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We study the distributional behavior for products and sums of Boolean in-
dependent random variables in a general infinitesimal triangular array. We
show that the limit laws of Boolean convolutions are determined by the limit
laws of free convolutions, and vice versa. We further use these results to
demonstrate several connections between the limiting distributional behav-
ior of classical convolutions and that of Boolean convolutions. The proof of
our results is based on the analytical apparatus developed by Bercovici and
Wang for free convolutions.

1. Introduction

Denote by MR the collection of all Borel probability measures on the real line R,
and by MT Borel probability measures on the unit circle T. The classical convolu-
tion ∗ for elements in MR corresponds to the addition of independent real random
variables, and the convolution ~ for measures in MT corresponds to the multi-
plication of independent circle-valued random variables. A binary operation ] on
MR, called additive Boolean convolution, was introduced by Speicher and Woroudi
[1997]. They also showed that it corresponds to the addition of random variables
belonging to algebras that are Boolean independent. Later Franz [2004] introduced
the concept of multiplicative Boolean convolution ∪× for measures in MT, which is a
multiplicative counterpart of the additive Boolean convolution. Voiculescu [1986;
1987] showed there are two other convolutions defined respectively for measures on
R and T. These are additive free convolution � and multiplicative free convolution
�.

This paper investigates the limiting distributional behavior for Boolean convo-
lutions of measures in an infinitesimal triangular array. Let {kn}

∞

n=1 be a sequence
of natural numbers. A triangular array {µnk : n ∈ N, 1 ≤ k ≤ kn} ⊂ MT is said to
be infinitesimal if

lim
n→∞

max
1≤k≤kn

µnk({ζ ∈ T : |ζ − 1| ≥ ε})= 0,
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for every ε > 0. Given such an array and a sequence {λn}
∞

n=1 ⊂ T, define

µn = δλn ∪×µn1 ∪×µn2 ∪× · · · ∪×µnkn , νn = δλn �µn1 �µn2 � · · · �µnkn ,

and
σn = δλn ~µn1 ~µn2 ~ · · · ~µnkn for n ∈ N,

where δλn is the point mass at λn . We first prove in this paper that any weak limit
of such a sequence {µn}

∞

n=1 is an infinitely divisible measure. This result may
be viewed as the multiplicative Boolean analogue of Hinčin’s classical theorem
[1937]. Note that the same result has been proved for � in [Bercovici and Pata
2000], and for � in [Belinschi and Bercovici 2008]. Next, we find necessary and
sufficient conditions for the weak convergence of µn to a given infinitely divisible
measure. In particular, our results show that the sequence µn converges weakly
if and only if the sequence νn converges weakly. As an application, we show that
the measures σn have a weak limit if the measures µn (or νn) have a weak limit
whose first moment is not zero. Moreover, the classical limits and the Boolean
limits are related in an explicit manner. We also introduce the notion of Boolean
normal distributions on T, and we show that the sequence µn converges weakly
to such a distribution if and only if the sequence σn converges weakly to a normal
distribution (which is the push-forward measure of a Gaussian law on R via the
natural homomorphism from R into T.)

The additive version of our results was studied earlier by Bercovici and Pata
in [1999] for arrays with identically distributed rows; see also [Stoica 2005] for a
central limit theorem and a weak law of large numbers with weighted components.
Thus, consider an infinitesimal array {νnk}n,k ⊂MR with ηn =νn1 =νn2 =· · ·=νnkn

for n ∈ N. The infinitesimality here means that

lim
n→∞

max
1≤k≤kn

νnk({t ∈ R : |t | ≥ ε})= 0,

for every ε > 0. Set

ρn = ηn ∗ ηn ∗ · · · ∗ ηn︸ ︷︷ ︸
kn times

, τn = ηn � ηn � · · · � ηn︸ ︷︷ ︸
kn times

and
ωn = ηn ] ηn ] · · · ] ηn︸ ︷︷ ︸

kn times

for n ∈ N.

The main result in [Bercovici and Pata 1999, Theorem 6.3] is the equivalences
of weak convergence among the sequences ρn , τn and ωn . The result concerning
ρn and τn was first extended to an arbitrary infinitesimal array by Chistyakov and
Götze [2008]; see also [Bercovici and Wang 2008a] for a different argument. In
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the last part of this paper, we show how to extend the result for τn and ωn to an
arbitrary infinitesimal array using the methods in [Bercovici and Wang 2008a].

This paper is organized as follows. In Section 2, we review the analytic tools
needed for the calculation of Boolean convolutions. We also describe the ana-
lytic characterization of infinite divisibility related to the various convolutions. In
Section 3, we prove the limit theorems for arrays on T. Section 4 proves results
regarding the classical convolution ~. In Section 5, we present the analogous
results for arrays on R.

2. Preliminaries

The analytic methods needed for the calculation of free convolutions were dis-
covered by Voiculescu [1986; 1987]. Likewise, the additive Boolean convolution
formula was found by Speicher and Woroudi [1997], and the basic analysis of
the multiplicative Boolean convolution was done by Franz [2004], but see also
[Bercovici 2006] for a different approach to the calculation of both Boolean con-
volutions. The details are as follows.

2.1. Multiplicative Boolean and free convolutions on the unit circle. Denote by
D the open unit disk of the complex plane C, and by D the closed unit disk of C.
For a probability measure µ supported on T, one defines the analytic function
Bµ : D → C by

Bµ(z)=
1
z
ψµ(z)

1+ψµ(z)
for z ∈ D,

where the formula of ψµ is

ψµ(z)=

∫
T

ζ z
1−ζ z

dµ(ζ ).

Note that

(2-1) Bµ(0)= ψ ′

µ(0)=

∫
T

ζ dµ(ζ )

and that Bδλ(z)= λ for all z ∈ D. As observed in [Belinschi and Bercovici 2005],

|Bµ(z)| ≤ 1 for z ∈ D,

and, conversely, any analytic function B : D → D is of the form Bµ for a unique
probability measure µ on T.

Let µ1 and µ2 be two probability measures on T. As shown in [Franz 2004;
Bercovici 2006], the multiplicative Boolean convolution µ1 ∪× µ2 is characterized
by the identity

(2-2) Bµ1∪×µ2(z)= Bµ1(z)Bµ2(z) for z ∈ D.
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It is easy to verify that weak convergence of probability measures can be trans-
lated in terms of the corresponding functions B . More precisely, given probability
measures µ and {µn}

∞

n=1 on T, the sequence µn converges weakly to µ if and only
if the sequence Bµn (z) converges to Bµ(z) uniformly on the compact subsets of D.

