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We study the equation 1gu − (n − 2)/(4(n − 1))R(g)u + K u p = 0 for p in
1 + ζ ≤ p ≤ (n + 2)/(n − 2) on locally conformally flat compact manifolds
(Mn, g). We prove that when the scalar curvature R(g) ≡ 0 and n ≥ 5,
under suitable conditions on K , all positive solutions u with bounded energy
have uniform upper and lower bounds. In our previous 2007 paper, we also
assumed this energy bound condition for the uniform estimates in the lower-
dimensional case. We now give an example showing that this condition is
necessary.

1. Introduction

Let (Mn, g) be an n-dimensional compact manifold with metric g, and denote by
R(g) the scalar curvature of g. Let u be a positive function defined on M . The
scalar curvature of the conformally deformed metric u4/(n−2)g is given by

R(u4/(n−2)g) = − c(n)−1u−(n+2)/(n−2)(1gu − c(n)R(g)u),

where c(n) = (n − 2)/(4(n − 1)).
The Yamabe theorem, which was proved by Trudinger [1968], Aubin [1976]

and Schoen [1984], says that there exists a u > 0 such that R(u4/(n−2)g) is equal
to some constant K . The PDE formulation of this theorem is that the equation

1gu − c(n)R(g)u + c(n)K u(n+2)/(n−2)
= 0

has a positive solution for some constant K .
J. Escobar and R. Schoen [1986] extended this result to the case when K is

a function on M . They proved that, under certain conditions on K , the above
equation has a positive solution u when R(g) > 0 or R(g) ≡ 0.

In fact, the solution in those existence results minimizes the associated constraint
variational problem and can be obtained as a limit of a sequence of solutions of
the corresponding subcritical equations. Therefore, a natural question is whether
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nonminimal solutions can also be produced from solutions of the subcritical equa-
tions. We would like to know if there are uniform estimates for solutions of the
equation

(1) 1gu − c(n)R(g)u + K u p
= 0, where 1 + ζ ≤ p ≤ (n + 2)/(n − 2).

This was proved to be true by Schoen [1988a; 1991] when K is a positive
constant, R(g) > 0, and (Mn, g) is locally conformally flat and not conformally
diffeomorphic to Sn . When the manifold has dimension n =3, the work of Y. Li and
M. Zhu [1999] shows that the same estimates hold when the locally conformally
flat condition on M is dropped. This result was extended to dimensions n = 4, 5
by O. Druet [2003; 2004], and then to dimensions n ≤ 7 independently by Y. Li
and L. Zhang [Li and Zhang 2005] and F. C. Marques [2005]; when the dimension
n ≥ 8, it was proved by Li and Zhang [2005] under an additional assumption on
the Weyl tensor of the backgroud metric g.

When K is a positive function, Y. Li and M. Zhu [1999] obtained uniform es-
timates for the solutions when (M, g) is a 3-dimensional compact manifold with
R(g) > 0 and is not conformally diffeomorphic to S3. When the dimension n ≥ 4,
the same estimates hold on a locally conformally flat, scalar positive, compact man-
ifold that is not conformally diffeomorphic to Sn , under the following additional
flatness condition on K : near each critical point of K , there exists a neighborhood
and a constant C0 such that in that neighborhood

|∇
p K | ≤ C0|∇K |

(n−2+ε−p)/(n−3+ε) for 2 ≤ p ≤ n − 2,

where ε > 0 and ∇
p K is the p-th covariant derivative of K . This result is proved

by fine blow-up analysis similar to the analyses in [Li 1995] and [Schoen 1988a].
In [Yan 2007], we studied this problem on 3 and 4 dimensional locally confor-

mally flat compact manifolds with zero scalar curvature. In this paper, we consider
the higher-dimensional case n ≥ 5.

When the scalar curvature R(g) ≡ 0 on the manifold M , Equation (1) becomes

(2) 1gu + K u p
= 0, where 1 + ζ ≤ p ≤ (n + 2)/(n − 2).

The necessary conditions for the existence of a solution u >0 are that K changes
sign on M and

∫
M K dvg < 0.

The corresponding existence result is as follows.

Theorem 1.1 [Escobar and Schoen 1986]. Suppose M is locally conformally flat
with zero scalar curvature. Suppose K is a nonzero smooth function on M sat-
isfying the condition that there is a maximum point P0 ∈ M of K at which all
derivatives of K of order less than or equal to (n − 3) vanish. Then K is the
scalar curvature of a metric g = u4/(n−2)g for some u > 0 on M if and only if K is
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such that K changes sign and
∫

M K dvg < 0. When the dimension n = 3 or 4, the
flatness condition on K is automatically satisfied, and the locally conformally flat
assumption on M can be removed.

There is a compactness theorem when the dimension of M is equal to 3 or 4:

Theorem 1.2 [Yan 2007]. Let (M, g) be a 3- or 4-dimensional locally conformally
flat compact manifold with R(g) ≡ 0. Let K := {K ∈ C3(M) : K > 0 somewhere
on M,

∫
M K dvg ≤ −CK

−1 < 0, and ‖K‖C3(M) ≤ CK } for some constant CK , and
let S3 := {u : u > 0 solves (2) with K ∈ K, and E(u) :=

∫
M |∇u|

2dvg ≤ 3}. Then
there exists C = C(M, g, CK , 3, ζ ) > 0 such that u ∈ S3 satisfies ‖u‖C3(M) ≤ C
and minM u ≥ C−1.

In Section 2, we will give an example that shows that these estimates cannot be
improved to be independent of the energy E(u).

Next we give a similar theorem on manifolds of dimension n ≥ 5. We first need
to define a flatness condition on K as follows.

Definition 1.3. A function K ∈ Cn−2(M) is said to satisfy the flatness condition
(∗) if near each critical point P of K where K (P) > 0, there exist a neighborhood
and a constant C0 such that, in that neighborhood,

|∇
p K | ≤ C0|∇K |

(n−2−p)/(n−3) for 2 ≤ p ≤ n − 3,

where ∇
p K is the p-th covariant derivative of K .

In particular, this implies that all partial derivatives of K up to order n−3 vanish
at those critical points, and the order of flatness is the same as that in Theorem 1.1.
A simple example of a function satisfying this condition is a function that can
be expressed near the critical points as K (z) = a + b|z|n−2, where a and b are
constants and z is a local coordinate system centered at the critical point. This type
of flatness condition also appeared when Y. Li [1995; 1996] studied the problem
of prescribing scalar curvature functions on Sn .

We are ready to state the theorem:

Theorem 1.4. Let (Mn, g) be a locally conformally flat compact manifold with
R(g) ≡ 0 and dimension n ≥ 5. Let K ∈ Cn−2(M) be a function satisfying the
flatness condition (∗); assume K is positive somewhere on M and

∫
M K dvg < 0.

If u is a positive solution of Equation (2) with bounded energy

E(u) :=

∫
M

|∇u|
2dvg ≤ 3,

then there exists a positive constant C such that ‖u‖C3(M) ≤ C and minM u ≥ C−1,
where C depends on M, g, ‖K‖Cn−2(M),

∫
M K dvg, 3, and ζ .
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2. The example and some notations

Let (Mn, g) be a compact manifold with R(g) ≡ 0 and n = 3 or 4. (In fact in this
example, M does not need to be locally conformally flat.) We choose K ∈ C3(M)

satisfying the conditions

• K > 0 somewhere on M ;

•

∫
M K dvg ≤ −C−1

K < 0 and ‖K‖C3(M) ≤ CK , where CK is a positive constant;,

• the set {x ∈ M : K (x) = 0} = U for some open set U ⊂ M .

We define

Ki (x) =

{
K (x)/ i if K (x) > 0,

K (x) if K (x) ≤ 0.

Because on ∂U all derivatives of K up to order 3 are zero, it follows that
Ki ∈ C3(M). Furthermore, this definition means that Ki ∈ K, where K is as de-
fined in Theorem 1.2. Then by Theorem 1.1, there exists a ui > 0 that satisfies
1gui + Ki u

(n+2)/(n−2)

i = 0.
Now suppose there is a constant C independent of i such that maxM ui ≤ C .

