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We compute the chains associated to the left-invariant CR structures on the
three-sphere. These structures are characterized by a single real modulus
a. For the standard structure a = 1, the chains are well known and are
closed curves. We show that for almost all other values of the modulus
a, either two or three types of chains are simultaneously present: closed
curves, quasiperiodic curves dense on two-tori, or chains homoclinic be-
tween closed curves. For 1 < a <

√
3, no curves of the last type occur. A

bifurcation occurs at a =
√

3 and from that point on all three types of chains
are guaranteed to exist, and exhaust all chains. The method of proof is to use
the Fefferman metric characterization of chains, combined with tools from
geometric mechanics. The key to the computation is a reduced Hamiltonian
system, similar to Euler’s rigid body system, and depending on a, which is
integrable.

1. Introduction and results

The left-invariant CR structures on the three-sphere S3
= SU(2) form a family of

CR structures containing the standard structure. After the standard structure, these
form the most symmetric CR structures possible in dimension 3 [Cartan 1933]. The
purpose of this note is to compute the chains for these structures. (Computations
of Cartan curvature type invariants for the left-invariant CR structures can be found
in [Čap 2006].)

The chains on a strictly pseudoconvex CR manifold are a family of curves on
the manifold invariantly associated to its CR structure. Chains were defined by
Cartan [1933] and further elucidated in [Chern and Moser 1974] and [Fefferman
1976]. Chains play a role in CR geometry somewhat similar to that of geodesics in
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Riemannian geometry. The left-invariant CR structures on S3 are strictly pseudo-
convex. Our computation of the chains for these structures appears here, apparently
for the first time.

The space of left-invariant structures on S3
= SU(2) modulo conjugation is a

half-line parameterized by a single real variable a. Any left-invariant CR structure
is conjugate to one of those presented in the normal form in (2) and (3). The
standard structure corresponds to a = 1. Its chains are obtained by intersecting
S3

⊂ C2 with complex affine lines in C2. (See [Goldman 1999] for especially good
visual descriptions.) In particular all chains for the standard structure are closed
curves. Here is our main result:

Theorem 1.1. Consider the left-invariant CR structures on the three-sphere. They
form a one-parameter space with parameter a and a = 1 corresponding to the
standard structure, as given by the normal form in (2) and (3) on page 48. Then,
for all but a discrete set of values of a, two types of chains are present: closed
chains and quasiperiodic chains dense on two-tori. The curves of each type are
dense in S3. A bifurcation occurs at a =

√
3 so that for a >

√
3 a third type

of chain occurs, corresponding to a homoclinic orbit and accumulating onto a
periodic chain (a geometric circle). For all a >

√
3 all three types of chains —

periodic, quasiperiodic, and homoclinic — are present and every chain is one of
these three types. For a <

√
3 only the closed chains and quasiperiodic chains are

present.

Remark. We have left open the possibility that for a finite set of a ∈ [1,
√

3] all
chains are closed.

The computations leading to the theorem are based on a construction of Fef-
ferman [1976], refined and generalized in [Lee 1986] and [Farris 1986]. Starting
with a strictly pseudoconvex CR manifold M , the Fefferman construction yields a
circle bundle S1

→ X → M together with a conformal class of Lorentzian metrics
on X . The chains are then the projections to M of the light-like geodesics on X . It
follows that we can look for chains by solving Hamiltonian differential equations.

Once we have the Hamiltonian system for Fefferman’s metric, a simple picture
from geometric mechanics underlies this theorem. For our left-invariant structures
this Hamiltonian system is very similar to that of a free rigid body, but with config-
uration space being SU(2) = S3 instead of the rotation group SO(3). Like the rigid
body, this Hamiltonian system is integrable. Its solutions — the chains — lie on the
Arnol’d–Liouville tori. As in the case of the rigid body, the nonabelian symmetry
group forces the resonances between three a priori frequencies on the tori, so the
tori are in fact two-dimensional, but not of the expected dim(S3) = 3 dimensions.
When the frequencies are rationally related we get closed chains. Otherwise we
get the quasiperiodic chains. The phase portrait (Figure 2 below) changes with a
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and the bifurcation at a =
√

3 corresponds to the origin turning from an elliptic
to a hyperbolic fixed point in a bifurcation sometimes known as the Hamiltonian
figure eight bifurcation.

Outline. There are five steps to the proof of the theorem. The paper is organized
along these steps.

0. Find the normal form for the left-invariant structures on SU(2).

1. Compute the Fefferman metric on SU(2)× S1 for the left-invariant CR struc-
tures.

2. Reduce the Hamiltonian system for the Fefferman geodesics by the symmetry
group SU(2) × S1.

3. Integrate the reduced system.

4. Compute the geometric phases (holonomies) relating the full motion to the
reduced motion.

We briefly describe the methods and ideas involved in each one of the steps
above, and in so doing link that step to the section in which it is completed.

Step 0 (Finding a normal form). In Section 2 we derive the normal form (2) and
(3) for the left-invariant CR structures with single real parameter a. This normal
form is well known and standard. Its derivation is routine. The normal form can
be found, for example, in [Hitchin 1995, p. 34] and especially in the first sentence
of the proof of Theorem 10 on p. 99 of the same reference. Hitchin provided no
derivation of the normal form. For completeness we present the derivation of the
normal form in Section 2.

Step 1 (Finding the Fefferman metric). In Section 3 we compute the Fefferman
metric associated to our normal forms. We follow primarily [Lee 1986]. Inverting
this metric yields the Hamiltonian H = Ha whose solution curves correspond to
chains.

Step 2 (Constructing the reduced dynamics). The chains for the left-invariant CR
structures are the projections to S3 of the light-like geodesics for the metrics com-
puted in Step 0. These geodesics are solutions to Hamiltonian systems on T ∗(S3

×

S1) whose Hamiltonians we write

H = Ha : T ∗(S3
× S1) → R.

As with all “kinetic energy” Hamiltonians, H is a fiber-quadratic function on the
cotangent bundle. To specify that the geodesics are light-like, we only look at those
solutions with H = 0. The Fefferman metrics are always invariant under the circle
action. In our case of left-invariant CR structures the metrics are also invariant
under the left action of S3

= SU(2) (extended in the standard way to the cotangent
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bundle). Consequently we can reduce the Fefferman dynamics by the groups S1

and SU(2). This reduction is performed in Sections 4 and 5. Section 5 provides
generalities concerning reducing left-invariant flows on Lie groups, and as such
helps to orient the overall discussion. In Section 4 we compute the reduced flow.
In order to perform the reduction, fix the standard basis e1, e2 and e3 for su(2).
Write its dual basis, viewed as left-invariant one-forms, as ω1, ω2 and ω3. Write
(g, γ ) for a point of S3

× S1 and dγ for the one-form associated to the angular
coordinate γ . Any covector β ∈ T ∗

g,γ (S3
× S1) can be expanded as

β = M1ω
1(g) + M2ω

2(g) + M3ω
3(g) + P dγ

so we can write H = H(g, γ ; M1, M2, M3, P). Left-invariance implies that H
does not depend on g or γ so we can think of the Hamiltonian as a function H =

H(M1, M2, M3, P) on R3
×R. The Euclidean space R3

×R represents su(2)∗×R∗,
the dual of the Lie algebra of our Lie group, SU(2) × S1. Equivalently, R3

× R

is the quotient space T ∗(S3
× S1)/(S3

× S1). The reduced dynamics is a flow on
this space. The coordinate function P is the momentum map for the action of the
circle factor and as such is constant along solutions for the reduced dynamics. The
function H generates the reduced dynamics:

Ṁi = {Mi , H}, and Ṗ = {P, H} (= 0)

where { · , · } is the “Lie–Poisson bracket”. See Section 5.