A probability measure ν on T is ∪×-infinitely divisible if, for each n ∈ N, there
exists a probability measure νn on T such that

ν = νn ∪× νn ∪× · · · ∪× νn︸ ︷︷ ︸
n times

.

We define analogously the notion of infinite divisibility for other convolutions.
The ∪×-infinite divisibility is characterized in [Franz 2004] as follows. A proba-

bility measure ν is ∪×-infinitely divisible if and only if either ν is Haar measure m
(that is, normalized arclength measure on T) or the function Bν can be expressed as

(2-3) Bν(z)= γ exp
(
−

∫
T

1+ζ z
1−ζ z

dσ(ζ )
)

for z ∈ D,

where γ ∈ T, and σ is a finite positive Borel measure on T. In other words, a
measure ν is ∪×-infinitely divisible if and only if either Bν(z) = 0 for all z ∈ D or
0 /∈ Bν(D). We use the notation νγ,σ

∪×
to denote the ∪×-infinitely divisible measure

ν determined by γ and σ .
Free multiplicative convolution � for probability measures on the unit circle was

introduced by Voiculescu [1987]. For the definition of �, we refer to [Voiculescu
et al. 1992]. Throughout, we will use the notation M×

T to denote the collection
of all Borel probability measures ν on T with nonzero first moment, that is, with∫

T
ζ dν(ζ ) 6= 0.
We will require the following characterization [Bercovici and Voiculescu 1992]

of �-infinite divisibility. If a measure ν is in the class M×

T , then the function ψν
will have an inverse ψ−1

ν in a neighborhood of zero. In this case one defines

6ν(z)=
1
z
ψ−1
ν

( z
1−z

)
for z near the origin, and the remarkable identity6µ� ν(z)=6µ(z)6ν(z) holds for
z in a neighborhood of zero where three involved functions are defined. A measure
ν ∈ M×

T is �-infinitely divisible if and only if the function 6ν can be expressed as

6ν(z)= γ exp
(∫

T

1+ζ z
1−ζ z

dσ(ζ )
)

for z ∈ D,

where |γ | = 1, and σ is a finite positive Borel measure on T. We will use the
notation νγ,σ� to denote the �-infinitely divisible measure ν in this case. The Haar
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measure m is the only �-infinitely divisible probability measure on T with zero
first moment.

2.2. Additive Boolean and free convolutions on the real line. Set

C+
= {z ∈ C : Im z > 0}

and C−
= −C+. For α, β > 0, define the cone 0α = {z = x + iy ∈ C+

: |x |< αy}

and the truncated cone 0α,β = {z = x + iy ∈ 0α : y > β}. We associate to every
measure µ ∈ MR its Cauchy transform

Gµ(z)=

∫
∞

−∞

1
z−t

dµ(t) for z ∈ C+,

and its reciprocal Fµ = 1/Gµ : C+
→ C+. Then we have Im z ≤ Im Fµ(z), so that

the function Eµ(z) = z − Fµ(z) takes values in C−
∪ R. The function Eµ is such

that Eµ(z)/z → 0 as z → ∞ nontangentially (that is, |z| → ∞, but z stays within
a cone 0α for some α > 0). Conversely, any analytic function E : C+

→ C−
∪ R

such that Eµ(z)/z → 0 as z → ∞ nontangentially is of the form Eµ for a unique
probability measure µ on R.

For µ1, µ2 ∈ MR, the additive Boolean convolution µ1 ] µ2 is characterized
[Speicher and Woroudi 1997; Bercovici 2006] by the identity

Eµ1]µ2(z)= Eµ1(z)+ Eµ2(z) for z ∈ C+.

Let {µn}
∞

n=1 be a sequence in MR. Bercovici and Pata [1999, Proposition 6.2]
showed that the sequence µn converges weakly to a probability measure µ∈ MR if
and only if there exists β > 0 such that limn→∞ Eµn (iy)= Eµ(iy) for every y>β,
and Eµn (iy)= o(y) uniformly in n as y → ∞.

Every measure ν ∈ MR is ]-infinitely divisible [Speicher and Woroudi 1997].
The function Eν has a Nevanlinna representation [Akhiezer 1965]

Eν(z)= γ +

∫
∞

−∞

1+t z
z−t

dσ(t) for z ∈ C+,

where γ ∈ R and σ is a finite positive Borel measure on R. We use the notation
ν
γ,σ
] to denote the (]-infinitely divisible) measure ν.

The additive free convolution � was first introduced by Voiculescu [1986] for
compactly supported measures on the real line. Then it was extended by Maassen
[1992] to measures with finite variance, and by Bercovici and Voiculescu [1993]
to the whole class MR. The book [Voiculescu et al. 1992] also contains a detailed
description of the theory related to this convolution.

We require a result from [Bercovici and Voiculescu 1993] regarding a character-
ization of �-infinite divisibility. We have seen earlier that Eµ(z)/z → 0 as z → ∞

nontangentially for a measure µ∈ MR. It follows that for every α>0, there exists a
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β = β(µ, α)> 0 such that the function Fµ has a right inverse F−1
µ defined on 0α,β .

The Voiculescu transform

φµ(z)= F−1
µ (z)− z for z ∈ 0α,β

linearizes the free convolution in the sense that the identity φµ�ν(z)=φµ(z)+φν(z)
holds for z in a truncated cone where all functions involved are defined. A measure
ν ∈ MR is �-infinitely divisible if and only if there exist γ ∈ R and a finite positive
Borel measure σ on R such that

φν(z)= γ +

∫
∞

−∞

1+t z
z−t

dσ(t) for z ∈ C+.

We will denote the above measure ν by νγ,σ� .
The Lévy–Hinčin formula (see [Billingsley 1995]) characterizes the ∗-infinitely

divisible measures in terms of their Fourier transform as follows: a measure ρ ∈MR

is ∗-infinitely divisible if and only if there exist γ ∈ R and a finite positive Borel
measure σ on R such that the Fourier transform ρ̂ is given by

ρ̂(t)= exp
(

iγ t +

∫
∞

−∞

(
ei t x

− 1 −
i t x

1+x2

) 1+x2

x2 dσ(x)
)

for t ∈ R,

where the integrand (ei t x
−1−i t x/(1+x2)) (1+x2)/x2 is interpreted as −t2/2 for

x = 0. The notation νγ,σ∗ will be used to denote the ∗-infinitely divisible measure
determined by γ and σ .

We will require the following result which was already noted in a different form
as [Bercovici and Wang 2008b, Lemma 2.3].

Lemma 2.1. Consider a sequence of real numbers {rn}
∞

n=1 and triangular arrays

{znk ∈ C : n ∈ N, 1 ≤ k ≤ kn}, {wnk ∈ C : n ∈ N, 1 ≤ k ≤ kn},

{snk ∈ R : n ∈ N, 1 ≤ k ≤ kn}.