As proved in [Yan 2007, Section 2], this implies that {ui } is uniformly bounded
away from 0 and ‖ui‖C3(M) is bounded above uniformly. Then, passing to a
subsequence, {ui } converges in the C2 norm to a function u > 0, and u satisfies
1gu + K̃ u(n+2)/(n−2)

= 0, where

K̃ (x) = lim
i→∞

Ki (x) =

{
0 if K (x) > 0,

K (x) if K (x) ≤ 0.

However, because K̃ is nowhere positive and somewhere negative, the equation
1gu + K̃ u(n+2)/(n−2)

= 0 cannot have a positive solution by Theorem 1.1. This
contradiction shows that estimates like the ones in Theorem 1.2 cannot be true
without the energy bound assumption on u.

Next we prove Theorem 1.4. We first give some definitions and a lemma which
will be used in the proof.

Definition 2.1. We call a point x on a manifold M a blow-up point of a sequence
{ui } if x = limi→∞ xi for some {xi } ⊂ M and ui (xi ) → ∞.

Definition 2.2. Suppose ui satisfies 1gi ui − c(n)R(gi )ui + Ki u
pi
i = 0, where {gi }

converges to some metric g0. A point x ∈ M is called an isolated blow-up point of
{ui } corresponding to {gi } if there exist local maximum points xi of ui and a fixed
radius r0 > 0 such that

• xi → x ,

• ui (xi ) → ∞, and
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• ui (x) ≤ C(dgi (x, xi ))
−2/(pi −1) for any x ∈ Br0(xi ), where the constant C is

independent of i .

Lemma 2.3. If x = limi→∞ xi is an isolated blow-up point of {ui } corresponding
to {gi }, and Ki is uniformly bounded, then there exists a constant C independent
of i and r such that, for any 0 < r ≤ r0,

max
∂ Br (xi )

ui (x) ≤ C min
∂ Br (xi )

ui (x).

This can be proved as in the proof of [Yan 2007, Lemma 5.2].

Definition 2.4. We say x is a simple blow-up point of {ui } if it is an isolated blow-
up point and there exists an r > 0 independent of i such that wi (r) has only one
critical point for r ∈ (0, r). Here

wi (r) := r2/(pi −1)ui (r) = Vol(Sr )
−1

∫
Sr

|z|2/(pi −1)ui (z) d6g

and z is the conformally flat coordinate system centered at each xi .

3. Initial steps of the proof of Theorem 1.4

The proof of Theorem 1.4 follows along the same line of reasoning as the proof of
Theorem 1.2, which is done in [Yan 2007]. As proved in [Section 2] there, a lower
bound on u follows directly if there is a uniform upper bound on u. By standard
elliptic theory and the Sobolev embedding theorem, a bound on the C0 norm of u
easily implies a bound on its C3 norm. Therefore, to prove Theorem 1.4 we only
need to show that there is a uniform upper bound on u.

By an argument identical to that in [Yan 2007, Section 3], we can show that
there exists a positive constant η = η(M, g, n, ‖K‖Cn−2(M), 3) such that, on the
set Kη := {x ∈ M : K (x) < η}, u has a uniform upper bound depending only on
M, g, n, ‖K‖Cn−2(M), and 3. Thus it is left to show that u is uniformly bounded
on the set where K ≥ η. We have the following proposition.

Proposition 3.1. Given ε > 0 and R � 0, there exists C = C(ε, R) such that, if u
is a solution of Equation (2) and

max
x∈M

(
(dg(x, Kη/2))

2/(p−1)u(x)
)
> C,

then there exists {x1, . . . , xN } ⊂ M \ Kη/2 with N depending on u satifying the
following:

• Each xi locally maximizes u, and the geodesic balls {BRu(xi )−(p−1)/2(xi )} are
disjoint.
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• |(n + 2)/(n − 2) − p| < ε, and, in the coordinate system y chosen so that
z = y/u(xi )

(p−1)/2 is the conformally flat coordinate system centered at xi ,
we have ∥∥u(xi )

−1u
(
y/u(xi )

(p−1)/2)
− v(y)

∥∥
C2(B2R(0))

< ε

on the ball B2R(0) ⊂ Rn(y), where

v(y) =

(
1 +

K (xi )

n(n−2)
|y|

2
)−(n−2)/2

.

• There exists C = C(ε, R) such that

u(x) ≤ C
(
dg(x, Kη/2

⋃
{x1, . . . , xN })

)−2/(p−1)
.

The proof is like that of [Yan 2007, Proposition 4.2], so we omit the details.
Now we are going to prove that u is uniformly bounded on M \ Kη. Suppose it

is not. Then there are sequences {ui } and {pi } such that

1gui + K u pi
i = 0 and max

M\Kη

ui → ∞ as i → ∞.

Therefore maxM\Kη
((dg(x, Kη/2))

2/(pi −1)ui (x)) → ∞ as i → ∞. Then for fixed
ε > 0 and R � 0 we can apply Proposition 3.1 to each ui and find x1,i , . . . , xN (i),i

such that
• each x j,i for 1 ≤ j ≤ N (i) is a local maximum point of ui , and

• the balls BR/ui (x j,i )
(pi −1)/2(x j,i ) are disjoint.

For coordinates y centered at x j,i such that y/ui (x j,i )
(pi −1)/2 is the conformally

flat coordinate system,∥∥∥ui (x j,i )
−1ui

( y
ui (x j,i )(pi −1)/2

)
−

(
1 +

K (x j,i )

n(n−2)
|y|

2
)−(n−2)/2∥∥∥

C2(B2R(0))
< ε,

ui (x) ≤ C
(
dg(x, Kη/2

⋃
{x1,i , . . . , xN (i),i })

)−2/(pi −1)

for a constant C = C(ε, R).
Let σi =min{dg(xα,i , xβ,i ) :α 6=β, 1≤α, β ≤ N (i)}. Without loss of generality

we can assume σi = dg(x1,i , x2,i ). There are two possibilities:

Case I. σi ≥ ε > 0. In this case, the points x j,i have isolated limiting points
x1, x2, . . . , which are isolated blow-up points of {ui } as defined above.

Case II. σi → 0. In this case, we rescale the coordinates to make the minimal
distance 1: let y =σ−1

i z, where z is the conformally flat coordinate system centered
at x1,i . We also rescale the function by defining vi (y) = σ

2/(pi −1)

i ui (σi y), which
satisfies

1g(i)vi + K (σi y)v
pi
i = 0,
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where the metric g(i)(y) = gαβ(σi y)dyαdyβ . As proved in [Yan 2007, Section 4],
0 is an isolated blow-up point of {vi }.

In Sections 4 and 5, we will prove that neither Case I nor Case II can happen.

4. Ruling out Case I

If the blow-up points are all isolated, the argument of [Yan 2007, Section 6] shows
that among the isolated blow-up points {x1, x2, . . . }, there must be one that is not a
simple blow-up point; without loss of generality we assume it to be x1. To simplify
notation, we are going to rename it x0. Let xi be the local maximum point of ui

such that limi→∞ xi = x0.
Let z = (z1, . . . , zn) be the conformally flat coordinates centered at each xi .

Since x0 is not a simple blow-up point, |z|2/(pi −1)ui (|z|) has, as a function of |z|,
a second critical point at |z| = ri where ri → 0. Let y = z/ri and define vi (y) =

r2/(pi −1)

i ui (ri y). Then vi (y) satisfies

1g(i)vi (y) + Ki (y)vi (y)pi = 0,

where g(i)(y) = gαβ(ri y)dyαdyβ and Ki (y) = K (ri y).
By this definition |y| = 1 is the second critical point of |y|

2/(pi −1)vi (|y|). As
shown in [Yan 2007, Section 6], 0 is a simple blow-up point of {vi }.

4.1. Estimates for vi . The following estimates are essentially the same as [Yan
2007, Proposition 5.3], except for a slightly different choice of parameters. How-
ever, we repeat the proof for completeness.