Step 3 (Solving the reduced dynamics). The phase portraits found in Figures 1 and
2 summarize the reduced dynamics. The computations proceed as follows. The
functions P and K = M2

1 + M2
2 + M2

3 are Casimirs for the Lie–Poisson structure,
meaning that {K , h} = {P, h} = 0 for any Hamiltonian h used to generate the
reduced dynamics. The solutions to the reduced dynamical equations thus lie on
the curves formed by the intersections of the three surfaces

P = constant, K = constant, and H = 0

in R4
= R3

× R. For typical values of these constants, these curves are closed
curves. At special values the curves may be isolated points, or may be singular,
like in the case of the homoclinic eight (see Figure 2).

When P =0 we can solve for the dynamics explicitly. The corresponding chains
are the left translates of a particular one-parameter subgroup in G = S3. The case
P 6= 0 can be reduced to P = 1 by the following scaling argument. We have

H(λM1, λM2, λM3, λP) = λ2 H(M1, M2, M3, P).

Upon S3
× S1 this scaling represents leaving positions alone and scaling momenta,

and hence velocities. Thus the reduced solution curves with initial conditions
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(λM1, λM2, λM3, λP) and those with initial conditions (M1, M2, M3, P) repre-
sent the same geodesics, and so the same chains, just parameterized differently.
Choosing λ =

1
P we can always scale the case P 6= 0 to the case P = 1. Now

we have a single Hamiltonian h = H(M1, M2, M3, 1) on the standard rigid body
phase space R3. We represent the surface h = 0 as a graph M3 = q(M1, M2; a)

over the M1 M2-plane, where q is an even quartic function of M1 and M2. We form
the solution curves by intersecting this graph with the level sets of K . To simplify
the analysis we project the resulting curves onto the M1 M2-plane. A critical point
analysis of K restricted to the graph locates the bifurcation value a =

√
3 for the

reduced phase portrait as described in Theorem 1.1.

Step 4 (Geometric phases). In Section 7 we follow the idea presented in [Mont-
gomery 1991] in order to reconstruct the chains in S3 from the reduced solution
curves. Some mild modifications are needed to that idea, since our initial group is
SU(2) × S1 rather than the group SO(3) of that paper. Fix P = 1 and a value of
K so that the reduced curve C of step 1 is closed. The left action of SU(2) × S1

on T ∗(S3
× S1) has a momentum map with values in su(2)∗ × R∗ and solutions

(chains) must lie on constant level sets of this momentum map. One factor of this
momentum map is P from Steps 2 and 3 which we have set to 1. Upon projecting
the level set onto T ∗S3 via the projection T ∗S3

× T ∗S1
→ T ∗S3 we obtain an

embedded S3
⊂ T ∗S3 (the graph of a right-invariant one-form) together with a

projection onto the reduced phase space R3
× {1} of Step 3. The inverse image of

C under this projection is a two-torus, and all the chains whose reduced dynamics
is represented by C and whose momentum map has the given fixed value lie on
this two-torus. One angle of this torus represents the reduced curve. The relevant
question is: As we go once around the reduced curve, how much does the other
angle change? Call this amount 1θ . If the value of 1θ is an irrational multiple
of 2π then the chain is not closed and forms one of the quasiperiodic chains of
Theorem 1.1, dense on its two-torus. If 1θ is a rational multiple p/q of 2π , the
chain is closed, corresponding to some (p, q)-winding on its torus. With certain
modifications, the basic integral formula for 1θ from [Montgomery 1991] is valid.
One term in this formula corresponds to a holonomy of a connection, and is termed
the “geometric phase”, explaining the subtitle we have given to Step 4. The values
of 1θ depends only on the values of a and K and its dependence is analytic in
these variables. Thus the proof of the theorem will be complete once we have
shown there is a value of a for which K 7→ 1θ(K , a) is not constant.

In order to prove nonconstancy of 1θ(K , a), take a >
√

3 so that the reduced
dynamics has a homoclinic eight. Denote the value of K on the eight by k(a). We
show that as K → k(a) we have that 1θ(a, K ) → ∞.

Steps 0–4 completed, Theorem 1.1 is proved.
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Appendices. We finish the paper with two appendices. In Appendix A we verify
that when a = 1 the Fefferman geodesics for the Hamiltonian computed here (see
(17)) correspond to the well-known chains for the standard three-sphere. In Ap-
pendix B we show that the left-invariant CR structures for a 6= 1 correspond to the
family of nonembeddable CR structures on S3 discovered by Rossi, and frequently
found in the CR literature.

Open problem. We end Appendix B with an open problem inspired by the Rossi
embedding of S3/(antipodal map) and a conversation with Dan Burns.

2. A normal form for the left-invariant CR structures (Step 0)

2A. Preliminaries and basic definitions. A contact structure in dimension 3 is
defined by the vanishing of a one-form θ having the property that θ ∧ dθ 6= 0. Let
M be the underlying 3-manifold and T M its tangent bundle. The contact structure
is the field of 2-planes

ξ = {(m, v) ∈ T M : θ(m)(v) = 0} ⊂ T M.

It is a rank 2 subbundle of the tangent bundle. The one-form θ and f θ , for f 6= 0
a function, define the same contact structure.

Definition 2.1. A strictly pseudoconvex CR structure on a 3-manifold M consists
of a contact structure ξ on M together with an almost complex structure J defined
on the contact planes ξ .

We will primarily be using an alternative and equivalent definition:

Definition 2.2. A strictly pseudoconvex CR structure on a 3-manifold M consists
of an oriented contact structure ξ on M together with a conformal equivalence class
of metrics defined on contact planes ξ .

To pass from the first definition to the second, we construct the conformal
structure from the almost complex structure J in the standard way. Namely, the
conformal structure is determined by knowing what an orthogonal frame is, and we
declare (e, J (e)) to be such a frame, for any nonzero vector e ∈ ξ . An alternative
to this construction is to choose a contact form θ for the contact structure and then
construct its associated Levi form

(1) Lθ (v, w) = dθ(v, Jw),

which is a quadratic symmetric form on the contact planes. The contact condition
implies that the Levi form is either negative definite or positive definite. If it is
negative definite, replace θ with −θ to make it positive definite. We henceforth
insist that θ and J are taken so that the Levi form is positive definite. This assump-
tion on (θ, J ) is equivalent to assuming that the orientation on the contact planes
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induced by θ and J agree. (Note that a choice of contact one-form orients the
contact planes.) The conformal structure associated to (θ, J ) from Definition 2.1
is generated by the Levi form. If we change θ → f θ with f > 0 then the Levi
form changes by Lθ → f Lθ , showing that this definition of conformal structure is
independent of (oriented) contact form θ .

To go from Definition 2.2 to Definition 2.1, take any oriented orthogonal basis
vectors E1, E2 having the same length relative to some metric in the conformal
class. Define J by

J (E1) = E2, J (E2) = −E1.

Thus in dimension 3 we can define a CR structure by a contact form θ , defined up to
a positive scale factor, together with an inner product on the contact planes ω = 0
to represent the conformal structure, also only defined up to a positive scaling.
Choosing the scale factor of either the contact form or the quadratic form fixes the
scalar factor of the other one through the Levi-form relation in (1).

2B. The left-invariant case. We take M = S3, which we identify with the Lie
group SU(2) in the standard way, via the action of SU(2) on S3

⊂ C2. A left-
invariant CR structure on S3 is then given by Lie algebraic data on su(2). This
data consists of a ray in su(2)∗ representing the left-invariant contact form θ up to
positive scale and a quadratic form on su(2) defined modulo θ , and positive definite
when restricted to ker(θ). Conjugation on SU(2) maps left-invariant CR structures
to left-invariant CR structures, and induces the coadjoint action on su(2)∗. This
action is equivalent, as a representation, to the standard action of the rotation group
SO(3) on R3 via the 2-to-1 homomorphism SU(2) → SO(3). Consequently, we
can rotate the contact form θ to antialign with the basis element ω3. Thus we take
θ = −ω3. The contact planes are then framed by the left-invariant vector fields
e1, e2 ∈ su(2). The choice of −ω3 is made so that (e1, e2) is the correct orientation
of the plane, as follows from the structure equation

dω3
= −ω1

∧ ω2.

