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KÄHLER METRICS ON SINGULAR TORIC VARIETIES

DAN BURNS, VICTOR GUILLEMIN AND EUGENE LERMAN

We extend Guillemin’s formula for Kähler potentials on toric manifolds to
singular quotients of CN and CP N .

1. Introduction

Let G be a torus with Lie algebra g and integral lattice ZG ⊂g. Let u1, . . . , uN ∈ZG

be a set of primitive vectors which span g over R. Let λ1, . . . , λN ∈ R and let

P = Pu,λ := {η ∈ g∗
| 〈η, u j 〉 − λ j ≥ 0, 1 ≤ j ≤ N }

be the corresponding polyhedral set. We assume that P has a nonempty interior
and that the collection of inequalities defining P is minimal: if we drop the condi-
tion that 〈η, u j 〉 − λ j ≥ 0 for some index j then the resulting set is strictly bigger
than P .

A well-known construction of Delzant, suitably tweaked, produces a symplec-
tic stratified space MP with an effective Hamiltonian action of the torus G and
associated moment map φ = φP : MP → g∗ such that φ(MP) = P . We will
review the construction below. The space MP is a symplectic quotient of CN by
a compact abelian subgroup K of the standard torus TN . Therefore, by a theorem
of Heinzner and Loose [1994] MP is a complex analytic space. Moreover MP is
a Kähler space; see [Heinzner and Loose 1994, (3.5)] and [Heinzner et al. 1994].
Even though in general the space MP is singular, the preimages of open faces of
P under the moment map φP are smooth Kähler manifolds. The main results of
the paper are formulas for the Kähler forms on these manifolds. In particular we
will show that the Kähler form ω on the preimage φ−1

P (P̊) of the interior P̊ of the
polyhedral set P is given by

(1-1) ω =
√

−1 ∂∂̄ φ∗

P

( N∑
j=1

λ j log(u j − λ j ) + u j

)
,
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where we think of u j ∈ ZG as a function on g∗.
Formula (1-1) was originally proved by Guillemin in the case where MP is a

compact manifold (and thus P is a simple unimodular polytope, also known as
a Delzant polytope). It was extended to the case of compact orbifolds by Abreu
[2001]. Calderbank, David and Gauduchon gave two new proofs of Guillemin’s
formula (for orbifolds) in [Calderbank et al. 2003]. One of their proofs was sim-
plified further in [Burns and Guillemin 2004].

As we just mentioned, for generic values of λ the polyhedral set P is simple
and consequently MP is at worse an orbifold. But for arbitrary values of λ it may
have more serious singularities. Of particular interest is the singular case where P
is a cone on a simple polytope. Then there is only one singular point, and the link
of the singularity is a Sasakian orbifold. Such orbifolds, especially the ones with
Sasaki–Einstein metrics, have attracted some attention in string theory. They play
a role in the AdS/CFT correspondence [Martelli and Sparks 2004].

If the polyhedral set P is a polytope, that is, if P is compact, then as a symplectic
space MP may also be obtained as a symplectic quotient of CPN . In this case
the Fubini–Study form on CPN will induce a Kähler structure on MP , which is
different from the one induced by the flat metric on CN even in the case where MP

is smooth. We will give a formula for this Kähler structure as well.
The methods of this paper are quite close to that of [Calderbank et al. 2003]. In

particular the key Lemma 3.3 is a direct corollary of Proposition 2 in that reference.

2. The “Delzant” construction: toric varieties as Kähler quotients

It will be convenient for us to fix the following notation. As in the introduction, let
G be a torus with Lie algebra g and integral lattice ZG ⊂ g. Let u1, . . . , uN ∈ ZG

be a set of primitive vectors which span g over R. Let λ1, . . . , λN ∈ R and let

(2-1) P = Pu,λ := {η ∈ g∗
| 〈η, u j 〉 − λ j ≥ 0, 1 ≤ j ≤ N }

be the corresponding polyhedral set. As above we assume that P has the nonempty
interior and that the collection of inequalities defining P is minimal. Let A : ZN

→

ZG be the Z-linear map given by

A (x1, . . . , xN ) =

∑
xi ui .