Proposition 4.1. There exists a constant C independent of i such that

• if 0 ≤ |y| ≤ 1, then

vi (y) ≥ Cvi (0)
(

1 +
Ki (0)

n(n−2)
vi (0)4/(n−2)

|y|
2
)−(n−2)/2

;

• if 0 ≤ |y| ≤ Rvi (0)−(pi −1)/2, then

vi (y) ≤ Cvi (0)
(

1 +
Ki (0)

n(n−2)
vi (0)pi −1

|y|
2
)−(n−2)/2

;

• if Rvi (0)−(pi −1)/2
≤ |y| ≤ 1, then vi (y) ≤ Cvi (0)ti |y|

−li , where li and ti are
chosen so that (2n − 5)/2 < limi→∞ li < n − 2 and ti = 1 − (pi − 1)li/2.
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Proof. Let ρi := Rvi (0)−(pi −1)/2. By Proposition 3.1, when 0 ≤ |y| ≤ ρi ,

(1 + ε)vi (0)
(

1 +
Ki (0)

n(n−2)
vi (0)pi −1

|y|
2
)−(n−2)/2

≥ vi (y)

≥ (1 − ε)vi (0)
(

1 +
Ki (0)

n(n−2)
vi (0)pi −1

|y|
2
)−(n−2)/2

≥ (1 − ε)vi (0)
(

1 +
Ki (0)

n(n−2)
vi (0)4/(n−2)

|y|
2
)−(n−2)/2

.

So we only need to find the upper and lower bounds on vi (y) when ρi ≤ |y| ≤ 1.

The lower bound. Let Gi be the Green’s function of 1g(i) that is singular at 0 and
vanishes on ∂ B1. Since {g(i)

} converges uniformly to the Euclidean metric, there
exist constants C1 and C2 independent of i such that C1|y|

2−n
≤ Gi (y)≤ C2|y|

2−n .
When |y| = ρi ,

vi (y) ≥ (1 − ε)vi (0)
/ (

1 +
Ki (0)

n(n−2)
vi (0)pi −1

|y|
2
)(n−2)/2

= (1 − ε)vi (0)
/ (

1 +
Ki (0)

n(n−2)
R2

)(n−2)/2

= (1 − ε)
(

R−2
+

Ki (0)

n(n−2)

)−(n−2)/2
R2−nvi (0)

≥ C R2−nvi (0)

≥ C R2−nvi (0)(n−2)(pi −1)/2−1 (since (n − 2)(pi − 1)/2 − 1 ≤ 1)

= Cvi (0)−1
|y|

2−n

≥ Cvi (0)−1Gi (y).

With this constant C , we have Cvi (0)−1Gi (y) = 0 < vi (y) when |y| = 1,
We know that

1g(i)(vi (y) − Cvi (0)−1Gi (y)) = 1g(i)vi (y) = −Ki (y)vi (y)pi < 0

on B1 \ Bρi . Therefore, by the maximal principle, when ρi ≤ |y| ≤ 1,

vi (y) > Cvi (0)−1Gi (y) ≥ Cvi (0)−1
|y|

2−n.

Now we need to compare |y|
2−nvi (0)−1 with

vi (0) ·

(
1 +

Ki (0)

n(n−2)
vi (0)4/(n−2)

|y|
2
)−(n−2)/2
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in order to get the desired lower bound:

vi (0)2
|y|

n−2
(

1 +
Ki (0)

n(n−2)
vi (0)4/(n−2)

|y|
2
)−(n−2)/2

≤ vi (0)2
( Ki (0)

n(n−2)
vi (0)4/(n−2)

)−(n−2)/2
≤ C

for a constant C independent of i . Therefore

vi (0)−1
|y|

2−n
≥ Cvi (0)

(
1 +

Ki (0)

n(n−2)
vi (0)4/(n−2)

|y|
2
)−(n−2)/2

,

and consequently

vi (y) ≥ Cvi (0)
(

1 +
Ki (0)

n(n−2)
vi (0)4/(n−2)

|y|
2
)−(n−2)/2

when ρi ≤ |y| ≤ 1.

The upper bound. We are going to apply the same strategy of constructing a com-
parison function and using the maximal principle.

Define Liϕ := 1g(i)ϕ + Kiv
pi −1
i ϕ. By this definition Livi = 0. Let Mi =

max∂ B1 vi and Ci = (1 + ε)(Ki (0)/(n(n − 2)))−(n−2)/2. Note that Ci is bounded
above and below by constants independent of i . Consider the function

Mi |y|
−n+2+li + Civi (0)ti |y|

−li .

When |y| = ρi ,

vi (y) ≤ (1 + ε)vi (0)
/ (

1 +
Ki (0)

n(n−2)
vi (0)pi −1

|y|
2
)(n−2)/2

= (1 + ε)vi (0)
/ (

1 +
Ki (0)

n(n−2)
R2

)(n−2)/2

≤ Civi (0)R−(n−2)

≤ Civi (0)R−li

= Civi (0)ti |y|
−li .

When |y| = 1, the definition of Mi gives vi (y) ≤ Mi = Mi |y|
−n+2+li . Thus on

{|y| = 1}
⋃

{|y| = ρi }, we have vi (y) ≤ Mi |y|
−n+2+li + Civi (0)ti |y|

−li .
In Euclidean coordinates,

1|y|
−li = −li (n − 2 − li )|y|

−li −2 and 1|y|
−n+2+li = −li (n − 2 − li )|y|

−n+li .

When i is sufficiently large, g(i) is close to the Euclidean metric. Therefore

(3) 1g(i) |y|
−li ≤ −

1
2 li (n − 2 − li )|y|

−li −2
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and
1g(i) |y|

−n+2+li ≤ −
1
2 li (n − 2 − li )|y|

−n+li .

Thus

Li (Civi (0)ti |y|
−li ) = Civi (0)ti 1g(i) |y|

−li + Civi (0)ti Kivi (y)pi −1
|y|

−li

≤ −Cli (n − 2 − li )vi (0)ti |y|
−li −2

+ C ′vi (0)ti vi (y)pi −1
|y|

−li

for some constants C and C ′ independent of i .
Lemma 2.3 and the upper bound on vi (y) when |y| ≤ ρi imply that

vi (ρi ) ≤ C
(1 + ε)vi (0)(

1 +
Ki (0)

n(n−2)
vi (0)pi −1(ρi )

2
)(n−2)/2 ≤ Cvi (0)R2−n.

Then since 0 is a simple blow-up point and r2/(pi −1)vi (r) is decreasing from ρi

to 1, we have
|y|

2/(pi −1)vi (|y|) ≤ ρi
2/(pi −1)

· vi (ρi )

≤ C R2/(pi −1)+2−n.

Thus again by Lemma 2.3, we have

(4) vi (y)pi −1
≤ Cvi (|y|)pi −1

≤ C |y|
−2 R2−(n−2)(pi −1),

and hence vi (y)pi −1
|y|

−li ≤ C |y|
−2−li R2−(n−2)(pi −1). Therefore

Li (Civi (0)ti |y|
−li ) ≤

(
− Cli (n − 2 − li ) + C ′ R2−(n−2)(pi −1)

)
vi (0)ti |y|

−li −2.

Our choice of li means that li (n−2−li ) is always bounded below by some positive
constant independent of i . When i is sufficiently large, 2 − (n − 2)(pi − 1) < 0,
so we can choose R big enough so that −Cli (n − 2 − li ) + C ′ R2−(n−2)(pi −1) < 0,
which implies Li (Civi (0)ti |y|

−li ) < 0.
Similarly,

Li (Mi |y|
−n+2+li ) = Mi1g(i) |y|

−n+2+li + Mi Kiv
pi −1
i |y|

−n+2+li

≤ −
1
2 li (n − 2 − li )Mi |y|

−n+li + Ki Mi R2−(n−2)(pi −1)
|y|

−n+li

by Equations (3) and (4). We can choose R large enough so that

−
1
2 li (n − 2 − li ) + Ki R2−(n−2)(pi −1) < 0,

and hence Li (Mi |y|
−n+2+li ) < 0. Therefore, when ρi ≤ |y| ≤ 1,

Li (Mi |y|
−n+2+li + Civi (0)ti |y|

−li ) < 0.