This structure equation also proves that the plane field −ω3
= 0 is indeed contact,

so the corresponding CR structure (no matter the choice of J ) will be strictly pseu-
doconvex. A quadratic form on the contact plane is given by a positive definite
quadratic expression in ω1, ω2 , that is,

A(ω1)2
+ 2Bω1ω2

+ C(ω2)2,

viewed modulo ω3. The isotropy group of ω3 acts by rotations of the contact
plane (the (e1, e2)-plane). A quadratic form can be diagonalized by rotations, so
upon conjugation by some element of the isotropy subgroup of ω3 we can put the
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quadratic form in the diagonal form

A(ω1)2
+ B(ω2)2

with A, B > 0. The form is only well-defined up to scale, and we can scale it so
that A = 1/B, that is, the conformal structure is that of (ω1)2/a+a(ω2)2, for a > 0.
We have proved the bulk of

Proposition 2.1 (Normal form). Every left-invariant CR structure on S3 is conju-
gate to one whose contact form is given by

(2) θ = −ω3

and whose associated conformal structure is

(3) Lθ =
1
a
(ω1)2

+ a(ω2)2.

The associated almost complex structure J = Ja is defined by

J (e1) =
1
a

e2, J (e2) = −ae2.

The structure defined by a is isomorphic to the structure defined by 1
a . As the

notation indicates, the quadratic form Lθ is indeed the Levi-form associated to θ

and J via (1).

To see that J in the proposition is correct, note that the choice θ = −ω3 as
contact form induces the orientation {e1, e2} to the contact planes, and that e1, 1

a e2

are orthogonal vectors having the same squared length ( 1
a ) relative to the given

metric Lθ . To see that the structure defined by a is isomorphic to the structure
defined by 1

a observe that rotation by 90 degrees converts 1
a (ω1)2

+ a(ω2)2 to
a(ω1)2

+
1
a (ω2)2. Finally, compute from dθ = ω1

∧ ω2 and the form of J that
indeed, the Levi form is the given quadratic form Lθ .

3. Fefferman’s metric (Step 1)

When the strictly convex CR structure on M is induced by an embedding M ⊂ C2,
Fefferman [1976] constructed a circle bundle Z → M together with a conformal
Lorentzian metric on Z invariantly associated to the CR structure. Farris [1986]
and then Lee [1986] generalized Fefferman’s construction to the case of an abstract
strictly pseudoconvex CR structure, that is, one not necessarily induced by an em-
bedding into C2. In this section we construct the Fefferman metric for the family
of left-invariant CR structures from Step 0 (see Proposition 2.1). We most closely
follow Lee’s presentation.
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We begin with a general construction. Let π : Z → M be any circle bundle over
M . Fix a contact form θ . Recall that the Reeb vector field associated to θ is the
vector field on M uniquely defined by conditions

θ(R) = 1, and iR dθ = 0.

Changing θ to gθ , g a function, changes R to 1
g R+ Xg where Xg lies in the contact

plane field and is determined pointwise by a linear equation involving dg and dθ ,
which is reminiscent of the equation relating a Hamiltonian to its Hamiltonian
vector field. We extend the Levi form (1) to all of T M by insisting that Lθ (R, v)=0
for all v ∈ T M and continue to write Lθ for this extended form. Let σ be any one-
form on Z with the property that σ is nonzero on the vertical vectors (the kernel
of dπ ). Then

(4) gθ = π∗Lθ + 4(π∗θ) � σ

is a Lorentzian metric on Z . Here � denotes the symmetric product of one-forms:

θ � σ =
1
2(θ ⊗ σ + σ ⊗ θ).

The trick needed is a way of defining σ in terms of the contact form, and J , in
such a way that a “conformal change” θ 7→ gθ of the contact structure induces a
conformal change of the metric gθ .

Warning. Farris and Lee use a different definition of the symmetric product �

— their θ � σ is twice ours, so in their formula for the metric our 4 becomes a 2.
We have chosen our definition so that, using it, (dx+dy)2

=dx2
+2(dx�dy)+dy2,

where θ2
= θ ⊗ θ .

Forming the circle bundle from the canonical bundle and (2, 0) forms. The cir-
cle bundle Z → M will be a bundle of complex-valued 2-forms, defined up to a
real scale factor. A choice of contact form θ on M induces various one-forms on
Z in a canonical way. One of these one-forms will be the form σ needed for the
Fefferman metric (4). Here are the main steps leading to the construction of Z and
its one-form σ .

The complexified contact plane ξC = ξ ⊗C splits under J into the holomorphic
and antiholomorphic directions, namely the +i and −i eigenspaces of J , where J
is extended from ξ to ξC by complex linearity. In the case of 3-dimensional CR
manifold, if we start with any nonzero vector field E tangent to ξ , then Z = E−i J E
spans the holomorphic direction, while Z = E + i J E spans the antiholomorphic
direction. In our case

(5) Za = e1 −
i
a

e2
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is holomorphic, while

(6) Za = e1 +
i
a

e2

is the antiholomorphic vector field.

Remark. Equation (5) corresponds to yet a third definition of a CR manifold:

Definition 3.1 (CR structure, third time around). A CR structure on a three-dimen-
sional manifold M is a complex line field, that is, a rank 1 subbundle of the com-
plexified tangent bundle T M ⊗ C which is nowhere real.

Such a complex line field is locally spanned by a “holomorphic” vector field
Z as in (5). Writing Z = E1 − i E2 with E1, E2 real vector fields, we define the
2-plane field ξ to be the real span of E1, E2, and we set J (E1)= E2, J (E2)=−E1.
The “strictly pseudoconvex” condition, which is the condition that ξ be contact,
is that E1, E2 together with the Lie bracket [E1, E2] span the real tangent bundle
T M .

The almost complex structure J on the contact planes of a CR manifold induces
a splitting of the space of complex-valued differential forms into types �p,q sim-
ilar to the splitting of forms on a complex manifolds. We declare that a complex
valued k-form β is of type (k, 0) (that is to say “holomorphic”) if iZβ = 0 for
all antiholomorphic vector fields Z . In dimension 3, one only needs to check this
equality for a single nonzero such vector field, such as Z in (6).

Our case. The space of (1, 0) forms for the left-invariant structure for the param-
eter value a is spanned by θ = −ω3 and ωa = ω1

+iaω2. The space of (2, 0) forms
is spanned (over C) by θ ∧ ωa .

In dimension 3 the space of all (2, 0) forms, considered pointwise, forms a
complex line bundle, denoted by K and called the canonical bundle as in complex
differential geometry. Z is defined to be the “ray projectivization” of K :

Z = K \ {zero section}/R+.

We next recall from [Lee 1986] how a choice of contact form θ determines the
one-form σ on Z .

Volume normalization equation. Fix the contact form θ on M . The volume nor-
malization equation is

(7)
√

−1 θ ∧ iRζ ∧ iR ζ̄ = θ ∧ dθ.

The right-hand side is the standard volume form defined by a choice of contact
structure. On the left, R = Rθ is the Reeb vector field for θ . The 2-form ζ ∈ 0(K ),
a section of the canonical bundle, is viewed as the unknown. The equation is
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quadratic in the unknown since multiplying ζ by a complex function f multiplies
the left-hand side of the volume normalization equation by | f |

2. It follows by this
scaling that there is a solution ζ0 to the volume normalization which is unique up
to unit complex multiple ζ 7→ eiγ ζ .