Suppose that

(i) all the snk are nonnegative and supn≥1
∑kn

k=1 snk <+∞;

(ii) Rewnk ≤ 0 and Re znk ≤ 0 for every n and k;

(iii) znk =wnk(1+εnk), where the sequence εn = max1≤k≤kn |εnk | converges to zero
as n → ∞;

(iv) there exists a positive constant M such that

|Imwnk | ≤ M |Rewnk | + snk for n ∈ N and 1 ≤ k ≤ kn.

Define sequences

Z := {exp(irn +
∑kn

k=1 znk)}
∞

n=1 and W := {exp(irn +
∑kn

k=1wnk)}
∞

n=1.
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Then the sequence Z converges if and only if the sequence W converges, and the
two sequences have the same limit.

Proof. From the assumptions on {znk}n,k and {wnk}n,k , we deduce that

(2-4)
∣∣∣ kn∑

k=1

(znk −wnk)

∣∣∣ ≤ (1 + M)εn

(
−

kn∑
k=1

Rewnk

)
+ εn

kn∑
k=1

snk,

and

(2-5) (1 − εn − Mεn)
(
−

kn∑
k=1

Rewnk

)
≤

(
−

kn∑
k=1

Re znk

)
+ εn

kn∑
k=1

snk,

for sufficiently large n. Suppose that the sequence Z converges to a complex
number z. If z = 0, then we have limn→∞

∑kn
k=1 Re znk = −∞. Hence (2-4)

implies that limn→∞

∑kn
k=1 Rewnk = −∞ so that the sequence W converges to

zero as well. If z 6= 0, then the sequence exp(
∑kn

k=1 Re znk) converges to |z| as
n → ∞. In particular,

∑kn
k=1 Re znk is bounded. By (2-4) and (2-5), we conclude

that limn→∞ exp(
∑kn

k=1 Rewnk)= |z|, and that

lim
n→∞

exp(i
∑kn

k=1 Imwnk)

exp(i
∑kn

k=1 Im znk)
= 1.

Therefore the sequence W also converges to z. The converse implication is proved
in the same way. �

3. Multiplicative Boolean convolution on T

Fix an infinitesimal array {µnk : n ∈ N, 1 ≤ k ≤ kn} of probability measures on T.
For any neighborhood of zero V ⊂ D, it was proved in [Belinschi and Bercovici
2008, Theorem 2.1] that

(3-1) lim
n→∞

ψµnk (z)= z/(1 − z)

holds uniformly in k and z ∈ V. It follows that, as n tends to infinity, the sequence
Bµnk (z) converges to 1 uniformly in k and z ∈ V. Thus, (2-1) implies that each
µnk has nonzero first moment when n is large. Hence, for our purposes, we will
always assume that each member in such an array belongs to the class M×

T . Another
application of (3-1) is that the principal branch of log Bµnk (z) is defined in V for
large n.

Next, we introduce an auxiliary array {µ◦

nk : n ∈ N, 1 ≤ k ≤ kn}⊂ M×

T as follows.
Fix a constant τ ∈ (0, π). Define the measures µ◦

nk by dµ◦

nk(ζ ) = dµnk(bnkζ ),
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where the complex numbers bnk are given by

bnk = exp
(

i
∫

|arg ζ |<τ
arg ζ dµnk(ζ )

)
.

Here arg ζ is the principal value of the argument of ζ . Note that the array {µ◦

nk}n,k

is again infinitesimal, and

(3-2) lim
n→∞

max
1≤k≤kn

|arg bnk | = 0.

We associate each measure µ◦

nk the function

hnk(z)= −i
∫

T

Im ζ dµ◦

nk(ζ )+

∫
T

1+ζ z
1−ζ z

(1 − Re ζ ) dµ◦

nk(ζ ) for z ∈ D

and observe that Re hnk(z) > 0 for all z ∈ D unless the measure µ◦

nk = δ1.

Lemma 3.1. If ε ∈ (0, 1/4), then we have, for sufficiently large n, that

1 − Bµ◦

nk
(z)= hnk(bnkz)(1 + vnk(z)) for 1 ≤ k ≤ kn,

where z is in Vε = {z ∈ D : |z| < ε}. Moreover, limn→∞ max1≤k≤kn |vnk(z)| = 0
uniformly on Vε.

Proof. Applying (3-1) to the array {µ◦

nk}n,k , we deduce for large n that

z
1+z

−
ψµ◦

nk
(z/(1 + z))

1 +ψµ◦

nk
(z/(1 + z))

=
1

(1+z)2
(

z −ψµ◦

nk

( z
1+z

))
(1 + unk(z)),

where limn→∞ max1≤k≤kn |unk(z)| = 0 uniformly on {z : |z|< 1/3}. Introducing a
change of variable z 7→ z/(1 − z), we obtain

z −
ψµ◦

nk
(z)

1 +ψµ◦

nk
(z)

=

(
z
∫

T

(1−z)(1−ζ )

1−ζ z
dµ◦

nk(ζ )
)(

1 + unk

( z
1−z

))
for z ∈ Vε.

Using the identity

(1−z)(1−ζ )

1−ζ z
= −i Im ζ +

1+ζ z
1−ζ z

(1 − Re ζ ),

we conclude, for sufficiently large n, that

1 − Bµ◦

nk
(z)=

1
z

(
z −

ψµ◦

nk
(z)

1 +ψµ◦

nk
(z)

)
= hnk(z)

(
1 + unk

( z
1−z

))
for all z ∈ Vε.

To prove the result, it suffices to show that for every n and k, we have

hnk(bnkz)= hnk(z)(1 +wnk(z)),
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where limn→∞ max1≤k≤kn |wnk(z)| = 0 uniformly in Vε. If the measure µ◦

nk = δ1,
then hnk(z) = 0 for all z ∈ D. In this case, we define the function wnk to be the
zero function in D. If µ◦

nk 6= δ1, then we define the function

wnk(z)=
hnk(bnkz)

hnk(z)
− 1 for z ∈ D.

Observe that

|hnk(bnkz)− hnk(z)| =

∣∣∣(1 − bnk)

∫
T

( 2ζ z
(1−ζ z)(1−ζbnkz)

)
(1 − Re ζ ) dµ◦

nk(ζ )

∣∣∣
≤ |1 − bnk |

∫
T

∣∣∣ 2ζ z
(1−ζ z)(1−ζbnkz)

∣∣∣(1 − Re ζ ) dµ◦

nk(ζ )

≤
2

(1−ε)2
|1 − bnk |

∫
T

(1 − Re ζ ) dµ◦

nk(ζ )

for z ∈ Vε and ζ ∈ T. Meanwhile, Harnack’s inequality implies that there exists
an L = L(ε) > 0 such that∣∣∣Re

(1+ζ z
1−ζ z

)∣∣∣ = Re
(1+ζ z

1−ζ z

)
≥ L for z ∈ Vε and ζ ∈ T.