Then, by the maximal principle, vi (y) ≤ Mi |y|
−n+2+li + Civi (0)ti |y|

−li .
By Lemma 2.3 and because 0 is a simple blow-up point, we have
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Mi ≤ Cθ2/(pi −1)vi (θ) ≤ Cθ2/(pi −1)
(
Miθ

−n+2+li + Civi (0)ti θ−li
)

= Cθ2/(pi −1)−n+2+li Mi + Cθ2/(pi −1)
· Civi (0)ti θ−li

for ρi ≤ θ ≤ 1 and some constant C independent of i .
Note that

lim
i→∞

( 2
pi −1

− n + 2 + li

)
= −

n−2
2

+ lim
i→∞

li > −
n−2

2
+

2n−5
2

> 0

because n ≥ 5.
Since ρi → 0, we can choose θ small enough (fixed and independent of i) to

absorb the first term on the right side of the above inequality into the left side. We
then get Mi ≤ 2Cθ2/(pi −1)

· Civi (0)ti θ−li ≤ Cvi (0)ti .
Therefore

vi (y) ≤ Mi |y|
−n+2+li + Civi (0)ti |y|

−li

≤ Mi |y|
−li + Civi (0)ti |y|

−li ≤ Cvi (0)ti |y|
−li . �

4.2. A preliminary estimate for δi := (n + 2)/(n − 2) − pi . First we prove a
technical lemma.

Lemma 4.2. When σ < 1 and 0 ≤ κ ≤ n − 2,∫
|y|≤σ

|y|
κvi (y)pi +1dy ≤ Cvi (0)−2κ/(n−2)+(n−2+κ)/2δi ,

where C is independent of i .

Proof. Let ρi := Rvi (0)−(pi −1)/2. By Proposition 4.1∫
|y|≤ρi

|y|
κvi (y)pi +1 dy ≤ Cvi (0)pi +1

∫
|y|≤ρi

|y|
κ dy

≤ Cvi (0)pi +1−(n+κ)(pi −1)/2
= Cvi (0)−2κ/(n−2)+(n−2+κ)/2δi .

Since n ≥ 5, our choice of li gives

lim
i→∞

(n + κ − li (pi + 1)) = n + κ −
2n

n−2
lim

i→∞

li

< n + κ −
2n

n−2
·

2n−5
2

≤ n + (n − 2) −
n(2n−5)

n−2
< 0.

Therefore∫
ρi ≤|y|≤σ

|y|
κvi (y)pi +1dy ≤ C

∫
ρi ≤|y|≤σ

|y|
κ(vi (0)ti |y|

−li )pi +1 dy

≤ Cvi (0)ti (pi +1)−(pi −1)(n−li (pi +1)+κ)/2

= Cvi (0)pi +1−(n+κ)(pi −1)/2 (by the definition of ti )

= Cvi (0)−2κ/(n−2)+(n−2+κ)δi /2.
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Thus ∫
|y|≤σ

|y|
κvi (y)pi +1dy ≤ Cvi (0)−2κ/(n−2)+(n−2+κ)δi /2. �

The next proposition is a preliminary estimate for δi := (n + 2)/(n − 2) − pi .
We will also derive a refined estimate in a later part of this paper.

Proposition 4.3. limi→∞ vi (0)δi = 1.

Proof. Since the original metric is locally conformally flat, it can be written locally
as λ(z)4/(n−2)dz2. Let λi (y) = λ(ri y). Then g(i)(y) = λi (y)4/(n−2)dy2. Let σ < 1.
The Pohozaev identity in [Schoen 1988b] says that, for a conformal Killing field
X on Bσ ,

(5) n−2
2n

∫
Bσ

X (Ri )dvgi =

∫
∂ Bσ

Ti (X, νi )d6i ,

where the notations are as follows:

gi = v
4/(n−2)

i g(i)
= (λivi )

4/(n−2)dy2
; dvgi = (λivi )

2n/(n−2)dy;

Ri = R(gi ) = c(n)−1Kiv
−δi
i ;

νi = (λivi )
−2/(n−2)σ−1 ∑

j y j∂/∂y j is the unit outer normal vector on ∂ Bσ

with respect to gi ;

d6i = (λivi )
2(n−1)/(n−2)d6σ , where d6σ is the surface element of

the standard Sn−1(σ );

Ti = Ric(gi ) − n−1 R(gi )gi is the traceless Ricci tensor with re-
spect to gi .

According to [Schoen 1989], Ti can also be expressed as

(n − 2)(λivi )
2/(n−2)

(
Hess((λivi )

−2/(n−2)) −
1
n 1((λivi )

−2/(n−2))dy2),
where Hess and 1 are taken with respect to the Euclidean metric dy2.

We choose X =
∑n

j=1 y j∂/∂y j . Up to the constant 2(n − 1)/n, the integral in
the left side of (5) is equal to∫

Bσ

X (Kiv
−δi
i )(λivi )

2n/(n−2)dy

=

∫
Bσ

X (Ki )v
pi +1
i λ

2n/(n−2)

i dy − δi

∫
Bσ

Kiv
pi
i X (vi )λ

2n/(n−2)

i dy.
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By the divergence theorem, this is equal to∫
Bσ

|y|
∂Ki

∂r
v

pi +1
i λ

2n/(n−2)

i dy

+
δi

pi +1

(∫
Bσ

r ∂Ki
∂r

λ
2n/(n−2)

i v
pi +1
i dy +

∫
Bσ

Kiv
pi +1
i r

∂λ
2n/(n−2)

i
∂r

dy

+

∫
Bσ

Kiv
pi +1
i λ

2n/(n−2)

i div Xdy
)

−
δi

pi +1

∫
∂ Bσ

Kiv
pi +1
i λ

2n/(n−2)

i X ·
(
(
∑

y j∂/∂y j )/σ
)

d6σ .

Restoring the factor 2(n − 1)/n, we can now write the left side of (5) as

(6) 2(n−1)

n

(
1 +

δi
pi +1

) ∫
Bσ

|y|
∂Ki
∂r

v
pi +1
i λ

2n/(n−2)

i dy

+
2(n−1)

n
δi

pi +1

∫
Bσ

|y|Kiv
pi +1
i

∂λ
2n/(n−2)

i
∂r

dy+
2(n−1)

n
δi n

pi +1

∫
Bσ

Kiv
pi +1
i λ

2n/(n−2)

i dy

−
2(n−1)

n
δi

pi +1

∫
∂ Bσ

σ Kiv
pi +1
i λ

2n/(n−2)

i d6σ .

The right side of (5) is

(7)

∫
∂ Bσ

(n − 2)(λivi )
2/(n−2)

(
Hess((λivi )

−2/(n−2))
(

r ∂

∂r
, (λivi )

−2/(n−2)σ−1r ∂

∂r

)
−

1
n 1((λivi )

−2/(n−2))
〈
r ∂

∂r
, (λivi )

−2/(n−2)σ−1r ∂

∂r

〉)
(λivi )

2(n−1)/(n−2)d6σ

(where 〈 · , · 〉 is the Euclidean metric)

= (n − 2)

∫
∂ Bσ

(
σ−1 Hess((λivi )

−2/(n−2))
(

r ∂

∂r
, r ∂

∂r

)
−

σ

n
1((λivi )

−2/(n−2))
)
(λivi )

2(n−1)/(n−2)d6σ

= (n − 2)

∫
∂ Bσ

(
σ−1

(
−

2
n−2

(λivi )
∑
j,k

y j yk ∂

∂yk
∂

∂y j (λivi )

+
2n

(n−2)2

∑
j,k

y j yk ∂(λivi )

∂yk
∂(λivi )

∂y j

)
− σ ·

(
−

2
n(n−2)

(λivi )
∑

j

∂2(λivi )

(∂y j )2 +
2

(n−2)2

∑
j

(
∂(λivi )

∂y j

)2))
d6σ .

Next we are going to study the decay rate of each term in (6) and (7).
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On ∂ Bσ , Proposition 4.1 implies vi ≤ Cvi (0)ti . Then by the elliptic regularity
theory [Gilbarg and Trudinger 2001], we have ‖vi‖C2(∂ Bσ ) ≤ Cvi (0)ti . Thus we
know (7) decays at a rate of vi (0)2ti .