That is, A is defined by sending the standard basis vector ei of ZN to ui . Let A
also denote the R-linear extension RN

→ g. Let k = ker A and let B : k → RN

denote the inclusion. The map A induces a surjective map of Lie groups

A : TN
= RN /ZN

→ g/ZG = G.
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Let K = ker A and let B : K → TN denote the corresponding inclusion. The group
K is a compact abelian group which need not be connected. It’s easy to see that
the Lie algebra of K is k.

We have a short exact sequence of abelian Lie algebras:

0 → k
B
→ RN A

→ g → 0.

Let
0 → g∗ A∗

→ (RN )∗
B∗

→ k∗
→ 0

be the dual sequence. Note that ker B∗
= A∗(g∗) = k◦ where k◦ denotes the annihi-

lator of k in (RN )∗. Let {ei
∗
} denote the dual basis of (RN )∗ and let λ =

∑
λi ei

∗.
We note that

(B∗)−1(B∗(−λ)) = −λ + k◦
= −λ + A∗(g∗).

In particular (B∗)−1(B∗(−λ)) is the image of the affine embedding

(2-2) ιλ : g∗ ↪→ (RN )∗, ιλ(`) = −λ + A∗(`).

Lemma 2.1. Let P be the polyhedral set defined by (2-1) above.

(1) There exists a Kähler space MP with an effective holomorphic Hamiltonian
action of the torus G so that the image of the associated moment map φP :

MP → g∗ is P.

(2) For every open face F̊ , the preimage φ−1
P (F̊) is the Kähler quotient of a com-

plex torus (C×)NF by a compact subgroup K F of the compact torus TNF ⊂

(C×)NF . Here the number NF and the group KF depend on the face F.

(3) If the set P is bounded, then MP can also be constructed as a Kähler quotient
of CPN .

Proof. For every index i and any η ∈ g∗

〈η, Aei 〉 − λi = 〈A∗η, ei 〉 −
〈∑

λ j e j
∗, ei

〉
= 〈A∗η − λ, ei 〉 = 〈ιλ(η), ei 〉.

Therefore

ιλ(P) =
{
` ∈ (RN )∗

∣∣ 〈`, ei 〉 ≥ 0, 1 ≤ i ≤ N
}

∩ ιλ(g
∗).

More generally, if F̊ ⊂ P is an open face, there is a unique subset IF = I ⊂

{1, . . . , N } so that

F̊ =

⋂
j 6∈I

{η ∈ g∗
| 〈η, u j 〉 − λ j > 0} ∩

⋂
j∈I

{η ∈ g∗
| 〈η, u j 〉 − λ j = 0}.

Therefore
(2-3)
ιλ(F̊) = ιλ(g

∗) ∩
⋂
j 6∈I

{
` ∈ (RN )∗

∣∣ 〈`, e j 〉 > 0
}

∩
⋂
j∈I

{
` ∈ (RN )∗

∣∣ 〈`, e j 〉 = 0
}
.



30 DAN BURNS, VICTOR GUILLEMIN AND EUGENE LERMAN

The moment map φ for the action of TN on (CN ,
√

−1
∑

dz j ∧ dz̄ j ) is given by

φ(z) =

∑
|z j |

2e j
∗.

Hence
φ(CN ) =

{
` ∈ (RN )∗

∣∣ 〈`, ei 〉 ≥ 0, 1 ≤ i ≤ N
}
.

The moment map φK for the action of K on CN is the composition

φK = B∗
◦ φ.

Let ν = B∗(−λ). We argue that

φ(φ−1
K (ν)) = ιλ(P).

Indeed,

φ−1
K (ν) = φ−1((B∗)−1(ν)

)
= φ−1((B∗)−1(B∗(−λ))

)
= φ−1(ιλ(g

∗)) = φ−1(φ(CN ) ∩ ιλ(g
∗)) = φ−1(ιλ(P)).

Therefore
φ(φ−1

K (ν)) = ιλ(P).

The restriction
φ|φ−1

K (ν)

descends to a map
φ̄ : MP ≡ φ−1

K (ν)/K → ιλ(g
∗).