Said slightly differently, (7) defines a section

s = sθ : Z → K

of the ray bundle K → Z , since once we fix the complex phase of ζ , the equa-
tion uniquely determines the real scaling factor. Fix a solution, which is to say, a
smoothly varying pointwise choice of solutions

ζ0 : M → K

to (7). Such a solution choice defines a global trivialization of Z , since we can
express any point z of Z (uniquely) as

sθ (z) = eiγ ζ0(π(z))

where m = π(z) ∈ M . Thus the choice ζ0 induces a global trivialization

Z ∼= M × S1.

(A more pictorial, equivalent description of this trivialization of Z is as follows.
Form the ray generated by ζ0(m), which is a point in the circle fiber Zm , over m.
Rotate this ray by the angle γ until you hit the ray z ∈ Zm , thus associating to z a
point (m, γ ) ∈ M × S1.)

We henceforth use this identification Z = M × S1 and define a global one-form
on Z by

(8) ζ(m, γ ) = eiγ ζ0(m).

We check now that the two-form ζ depends only on the choice of contact form
θ , and so, up to this choice, is intrinsic to Z . The total space K of the canonical
bundle, like any total space constructed as a bundles of k-forms, has on it a canon-
ical k-form 4. To describe 4 write a typical point of K as (m, β), where m ∈ M
and β ∈

∧(2,0) Tx M . Then we can set

4(x, β) = π∗

x β,

where π : K → M denotes the projection. This canonical form, like all such
canonical forms, enjoys the reproducing property, that is, if β : M → K is any
section, then β∗4 = β. Let s = sθ : Z → K pull 4 back to ζ := s∗

θ 4, a (2, 0) form
on Z . The reproducing property shows that, under the global trivialization of Z
induced by ζ0, we have that ζ is given by formula (8) below.
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Our case. Return to the left-invariant situation: Choosing θ = −ω3 we get

θ ∧ dθ = −ω1
∧ ω2

∧ ω3.

The associated Reeb field is
R = −e3.

Writing ζ0 = gθ ∧ ωa we compute that iRζ0 = gωa . Using

ωa ∧ ωa = −2iaω1
∧ ω2

we compute that the left-hand side of the volume normalization equation (7) ex-
pands out to −2a|g|

2ω1ω2ω3. Equation (7) then implies that |g|
2
=

1
2a . Thus

ζa =
1

√
2a

θ ∧ ωa

is a global normalized section of K . It induces a global trivialization of Z , as just
described, so we can think of Z as S3

× S1. With (m, eiγ ) being the ray through
the (2, 0) form eiγ ζa(m), the two-form ζ on Z is given, under this identification,
by this same algebraic relation

(9) ζ = eiγ 1
√

2a
θ ∧ ωa,

where we are not using different symbols to differentiate between a form β on M
and its pull-backs π∗β to Z .

Proposition 3.1 [Lee 1986, p. 417]. Fix the contact form θ for the CR manifold M.
Let ζ be the induced one-forms on Z as just described. Let R be the Reeb vector
field for θ .

(A) There is a complex valued one-form η on Z , uniquely determined by the con-
ditions

(10) ζ = θ ∧ η, and ivη = 0,

whenever π∗v = R.

(B) With η as in (A), there is a unique real-valued one-form σ on Z determined
by the equations

(11) dζ = 3iσ ∧ ζ

and

(12) σ ∧ dη ∧ η̄ = Tr(dσ)iσ ∧ θ ∧ η ∧ η̄.

The meaning of trace Tr in (12) is as follows. Any solution σ to (11) has the
property that dσ is basic, that is, dσ is the pull-back of a two-form on M ,
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which by abuse of notation we also denote by dσ . Any two-form on M can be
expressed as f dθ + θ ∧ β. Set Tr( f dθ + θ ∧ β) = f .

(C) The form σ = σ(θ) determined by (10)–(12) is the form σ appearing in the
Fefferman metric gθ in (4). If θ 7→ f θ with f > 0, then the Reeb extended
Levi form Lθ and σ transform in such a way that

g f θ = f gθ ,

that is, the conformal class of the Fefferman metric is indeed invariantly at-
tached to the CR structure.

Remark (An equivalent definition of the trace used in (12)). Take a two-form such
as dσ on M , restrict it to the contact plane and then use the Levi form Lθ to raise
its indices and thus define its trace Tr(dσ).

The forms on Z in the left-invariant case. In our left-invariant situation the forms
θ , ζ of Proposition 3.1 have been described above in (2) and (9) as

θ = −ω3, and ζ = θ ∧ η

with

η =
1

√
2a

eiγ ωa, and ωa = ω1
+ iaω2.

This η is indeed the η in Proposition 3.1 (A) of the theorem, since if V is any vector
field on Z satisfying π∗V = R then iV π∗η = iRη = 0. (Recall we use η for π∗η

as forms on Z .)
Now we move to the computations of Proposition 3.1 (B) for the one-form σ .

We get

σ =
1
3 dγ + f θ,(13)

f =
1
8

(
a +

1
a

)
.(14)

The key steps in the computation are

dη = i dγ ∧ η +
1

√
2a

eiγ dωa = i dγ ∧ η +
1

√
2a

eiγ θ ∧ (−ω2
+ iaω1)

and
dζ = idγ ∧ ζ.

Then (13) follows from (11) in Proposition 3.1 (B) and the reality of σ for some
real function f . We have Tr(dσ) = f . Setting

d vol = dγ ∧ θ ∧ ω1
∧ ω2
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we compute the right-hand side of (12) to be f
3 d vol, while its left-hand side is

equal to (1 + a2

6a
− f

)
d vol .

Setting the two 4-forms equal and solving for f yields (14) as claimed.
Returning now to the form of the Fefferman metric in (4), and using θ = −ω3,

we see that the metric is given (up to conformality) by

ds2
=

1
a
(ω1)2

+ a(ω2)2
+ 4ω3

�

(
1
8

(
a +

1
a

)
ω3

−
1
3 dγ

)
.

Written in terms of the basis {e1, e2, e3,
∂
∂γ

} this metric is

(15) g(a) =


1
a 0 0 0
0 a 0 0
0 0 1

2(a +
1
a ) −

2
3

0 0 −
2
3 0

 .

4. Reduced light ray equations (Step 2)

The geodesics for any metric

ds2
=

∑
gi j dx i dx j ,

Riemannian or Lorentzian, can be characterized as the solutions to Hamilton’s
equations for the Hamiltonian defined by inverting the metric, and viewing the
result as a fiber quadratic function on the cotangent bundle:

(16) H(x, p) =
1
2

∑
gi j (x)pi p j .

(See for example [Abraham and Marsden 1994; Arnold 1989; Montgomery 2002].)
Here gi j (x) is the matrix pointwise inverse to the matrix with entries gi j (x).

If we are only interested in light-like geodesics, then we restrict to solutions for
which H = 0. It is important that these geodesics are conformally invariant. If

d̃s2
= f ds2

is a metric conformal to the original, then the corresponding Hamiltonians are re-
lated by H̃ =

H
f and the two Hamiltonian vector fields are related on their common

zero level set {H = 0} by

X H̃ =
1
f

X H .

This proportionality of vector fields says that the sets of light rays for any two con-
formally related metrics ds2, d̃s2 are the same as sets of unparameterized curves.
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The Hamiltonian for the Fefferman metric lives on T ∗Z . Any covector p ∈ T ∗
z Z

can be expanded in the basis {ω1, ω2, ω3, dγ } dual to the basis in which the matrix
(15) was computed:

p = M1ω1 + M2ω2 + M3ω3 + Pdγ.

The inverse matrix of that in (15) is

g(a)−1
=


a 0 0 0
0 1

a 0 0
0 0 0 −

3
2

0 0 −
3
2 −

9
8(a +

1
a )

 .