Thus, we have

|hnk(z)| ≥ Re hnk(z)=

∫
T

Re
(1+ζ z

1−ζ z

)
(1 − Re ζ ) dµ◦

nk(ζ )

≥ L
∫

T

(1 − Re ζ ) dµ◦

nk(ζ ).

Combining the above inequalities, we get

|wnk(z)| ≤
|hnk(bnkz)−hnk(z)|

|hnk(z)|

≤
2

(1−ε)2L
|1 − bnk | ≤

2
(1−ε)2L

|arg bnk |,

for z ∈ Vε. Hence the claim is proved by (3-2). �

A crucial property for the functions hnk(z) proved in [Bercovici and Wang
2008b, Lemma 4.1] is that for every neighborhood of zero V ⊂ D, there exists
a constant M = M(V, τ ) > 0 such that

(3-3) |Im hnk(z)| ≤ M Re hnk(z) for z ∈ V and 1 ≤ k ≤ kn,

for sufficiently large n.

Proposition 3.2. Let {λn}
∞

n=1be a sequence in T. Suppose that B : D → D is an
analytic function. Then limn→∞ λn

∏kn
k=1 Bµnk (z)= B(z) uniformly on the compact
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subsets of D if and only if

(3-4) lim
n→∞

exp
(
i arg λn + i

∑kn
k=1 arg bnk −

∑kn
k=1 hnk(z)

)
= B(z)

uniformly on the compact subsets of D.

Proof. Suppose that the convergence to B(z) in (3-4) is uniform on the compact
subsets of D. Note that logw = w − 1 + o(|w − 1|) as w → 1, and Bµ◦

nk
(z) =

bnk Bµnk (bnkz) for every z ∈ D. For z near the origin, Lemma 3.1 shows that
log(bnk Bµnk (z)) = − hnk(z)(1 + o(1)) uniformly in k as n tends to infinity. Then
Lemma 2.1 implies that limn→∞ λn

∏kn
k=1 Bµnk (z)= B(z) uniformly in a neigh-

borhood of zero. Moreover, this convergence is actually uniform on the compact
subsets of D since the family {λn

∏kn
k=1 Bµnk (z)}

∞

n=1 is normal. The converse im-
plication is proved in the same way. �

Lemma 3.3. Let {νn}
∞

n=1 be a sequence of ∪×-infinitely divisible measures on T. If
the sequence νn converges weakly to a probability measure ν, then the measure ν
is ∪×-infinitely divisible.

Proof. The weak convergence of νn implies that the sequence Bνn (z) converges to
Bν(z) uniformly on the compact subsets of D. If the function Bν is nonvanishing
in D, then the measure ν is ∪×-infinitely divisible. On the other hand, if Bν(z0)= 0
for some z0 ∈ D, then Rouché’s theorem implies that there exists an N = N (z0)∈ N

such that the function Bνn (z) also has a zero in the disk {z : |z − z0| < 1 − |z0|}

whenever n ≥ N . Since each νn is ∪×-infinitely divisible, we conclude in this case
that νn is the Haar measure m for all n ≥ N . Consequently, the measure ν must be
m as well. �

Our next result is the Boolean analogue of Hinčin’s theorem.

Theorem 3.4. Let {λn}
∞

n=1 be a sequence in T, and let {µnk}n,k be an infinitesimal
array in MT. If the sequence of measures

δλn ∪×µn1 ∪×µn2 ∪× · · · ∪×µnkn

converges weakly on T to a probability measure ν, then ν is ∪×-infinitely divisible.

Proof. From (2-2) and the weak convergence of δλn ∪× µn1 ∪× µn2 ∪× · · · ∪× µnkn , we
have limn→∞ λn

∏kn
k=1 Bµnk (z) = Bν(z) uniformly on the compact subsets of D.

Observe that the function −
∑kn

k=1 hnk(z) has negative real part in D, and hence
there exists a ∪×-infinitely divisible measure νn on T such that

Bνn (z)= exp
(
i arg λn + i

∑kn
k=1 arg bnk −

∑kn
k=1 hnk(z)

)
for z ∈ D.

Proposition 3.2 then implies that the sequence νn converges weakly to ν. The ∪×-
infinitely divisibility of the measure ν follows immediately by Lemma 3.3. �
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Fix γ ∈ T and a finite positive Borel measure σ on T.

Theorem 3.5. For an infinitesimal array {µnk}n,k ⊂ M×

T and a sequence {λn}
∞

n=1 ⊂

T, the following statements are equivalent:

(i) The sequence δλn ∪× µn1 ∪× µn2 ∪× · · · ∪× µnkn converges weakly to νγ,σ
∪×

.

(ii) The sequence δλn �µn1 �µn2 � · · · �µnkn converges weakly to νγ ,σ� .

(iii) The sequence of measures

dσn(ζ )=
∑kn

k=1(1 − Re ζ ) dµ◦

nk(ζ )

converges weakly on T to σ , and the limit limn→∞ γn = γ exists, where

γn = exp
(

i arg λn + i
kn∑

k=1

arg bnk + i
kn∑

k=1

∫
T

Im ζ dµ◦

nk(ζ )
)
.

Proof. Bercovici and Wang [2008b] proved the equivalence of (ii) and (iii). We
will focus on the equivalence of (i) and (iii). Assume that (i) holds. Then we have

lim
n→∞

λn

kn∏
k=1

Bµnk (z)= Bνγ,σ
∪×
(z)= γ exp

(
−

∫
T

1+ζ z
1−ζ z

dσ(ζ )
)

uniformly on the compact subsets of D. Proposition 3.2 then shows that

(3-5) lim
n→∞

exp
(

i arg λn+i
kn∑

k=1

arg bnk−

kn∑
k=1

hnk(z)
)

=γ exp
(
−

∫
T

1+ζ z
1−ζ z

dσ(ζ )
)

uniformly on the compact subsets of D. Taking the absolute value on both sides,
we conclude that

(3-6) lim
n→∞

exp
(
−

kn∑
k=1

Re hnk(z)
)

= exp
(
−

∫
T

Re
(1+ζ z

1−ζ z

)
dσ(ζ )

)
for z ∈ D.