The fourth term in (6) decays in the order of δivi (0)ti (pi +1) by Proposition 4.1.
By Lemma 4.2, we know that the second term in (6) is bounded above by

Cδi

∫
Bσ

|y|v
pi +1
i dy ≤ Cδivi (0)−2/(n−2)+(n−1)δi /2.

Therefore the sum of the first and the third terms in (6), which is

n
2(n−1)

(
1 +

δi
pi +1

)∫
Bσ

|y|
∂Ki
∂r

v
pi +1
i λ

2n/(n−2)

i dy

+
n

2(n−1)

δi
pi +1

n
∫

Bσ

Kiv
pi +1
i λ

2n/(n−2)

i dy,

is bounded above by Cvi (0)2ti + Cδivi (0)ti (pi +1)
+ Cδivi (0)−2/(n−2)+(n−1)δi /2.

By our choice of li and ti , we have, as i → ∞,

ti = 1 −
(pi −1)li

2
→ 1 −

2
n−2

lim
i→∞

li < 1 −
2

n−2
·

2n−5
2

< 0.

Thus Cvi (0)2ti + Cδivi (0)ti (pi +1)
≤ Cvi (0)2ti + Cvi (0)ti (pi +1)

≤ Cvi (0)2ti .
On the other hand,

δi
pi +1

n
∫

Bσ

Kiv
pi +1
i λ

2n/(n−2)

i dy ≥ Cδi

∫
Bσ

v
pi +1
i dy.

When |y| ≤ ρi , Proposition 4.1 gives

vi (y) ≥ (1 − ε)vi (0)
/ (

1 +
Ki (0)

n(n−2)
vi (0)pi −1

|y|
2
)(n−2)/2

≥ (1 − ε)vi (0)
/ (

1 +
Ki (0)

n(n−2)
R2

)(n−2)/2
≥ Cvi (0),

so

(8)

∫
Bσ

v
pi +1
i dy >

∫
|y|≤ρi

v
pi +1
i dy ≥ Cvi (0)pi +1−n(pi −1)/2

= Cvi (0)(n−2)δi /2

≥ C.

This implies that the third term in (6) is bounded below by Cδi .
Then by comparing the decay rates of the terms in (6) and (7),

δi ≤ C
(
vi (0)2ti + δivi (0)−2/(n−2)+(n−1)δi /2

+

∣∣∣∫
Bσ

∂Ki
∂r

|y|v
pi +1
i λ

2n/(n−2)

i dy
∣∣∣).
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Since vi (0)−2/(n−2)+(n−1)δi /2
→0, the second term on the right side can be absorbed

into the left side. Thus we conclude that

(9) δi ≤ C
(
vi (0)2ti +

∣∣∣∫
Bσ

∂Ki
∂r

|y|v
pi +1
i λ

2n/(n−2)

i dy
∣∣∣).

By Lemma 4.2,∣∣∣∫
Bσ

∂Ki
∂r

|y|v
pi +1
i λ

2n/(n−2)

i dy
∣∣∣ ≤ Cvi (0)−2/(n−2)+(n−1)δi /2.

Thus δi ≤ C(vi (0)−2/(n−2)+(n−1)δi /2
+ vi (0)2ti ). This implies that

δi ln vi (0) ≤ C
(
vi (0)−2/(n−2)+(n−1)δi /2

+ vi (0)2ti
)

ln vi (0) → 0

as i → ∞. Therefore limi→∞ vi (0)δi = 1. Consequently, we have

(10) δi ≤ C(vi (0)−2/(n−2)
+ vi (0)2ti ). �

4.3. A preliminary estimate for |∇K i |. We will again study the Pohozaev identity
(5), but with a different choice of the conformal Killing field X = ∂/∂y1.

Direct calculation, like that in the proof of Proposition 4.3, shows that the right
side of the identity is equal to

(n − 2)

∫
∂ Bσ

(∑
j

y j

σ

(
−

2
n−2

(λivi )
∂2(λivi )

∂y1∂y j +
2n

(n−2)2
∂(λivi )

∂y1
∂(λivi )

∂y j

)
−

y1

σ

∑
j

(
−

2
n(n−2)

(λivi )
∂2(λivi )

(∂y j )2 +
2

(n−2)2

(
∂(λivi )

∂y j

)2))
d6σ ,

and decays at a rate of vi (0)2ti .
The left side of this identity is (n − 2)/(2n) times

(11)

∫
Bσ

∂

∂y1 (Ri )dvgi = c(n)−1
∫

Bσ

∂

∂y1 (Kiv
−δi
i )(λivi )

2n/(n−2)dy

= c(n)−1
∫

Bσ

(
1 +

δi
pi +1

)
λ

2n/(n−2)

i v
pi +1
i

∂Ki
∂y1 dy

+ c(n)−1
∫

Bσ

δi
pi +1

Kiv
pi +1
i

∂λ
2n/(n−2)

i
∂y1 dy

− c(n)−1 δi
pi +1

∫
∂ Bσ

λ
2n/(n−2)

i Kiv
pi +1
i

y1

σ
d6σ .

By Proposition 4.1, the last term in (11) is bounded from above by

Cδi · vi (0)ti (pi +1)
≤ Cδivi (0)2ti ,
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since ti < 0 and vi (0) → ∞.
Note that since λi (y) = λ(ri y), the second term in (11) is bounded from above

by

Cδiri

∫
|y|≤σ

vi (y)pi +1dy,

which is further bounded by Cδirivi (0)(n−2)/2δi ≤ Cδiri by Lemma 4.2 and Propo-
sition 4.3.

Therefore the first term in (11), which is

c(n)−1
∫

Bσ

(
1 +

δi
pi +1

)
λ

2n/(n−2)

i v
pi +1
i

∂Ki

∂y1 dy,

is bounded from above by C(vi (0)2ti + δivi (0)2ti + δiri ) ≤ C(δiri + vi (0)2ti ).
This shows that

(12)
∣∣∣∫

Bσ

λ
2n/(n−2)

i v
pi +1
i

∂Ki
∂y1 dy

∣∣∣ ≤ C(δiri + vi (0)2ti ).

By the Taylor expansion,

∂Ki

∂y1 (y) =
∂Ki
∂y1 (0) + ∇

(
∂Ki
∂y1

)
(ς) · y for some |ς | ≤ |y|.

Note that Ki (y) = K (ri y). By Lemma 4.2 and Proposition 4.3,∫
Bσ

λ
2n/(n−2)

i v
pi +1
i

∣∣∣∇(
∂Ki
∂y1

)
(ς) · y

∣∣∣dy ≤ Cri

∫
Bσ

v
pi +1
i |y|dy

≤ Crivi (0)−2/(n−2)+(n−1)δi /2

≤ Crivi (0)−2/(n−2).

Thus we know∣∣∣∂Ki
∂y1 (0)

∣∣∣ ∫
Bσ

v
pi +1
i dy ≤ C

∣∣∣∫
Bσ

λ
2n/(n−2)

i v
pi +1
i

∂Ki
∂y1 (0)dy

∣∣∣
≤ C(rivi (0)−2/(n−2)

+ (δiri + vi (0)2ti ))

≤ C(rivi (0)−2/(n−2)
+ rivi (0)2ti + vi (0)2ti ) (by (10))

≤ C(rivi (0)−2/(n−2)
+ vi (0)2ti ).

Then by (8),

(13)
∣∣∣∂Ki

∂y1 (0)

∣∣∣ ≤ C
(
rivi (0)−2/(n−2)

+ vi (0)2ti
)
.

The same estimate holds for |∂Ki/∂y j (0)| for j = 2, . . . , n as well, since we
can also choose X = ∂/∂y j in the above calculation.
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4.4. Location of the blow-up. Choose a point y with |y| = 1. It is proved in [Yan
2007, Section 6] that vi/vi (y) converges in C2 norm to a function h on any compact
subset of Rn

\ {0}, and h =
1
2 +

1
2 |y|

2−n .
Recall that we chose the coordinate systems z = (z1, . . . , zn) and y = z/ri to

be centered at each xi ∈ M ; thus ∇Ki (0) = ri∇K (xi ). Here we write ∇K (xi )

instead of ∇K (0) to emphasize the fact that ∇K is evaluated at different points xi

as i → ∞. We claim that this blow-up must occur at a critical point of K :

Proposition 4.4. ∇K (x0) = limi→∞ ∇K (xi ) = 0.