It follows that the Fefferman Hamiltonian for our left-invariant CR structure with
parameter a is given by

(17) Ha(g, γ ; M1, M2, M3, P) =
1
2

(
aM2

1 +
1
a

M2
2 − 3M3 P −

9
8

(
a +

1
a

)
P2

)
.

5. Left-invariant geodesic flows

Our Hamiltonian (see (17) and (15)) generates the geodesic flow for a left-invariant
(Lorentzian) metric on the Lie group G = SU(2) × S1. In this section we review
some general facts regarding left-invariant geodesic flows, and specify to our situa-
tion. We refer the reader to [Abraham and Marsden 1994], especially Chapter 4, or
[Arnold 1989], especially Appendix 2, for background and more details regarding
the material of this section and the next.

5A. Generalities. Let Q be a manifold. Let ds2 be a metric on Q as above. The
geodesic flow for ds2 is encoded by a Hamiltonian vector field X on T ∗Q which
is defined in terms of the Hamiltonian above in (16). The vector field X can be
defined by the canonical Poisson brackets {, } on T ∗Q according to X f = { f, H}

for any smooth function f on T ∗Q. It is worth noting that the momentum scaling
property H(q, λp) = λ2 H(q, p), for p ∈ T ∗

q Q corresponds to the fact that the
geodesic γ̃ (t) with initial conditions (q, λp) is simply the same as th egeodesic
γ (t) with the initial conditions (q, p) but just parameterized at a different speed:
γ̃ (t) = γ (λt)

Now suppose that Q = G is a finite-dimensional Lie group and the metric is left-
invariant, that is, left translation by any element of G acts by isometries relative to
ds2. The left action of G on itself canonically lifts to T ∗G, and left-invariance of
the metric implies that the Hamiltonian H is left-invariant under this lifted action.
Write g for the Lie algebra of G, and g∗ for the dual vector space to g, which
we identify with T ∗

e G, where e ∈ G is the identity. Using the codifferential of
left-translation, we left-trivialize T ∗G = G × g∗, and use corresponding notation
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(g, M) ∈ G × g∗ for points in the trivialized cotangent bundle. Then the left-
invariance of H means that, relative to this trivialization, we have

H(g, M) = H(M)

depending on M alone.
Let ea be a basis for g, the Lie algebra of G, and ωa the corresponding dual

basis for g∗. Then we can expand

M =

∑
Maω

a

and
H =

1
2

∑
gab Ma Mb,

where gab is the matrix inverse to the inner product matrix gab = ds2(ea, eb). We
find that

{Ma, Mb} = −

∑
cd

ab Md ,

where cd
ab are the structure constants of g relative to the basis ea .

It follows that the geodesic flow can be pushed down to the quotient space
(T ∗G)/G = g∗, and as such it is represented in coordinates by

Ṁa = −

∑
k,b,r

grbck
ab Mr Mk .

We will call these the “reduced equations”, or “Lie–Poisson equations”. They are
a system of ODE’s on g∗. We will call the quotient map T ∗G → (T ∗G)/G = g∗

the reduction map.

Warning. This map is not the reduction map of symplectic reduction.

5A1. Momentum map. The left-action of G on itself, lifted to T ∗G, has for its
momentum map the map J : T ∗G → g∗ of right trivialization. In terms of our
left-trivialized identification

J (g, M) = Ad∗

g−1 M,

where Ad∗
g : g∗

→ g∗ denotes the dual of the adjoint representation Adg of G on g.
The left-invariance of H implies that each integral curve for the Hamiltonian vector
field X , that is the geodesics, when viewed as curves in the cotangent bundle, lies
within a constant level set of J .

Each individual constant level set J−1(µ) is the image of a right-invariant one-
form G → T ∗G, and as such is a copy of G in T ∗G. The projection of such a
level set onto g∗ by the reduction map yields as image the coadjoint orbit through
µ, namely π(J−1(µ)) = G · µ where

G · µ = {M : M = Ad∗

gµ, g ∈ G} ⊂ g∗.
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Since the integral curves in T ∗G lie on level sets of J , the integral curves of the
reduced dynamics lie on such coadjoint orbits.

5A2. Unreducing. Let Gµ denote the isotropy group of µ ∈ g∗ under the coad-
joint action. As smooth G-spaces we have π(J−1(µ)) = G · µ = G/Gµ, and
the projection of J−1(µ) → π(J−1(µ)) is isomorphic to the canonical bundle
projection G → G/Gµ with fiber Gµ. When G is compact then for generic µ

we have that Gµ
∼= T , where T is the maximal torus of G and the rank r of G is

the dimension of T . If the typical integral curves C for the reduced dynamics are
closed curves C ⊂ G · µ ⊂ g∗, then the integral curves for the original dynamics
sit on manifolds π−1(C) ∩ J−1(µ) which is a T -bundle over the circle C . In our
particular situation this bundle will be trivial, so π−1(C)∩ J−1(µ) is itself a torus
of one more dimension than T .

5A3. Casimirs. A Casimir on g∗ is a smooth function C such that for all smooth
functions h on g∗ we have that {C, h} = 0. The values of a Casimir stay constant
on the solutions to the reduced equation. For G compact with maximal torus T
the algebra of Casimirs is functionally generated by r polynomial generators, these
generators being polynomials invariant under the coadjoint action. The common
level set

C1 = c1, . . . , Cr = cr

of these r Casimirs is, for generic values of the constants ci , a coadjoint orbit G ·µ

for which Gµ = T .

5B. The case of Lorentzian metrics on SU(2)× S1. The Hamiltonian for the Fef-
ferman metric in (17) computed from Step 1 is that of a left-invariant Lorentzian
metric on G = SU(2)× S1. We specialize the discussion of the last few paragraphs
to this situation. Then the dual of the Lie algebra of G splits as g∗

=R3
×R. The R3

factor acts like the well-known angular momentum from physics. The coordinates
M1, M2, M3, and P appearing in (17) are linear coordinates on g∗

= R3
×R. Their

Lie–Poisson brackets are

{M1, M2} = −M3, {M3, M1} = −M2, and {M2, M3} = −M1,

together with
{Mi , P} = 0.

The rank r of G is 2. The algebra of Casimirs is generated by P and K = M2
1 +

M2
2 + M2

3 . Using momentum scaling, we can split the analysis of the reduced
geodesic flow into two cases: P = 0, and P = 1.

5B1. Case 1: P = 0. We will see that our Hamiltonian equations for this first case
are easily solved. The reduced dynamics will be trivial:

M1 = M2 = 0, M3 = constant.
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Upon G, the corresponding geodesics are left translates of the one-parameter sub-
group corresponding to the third direction.

5B2. Case 2: P = 1. When P = 1 we have for our Hamiltonian the function
H(M, 1) on R3

= R3
×{1} ⊂ g∗. We are only interested in the light-like geodesics,

which means we will set H(M, 1) = 0. This defines a paraboloid in R3. The
integral curves for the reduced dynamics lie on the intersections of this paraboloid
with the spheres K = r2

0 . These intersections typically consist of one or two closed
curves, which are the closed integral curves of the reduced dynamics.

5B3. Coadjoint action and identifications. The coadjoint action of G on g∗
=R3

×

R acts trivially on the R factor, since that corresponds to the abelian factor S1. The
R3 factor of g∗ is identified with both su(2) and su(2)∗ and the identification is such
that the coadjoint (or adjoint) action corresponds to the standard action of SO(3)

on R3 by way of composition with the 2-to-1 cover SU(2) → SO(3). (The S1

factor of G acts trivially on R3.) Under this identification, the coisotropy subgroup
SU(2)L ⊂SU(2) of a nonzero vector L ∈R3 consists of the one-parameter subgroup
generated by L , and in SO(3) to rotations about the axis L .

5B4. Unreducing. The momentum map J : T ∗G → R3
× R splits into

J = (L , J0) = ((L1, L2, L3), J0), with J0 = P.