Since

exp
(
i arg λn + i

∑kn
k=1 arg bnk −

∑kn
k=1 hnk(z)

)
= γn exp

(
−

∫
T

1+ζ z
1−ζ z

dσn(ζ )
)
,

and the real part of the function
∑kn

k=1 hnk(z) is the Poisson integral of the measure
dσn(ζ ), Equation (3-6) uniquely determines the measure σ that is the weak cluster
point of {σn}

∞

n=1. Hence σn must converge weakly to σ . The convergence property
of the sequence γn follows immediately by letting z = 0 in (3-5) and (3-6).

For the converse implication from (iii) to (i), one can easily reverse the above
steps to reach (i) by Proposition 3.2. The details are left to the reader. �
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Bercovici and Wang [2008b, Theorem 4.4] gave the equivalent condition for
the weak convergence of δλn � µn1 � µn2 � · · · � µnkn to the Haar measure m.
It turns out that the same condition is also equivalent to the weak convergence of
δλn ∪× µn1 ∪× µn2 ∪× · · · ∪× µnkn to m. We will not provide the details of this proof
because they are entirely analogous to the free case. We only point out that the
relevant fact needed in the proof is that Bµ(0) =

∫
T
ζ dµ(ζ ) for all probability

measure µ on T.

Theorem 3.6. For an infinitesimal array {µnk}n,k ⊂ M×

T and a sequence {λn}
∞

n=1 ⊂

T, the following statements are equivalent:

(i) The sequence δλn ∪× µn1 ∪× µn2 ∪× · · · ∪× µnkn converges weakly to m.

(ii) The sequence δλn �µn1 �µn2 � · · · �µnkn converges weakly to m.

(iii) lim
n→∞

kn∑
k=1

∫
T

(1 − Re ζ ) dµ◦

nk(ζ )= +∞.

We conclude this section by using Theorem 3.5 to determine the multiplicative
Boolean analogues of Gaussian and Poisson laws on R. The following result gen-
erates a measure analogous to the Gaussian distribution on the real line.

Corollary 3.7. For every t > 0, the function

B(z)= exp
(
−

t
2

(1+z
1−z

))
for z ∈ D,

is of the form B = Bν for some ∪×-infinitely divisible measure ν ∈ M×

T .

Proof. For n > t , we define µnk = µn =
1
2(δξn + δξn

) for 1 ≤ k ≤ n, where
ξn =

√
1 − t/n + i

√
t/n. To apply Theorem 3.5, we choose τ = 1, so that bnk = 1

for every n and k. Hence we have µ◦
n = µn . As in the statement of Theorem

3.5, we define the measures dσn(ζ ) = n(1 − Re ζ ) dµn(ζ ) and the numbers γn =

exp(i n
∫

T
Im ζ dµn(ζ )). Note that γn = 1 for all n ∈ N and that the p-th Fourier

coefficient σ̂n(p) of the measure σn is given by

σ̂n(p)=

∫
T

ζ
p
n(1 − Re ζ ) dµn(ζ )= n Re ξ

p

n (1 − Re ξn),

where p is an integer. Since limn→∞ σ̂n(p) = t/2 for all p, we conclude that the
sequence σn converges weakly on T to the measure σ = (t/2)δ1. Theorem 3.5
then implies that the sequence µn ∪× µn ∪× · · · ∪× µn (in which µn occurs n times)
converges weakly to ν1,σ

∪×
as n →∞. The desired result now follows from (2-3). �

Definition. A ∪×-infinitely divisible measure νγ,σ
∪×

∈ M×

T is said to be ∪×-normal if
the measure σ is concentrated at the point 1 (that is, σ = σ(T)δ1).

Our next result produces a Boolean analogue of the Poisson distribution on R.
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Corollary 3.8. For every t > 0 and λ ∈ T, the function

B(z)= exp
(
−t (1 − λ)

( 1−z
1−λz

))
for z ∈ D,

is of the form B = Bν for some ∪×-infinitely divisible measure ν ∈ M×

T .

Proof. Note that B = Bδ1 when λ = 1. Assume now λ 6= 1. This time we set
µnk = µn = (1 − t/n) δ1 + t/nδλ for 1 ≤ k ≤ n, and we choose τ = |arg λ|/2 so
that µ◦

n =µn . Meanwhile, we define the measures σn and the numbers γn as in the
proof of Corollary 3.7. Then we have σ̂n(p) = tλ

p
(1 − Re λ) and γn = ei t Im λ for

all p ∈ Z and n ∈ N. Thus, the measures σn converge weakly on T to the measure
σ = t (1 − Re λ)δλ, while the number γ = ei t Im λ. Then the proof is completed by
Theorem 3.5 and the observation that

i t Im λ− t (1 − Re λ)1+λz
1−λz

= − t
(
−i Im λ+ (1 − Re λ)1+λz

1−λz

)
= −t

(
(1−λ)(1−z)

1−λz

)
. �

4. Classical convolution on T

Consider an infinitesimal array {µnk}n,k ⊂ M×

T and a sequence {λn}
∞

n=1 ⊂ T. We
define

µn = δλn ∪×µn1 ∪×µn2 ∪× · · · ∪×µnkn and νn = δλn ~µn1 ~µn2 ~ · · · ~µnkn ,

for every n ∈ N. This section investigates connections between the asymptotic dis-
tributional behavior of {µn}

∞

n=1 and that of {νn}
∞

n=1. For our purposes, we introduce
the complex numbers

bnk = exp
(

i
∫

|arg ζ |<1
arg ζ dµnk(ζ )

)
,

and the centered measures dµ◦

nk(ζ )= dµnk(bnkζ ). Note that we have

µ̂nk(p)= bp
nkµ̂

◦

nk(p)

for any integer p, and that the function (ζ
p
−1− i p Im ζ )/(1−Re ζ ) is continuous

and bounded on T. (The value of this function for ζ = 1 is set to −p2 in order to
preserve its continuity at that point.)

Theorem 4.1. Assume that γ ∈ T and that σ is a finite positive Borel measure
on T. If the sequence µn converges weakly to νγ,σ

∪×
, then there exists a probability

measure ν on T such that the sequence νn converges weakly to ν. Moreover, the
Fourier coefficients of the limit law ν can be calculated by the formula

(4-1) ν̂(p)= γ p exp
(∫

T

ζ
p
−1−i p Im ζ

1−Re ζ
dσ(ζ )

)
for p ∈ Z.
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Proof. Observe that ν̂n(0) = 1 for all n ∈ N, and the right side of (4-1) is 1 when
p = 0. Fix now a nonzero integer p. To prove the theorem, it suffices to show that
the sequence {ν̂n(p)}∞n=1 has a limit and that this limit can be identified as the right
side of (4-1). Since the array {µ◦

nk}n,k is infinitesimal, the principal logarithm of
µ̂◦

nk(p) exists when n is sufficiently large. Moreover, we have

(4-2) ν̂n(p)= exp
(
i p arg λn + i p

∑kn
k=1 arg bnk +

∑kn
k=1 log µ̂◦

nk(p)
)

for large n. Define the complex numbers Ank = Ank(p)= µ̂◦

nk(p)− 1, and set

dσn(ζ )=
∑kn

k=1(1 − Re ζ ) dµ◦

nk(ζ )

and

γn = exp
(

i arg λn + i
kn∑

k=1

arg bnk + i
kn∑

k=1

∫
T

Im ζ dµ◦

nk(ζ )
)
.