Proof. Suppose this is not true. Then there exists some j ∈ {1, . . . , n} such that
|∂K/∂z j (xi )| ≥ ε for a constant ε independent of i . Without loss of generality we
assume j = 1. Then from inequality (13) we know that

εri ≤ C
(
rivi (0)−2/(n−2)

+ vi (0)2ti
)
.

Therefore

(14) ri ≤ Cvi (0)2ti

when vi (0)−2/(n−2) is sufficiently small.
Once more we look at the Pohozaev identity (5) with X =

∑
j y j∂/∂y j . We

divide both sides of it by v2
i (y) so that it becomes

(15) n−2
2n

1
v2

i (y)

∫
Bσ

X (Ri )dvgi =
1

v2
i (y)

∫
∂ Bσ

Ti (X, νi )d6i .

Its right side is

(16)

1
v2

i (y)

∫
∂ Bσ

Ti (X, νi )d6i

=
1

v2
i (y)

∫
∂ Bσ

(Ric(gi ) − n−1 R(gi )gi )(X, νi )d6i

=
1

v2
i (y)

∫
∂ Bσ

(
Ric((λivi )

4/(n−2)dy ⊗ dy)

− n−1 R((λivi )
4/(n−2)dy ⊗ dy)(λivi )

4/(n−2)dy ⊗ dy
)
(X, ν0)(λivi )

2d6σ

=

∫
∂ Bσ

(
λivi
vi (y)

)2
(

Ric
(( λivi

vi (y)

)4/(n−2)

dy ⊗ dy
)

− n−1 R
((

λivi
vi (y)

)4/(n−2)

dy ⊗ dy
)(

λivi
vi (y)

)4/(n−2)

dy ⊗ dy
)

(X, ν0)d6σ ,

where ν0 = σ−1 ∑
j y j∂/∂y j is the unit outer normal on ∂ Bσ with respect to the

Euclidean metric dy ⊗ dy.
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When i → ∞, λi (y) = λ(ri y) → λ(x0) for |y| = σ . Thus when i goes to ∞,
(16) converges (up to a constant) to

(17)

∫
∂ Bσ

h2(Ric(h4/(n−2)dy ⊗ dy)

− n−1 R(h4/(n−2)dy ⊗ dy)h4/(n−2)dy ⊗ dy
)
(X, ν0)d6σ

=

∫
∂ Bσ

h2
· (n − 2)h2/(n−2)

(
Hess(h−2/(n−2))(X, ν0)

−
1
n 1(h−2/(n−2))〈X, ν0〉

)
d6σ

= (n − 2)σ−1
∫

∂ Bσ

h2(n−1)/(n−2)
·
(
Hess(h−2/(n−2))(X, X)

−
1
n 1(h−2/(n−2))σ 2)d6σ .

We know that

h−2/(n−2)
=

( 1
2(1 + |y|

2−n)
)−2/(n−2)

= 22/(n−2)
|y|

2
−

2n/(n−2)

n−2
|y|

n
+ O(|y|

2(n−1)),

and by direct computation,

Hess
(

22/(n−2)
|y|

2
−

2n/(n−2)

n−2
|y|

n
)
(X, X) −

1
n
1

(
22/(n−2)

|y|
2
−

2n/(n−2)

n−2
|y|

n
)
σ 2

= −2n/(n−2)(n − 1)σ n.

Therefore

Hess(h−2/(n−2))(X, X) −
1
n 1(h−2/(n−2))σ 2

= −2n/(n−2)(n − 1)σ n
+ O(σ 2(n−1)).

Also we know

h2(n−1)/(n−2)
=

( 1
2

)2(n−1)/(n−2)
|y|

−2(n−1)(1 + O(|y|
n−2)).

Thus we can conclude that (17) is equal to

−
1
2(n−1)(n−2)σ−1

∫
∂ Bσ

(
|y|

−2(n−1)
+ O(|y|

−n)
) (

|y|
n
+ O(|y|

2(n−1))
)
σ n−1d61

= −
1
2(n − 1)(n − 2) + O(σ n−2).

Therefore the limit of the right side of (15) is strictly less than 0 when we choose
σ to be sufficiently small.

On the other hand, the left side of (15) is

n−2
2n

c(n)−1 1
v2

i (y)

∫
Bσ

X (Kiv
−δi
i )(λivi )

2n/(n−2)dy.



THE SCALAR CURVATURE DEFORMATION EQUATION 391

We write

(18)

1
v2

i (y)

∫
Bσ

X (Kiv
−δi
i )(λivi )

2n/(n−2)dy

=
1

v2
i (y)

∫
Bσ

X (Ki )v
pi +1
i λ

2n/(n−2)

i dy −
δi

v2
i (y)

∫
Bσ

Kiλ
2n/(n−2)

i v
pi
i X (vi )dy.

The second term of (18) is equal to

−
δi

pi +1
1

v2
i (y)

∫
Bσ

Kiλ
2n/(n−2)

i X (v
pi +1
i )dy

= −
δi

pi +1
1

v2
i (y)

∫
Bσ

(
div(Kiλ

2n/(n−2)

i v
pi +1
i X) − Kiλ

2n/(n−2)

i v
pi +1
i div X

− λ
2n/(n−2)

i v
pi +1
i X (Ki ) − Kiv

pi +1
i X (λ

2n/(n−2)

i )
)

dy

= −
δi

pi +1
σ

v2
i (y)

∫
∂ Bσ

Kiλ
2n/(n−2)

i v
pi +1
i d6σ

+
δi

pi +1
1

v2
i (y)

∫
Bσ

Kiλ
2n/(n−2)

i v
pi +1
i (n + X (ln Ki ) + 2n/(n − 2)X (ln λi )) dy.

On ∂ Bσ , we know vi/vi (y) → h(σ ) and vi → 0 uniformly, so

1
v2

i (y)

∫
∂ Bσ

Kiλ
2n/(n−2)

i v
pi +1
i d6σ =

∫
∂ Bσ

Kiλ
2n/(n−2)

i

(
vi

vi (y)

)2
v

pi −1
i d6σ → 0.

Since X = r∂/∂r and |∂(ln Ki )/∂r | and |∂(ln λi )/∂r | are uniformly bounded,
we can choose σ to be small enough (independent of i) to make n + X (ln Ki ) +

2n/(n − 2)X (ln λi ) > 0. Thus when i → ∞, the limit of the second term of (18)
is greater than or equal to 0.

Next we will show that the limit of the first term of (18) is 0, or equivalently,

(19) lim
i→∞

v2
i (0)

∫
Bσ

X (Ki )v
pi +1
i λ

2n/(n−2)

i dy = 0,

since vi (y) ≥ Cvi (0)−1 by Proposition 4.1. This then will end the proof because
it implies that the limit of the left hand side of (15) is greater than or equal to 0,
contradicting the sign of the right hand side.

Note that

X (Ki )(y) =

(∑
j

y j ∂Ki
∂y j

)
(y)

=

(∑
j
y j ∂Ki

∂y j

)
(0) +

∑
k

∂

∂yk

(∑
j
y j ∂Ki

∂y j

)
(ς)yk for some |ς |≤|y|

=

∑
j

∂Ki
∂y j (ς)y j

+

∑
j,k

∂2Ki
∂yk∂y j (ς)ς j yk .
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Therefore

v2
i (0)

∣∣∣∫
Bσ

X (Ki )v
pi +1
i λ

2n/(n−2)

i dy
∣∣∣

≤ v2
i (0)

∫
Bσ

∑
j

∣∣∣∂Ki
∂y j (ς)

∣∣∣|y|v
pi +1
i λ

2n/(n−2)

i dy

+ v2
i (0)

∫
Bσ

∑
j,k

∣∣∣ ∂2Ki

∂y j∂yk (ς)

∣∣∣|y|
2v

pi +1
i λ

2n/(n−2)

i dy

≤ Cv2
i (0)ri

∫
Bσ

|y|v
pi +1
i dy + Cv2

i (0)r2
i

∫
Bσ

|y|
2v

pi +1
i dy

≤ Cv2
i (0)ri · vi (0)−2/(n−2)+(n−1)δi /2

+ Cv2
i (0)r2

i · vi (0)−4/(n−2)+nδi /2

(by Lemma 4.2)

≤ Cvi (0)2+2ti −2/(n−2)
+ Cvi (0)2+4ti −4/(n−2) (by Proposition 4.3 and (14)).