It is not hard to see that the composition φP of φ̄ with the isomorphism

ιλ(g
∗)

'
→ g∗

is a moment map for the action of G on the symplectic quotient (symplectic strat-
ified space) MP . Since the isomorphism ιλ(g

∗) → g∗ obviously maps ιλ(P) to P ,
we conclude that the image of φP : MP → g∗ is exactly P . This proves (1).

To prove (2) we define a bit more notation. For a subset I ⊂ {1, . . . , N } we
define the corresponding coordinate subspace

VI :=
{
z ∈ CN

∣∣ j ∈ I ⇒ z j = 0
}
.

Its “interior” V̊I is defined by

V̊I :=
{
z ∈ CN

∣∣ j ∈ I ⇔ z j = 0
}
.

Also, let
TN

I :=
{
a ∈ TN

∣∣ j 6∈ I ⇒ a j = 1
}
.

The sets VI , V̊I are Kähler submanifolds of CN preserved by the action of TN .
Both are fixed by TN

I , with V̊I being precisely the set of points of orbit type TN
I .
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The restriction φK |V̊I
is a moment map for the action of K on V̊I . Moreover,

for any ν ∈ k∗

φ−1
K (ν) ∩ V̊I = (φK |V̊I

)−1(ν).

Hence
(φ−1

K (ν) ∩ V̊I )/K = (φK |V̊I
)−1(ν)/K .

While the action of K on V̊I need not be free, the action of

K I := K/(K ∩ TN
I )

on V̊I is free. Therefore, the quotient (φ−1
K (ν) ∩ V̊I )/K may be interpreted as a

regular Kähler quotient of V̊I by the Hamiltonian action of K I :

(2-4) (φ−1
K (ν) ∩ V̊I )/K = V̊I //νI K I

for an appropriate value νI ∈ k∗

I of the K I moment map.
Given a face F , let I = IF be the corresponding subset of {1, . . . , N }. By (2-3),

{
z ∈ CN

∣∣ φ(z) ∈ ιλ(F̊)
}

=

{
z ∈ CN

∣∣∣∣ φ(z) ∈ ιλ(g
∗), 〈φ(z), e j 〉

{
> 0 for j 6∈ I,
= 0 for j ∈ I

}
= φ−1

K (ν) ∩ V̊I .

Therefore,
φ−1

K (ν) ∩ V̊I = φ−1(ιλ(F̊)).

It follows from the definition of φP that

(φ−1
K (ν) ∩ V̊I )/K = φ−1

P (F̊).

By (2-4) we conclude that

φ−1
P (F̊) = V̊I //νI K I .

This proves (2).
If P is compact, then ιλ(P) ⊂ (RN )∗ is bounded. Hence ιλ(P) is contained in a

sufficiently large multiple of the standard simplex. Any such simplex is the image
of CPN under the moment map for the standard action of TN with the Kähler form
on CPN being the appropriate multiple of the standard Fubini–Study form. This
proves (3). �

Remark 2.2. It follows from the results of Heinzner and his collaborators (email
communication), in particular of Heinzner and Huckleberry [1996], that the action
of G on MP extends to an action the complexified group GC. This action of GC

has a dense open orbit. In other words, MP is a toric Kähler space.
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3. Kähler potentials, Legendre transforms and symplectic quotients

As we mentioned in the introduction, the line of argument of this section is quite
close to the approach in [Calderbank et al. 2003], and Lemma 3.3 can be easily de-
duced form Proposition 2 of that reference. We keep our exposition self-contained.

We start by recalling a result of Guillemin [1994, Theorems 4.2, 4.3]:

Lemma 3.1. Suppose the action of TN on (C×)N
= RN

×
√

−1TN preserves a
Kähler form ω and is Hamiltonian. Then there exists a TN -invariant function f on
(C×)N such that ω = i∂∂̄ f . Additionally

L f ◦ π : (C×)N
→ (RN )∗

is a moment map for the action of TN on ((C×)N , ω). Here π : RN
×

√
−1TN

→

RN is the projection and L f : RN
→ (RN )∗ is the Legendre transform of f , where

we have identified f ∈ C∞((C×)N )TN
with a function on RN .

The same result holds with (C×)N replaced by U ×
√

−1TN for any contractible
open set U ⊂ RN .