By Theorem 3.5, the measures σn converge weakly on T to the measure σ , and the
limit of the sequence γn is γ . Note that

xn := exp
(
i p arg λn + i p

∑kn
k=1 arg bnk +

∑kn
k=1 Ank

)
= γ p

n exp
( kn∑

k=1

(
Ank −

∫
T

i p Im ζ dµ◦

nk(ζ )
))

= γ p
n exp

( kn∑
k=1

∫
T

(ζ
p
− 1 − i p Im ζ ) dµ◦

nk(ζ )
)

= γ p
n exp

(∫
T

ζ
p
−1−i p Im ζ

1−Re ζ
dσn(ζ )

)
.

Therefore, we deduce that

lim
n→∞

xn = γ p exp
(∫

T

ζ
p
−1−i p Im ζ

1−Re ζ
dσ(ζ )

)
.

The infinitesimality of the array {µ◦

nk}n,k implies that max1≤k≤kn |Ank | → 0 as
n → ∞. Hence for sufficiently large n, the expansion

log µ̂◦

nk(p)= log(1 + Ank)= Ank −
1
2 A2

nk +
1
3 A3

nk − · · ·

holds. Thus, we deduce that log µ̂◦

nk(p)= Ank(1+o(1)) uniformly in k as n → ∞.
Denote by Up the set of all complex numbers ζ ∈ T such that 3|arg ζ | <

min{1, |π/p|} and by Vp the set of all ζ ∈ Up such that 6|arg ζ |<min{1, |π/p|}.
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We also introduce the sets U◦
p = U◦

p(n, k)= {bnkζ : ζ ∈ Up}. By (3-2), we have∣∣∣∫
Up

arg ζ dµ◦

nk(ζ )

∣∣∣
=

∣∣∣arg bnk −

∫
{|arg ζ |<1}\U◦

p

arg ζ dµnk(ζ )− arg bnk

∫
U◦

p

dµnk(ζ )

∣∣∣
=

∣∣∣arg bnkµ
◦

nk(T \ Up)−

∫
{|arg ζ |<1}\U◦

p

arg ζ dµnk(ζ )

∣∣∣
≤ 2µ◦

nk(T \ Vp)

for sufficiently large n. Hence we conclude for large n that

|Im Ank | ≤

∫
Up

|Im ζ
p
− p arg ζ | dµ◦

nk(ζ )

+

∣∣∣∫
Up

p arg ζ dµ◦

nk(ζ )

∣∣∣ + ∫
T\Up

|Im ζ
p
| dµ◦

nk(ζ )

≤ 2
∫

Up

(1 − Re ζ
p
) dµ◦

nk(ζ )+ (2|p| + 1)µ◦

nk(T \ Vp)

≤ 2|Re Ank | + (2|p| + 1)µ◦

nk(T \ Vp).

Meanwhile, the weak convergence of σn implies that

lim
n→∞

∫
T\Vp

1
1−Re ζ

dσn(ζ )=

∫
T\Vp

1
1−Re ζ

dσ(ζ ).

Since
kn∑

k=1

µ◦

nk(T \ Vp)=

∫
T\Vp

1
1−Re ζ

dσn(ζ ),

we conclude that
∑kn

k=1 µ
◦

nk(T \ Vp) is bounded.
Applying Lemma 2.1 to the arrays {Ank}n,k and {log µ̂◦

nk(p)}n,k , we conclude at
once that the sequence ν̂n(p) converges, and

lim
n→∞

ν̂n(p)= lim
n→∞

exp
(
i p arg λn + i p

∑kn
k=1 arg bnk +

∑kn
k=1 Ank

)
= γ p exp

(∫
T

ζ
p
−1−i p Im ζ

1−Re ζ
dσ(ζ )

)
. �

Remark. Note that (4-1) implies that the limit law ν in Theorem 4.1 is ~-infinitely
divisible. Indeed, for every n ∈ N, there exists a probability measure νn on T such
that

ν̂n(p)= γ p/n exp
(1

n

∫
T

ζ
p
−1−i p Im ζ

1−Re ζ
dσ(ζ )

)
for p ∈ Z.
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It follows that ν = νn ~ νn ~ · · · ~ νn (where νn occurs n times) and hence the
measure ν is ~-infinitely divisible.

Suppose a ∈ R and t > 0. Denote by N (a, t) the Gaussian distribution on R

with mean a and variance t , that is,

d N (a, t)(x)=
1

√
2π t

e−(x−a)2/(2t) dx for − ∞< x <∞.

Let τ be the continuous homomorphism x 7→ ei x from R into the circle T. A
probability measure ν on T is called a normal distribution [Heyer 1977, Chapter
V, Section 5.2] if ν is the push-forward measure of a Gaussian law N (a, t) by the
map τ . One computes its measure ν(S) of a Borel measurable set S ⊂ T as

ν(S)=

∫
arg S

∑
n∈Z

1
√

2π t
e−(u−a+2nπ)2/(2t) du,

where the set arg S = {arg ζ : ζ ∈ S}. Note that ν is normal if and only if

ν̂(p)= exp(iap − tp2/2) for p ∈ Z.

It follows that each normal distribution on T is ~-infinitely divisible. In accordance
with the established terminology, we shall call a central limit theorem any assertion
that, under some conditions, convolutions of probability measures converge to a
normal distribution. The next result shows that the Boolean (or free) central limit
theorem holds if and only if the classical central limit theorem holds. Recall that
a ∪×-normal distribution on T is a ∪×-infinitely divisible measure νγ,σ

∪×
such that the

measure σ is concentrated at the point 1.

Corollary 4.2. The sequenceµn converges weakly on T to a ∪×-normal distribution
if and only if the sequence νn converges weakly on T to a normal distribution.

Proof. If the sequence µn converges weakly to a ∪×-normal distribution νγ,σ
∪×

, then
Theorem 4.1 shows that the sequence νn converges weakly to a probability measure
ν such that ν̂(p)= γ p exp(−σ({1})p2) for all p ∈ Z. Therefore, the measure ν is
a normal distribution on T.