By the definition of ti ,

lim
i→∞

ti = lim
i→∞

(
1 −

(pi −1)li
2

)
= 1 −

2
n−2

lim
i→∞

li < 1 −
2

n−2
·

2n−5
2

=
3−n
n−2

.

Thus

(20) lim
i→∞

(
2 + 2ti −

2
n−2

)
< 2 + 2 ·

3−n
n−2

−
2

n−2
= 0

and
lim

i→∞

(
2 + 4ti −

4
n−2

)
< 2 + 4 ·

3−n
n−2

−
4

n−2
=

4−2n
n−2

< 0.

Since these are all strict inequalities, we know that

lim
i→∞

(
Cvi (0)2+2ti −2/(n−2)

+ Cvi (0)2+4ti −4/(n−2)
)
= 0,

and consequently

lim
i→∞

v2
i (0)

∣∣∣∫
Bσ

X (Ki )v
pi +1
i λ

2n/(n−2)

i dy
∣∣∣ = 0. �

4.5. Refined estimates for δi and |∇K i |. Now because x0 = limi→∞ xi is a crit-
ical point of the function K , which satisfies the flatness condition (∗), we have
|∇

p K (xi )| ≤ C0|∇K (xi )|
(n−2−p)/(n−3) when 2 ≤ p ≤ n − 3. When p = 2, this

implies, because g = λ4/(n−2)dz2, that∣∣∣∇2K
(

∂

∂zl1
,

∂

∂zl2

)
(xi )

∣∣∣ =

∣∣∣ ∂2K
∂zl1∂zl2

(xi ) − 0l
l1l2

(xi )
∂K
∂zl (xi )

∣∣∣ ≤ C |∇K (xi )|
n−4
n−3 ,

where l1, l2, l = 1, 2, . . . , n. Therefore∣∣∣ ∂2K
∂zl1∂zl2

(xi )

∣∣∣ ≤ C |∇K (xi )| + C |∇K (xi )|
(n−4)/(n−3)

≤ C |∇K (xi )|
(n−4)/(n−3),
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since |∇K (xi )| < 1 for sufficiently large i . That is,

|∂α K/∂zα(xi )| ≤ C |∇K (xi )|
(n−2−|α|)/(n−3)

for |α| = 2. Here we have used the notations that α = (α1, α2, . . . , αn) with each
αi ≥ 0, |α| = α1 + α2 + · · · +αn, and

∂α K
∂zα

=
∂α1∂α2 · · · ∂αn K

(∂z1)α1(∂z2)α2 · · · (∂zn)αn
.

Generally, when 2 ≤ p < q ≤ n − 3, we have

|∇K (xi )|
(n−2−p)/(n−3) < |∇K (xi )|

(n−2−q)/(n−3),

so by similar computations we have∣∣∣∂α K
∂zα

(xi )

∣∣∣ ≤ C |∇K (xi )|
(n−2−|α|)/(n−3) for 2 ≤ |α| ≤ n − 3.

Then since Ki (y) = K (ri y),∣∣∣∂α Ki
∂yα

(0)

∣∣∣ = r |α|

i

∣∣∣∂α K
∂zα

(xi )

∣∣∣ and |∇Ki (0)| = ri |∇K (xi )|.

Thus

(21)

∣∣∣∂α Ki
∂yα

(0)

∣∣∣ ≤ r |α|

i C |∇K (xi )|
(n−2−|α|)/(n−3)

= Cr (|α|−1)(n−2)/(n−3)

i |∇Ki (0)|(n−2−|α|)/(n−3)

< Cri |∇Ki (0)|(n−2−|α|)/(n−3),

where the last step follows from the fact that (|α| − 1)(n − 2)/(n − 3) > 1 and
ri < 1. With this flatness condition on Ki , we can refine the estimates for δi and
|∇Ki | as follows.

Inequality (9) gives

δi ≤ C
(
vi (0)2ti +

∣∣∣∫
Bσ

∂Ki
∂r

|y|v
pi +1
i λ

2n/(n−2)

i dy
∣∣∣)

= C
(
vi (0)2ti +

∣∣∣∫
Bσ

r ∂Ki
∂r

v
pi +1
i λ

2n/(n−2)

i dy
∣∣∣).

We write r∂Ki/∂r =
∑

j y j∂Ki/∂y j . For each j = 1, . . . , n,

∂Ki
∂y j (y) =

∂Ki
∂y j (0) +

∑
|β|=1

∂β

∂yβ

∂Ki
∂y j (0)yβ

+
1
2!

∑
|β|=2

∂β

∂yβ

∂Ki
∂y j (0)yβ

+ · · ·

+
1

(n−4)!

∑
|β|=n−4

∂β

∂yβ

∂Ki
∂y j (0)yβ

+
1

(n−3)!

∑
|β|=n−3

∂β

∂yβ

∂Ki
∂y j (ς)yβ,
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where |ς | ≤ |y|, and yβ
= yβ1

1 yβ2
2 · · · yβn

n for β = (β1, β2, . . . , βn). Therefore∫
Bσ

∣∣∣r ∂Ki
∂r

∣∣∣v pi +1
i λ

2n/(n−2)

i dy

≤ C
(∫

Bσ

∣∣∣∂Ki
∂y j (0)

∣∣∣|y|v
pi +1
i dy +

n−4∑
|β|=1

∫
Bσ

∣∣∣ ∂β

∂yβ

∂Ki
∂y j (0)

∣∣∣|y|
|β|+1v

pi +1
i dy

+

∑
|β|=n−3

∫
Bσ

∣∣∣ ∂β

∂yβ

∂Ki

∂y j (ς)

∣∣∣|y|
n−2v

pi +1
i dy

)
.

By Lemma 4.2 and Proposition 4.3, the first term satisfies∫
Bσ

∣∣∣∂Ki
∂y j (0)

∣∣∣|y|v
pi +1
i dy ≤ C |∇Ki (0)|vi (0)−2/(n−2),

and the last term has∑
|β|=n−3

∫
Bσ

∣∣∣ ∂β

∂yβ

∂Ki
∂y j (ς)

∣∣∣|y|
n−2v

pi +1
i dy ≤ Crn−2

i vi (0)−2.

In addition, (21) gives, for any 1 ≤ |β| ≤ n − 4,∫
Bσ

∣∣∣ ∂β

∂yβ

∂Ki
∂y j (0)

∣∣∣|y|
|β|+1v

pi +1
i dy

≤ Cri

∫
Bσ

|∇Ki (0)|(n−2−(|β|+1))/(n−3)
|y|

|β|+1v
pi +1
i dy

= Cri

∫
Bσ

|∇Ki (0)|(n−3−|β|)/(n−3)
|y|

|β|
· |y|v

pi +1
i dy

≤ Cri

∫
Bσ

(
|∇Ki (0)|

n−3−|β|

n−3 ·
n−3

n−3−|β| + |y|
|β| ·

n−3
|β|

)
· |y|v

pi +1
i dy

(by Young’s inequality)

= Cri

(∫
Bσ

|∇Ki (0)| · |y|v
pi +1
i dy +

∫
Bσ

|y|
n−2v

pi +1
i dy

)
≤ Cri |∇Ki (0)|vi (0)−2/(n−2)

+ Crivi (0)−2.

Thus

(22)

∫
Bσ

∣∣∣r ∂Ki
∂r

∣∣∣v pi +1
i λ

2n/(n−2)

i dy

≤ C |∇Ki (0)|vi (0)−2/(n−2)

+
(
Cri |∇Ki (0)|vi (0)−2/(n−2)

+ Crivi (0)−2)
+ Crn−2

i vi (0)−2

≤ C |∇Ki (0)|vi (0)−2/(n−2)
+ Crivi (0)−2.
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Plugging this back into (9) we now have a refined estimate

(23) δi ≤ C
(
vi (0)2ti + |∇Ki (0)|vi (0)−2/(n−2)

+ rivi (0)−2) .