Lemma 3.2. Let f : V → R be a (strictly) convex function on a finite dimensional
vector space V , let A : W → V be an injective linear map, x ∈ V be a point and

j : W → V, j (w) = Aw + x

an affine map. Then f ◦ j : W → R is (strictly) convex and the associated Legendre
transform L f ◦ j : W → W ∗ is given by

L f ◦ j = A∗
◦ L f ◦ j,

where A∗
: V ∗

→ W ∗ is the dual map.

Proof. By the chain rule and the definition of the Legendre transform,

L f ◦ j (w) = d( f ◦ j)w = d f j (w) ◦ d jw = L f ( j (w)) ◦ A = A∗
◦ L f ◦ j (w)

for any w ∈ W . �

Lemma 3.3. Let f ∈ C∞(RN ) be a strictly convex function and ω =
√

−1∂∂̄ π∗

N f
the corresponding TN -invariant Kähler form on (C×)N

= RN
×

√
−1TN (here

πN : (C×)N
→ RN is the projection). Let φ = L f ◦ πN : (C×)N

→ (RN )∗ denote
the associated moment map.

Let K ⊂ TN be a closed subgroup and let G = TN /K . For any ν ∈ k∗ the
symplectic quotient

(C×)N //ν K

is biholomorphic to U ×
√

−1G ⊂ g ×
√

−1G = GC where U ⊂ g is an open
contractible set. Hence the reduced Kähler form ων has a potential fν .
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Moreover, the Legendre–Fenchel dual f ∗
ν of the Kähler potential fν is given by

(3-1) f ∗

ν = f ∗
◦ ιλ

where ιλ :g∗
→ (RN )∗ is the affine embedding (2-2) and −λ is a point in (B∗)−1(ν).

Proof. It is no loss of generality to assume that the group K is connected. Then
TN

' K × G. Consequently RN
' k × g and the short exact sequence

0 → k
B
→ RN A

→ g → 0

splits. Let
πK : RN

→ k and ιg : g → RN

denote the maps defined by the splitting. The moment map φK : (C×)N
→ k∗ for

the action of K on ((C×)N , ω) is the composition

φK = B∗
◦ φ = B∗

◦ L f ◦ πN .

Let
1 = (B∗)−1(ν) ∩ φ((C×)N ) = (B∗)−1(ν) ∩ L f (R

N ).

Then 1 is the intersection of an affine hyperplane with a convex set, hence is
contractible.

Since the action of K on φ−1
K (ν) is free, K C

·φ−1
K (ν) is an open subset of (C×)N

and K C acts freely on it. Moreover, for each x ∈ φ−1
K (ν) the orbit K C

· x intersects
the level set φ−1

K (ν) transversely and

K C
· x ∩ φ−1

K (ν) = K · x

(see [Guillemin and Sternberg 1982, pp. 526–527]). It follows that the restriction

πK |L−1
f (1) : L−1

f (1) → k

is 1-1 and a local diffeomorphism. Hence

U = πK (L−1
f (1))

is a contractible open set.
On the other hand, the restriction ω|φ−1

K (ν) descends to a Kähler form ων on the
symplectic quotient

(C×)N )//ν K := φ−1
K (ν)/K .

Moreover, since ω is TN invariant, ων is G-invariant. Note that

(C×)N )//ν K ' U ×
√

−1G ⊂ GC.

By Lemma 3.1 there exists fν ∈ C∞(U ) such that

ων =
√

−1∂∂̄ fν .
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The potential fν defines a moment map

φG : U ×
√

−1G → g∗

with
φG = L fν ◦ πG,

where πG : U ×
√

−1G → U is the projection. Moreover, by adjusting fν [Burns
and Guillemin 2004] we may arrange for the diagram

(3-2)

φ−1
K (ν)

φ
−−−→ 1 ⊂ (RN )∗

/K
y xιλ

U ×
√

−1G −−−→
φG

g∗

to commute. That is, the moment map φG is defined up to a constant and the
potential fν is defined up to a pluriharmonic G-invariant function. By adding an
appropriate pluriharmonic function to fν we can change φG by any constant we
want. Since φ = L f ◦ πN and since φG = L fν ◦ πG , it follows from (3-2) that the
diagram

L−1
f (1)

L f
−−−→ 1 ⊂ (RN )∗

πK

y xιλ

U −−−→
L fν

g∗

commutes as well. Since (L fν )
−1

= L f ∗
ν

, where f ∗
ν is the Legendre–Fenchel dual

of fν ,
L f ∗

ν
= πK ◦ (L f )

−1
◦ ιλ = πK ◦ (L f ∗) ◦ ιλ.