The fact that J0 = P is the R component of J is a reflection of the triviality of the
coadjoint action on the R factor of g∗

= R3
× R.

The solution curves back upon T ∗G corresponding to a given reduced solu-
tion curve C lie on submanifolds J−1(µ) ∩ π−1(C). The value of µ = (L , P)

is constrained by the coadjoint orbit on which C lives. This constraint is simply
K =

∑
L2

i . Only the case K 6= 0 is interesting. Then the isotropy Gµ is one of
the maximal tori Gµ = SU(2)L × S1

= S1
× S1

⊂ SU(2) × S1. The first S1 factor
is the circle SU(2)L as in Section 5B3. It follows from the discussion of Section
5A2 that J−1(µ) ∩ π−1(C) is a Gµ = S1

× S1 bundle over C . We also saw in
Section 5A1 that J−1(µ) ∼= G = S3

× S1. The projection π restricted to J−1(µ)

is the composition S3
× S1

→ S3
→ S2

⊂ R3
×{P = 1} where the last map is the

Hopf fibration. The Hopf fibration is trivial over S2
\ {P} for any point P ∈ S2.

It follows that J−1(µ) ∩ π−1(C) is isomorphic to a three-torus T 3. One factor of
this three-torus is the S1 factor of SU(2) × S1, and corresponds to the extra angle
γ we add when constructing the circle bundle on which Fefferman’s metric lives.
We project out this angle when forming the chains. Thus the chains lie on two-
torus T 2

⊂ SU(2). One angle of the two-torus corresponds to a coordinate around
a curve C in the reduced dynamics. The other angle is generated by the circle
SU(2)L ⊂ SU(2).
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6. Reduced Fefferman dynamics

The case P = 0. When P = 0 we see that H =
1
2(aM2

1 +
1
a M2

2 ). Since H = 0 we
have that M1 = M2 = 0 along light-like solutions with P = 0. From the constancy
of the Casimir K it follows that M3 is also a constant, so that the reduced solution is
a constant curve. Generally speaking, for a left-invariant metric on a Lie group G,
the geodesics in G which correspond to a constant solution M(t) = M∗ = constant
of the reduced equations consist of the one-parameter subgroup exp(tξ) and its
left translates g exp(tξ), where Iξ = M∗ and I is the “inertial tensor”, that is,
the index lowering operator corresponding to the metric at the identity. In our
case I maps the e3 axis to the M3 axis, so that the corresponding geodesic is the
1-parameter subgroup exp(te3) and its translations g exp(te3). (More accurately,
I−1(0, 0, M3, 0) is a linear combination of e3 and the basis vector ∂/∂γ . We project
out the angle γ to form the chain corresponding to a light-like geodesic, so these
chains are indeed generated by e3.) These P = 0 chains are precisely circles of the
Hopf fibration

S3
= SU(2) → S2

= SU(2)/S1,

where the S1 is generated by e3 and acts by right multiplication.

Remark. Since −e3 = R is the Reeb field for our contact form these chains are
the orbits of the Reeb field. It remains to determine whether or not all chains are
orbits of Reeb fields.

The case P = 1. Set P = 1 in H to get

Ha(M1, M2, M3; 1) =
1
2

(
aM2

1 +
1
a

M2
2 − 3M3 − c(a)

)
,

where we have set

c(a) = −
9
8

(
a +

1
a

)
.

Recall that we are only interested in the solutions for which H = 0. The surface
H = 0 is a paraboloid which we can express as the graph of a function of M1, M2:

(18) {H = 0} =

{
(M1, M2, M3) : M3 =

1
3

(
aM2

1 +
1
a

M2
2 − c(a)

)}
.

The solution curves must also lie on level sets of K = M2
1 + M2

2 + M2
3 . In other

words, the solution curves are formed by the intersection of the paraboloid H = 0
with the spheres K = r2

0 . See Figure 1. These intersection curves are easily un-
derstood by using M1, M2 as coordinates on the paraboloids, that is, by projecting
the paraboloid onto the M1 M2-plane. They are depicted in Figure 2.
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Figure 1. The intersections of the spheres of constant K with the
paraboloid H = 0 and their projections to the M1 M2-plane.

Equation (18) yields M3 in terms of M1 and M2 on the paraboloid. Plug this
expression for M3 into K to find that on the paraboloid

K =
(
1 −

2
9 c(a)a

)
M2

1 +

(
1 −

2
9

c(a)

a

)
M2

2 +
1
9

(
aM2

1 +
1
a

M2
2

)2
+ c(a)2.

For a close to 1 the coefficients of the quadratic terms M2
1 and M2

2 are positive,
and close to 1

2 . The only critical point for K is the origin and is a nondegenerate
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Figure 2. Phase portrait for the reduced equations obtained via
the projection in Figure 1, for a = 2, P = 1, and K small.

minimum. It follows from a basic argument in Morse theory that all the intersec-
tion curves are closed curves, circling the origin. As a increases the sign of the
coefficient in front of the M2

1 term eventually crosses 0 and becomes negative. This
happens when 1 −

2
9 c(a)a = 0 which works out to a =

√
3. After that the origin

becomes a saddle point for K , and the level set of K passing through the origin has
the shape of a figure 8, with the cross at the origin. Inside each lobe of the eight is
a new critical point. See Figure 2. This change as a crosses past

√
3 is an instance

of what is known as a “Hamiltonian pitchfork bifurcation” or “Hamiltonian figure
eight” bifurcation among specialists in Hamiltonian bifurcation theory.

To reiterate: For 1 < a <
√

3 all reduced solution curves are closed and surround
the origin. For a >

√
3 the origin becomes a saddle point, and the level set of K

passing through the origin consists of three solution curves: the origin itself which
is now an unstable equilibrium, and two homoclinic orbits corresponding to the
two lobes of the eight. Being homoclinic to the unstable equilibrium, it takes an
infinite time to traverse either one of these homoclinic lobes.

The situation is symmetric as a decreases, with the bifurcation occurring at
a =

1
√

3
. This is as it must be, from the discrete symmetry alluded in Proposition

2.1:
a 7→

1
a
, M1 7→ M2, and M2 7→ M1.

7. Berry phase and unreducing (Step 4)

As per the discussion in Section 5B4, associated to each choice of closed solution
curve C ⊂ R3

× {1} and each choice µ 6= 0 of momentum, we have a family of
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chains which lie on a fixed two-torus T 2
= T 2(C; µ) ⊂ T ∗S3. Our question is:

are the chains on this T 2 closed? The Fefferman dynamics restricted to T 2 is that
of linear flow on a torus. Let φ be a choice of angular variable around C , which
we call the base angle. Let θ be the other angle of the torus, which we call the
“vertical angle” chosen so that the projection T 2

→ C is (φ, θ) 7→ φ. We take both
angles defined modulo 2π . As we traverse the chain, every time that the base angle
φ varies from 0 to 2π (which is to say we travel once around C), the vertical angle
θ will have varied by some amount 1θ . The amount 1θ does not depend on the
choice of chain within T 2. If 1θ is a rational multiple of 2π , then the chains in T 2

are all closed. If 1θ is an irrational multiple of 2π , then none of the chains in T 2

close up, and we have the case of quasiperiodic chains corresponding to irrational
flow on T 2.

Without loss of generality we can suppose that µ = r0e3 where e3 denotes the
final element of the standard basis of su(2)∗ = R3. For why we can assume this
without loss of generality refer to Section 5B3 above. In this case K = r2

0 and
this fixing of K almost fixes the reduced curve C . (See the second paragraph in
the proof of Proposition 7.1 immediately below for details.) Remembering the
modulus parameter a, we see that

1θ = 1θ(K , a).