Assume now that the sequence νn converges weakly on T to a normal distribution
ν. Then we have

lim
n→∞

ν̂n(p)= ν̂(p)= γ p exp(−tp2/2) for p ∈ Z

and for some γ ∈ T and t > 0. Define the complex numbers Ank(p), γn and the
measures σn as in the proof of Theorem 4.1, and note that

exp
(
i arg λn + i

∑kn
k=1 arg bnk +

∑kn
k=1 Ank(1)

)
= γne−σn(T) for n ∈ N.
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Let us recall, from Section 3, the definition of functions

hnk(z)= −i
∫

T

Im ζ dµ◦

nk(ζ )+

∫
T

1+ζ z
1−ζ z

(1 − Re ζ ) dµ◦

nk(ζ ) for z ∈ D,

and observe that |Im Ank(1)| = |Im hnk(0)| and |Re Ank(1)| = |Re hnk(0)|. Then
(3-3) shows that there exists an M > 0 such that |Im Ank(1)| ≤ M |Re Ank(1)| for
large n. Since log µ̂◦

nk(1)= Ank(1)(1 + o(1)) uniformly in k as n → ∞, Lemma
2.1 and (4-2) imply that

lim
n→∞

γne−σn(T) = lim
n→∞

exp
(
i arg λn + i

∑kn
k=1 arg bnk +

∑kn
k=1 Ank(1)

)
= lim

n→∞
ν̂n(1)= γ exp (−t/2)

.

Consequently, we have limn→∞ σn(T)= t/2, and limn→∞ γn =γ . In particular, we
deduce that the family {σn}

∞

n=1 is tight. Let σ be a weak cluster point of {σn}
∞

n=1,
and suppose that a subsequence σn j converges weakly to σ as j → ∞. Then we
have σ(T)= t/2. Moreover, Theorems 3.5 and 4.1 yield that

γ p exp(−tp2/2)= ν̂(p)= γ p exp
(∫

T

ζ
p
−1−i p Im ζ

1−Re ζ
dσ(ζ )

)
for p ∈ Z.

Taking the absolute value of both sides, we have

0 =
t
2

p2
−

∫
T

1−Re ζ
p

1−Re ζ
dσ(ζ )

= σ(T)p2
−

∫
T

1−Re ζ
p

1−Re ζ
dσ(ζ )=

∫
T

(
p2

−
1−Re ζ

p

1−Re ζ

)
dσ(ζ ),

for every p ∈ Z. Therefore, we deduce that p2
= (1 − Re ζ

p
)/(1 − Re ζ ) for σ -

almost all ζ ∈ T. Since the function ζ 7→ (1 − Re ζ
p
)/(1 − Re ζ ) achieves its

maximum p2 only at ζ = 1, we conclude σ = (t/2)δ1. Hence, the full sequence
σn must converge weakly to σ because σ is unique. The result now follows by
Theorem 3.5. �

Remark. The attentive reader might have noticed that a crucial step in the proof
of Corollary 4.2 is that (4-1) uniquely determines the measure σ . The following
example inspired by [Parthasarathy 1967, Chapter IV, Section 8] shows that this
phenomenon does not happen in general. Consider the function

f (ζ )= 4π Im ζ for ζ ∈ T.

Note that
∫

T
ζ

p
f (ζ ) dm(ζ ) = 2pπ i when p = ±1, and

∫
T
ζ

p
f (ζ ) dm(ζ ) = 0 for

other p’s. Denote by f + the positive part of f and by f − the negative part of f .
Let us introduce measures

dσ1(ζ )= (1 − Re ζ ) f +(ζ ) dm(ζ )
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and
dσ2(ζ )= (1 − Re ζ ) f −(ζ ) dm(ζ ).

Then σ1 6= σ2, and yet

exp
(∫

T

ζ
p
−1−i p Im ζ

1−Re ζ
dσ1(ζ )

)
= exp

(∫
T

ζ
p
−1−i p Im ζ

1−Re ζ
dσ2(ζ )

)
for every p ∈ Z.

We conclude this section by showing a result concerning the weak convergence to
the Haar measure m.

Theorem 4.3. The sequence

λn

kn∏
k=1

∫
T

ζ dµnk(ζ )

converges to zero as n → ∞ if and only if the sequence µn converges weakly to m
as n → ∞.

Proof. Define the measures σn and the complex numbers γn as in the proof of The-
orem 4.1. Then Lemma 2.1 and the proof of Corollary 4.2 show that the sequence
γne−σn(T) converges if and only if the sequence

ν̂n(1)= λn

kn∏
k=1

∫
T

ζ dµnk(ζ )

converges. Moreover, the two sequences have the same limit. Therefore, the result
follows at once by Theorem 3.6. �

Remark. Theorem 4.3 shows that if the measures νn converge weakly to the Haar
measure m, then the measures µn converge weakly to m as well. The example
below indicates that the converse of this fact may not be true in general. Define

ρn = (1 − 1/n)δ1 + (1/n)δ−1 for n ∈ N.

Note that

ρ̂n(p)=

{
1 if p is even,
1 − 2/n if p is odd.

Theorem 3.6 shows that the sequence ρn ∪× ρn ∪× · · · ∪× ρn , in which ρn occurs n2

times, converges weakly to m as n →∞. However, the sequence ρn ~ρn ~· · ·~ρn ,
in which ρn again occurs n2 times, converges weakly to the probability measure
ν =

1
2(δ1 + δ−1) as n → ∞. Note that the limit law ν is ~-infinitely divisible

because ν ~ ν = ν. However, the measure ν is neither ∪×-infinitely divisible nor
�-infinitely divisible.



LIMIT LAWS FOR BOOLEAN CONVOLUTIONS 367

5. Measures on R

Let {νnk : n ∈ N, 1 ≤ k ≤ kn} ⊂ MR be an infinitesimal array. Define the probability
measures ν◦

nk by dν◦

nk(t) = dνnk(t + ank), where the numbers ank ∈ [−1, 1] are
given by ank =

∫
|t |<1 t dνnk(t). Note that the array {ν◦

nk}n,k is infinitesimal, and
that limn→∞ max1≤k≤kn |ank | = 0. We introduce analytic functions

fnk(z)=

∫
∞

−∞

t
1+t2 dν◦

nk(t)+
∫

∞

−∞

(1+t z
z−t

) t2

1+t2 dν◦

nk(t) for z ∈ C+

and note that

fnk(z)=

∫
∞

−∞

t z
z−t

dν◦

nk(t)

for every n and k. Observe that Im fnk(z) < 0 for all z ∈ C+ unless the measure
ν◦

nk = δ0, and that fnk(z)= o(|z|) as z → ∞ nontangentially. The following result
is analogous to Lemma 3.1.