By Lemma 3.2,
L f ∗

ν
= L f ∗ ◦ ιλ.

Therefore, up to a constant, f ∗
ν = f ∗

◦ ιλ. �

4. From potentials to dual potentials and back again

We start by making two observations. Let V be a real finite dimensional vector
space, V ∗ its dual, O ⊂ V an open set, ϕ ∈ C∞(O) a strictly convex function, Lϕ :

O → V ∗ the Legendre transform (which we assume to be invertible), O∗
= Lϕ(O)

and ϕ∗
∈ C∞(O∗) the Fenchel dual of ϕ.

Lemma 4.1. Under these assumptions, ϕ = (Lϕ)∗h, where h : O∗
→ R is given by

h(η) = 〈η, (dϕ∗)η〉 −ϕ∗(η)

where we think of (dϕ∗)η ∈ T ∗
η O∗ as an element of (V ∗)∗ = V .
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Proof. By the definition of the Fenchel dual, ϕ(s)+ϕ∗(η) = 〈η, s〉 for η = Lϕ(s).
Hence

ϕ(s) = 〈η, s〉 −ϕ∗(η) = 〈η, (Lϕ)−1(η)〉 −ϕ∗(η) = 〈η, Lϕ∗(η)〉 −ϕ∗(η)

and the result follows since Lϕ∗(η) = (dϕ∗)η. �

Lemma 4.2. We keep the above notation. Suppose additionally that the dual po-
tential ϕ∗ has the special form

ϕ∗(η) =

N∑
i=1

fi (ui (η) − λi ),

where u1, . . . , uN are vectors in V (thought of as linear functionals ui : V ∗
→ R),

λi ∈ R are constants and fi ’s are functions of one variable. Then

(4-1) h(η) =

N∑
i=1

(
f ′

i (ui (η) − λi ) ui (η) − fi (ui (η) − λi )
)
.

Proof. Observe that

d( fi ◦ (ui − λi ))η = f ′

i (ui (η) − λi ) d(ui − λi )η = f ′

i (ui (η) − λi ) ui

since ui is linear. Hence

〈η, (dϕ∗)η〉 =
〈
η,

∑
f ′

i (ui (η) − λi )ui
〉
=

∑
f ′

i (ui (η) − λi ) ui (η)

and (4-1) follows from Lemma 4.1. �

Example 4.3. We use the lemma above to argue that for the standard action of TN

on (CN ,
√

−1∂∂||z||2), the dual potential ϕ∗ is given by

ϕ∗
=

N∑
i=1

ei log ei ,

where {e1, . . . , eN } is the standard basis of RN
= Lie(TN ).

Indeed, the homogeneous moment map 8 : CN
→ (RN )∗ for the standard action

of TN is given by
8(z) =

∑
|z j |

2e j
∗,

where {e j
∗
} is the basis dual to {e j }. Hence

||z||2 = 8∗
(∑

e j
)
.

On the other hand, if ϕ∗
=

∑
e j log e j , then

ϕ∗
=

∑
f ◦ e j
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where f (x) = x log x . Since f ′(x) = log x + 1, (4-1) becomes

h =
∑

(log e j + 1)e j −
∑

e j log e j =
∑

e j .

Therefore, ϕ∗
=

∑
e j log e j is, indeed, the dual potential.

We are now in position to prove (1-1).

Theorem 4.4. Let G be a torus, P ⊂ g∗ the polyhedral set defined by (2-1), MP =

CN //ν K the Kähler G-space with moment map φP : MP → g∗ constructed in
Lemma 2.1 (1). Then the Kähler form ωP on M̊P := φ−1

P (P̊) is given by

ωP =
√

−1 ∂∂̄ φ∗

P

( N∑
j=1

λ j log(u j − λ j ) + u j

)
,

Proof. By Lemma 2.1, M̊P = (C×)N //ν K where K ⊂ TN is a closed subgroup. By
Lemma 3.3 the dual potential ϕ∗

P on P̊ is given by ϕ∗

P = ϕ∗
◦ ιλ, where ϕ∗ is the

potential on the open orthant in (RN )∗ dual to the flat metric potential ϕ(z) = ||z||2

on (C×)N . By Example 4.3 ϕ∗
=

∑
e j log e j . Since ι∗λe j = u j − λ j ,

ϕ∗

P =
∑

(u j − λ j ) log(u j − λ j ).