Since the dynamical system defined by the Fefferman metric depends analytically
on initial conditions and on the parameter a, we see that 1θ(K , a) is an analytic
function of a and K . It follows that in order to prove Theorem 1.1, all we need to do
is to show that for a single value of a, the function K 7→ 1θ(K , a) is nonconstant.
We see that in order to prove Theorem 1.1 it only remains to prove:

Proposition 7.1. For a >
√

3 the function K 7→ 1θ(K , a) is nonconstant.

Proof. Fix a >
√

3. Consider the value K = c(a)2 corresponding to the homoclinic
figure eight through the origin in the M1 M2-plane. We will show that

(19) lim
K→c(a)2

−

1θ(K , a) = +∞.

and that for K slightly less than c(a)2 the value of 1θ(K , a) is finite. It follows
that the function K 7→ 1θ(K , a) varies, as required.

Let m(a) denote the absolute minimum of K on the paraboloid. The minimum
is achieved at two points, the elliptic fixed points inside each lobe of the homoclinic
eight. For values of r2

0 between m(a) and c(a)2 the level set K = r2
0 consists of

two disjoint closed curves C1, C2, one inside each lobe of the eight. These two
curves are related by the reflection (M1, M2) 7→ (−M1, M2). The entire dynamics
is invariant under this reflection, so the value of 1θ on C1 equals its value on C2.
(The two components are traversed in the same sense.) Consequently 1θ(K , a) is
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well-defined and finite for m(a) < K < c(a)2, being equal to the common value of
1θ(Ci ).

In what follows we arbitrarily fix one of the two components of K = r2
0 and call

it C .
The key to establishing the limit (19) is a Berry phase formula for 1θ which

mimics earlier work of one of us ([Montgomery 1991]). The formula expresses
1θ as the sum of two integrals:

(20) 1θ(K , a) = dynamic + geometric,

where

dynamic =
1

√
K

∫ T

0
f dt,

and

(21) geometric = −(oriented solid angle).

Both the dynamic and the geometric terms can be expressed as line integrals around
C . In the dynamic term, T = T (K ) is the period of the curve C , and

(22) f =
1
2

(
aM1(t)2

+
1
a

M2(t)2
+ c(a)

)
.

The integral is done around the projection of the curve C to the M1 M2-plane. The
time t is the time parameter occurring in the reduced equations, which is the same
as the geodesic time. In (21), the oriented solid angle is the standard oriented solid
angle enclosed by a closed curve such as C in space. The absolute value of an
oriented solid angle is always bounded by 4π . On the other hand,

f
√

K
>

c(a)

2
√

K
.

Consequently, if we let the curve C approach the lobe of the homoclinic orbit which
contains it, then its period T (K ) tends to ∞. We now see that the dynamic term of
(20) tends to +∞. Thus, Proposition 7.1 is proved once we have established the
validity of the Berry phase type formula (20).

Proof of Berry phase formula. We begin the proof of (20) by recalling and sum-
marizing our situation, and applying the discussion of Section 5B4 for relating the
reduced dynamics to dynamics in T ∗(SU(2)×S1) and curves in T ∗ SU(2). We have
fixed J = (L , P) to equal the value µ= (r0e3, 1)∈ R3

×R where r0 6=0. The values
of the Casimirs which characterize our reduced curve C are then K =r2

0 , and P =1.
The Fefferman light-like geodesics CF associated to C and our choice of µ must
lie on the manifold J−1(µ)∩π−1(C) which is a three-torus inside T ∗(SU(2)×S1).
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Project this three-torus into T ∗S3 via the product structure induced projection

pr2 : T ∗(S3
× S1) = T ∗S3

× T ∗S1
→ T ∗S3

and in this way arrive at a two-torus

X (C) = pr2(J−1(µ)) ∩ π−1(C) ⊂ T ∗ SU(2) × {1}

which projects onto C via the canonical projection T ∗(SU(2)) × {1} → R3
× {1}.

We will soon need that X (C) ⊂ L−1(r0e3) × {1} which follows from the fact that
J = (L , P) so that

pr2(J−1(µ)) = L−1(r0e3) × {1}.

The canonical projection just referred to is that of the quotient map T ∗(SU(2)) →

R3 for the (lifted) left action of SU(2) on itself. The momentum map associated
to this map is L . We will also use that the canonical projection, T ∗(SU(2)) → R3,
restricted to level sets of L , corresponds to symplectic reduction for T ∗ SU(2).
The chains ch associated to the reduced solution C and our choice of momentum
axis e3 lie in the two-torus X (C). To coordinatize X (C) choose any global section
Ĉ : C → X (C) and let φ be an angular coordinate around C so that Ĉ is a closed
curve in X (C) parameterized by φ and projecting onto C . Now act on Ĉ by the
one-parameter subgroup {exp(θe3)} = SU(2)L . Then any point of X (C) can be
written as

exp(θe3) · Ĉ(φ) ∈ X (C)

where θ , φ are global angular coordinates, and the multiplication denotes the action
of the group element exp(θe3) ∈ SU(2) on T ∗ SU(2) by cotangent lift.

Every cotangent bundle T ∗Q is endowed with a canonical one-form. Let 2 be
the canonical one-form on T ∗ SU(2). Our Berry phase formula (20) will be proved
by applying Stoke’s theorem to the integral of 2 around a well-chosen closed curve
c in X (C).

This curve c ⊂ X (C) ⊂ T ∗ SU(2) × {1} is the concatenation of two curves.
One curve is any one of the chains ch corresponding to C , which is to say, the
projection by pr2 of any one of the Fefferman geodesics CF ⊂ J−1(µ) ∩ π−1(C).
We parameterize ch by the Fefferman dynamical time, 0 ≤ t ≤ T , making sure to
stop when, upon projection, we have gone once round C , so that C(0) = C(T ).
Having gone once round C , we must have

ch(T ) = exp(1θe3) · c(0).

The holonomy 1θ is the angle we are trying to compute. For the other curve cgroup

we simply move backwards in the group direction to close up the curve:

cgroup(s) = exp(−se3) · ch(T ).
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Our curve c is then the concatenation + of these two smooth curves:

c = cgroup + ch .

The curve c is a closed curve lying in the two-torus X (C). Not all closed curves
in the two-torus bound discs. But

X (C) ⊂ L−1(r0e3) × {1} ∼= SU(2)

is simply connected, so c does bound a disc D̃ ⊂ L−1(r0e3) × {1}. Apply Stoke’s
formula

(23)
∫

D̃
d2 =

∫
cgroup

2 +

∫
ch

2.

The proof of (20) proceeds by evaluating each term in (23) separately.
Write S2 for the two-sphere K = r2

0 , P = 1. Write πr0 : L−1(r0e3) → S2 for the
restriction of the canonical reduction map

π : T ∗ SU(2) × {P = 1} → R3
× {1}.

Under πr0 the disc D̃ projects onto a topological disc D ⊂ S2 which bounds our
reduced curve C . S2 is the symplectic reduced space of T ∗ SU(2) by the left action
of SU(2), reduced at the value L = r0e3. A basic result from symplectic reduction,
essentially its definition, asserts that as a symplectic reduced space S2 is endowed
with a 2-form ωr0 (the reduced symplectic form) defined by

π∗

r0
ωr0 = i∗(−d2),

where i : L−1(r0e3) → T ∗ SU(2) is the inclusion. Let d� denote the unique rota-
tionally invariant two-form on the two-sphere, normalized so that its integral over
the entire sphere is 4π . (The form d� is not closed, but the notation is standard,
and suggestively helpful, so we use it.) It is well known that ωr0 = −r0d�, which
is to say, that

r0(π
∗

r0
(d�)) = i∗

r0
(d2).

(See [Abraham and Marsden 1994] for the standard “high-tech” computation, and
[Montgomery 1991] for an elementary computation of this well-known fact.) Thus

(24)
∫

D̃
d2 =

∫
D

r0 d� = r0 (solid angle enclosed by C).

