . . , bm−1) card(a(γ, N )).

In particular, for m odd, the limit exists and it is equal to zero.
If m is even, note first that

a(γ, N )=

m/2⊔
k=1

a(γ, N , k)

and that

card(a(γ, N , k))=

(
N
k

)
card(a(γ, k, k)).

Therefore,

lim
N→∞

8
(( X1 + · · · + X N

√
N

)
b1 . . . bm−1

( X1 + · · · + X N
√

N

))
= lim

N→∞

1
N m/2

∑
γ∈P P(m)

V (γ, b1, . . . , bm−1)

m/2∑
k=1

(
N
k

)
card(a(γ, k, k))

= lim
N→∞

1
N m/2

∑
γ∈P P(m)

V (γ, b1, . . . , bm−1)

(
N

m/2

)
card

(
a
(
γ,m/2,m/2

))
=

1(
m/2

)
!

∑
γ∈P P(m)

V (γ, b1, . . . , bm−1) card
(
a
(
γ,m/2,m/2

))
,

since

lim
N→∞

1
N m/2

(
N
k

)
=


0 if k < m/2,
1

(m/2)!
if k = m/2.

For the last part, note that V (γ, b1, . . . , bm−1) is computed iterating the result
from Lemma 5.1, so for γ ∈ P P(m) it depends only on the moments of order 2 of
X i (i ≥ 1). �
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In the following paragraph we will suppose, without loss of generality, that B

is unital.

Corollary 5.4. The functional ν is positive if and only 8(Xkb∗bXk) ≥ 0 for any
b ∈ B (k ≥ 1).

Proof. One implication is trivial: if ν ≥ 0, then

8(Xkb∗bXk)= ν((bξ)∗bξ)≥ 0.

For the other implication, consider the set of symbols {ζi }i≥1 and the linear
spaces

BζiB = {b1ζi b2 : b1, b2 ∈ B}

with the B-bimodule structure given by

a1(b1ζi b2)a2 = (a1b1)ζi (b2a2)

for any a1, a2, b1, b2 ∈ B, and with the B-valued pairing 〈 ·, · 〉 given by

〈aζi , bζi 〉 = ν(ξa∗bξ)

for any a, b ∈ B.
The pairing 〈 ·, · 〉 is positive, since ν(ξb∗bξ)≥ 0 for any b ∈ B.
Let E be the weakly monotone product of {BζiB}i≥1. As shown in Section

4.2, the mappings G(ζi ) form a monotonic independent family in L(E); therefore,
from Theorem 5.3, one has that

ν(p∗(ξ)p(ξ))= lim
N→∞

〈
1, p

(G(ζ1)+ · · · + G(ζN )
√

N

)∗

p
(G(ζ1)+ · · · + G(ζN )

√
N

)
1
〉

for any p(ξ) ∈ B〈 ξ〉.
The conclusion follows from the positivity of the functional 〈1, ·1〉. �

6. Positivity results and connection to
operator-valued conditionally free products

Definition 6.1. Let A1,A2 be two algebras containing the subalgebra B such that
A1 has the decomposition A1 = B ⊕ A0

1 for A0
1 a subalgebra of A which is also a

B-algebra. If 81, 82 are conditional expectations, 8 j : A j −→ B, j = 1, 2, we
define

8=81 B82,

the monotonic product of 81 and 82 to be the conditional expectation on the al-
gebraic free product with amalgamation over B,

A = A1 ∗B A2
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given by
8(αa1ba2β)=8(αa182(b)a2β),

8(ba2β)=82(b)8(a2β),

8(αa1b)=8(αa1)82(b),

for all a1, a2 ∈ A0
1, b ∈ A2 and α, β ∈ A.

The map 8 is well-defined since any element of A can be written as a sum of
finite products in which the elements from A0

1 and A2 alternate. The conditions
above imply that

8(b0a1b1 · · · anbn)=81(82(b0)a182(b1) · · · an82(bn))

for all b0, b1, . . . , bn ∈ B2, a1, . . . , an ∈ A0
1, and all the analogues for the other

types of such products.

Proposition 6.2. If , in the above setting, A1,A2 are ∗-algebras, B is a C∗-algebra,
and81,82 are positive (that is,8 j (a∗a)≥0, for all a ∈A j , j =1, 2), then81B82

is also positive.

Proof. First, remember that the positivity of the conditional expectations 8 j im-
plies that 8 j (x∗)= (8 j (x))∗, for all x ∈ A j .