This will enable us to also refine the estimate for |∇Ki (0)|. Inequality (12) gives
|
∫

Bσ
λ

2n/(n−2)

i v
pi +1
i (∂Ki/∂y1)dy| ≤ C(δiri + vi (0)2ti ). Again we write

∂Ki
∂y1 (y) =

∂Ki
∂y1 (0) +

∑
|β|=1

∂β

∂yβ

∂Ki
∂y1 (0)yβ

+
1
2!

∑
|β|=2

∂β

∂yβ

∂Ki
∂y1 (0)yβ

+ · · ·

+
1

(n−4)!

∑
|β|=n−4

∂β

∂yβ

∂Ki
∂y1 (0)yβ

+
1

(n−3)!

∑
|β|=n−3

∂β

∂yβ

∂Ki
∂y1 (ς)yβ .

Therefore we have∫
Bσ

λ
2n/(n−2)

i v
pi +1
i

∣∣∣∂Ki
∂y1 (0)

∣∣∣dy

≤

∣∣∣∫
Bσ

λ
2n/(n−2)

i v
pi +1
i

∂Ki
∂y1 dy

∣∣∣ + C
n−4∑
|β|=1

∫
Bσ

∣∣∣ ∂β

∂yβ

∂Ki
∂y1 (0)

∣∣∣|y|
|β|v

pi +1
i dy

+ C
∑

|β|=n−3

∫
Bσ

∣∣∣ ∂β

∂yβ

∂Ki
∂y1 (ς)

∣∣∣|y|
n−3v

pi +1
i dy

≤ C
(
δiri + vi (0)2ti

)
+ C

n−4∑
|β|=1

∫
Bσ

∣∣∣ ∂β

∂yβ

∂Ki
∂y1 (0)

∣∣∣|y|
|β|v

pi +1
i dy

+ C
∑

|β|=n−3

∫
Bσ

∣∣∣ ∂β

∂yβ

∂Ki
∂y1 (ς)

∣∣∣|y|
n−3v

pi +1
i dy.

By (8) this implies∣∣∣∂Ki
∂y1 (0)

∣∣∣ ≤ C
(
δiri + vi (0)2ti

)
+ C

n−4∑
|β|=1

∫
Bσ

∣∣∣ ∂β

∂yβ

∂Ki
∂y1 (0)

∣∣∣|y|
|β|v

pi +1
i dy

+ C
∑

|β|=n−3

∫
Bσ

∣∣∣ ∂β

∂yβ

∂Ki
∂y1 (ς)

∣∣∣|y|
n−3v

pi +1
i dy.

By Lemma 4.2, Proposition 4.3 and (21), we have, when 1 ≤ |β| ≤ n − 4,∫
Bσ

∣∣∣ ∂β

∂yβ

∂Ki
∂y1 (0)

∣∣∣|y|
|β|v

pi +1
i dy

≤ Cri

∫
Bσ

|∇Ki (0)|(n−2−(|β|+1))/(n−3)
|y|

|β|v
pi +1
i dy

= Cri

∫
Bσ

|∇Ki (0)|(n−3−|β|)/(n−3)
|y|

|β|v
pi +1
i dy
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≤ Cri

∫
Bσ

(
|∇Ki (0)|

n−3−|β|

n−3 ·
n−3

n−3−|β| + |y|
|β|·

n−3
|β|

)
v

pi +1
i dy

(by Young’s inequality)

= Cri

(∫
Bσ

|∇Ki (0)|v
pi +1
i dy +

∫
Bσ

|y|
n−3v

pi +1
i dy

)
≤ Cri |∇Ki (0)| + Crivi (0)−2(n−3)/(n−2).

Furthermore,∑
|β|=n−3

∫
Bσ

∣∣∣ ∂β

∂yβ

∂Ki
∂y1 (ς)

∣∣∣|y|
n−3v

pi +1
i dy ≤ Crn−2

i

∫
Bσ

|y|
n−3v

pi +1
i dy

≤ Crn−2
i vi (0)−2(n−3)/(n−2).

Therefore∣∣∣∂Ki
∂y1 (0)

∣∣∣ ≤ C(δiri + vi (0)2ti ) + (Cri |∇Ki (0)| + Crivi (0)−2(n−3)/(n−2))

+ Crn−2
i vi (0)−2(n−3)/(n−2)

≤ Cδiri + Cvi (0)2ti + Cri |∇Ki (0)| + Crivi (0)−2(n−3)/(n−2).

The same estimate also holds for |∂Ki/∂y j (0)|, where j = 2, . . . , n, so we know

|∇Ki (0)| ≤ Cδiri + Cvi (0)2ti + Cri |∇Ki (0)| + Crivi (0)−2(n−3)/(n−2)

≤ C(vi (0)2ti + |∇Ki (0)|vi (0)−2/(n−2)
+ rivi (0)−2)ri + Cvi (0)2ti

+ Cri |∇Ki (0)| + Crivi (0)−2(n−3)/(n−2) (by (23)).

When i is large enough, all the terms involving |∇Ki (0)| can be absorbed into the
left hand side of this inequality, therefore we get a refined estimate

(24)

|∇Ki (0)| ≤ Crivi (0)2ti + Cr2
i vi (0)−2

+ Cvi (0)2ti + Crivi (0)−2(n−3)/(n−2)

≤ Cr2
i vi (0)−2

+ Cvi (0)2ti + Crivi (0)−2(n−3)/(n−2).

Finally, we will prove that (19) holds. As in the proof of Proposition 4.4, this
will give the desired contradiction by comparing the signs of both sides of (15),
which rules out Case I. We know

v2
i (0)

∫
Bσ

|X (Ki )|v
pi +1
i λ

2n/(n−2)

i dy = v2
i (0)

∫
Bσ

∣∣∣r ∂Ki
∂r

∣∣∣v pi +1
i λ

2n/(n−2)

i dy

≤ Cv2
i (0)

(
|∇Ki (0)|vi (0)−2/(n−2)

+ rivi (0)−2) (by (22))

≤ Cv2
i (0)

(
(r2

i vi (0)−2
+ vi (0)2ti + rivi (0)−2(n−3)/(n−2))vi (0)−2/(n−2)

+ rivi (0)−2
)

(by (24))

= C(r2
i vi (0)−2/(n−2)

+ vi (0)2+2ti −2/(n−2)
+ 2ri ).
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By (20) we know limi→∞ (2 + 2ti − 2/(n − 2)) < 0, and therefore

lim
i→∞

vi (0)2+2ti −2/(n−2)
= 0.

It follows from this and limi→∞ r2
i vi (0)−2/(n−2)

= limi→∞ ri = 0 that

lim
i→∞

v2
i (0)

∫
Bσ

|X (Ki )|v
pi +1
i λ

2n/(n−2)

i dy = 0.

This completes the proof in Case I.

5. Ruling out Case II

Now we consider Case II, which has been reduced to the following: There is a
sequence of functions {vi }, each satisfying

1g(i)vi + K (σi y)v
pi
i = 0,

where σi → 0 and g(i)(y) = gαβ(σi y)dyαdyβ . The sequence {vi } has isolated
blow-up point(s) {0, . . . }.

If 0 is not a simple blow-up point, then we can do another rescaling and repeat
the argument in the previous section, with ri replaced by riσi , to get a contradiction.
Therefore 0 must be a simple blow-up point for {vi }. Then we can still repeat the
argument in the previous section, with ri replaced by σi . The only difference is in
the expression of h = limi→∞ vi (y)/vi (y). As shown in [Yan 2007, Section 7],
because here |y|

2/(pi −1)vi (|y|) doesn’t have a second critical point at |y| = 1, we
have a different expression of h: near 0,

h(y) = c1|y|
2−n

+ A + O(|y|),

where A is a positive constant. This positive “mass” term A > 0 guarantees that
the limit of the boundary term of the Pohozaev identity (15) is negative, that is,

lim
i→∞

1
v2

i (y)

∫
∂ Bσ

Ti (X, νi )d6i < 0.

The other parts of the proof remain the same. Therefore Case II can also be ruled
out.

Thus we have finished the proof of Theorem 1.4. �
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