By Lemmas 4.1 and 4.2, the potential ϕP is given by

ϕP = φ∗

P h

where
h =

∑
(log(u j − λ j ) + 1)u j −

∑
(u j − λ j ) log(u j − λ j )

(see (4-1)). Therefore

ϕP = φ∗

P

( N∑
i=1

(λ j log(u j − λ j ) + u j )

)
. �

5. Kähler potentials on the preimages of faces

Once again let P ⊂ g∗ be a polyhedral set given by (2-1). Recall that in Section 2
we canonically associated to this set a Kähler quotient MP of CN which carries an
effective holomorphic and Hamiltonian action of the torus G with a moment map
φP : MP → g∗. Let F ⊂ P be a face. Its interior F̊ is given by

F̊ =

⋂
j 6∈I

{η ∈ g∗
| 〈η, u j 〉 − λ j > 0} ∩

⋂
j∈I

{η ∈ g∗
| 〈η, u j 〉 − λ j = 0}

for some nonempty subset I of {1, . . . , N }. We have seen in the proof of Lemma
2.1 that the preimage

MF̊ := φ−1
P (F̊)



KÄHLER METRICS ON SINGULAR TORIC VARIETIES 37

is the Kähler quotient of V̊I by a compact abelian group K I . Therefore there is a
potential ϕ∗

F ∈ C∞(F̊) dual to the Kähler potential ϕF on MF̊ . The goal of this
section is to compute the dual potential ϕ∗

F “explicitly.” Lemmas 4.1 and 4.2 will
then give us an analogue of (1-1) for the Kähler metric on MF̊ .

The Kähler potential ϕI on V̊I for the flat metric induced from CN is given by

ϕI (z) =

∑
j 6∈I

|z j |
2.

The restriction of the moment map φ : CN
→ (RN )∗ to V̊I is a moment map for

the action of the torus
HI := TN /TN

I .

Note that

φ(V̊I ) =

{∑
i 6∈I

ai ei
∗

∣∣∣∣ ai > 0
}
.

This set is an open subset in

spani 6∈I {e j
∗
} ' h∗

I .

From now on we identify h∗

I with spani 6∈I {e j
∗
}. The dual potential ϕ∗

I ∈C∞(φ(V̊I ))

is easily seen to be
ϕ∗

I =

∑
j 6∈I

e j log e j .

The manifold MF̊ is a Hamiltonian G space, but the group G doesn’t act effectively.
So we cannot yet apply Lemma 3.3 as we would like. Let G I denote the quotient
of G that does act effectively on MF̊ . It is isomorphic to the quotient HI /K I . The
dual of its Lie algebra g∗

I is naturally embedded in g∗:

g∗

I = {η ∈ g∗
| 〈η, ui 〉 = 0 for all i ∈ I }.

Note also that the affine span affspan F̊ of F̊ ⊂ g∗ is the translation of g∗

I by an
element η0 ∈ F̊ , as it should be. Let γI : g∗

I → affspan F̊ ⊂ g∗ denote the affine
embedding. Then there exists an affine embedding ιI : g∗

I ↪→ h∗

I so that the diagram
h∗

I −−−→ (RN )∗

ιI

x xιλ

g∗

I −−−→
γI

g∗

commutes. Here the top arrow identifies h∗

I with spani 6∈I {ei
∗
}. Since γI is an

embedding, we may think of ϕ∗

F as living on F̊ ⊂γI (g
∗

I ). Therefore, by Lemma 3.3,

(5-1) ϕ∗

F = (ϕ∗

I ◦ ιλ)|F̊ .
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Let
v j = u j |F̊ .

These functions are affine, but not necessarily linear. Then

(e j ◦ ιλ)|F̊ = (u j − λ j )|F̊ = v j − λ j .