It is worth noting that this area is a signed area, positive or negative depending on
the orientation of the bounding curve C of D.
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It follows from the definition of the momentum map on the cotangent bundle
that

2
( d

ds
(exp(se3)(p))

)
= r0

for any point p ∈ L−1(r0e3). So 2 = r0 dθ along cgroup, and thus

(25)
∫

cgroup

2 = −r01θ,

where the minus sign arises because in travelling along cgroup we move backwards
in the e3-direction.

It remains to compute ∫
ch

2.

For this computation we will have to work on T ∗(SU(2)× S1). There we have the
canonical one form

(26) 2F = 2 + P dγ.

Now relative to any coordinates xa for SU(2)×S1, where pa are the corresponding
momentum coordinates we have

2F =

∑
pa dxa.

Plugging in along one of the light-like Fefferman geodesics and using the metric
relation pa =

∑
gab ẋa where gab are the metric components we see that

2F (ĊF (t)) = 2H = 0

where the last equality arises because the Fefferman geodesic is light-like. Since
pr2 ◦CF = ch where

pr2 : T ∗ SU(2) × T ∗S1
→ T ∗ SU(2)

is the projection, we have, from (26),

2
( d

dt
ch

)
= −P γ̇ = −γ̇ ,

where we used P = 1. It follows that∫
ch

2 = −

∫ T

0
γ̇ dt.

Now γ̇ = ∂ H/∂ P . Referring back to the equation for the Hamiltonian, and re-
membering that we set P = 1 after differentiating we see that

γ̇ = −
3
2 M3 − c(a).
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Using the formula for M3 in terms of M1, M2 and a bit of algebra we see that

−γ̇ = f,

where f is as in the (22). Thus,

(27)
∫

ch
2 =

∫ T

0
f dt.

Putting together the pieces (24), (25), (27) into Stokes’ formula (23) and some
algebra yields the Berry phase formula (20). �

Appendix A. The dynamics when a = 1

The chains for the standard structure on S3 are formed by intersecting S3
⊂ C2

with complex lines in C2. See [Goldman 1999]. In this appendix we verify that
the Fefferman metric description of chains when a = 1 yields these circles.

The key to our verification is the observation that when a = 1 the Fefferman
Hamiltonian (17) splits into two commuting pieces H = H0−H1 with {H0, H1}=0.
This observation and the following method of computation are the same as those
which led to the explicit formulae for sub-Riemannian geodesic flows [Mont-
gomery 2002, Chapter 11] (identical formulae can be found in Lemma A.1 below).
We have

H0 =
1
2 K =

1
2(M2

1 + M2
2 + M2

3 ), H1 =
1
2

(
M3 −

3
2 P

)2
.

Since the two Hamiltonians commute, their flows upon the cotangent bundles com-
mute. This observation leads to the explicit formula for the chains through the
identity

(28) ch(t) = exp(t (M1e1 + M2e2 + M3e3)) exp
(
− t

(
M3 −

3
2 P

)
e3

)
,

where the first factor corresponds to the flow of H0, whose integral curves corre-
spond to one-parameter subgroups in SU(2), and the second factor corresponds to
the projection to SU(2) of solutions to the Hamilton’s equation for −H1. Mi and
P are constants which satisfy the H = 0 condition

M2
1 + M2

2 + M2
3 =

(
M3 −

3
2 P

)2
.

To verify that the chains computed via Fefferman’s metric are the circles de-
scribed above we use two lemmas from linear algebra.

Lemma A.1 (circles in SU(2)). Every geometric circle in SU(2) = S3 through the
identity can be parameterized as

γ (t) = exp(αt) exp(−βt),

where α, β ∈ su(2) are Lie algebra elements of the same length.
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Lemma A.2. When β = ce3 as in (28) then these circles sit on complex lines.

Remark. The condition |α| = |β| in Lemma A.1 is a 1 : 1 resonance condition.

The proofs rely on identifying the quaternions H with C2 and hence the group
of unit quaternions with SU(2) and S3. Since the contact plane is annihilated by
ω3, and corresponds to Tx S3

∩JTx S3, we must take the identification C2 ∼= H2 such
that the complex structure J on C2 corresponds to right multiplication by k, where
k corresponds to e3 in su(2).

Proof of Lemma A.1. In a Euclidean vector space such as H, the circles are de-
scribed by

c(t) = P + r(cos(ωt)e1 + sin(ωt)e2),

where P is the center of the circle, r its radius, and e1, e2 form an orthonormal
basis for the plane through P containing the circle. Now use the fact that for a unit
quaternion n we have exp(nt) = cos(t)1 + sin(t)n. Thus γ (t) in Lemma A.1 is
equal to (cos(t) + sin(t)α)(cos(t) − sin(t)β). Algebra and trigonometry identities
yield

γ (t) =
1
2

(
(1 − αβ) + cos(2t)(1 + αβ) + sin(2t)(α − β)

)
,

which we can rewrite as

γ (t) = P + cos(2t)v + sin(2t)w,

with
P =

1
2(1 − αβ), v =

1
2(1 + αβ), w =

1
2(α − β).

It remains to show that v and w have the same length and are orthogonal. Using
ᾱ = −α and remembering that α is unit length we see that we have v = −αw and
so indeed |v| = |w|. Their common length is the radius r of the circle. Since the
Euclidean inner product is given by Re(vw̄) the fact that v = −αw also shows that
v and w are orthogonal. �

Proof of Lemma A.2. Let v, w be as in the proof of Lemma A.1. We must show
that the real 2-plane spanned by v and w is a complex line when β = k. Recall
that under our identification of C2 with H the complex structure corresponds to
multiplication on the right by k. Now compute wk = v, to see that the span of v

and w is indeed a complex line. �

Appendix B. Relation to the Rossi’s example

Rossi [1965] constructed a much cited example of a family of nonembeddable CR
structures on S3. The purpose of this appendix is to show that Rossi’s family is
isomorphic to our left-invariant CR family with a 6= 1. This isomorphism is well
known to experts. We include it here for completeness. We use the description
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of CR manifolds to be found in Remark. In that construction a CR structure is
defined as the span of complex vector field. Let Z be the complex vector field
corresponding to the standard CR structure. In terms of our left-invariant frame,
Z = e1 − ie2. Then Rossi’s perturbed CR structure is defined by

Zµ = Z − µZ

with µ a real parameter. On the other hand, we saw again from (5) that our left-
invariant CR structures correspond to the span of

Za = e1 −
i
a

e2.

Set a = 1 + ε and expand out

Za = e1 − i(1 + ε)e2 = e1 − ie2 − iεe2 = Z +
1
2ε(Z − Z).

Upon rescaling Za by dividing by (1 +
1
2ε) we see that

span(Za) = span(Z − µ(ε)Z),

where

µ(ε) =

1
2ε

1 +
1
2ε

.

This shows that the left-invariant structure for a corresponds to Rossi’s structure
for µ = µ(ε).

One important fact concerning Rossi’s structures for µ 6= 0 is that every CR
function for one of these structures on S3 is even with respect to the antipodal map

(x, y, z) 7→ (−x, −y, −z).

We recommend [Burns 1979] for a proof. This forced evenness implies that there
is no CR embedding of our left-invariant structures for a 6= 1 into Cn for any n. The
structures do however, have explicit 2 : 1 immersions into C3 which can be found
in [Rossi 1965]. See also [Burns 1979] or [Falbel 1992]. Upon taking the quotient
by the antipodal map each a 6= 1 structure induces a left-invariant CR structure on
RP3

= SO(3) that does embed into C3. This embedded image bounds a domain
within an explicit Stein manifold S ⊂ C3.

Open problem (Dan Burns). Find a synthetic construction of the chains for the
left-invariant structures, in the spirit of the construction of the chains for the stan-
dard structure, but using a family of complex curves in S in place of the straight
lines used to construct the chains for the standard structure.
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