Lemma 5.1. Let 0α,β be a truncated cone. Then for sufficiently large n, we have

Eν◦

nk
(z)= fnk(z + ank)(1 + vnk(z)),

where the sequence
vn(z)= max

1≤k≤kn
|vnk(z)|

has properties that limn→∞ vn(z) = 0 for all z ∈ 0α,β , and that vn(z) = o(1)
uniformly in n as |z| → ∞ for z ∈ 0α,β .

Proof. It was shown in [Bercovici and Pata 1999, Proposition 6.1] that the function
Eν◦

nk
(z) can be approximated by the function fnk(z) in the way we stated in the

present lemma for sufficiently large n. To prove the lemma, we only need to show
that the function fnk(z + ank) can be approximated by the function fnk(z) in the
same way. As in Lemma 3.1, we may assume that Im fnk(z) < 0 for all n, k, and
z ∈ 0α,β . Then it suffices to show that the sequence

un(z)= max
1≤k≤kn

∣∣∣ fnk(z+ank)

fnk(z)
− 1

∣∣∣
converges to zero as n → ∞ for every z ∈ 0α,β , and that un(z) = o(1) uniformly
in n as z → ∞ for z ∈ 0α,β . Indeed, we have, for all n, k, and z ∈ 0α,β , that

| fnk(z + ank)− fnk(z)| ≤ |ank |

∫
∞

−∞

t2

|z+ank −t ||z−t |
dν◦

nk(t)

= |ank |

∫
∞

−∞

t2

|z−t |2
|z−t |

|z+ank −t |
dν◦

nk(t)

≤ 2
√

1 +α2|ank |

∫
∞

−∞

t2

|z−t |2
dν◦

nk(t),
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while

| fnk(z)| ≥ |Im fnk(z)|> Im z
∫

∞

−∞

t2

|z−t |2
dν◦

nk(t).

Hence, we conclude that∣∣∣ fnk(z+ank)

fnk(z)
− 1

∣∣∣ ≤
| fnk(z+ank)− fnk(z)|

|Im fnk(z)|
≤ 2

√
1 +α2 |ank |

Im z
.

The result follows since limn→∞ max1≤k≤kn |ank | = 0. �

As shown in [Bercovici and Wang 2008a, Lemma 3.1], the functions fnk(z) possess
remarkable features: For y ≥ 1, and for sufficiently large n, we have

|Re fnk(iy)| ≤ (3 + 6y)|Im fnk(iy)| for 1 ≤ k ≤ kn,

|Re( fnk(iy)− bnk(y))| ≤ 2|Im fnk(iy)| for 1 ≤ k ≤ kn,

where the real-valued function bnk(y) is given by

bnk(y)=

∫
|t |≥1

(
ank +

(t−ank)y2

y2+(t−ank)2

)
dνnk(t).

Proposition 5.2. Let {cn}
∞

n=1 be a sequence of real numbers.

(i) For any y ≥ 1, the sequence {cn +
∑kn

k=1 Eνnk (iy)}∞n=1 converges if and only if
the sequence {cn +

∑kn
k=1 [ank + fnk(iy)]}∞n=1 converges. The two sequences

have the same limit.

(ii) If

L = sup
n≥1

kn∑
k=1

∫
∞

−∞

t2

1+t2 dν◦

nk(t) <+∞,

then cn +
∑kn

k=1 Eνnk (iy) = o(y) uniformly in n as y → ∞ if and only if
cn +

∑kn
k=1 (ank + fnk(iy))= o(y) uniformly in n as y → ∞.

Proof. Fix y ≥ 1. Since Eν◦

nk
(z)= Eνnk (z +ank)−ank , we obtain from Lemma 5.1

that

−Eνnk (iy)+ ank = − fnk(iy)(1 + unk(iy)),

where the sequence un(iy) = max1≤k≤kn |unk(iy)| converges to zero as n → ∞.
Thus, (i) follows from (2-4) and (2-5) by setting znk = −i Eνnk (iy)+ iank , wnk =

−i fnk(iy) and snk = 0.
Now, let us prove (ii). Since limn→∞ max1≤k≤kn |ank | = 0 and un(iy) = o(1)

uniformly in n as y → ∞, we may assume that |ank | ≤ 1/2 and that un(iy) < 1/6
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for all n and k and for sufficiently large y. Observe that

kn∑
k=1

|bnk(y)| =

kn∑
k=1

∣∣∣∫
|t |≥1

(
ank +

(t−ank)y2

y2+(t−ank)2

)
dνnk(t)

∣∣∣
≤ (1 + y)

kn∑
k=1

∫
|t |≥1

1
2 dνnk(t)≤ 5y

kn∑
k=1

∫
|t |≥1

1
5 dνnk(t)

≤ 5y
kn∑

k=1

∫
|t |≥1

(t−ank)
2

1+(t−ank)2
dνnk(t)≤ 5yL .

Then (2-4) and (2-5) imply that∣∣∣( kn∑
k=1

Eνnk (iy)
)

−

( kn∑
k=1

(ank + fnk(iy))
)∣∣∣ ≤

1
2

∣∣∣ kn∑
k=1

Im fnk(iy)
∣∣∣ + 5yLun(iy),

and
1
2

∣∣∣ kn∑
k=1

Im fnk(iy)
∣∣∣ ≤

∣∣∣ kn∑
k=1

Im Eνnk (iy)
∣∣∣ + 5yLun(iy),

for n ∈ N. Then (ii) follows since un(iy)= o(1) uniformly in n as y → ∞. �

We are now ready for the main result of this section. With Proposition 5.2 in hand,
it follows by applying almost word-for-word the argument of [Bercovici and Wang
2008a, Theorem 3.3]. Therefore, we will not repeat this rather lengthy proof here
but instead refer to that paper for its details.

Theorem 5.3. Fix a real number γ and a finite positive Borel measure σ on R.
Let {νnk}n,k be an infinitesimal array in MR, and let {cn}

∞

n=1 be a sequence of real
numbers. Then the following statements are equivalent:

(i) The sequence δcn ∗ νn1 ∗ νn2 ∗ · · · ∗ νnkn converges weakly to νγ,σ∗ .

(ii) The sequence δcn � νn1 � νn2 � · · · � νnkn converges weakly to νγ,σ� .

(iii) The sequence δcn ] νn1 ] νn2 ] · · · ] νnkn converges weakly to νγ,σ] .

(iv) The sequence of measures

dσn(t)=

kn∑
k=1

t2

1+t2 dν◦

nk(t)

converges weakly on R to σ , and the sequence of numbers

γn = cn +

kn∑
k=1

(
ank +

∫
∞

−∞

t
1+t2 dν◦

nk(t)
)

converges to γ as n → ∞.
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