Also, the map82 is completely positive, and for any b1, . . . bn ∈A2, the element(
82(b∗

i b j )
)n

i, j=1 ∈ Mn(B)

is positive [Speicher 1998, Section 3.5].
We have to show that

8(a∗a)≥ 0

for all a ∈ A1 ∗B A2. Any such a can be written as a finite sum of elements of the
form b0a1b1 · · · anbn with b0, . . . , bn ∈ A2, a1, . . . , an ∈ A0

1. Hence

8(a∗a)

=8

(( N∑
i=1

b0,i a1,i b1,i · · · an(i),i bn(i),i

)∗( N∑
i=1

b0,i a1,i b1,i · · · an(i),i bn(i),i

))

=8

( N∑
i, j=1

b∗

n(i),i a
∗

n(i),i · · · a∗

1,i b
∗

0,i b0, j a1, j b1, j · · · an( j), j bn( j), j

)

=

N∑
i, j=1

81
(
82(b∗

n(i),i )a
∗

n(i),i · · · a∗

1,i82(b∗

0,i b0, j )a1, j82(b1, j ) · · · an( j), j82(bn( j), j )
)
.

Since (
82(b∗

0,i b0, j )
)N

i, j=1 ∈ MN (B)⊂ MN (A1)
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is positive, there exists a matrix T ∈ MN (A1) such that(
82(b∗

0,i b0, j )
)N

i, j=1 = T ∗T .

With the notation

ai = a1, j82(b1, j ) · · · an( j), j82(bn( j), j ) ∈ A1,

we obtain

8(a∗a)=81
(
(a1 . . . aN )

∗T ∗T (a1 . . . aN )
)
≥ 0. �

Let B〈 ξ, ξ∗
〉 be the ∗-algebra of polynomials in ξ and ξ∗ described in Section 2.

For X ∈ A, consider AX the ∗-subalgebra of A generated by X and B. Define
the mapping τX : B〈 ξ, ξ∗

〉 −→ AX to be the algebra ∗-homomorphism given by
τX (ξ)= X and the B-functional νX : B〈 ξ, ξ∗

〉 −→ B to be given by νX =8◦τX .

Corollary 6.3. If X, Y ∈ A are monotonically independent over B and νX , νY are
positive, then νZ is also positive for any element Z in the ∗-algebra generated by
X and Y . In particular νX+Y and νXY are positive.

Proof. Consider Z = Z(X, Y ) a polynomial in X and Y . Since the maps

νX :B〈 ξ1, ξ
∗

1 〉 −→ B,

νY :B〈 ξ2, ξ
∗

2 〉 −→ B

are positive, from Proposition 6.2 so is

νx B νY : B〈 ξ1, ξ
∗

1 〉 ∗B B〈 ξ2, ξ
∗

2 〉 = B〈 ξ1, ξ
∗

1 , ξ2, ξ
∗

2 〉 −→ B.

Remark also that

iZ : B〈 ξ, ξ∗
〉 3 f (ξ) 7→ f (Z(ξ1, ξ2)) ∈ B〈 ξ1, ξ

∗

1 〉 ∗B B〈 ξ2, ξ
∗

2 〉

is a positive B-functional.
The conclusion follows from the fact that the monotonic independence over B

of X and Y is equivalent to

νZ = (νX B νY ) ◦ iZ . �

Lemma 6.4. Let A1, A2 be two ∗-algebras containing the C∗-algebra B, and
8 j : A j −→ B, j = 1, 2, positive conditional expectations. Let a1, . . . , an ∈ A1,
an+1, . . . , an+m ∈ A2 and

A =
(

Ai, j
)
∈ Mn+m(B)
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be the matrix with the entries

Ai, j =


81(a∗

i a j ) if i, j ≤ n,
81(a∗

i )82(a j ) if i ≤ n, j > n,
82(a∗

i )81(a j ) if i > n, j ≤ n,
82(a∗

i a j ) if i, j > n.

Then A is positive.

Proof. As shown in [Speicher 1998, Theorem 3.5.6], the B-functional 81 ∗B82

is completely positive on A1 ∗B A2. Also, note that

Ai, j = (81 ∗B82)(a∗

i a j )

for all 1 ≤ i , j = 1 ≤ n + m, and the conclusion follows from [Speicher 1998,
Lemma 3.5.2]. �

Consider now A1, A2 two ∗-algebras over the C∗-algebra B, each endowed with
two positive conditional expectations

8 j , 9 j : A j −→ B, j = 1, 2.

We define (A,8,9), the conditionally free product with amalgamation over B of
the triples (A1,81, 91) and (A2,82, 92) by

(1) A = A1 ∗B A2;

(2) 9 = 91 ∗B92 and 8 =81 ∗(91,92)82, that is, the functionals 9 and 8 are
determined by the relations

9(a1a2 · · · an)= 0,

8(a1a2 · · · an)=8(a1)8(a2) · · ·8(an),

for any ai ∈ Aε(i), ε(i) ∈ {1, 2}, such that ε(1) 6= ε(2) 6= · · · 6= ε(n) and
9ε(i)(ai )= 0.