Therefore
ϕ∗

F = (ϕ∗

I ◦ ιλ)|F̊ =

∑
j 6∈I

(v j − λ j ) log(v j − λ j ).

To get a nicer formula for the potential on MF̊ we now make a simplifying
assumption, namely, that 0 ∈ F̊ . Then v j = u j |g∗

I
and, in particular, it is linear for

all j . Hence Lemmas 4.1 and 4.2 apply, and we obtain:

Theorem 5.1. Under the simplifying assumption above, the Kähler form ωF on
MF̊ is given by

ωF =
√

−1 ∂∂̄ (φP |MF̊
)∗

(∑
j 6∈I

λ j log(v j − λ j ) + v j

)
.

Alternatively we may take the isomorphism γI : g∗

I → affspan F̊ explicitly into
account and think of ϕ∗

F as living on an open subset of g∗

I . Then, by Lemma 3.3,

ϕ∗

F = ϕ∗

I ◦ ιλ ◦ γI .

Since
ei ◦ ιλ ◦ γI = ui |g∗

I
+ ui (η0) − λi ,

we get
ϕ∗

F =

∑
i 6∈I

(u j |g∗

I
+ u j (η0) − λ j ) log(u j |g∗

I
+ u j (η0) − λ j ).

We conclude:

Theorem 5.2. The Kähler form ωF on MF̊ is given by

ωF =
√

−1 ∂∂̄ (φP |MF̊
)∗

(∑
j 6∈I

(
(λ j − u j (η0)) log(u j |g∗

I
+ u j (η0) − λ j ) + u j |g∗

I

))
.

Variations on the theme. The same technique allows us to prove a variant of (1-1).
We keep the notation above. Suppose that the polyhedral set P is compact. That
is, suppose that P is actually a polytope. Then

ιλ(P) ⊂ {` ∈ (RN )∗ | 〈`, e j 〉 ≥ 0 for all j}

is bounded. Hence there is R > 0 such that ιλ(P) is contained in a scaled copy 1R

of the standard simplex

1R =
{
` ∈ (RN )∗

∣∣ 〈`, e j 〉 ≥ 0 for all j and
∑

〈`, e j 〉 ≤ R
}

.
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Since 11 is the moment map image of CPN under the standard action of TN , it
follows that MP is also a symplectic quotient of (CPN , RωF S) by the action of the
compact abelian Lie group K defined earlier (ωF S denotes the Fubini–Study form;
see Lemma 2.1 (3)). Since

1R =
{
` ∈ (RN )∗

∣∣ 〈`, e j 〉 ≥ 0, 1 ≤ j ≤ N ,
〈
`, −

∑
e j

〉
+ R ≥ 0

}
,

it follows from (3-1) that the potential f ∗ dual to the potential for RωF S on 1R is
given by

f ∗
=

∑
e j log e j +

(
R −

∑
e j

)
log

(
R −

∑
e j

)
.

Consequently the potential f ∗
ν dual to the potential on the quotient (CPN //ν K , ωP)

is

f ∗

ν =
∑

(u j − λ j ) log(u j − λ j ) +
(
R −

∑
(u j − λ j )

)
log

(
R −

∑
(u j − λ j )

)
.

By Lemma 4.1 the reduced Kähler form ωP is

ωP =
√

−1∂∂̄φ∗h

where
h(η) = 〈η, (d fν)η〉 − fν(η).

A computation similar to the ones in the previous sections gives

(5-2) h =
∑

λ j log(u j − λ j ) −
(
R +

∑
λ j

)
log

(
R −

∑
(u j − λ j )

)
.

We have proved the following theorem.

Theorem 5.3. Let G be a torus, P ⊂ g∗ the polyhedral set defined by (2-1) which
happens to be compact, MP = (CPN , RωF S)//ν K the Kähler G-space with mo-
ment map φP : MP → g∗ constructed in Lemma 2.1 (3). Then the Kähler form ωP

on M̊P := φ−1
P (P̊) is given by

ωP =
√

−1 ∂∂̄ φ∗

P
(∑

λ j log(u j − λ j ) −
(
R +

∑
λ j

)
log

(
R −

∑
(u j − λ j )

))
.
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