Theorem 6.5. In the above setting, 8 and 9 are positive B-functionals.

Proof. The positivity of 9 is proved in [Speicher 1998, Theorem 3.5.6].
For the positivity of 8 we have to show that 8(a∗a) ≥ 0 for any a ∈ A. Since

any element of A can be written as

a =

N∑
k=1

s1,k . . . sn(k),k =

N∑
k=1

n(k)∏
j=1

(
s( j,k) −9(s( j,k))+9(s( j,k))

)
,

where s j,k ∈ Aε( j,k), ε(1, k) 6= ε(2, k) 6= · · · 6= ε(n(k), k), we can consider a of the
form

a = α+

N∑
k=1

a1,k . . . an(k),k
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such that α ∈ B, a j,k ∈ Aε( j,k) if ε(1, k) 6= ε(2, k) 6= · · · 6= ε(n(k), k), and
9ε( j,k)(a j,k)= 0. Therefore

8(a∗a)=8

((
α+

N∑
k=1

a1,k · · · an(k),k

)∗(
α+

N∑
k=1

a1,k · · · an(k),k

))

=8

(
α∗α+α∗

( N∑
k=1

a1,k · · · an(k),k

)
+

( N∑
k=1

a1,k · · · an(k),k

)∗

α

+

( N∑
k=1

a1,k · · · an(k),k

)∗( N∑
k=1

a1,k · · · an(k),k

))

=8(α∗α)+

N∑
k=1

8
(
α∗a1,k · · · an(k),k

)
+

N∑
k=1

8
(
a∗

n(k),k · · · a∗

1,kα
)

+

N∑
k,l=1

8
(
a∗

n(k),k · · · a∗

1,ka1,l · · · an(l),l
)
.

Using the definition of the conditionally free product with amalgamation over
B and that 9ε( j,k)(a j,k)= 0 for all j, k, the above relation becomes

8(a∗a)=8(α∗α)+

N∑
k=1

8(α∗a1,k)8(a2,k) · · ·8(an(k),k)

+

N∑
k=1

8(an(k),k)
∗
· · ·8(a∗

2,k)8(a
∗

1,kα)

+

N∑
k,l=1

(
8(an(k),k)

∗
· · ·8(a∗

2,k)
)
8(a∗

1,ka1,l)8(a2,l) · · ·8(an(l),l),

that is,

8(a∗a)=8(α∗α)+

N∑
k=1

8(α∗a1,k)
(
8(a2,k) · · ·8(an(k),k)

)
+

N∑
k=1

(
8(a2,k) · · ·8(an(k),k)

)∗
8(a∗

1,kα)

+

N∑
k,l=1

(
8(a2,k) · · ·8(an(k),k)

)∗
8(a∗

1,ka1,l)
(
8(a2,l) · · ·8(an(l),l)

)
.

Now set a1,N+1 = α and βk =8(a2,k) · · ·8(an(k),k).
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From Lemma 6.4, the matrix

S =

(
8
(
a∗

1,i a1, j
))N+1

i, j=1

is positive in MN+1(B); therefore, S = T ∗T , for some T ∈ MN+1(B).
The identity for 8(a∗a) becomes

8(a∗a)= (β1, . . . , βN , 1)∗T ∗T (β1, . . . , βN , 1)≥ 0,

as claimed. �

Suppose now that the ∗-algebra A1 has the decomposition A1 = B ⊕ A0
1, such

that A0
1 is a ∗-subalgebra of A1 which is also a B-algebra. Define the B-valued

conditional expectation

(6-6) δ : A1 3 (λ+ a0) 7→ λ ∈ B

for all a0 ∈ A0
1.

Theorem 6.6. With the notations above,

81 F82 =81 ∗(δ,82)82.

Proof. First remark that δ(a)= 0 implies a ∈ A0
1, from the definition of δ in (6-6).

For ε(1), . . . , ε(n) ∈ {1, 2} such that ε(1) 6= · · · 6= ε(n) and a j ∈ Aε( j) such that
δ(a j )= 0 if ε( j)= 1 and 82(a j )= 0 if ε( j)= 2, one has

(81 F82)(a1 . . . an)=81

( n∏
j=1

(
χA1(a j )+82(χA2(a j ))

))

=81

( n∏
j=1

χA1(a j )

)
= 0,

where χA j denotes the characteristic function of A j , since there is at least one
a j ∈ A2.

The conclusion follows from the above equality, since the conditional expecta-
tion 81 ∗δ,82 82 is generated by (81 ∗(δ,82)82)(a1 . . . an)= 0. �
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