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This paper introduces the notion of rational spin double affine Hecke alge-
bras (sDaHa) and rational double affine Hecke–Clifford algebras (DaHCa)
associated to classical Weyl groups, and establishes the basic properties of
these algebras, such as the PBW basis and Dunkl operator representations.
We obtain an algebra isomorphism relating the rational DaHCa to the ratio-
nal sDaHa. We further develop a link between the usual rational Cherednik
algebra and the rational sDaHa by introducing a notion of rational covering
double affine Hecke algebras.
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1. Introduction

The rational Cherednik algebra (see Etingof and Ginzburg [2002] and also Drinfeld
[1986] for a more general deformation construction) is a degenerate version of
the double affine Hecke algebra [Cherednik 2005], and it admits a polynomial
representation via the Dunkl operators [1989]. A similar degeneration in the case
of affine Hecke algebras was introduced and studied earlier in [Drinfeld 1986] in the
type A case and by Lusztig in general [1989; 2002]. The rational Cherednik algebra
has a rich representation theory and it affords various interesting connections to
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integrable systems, noncommutative geometry, and so on. We refer to Etingof
[2007] and Rouquier [2005] for reviews and extensive references. The rational
Cherednik algebra with one particular parameter being zero, denoted by ḦW in
this introduction, is known to have a large center [Etingof and Ginzburg 2002]; see
Gordon [2003].

In [Wang 2006], the second author introduced (degenerate) spin Hecke algebras
of affine and double affine type as well as double affine Hecke–Clifford algebra,
associated to I. Schur’s spin symmetric group [1911]. These algebras were shown
to be closely related to the affine Hecke–Clifford algebra of Nazarov [1997]. The
spin affine Hecke algebras and affine Hecke–Clifford algebras associated to all
classical Weyl groups have been recently constructed by the authors [Khongsap
and Wang 2008].

In this paper we shall construct three classes of closely related (super) alge-
bras associated to each classical finite Weyl group W : the rational double affine
Hecke–Clifford algebra (DaHCa) Ḧc

W , the rational spin double affine Hecke algebra
(sDaHa) Ḧ−

W , and the rational covering double affine Hecke algebra (cDaHa) Ḧ∼

W .
We show that the algebras Ḧc

W and Ḧ−

W are Morita superequivalent (in the terminol-
ogy of [Wang 2007]) and that Ḧ∼

W has both the rational Cherednik algebra ḦW and
the sDaHa Ḧ−

W as its natural quotients. We further establish some basic properties
including the PBW basis theorem and Dunkl operator realizations of these algebras.

We expect that these algebras afford very interesting representation theory and
connections with noncommutative geometry.

Morris [1976] and Khongsap and Wang [2008] considered a double cover W̃ of
the finite Weyl group W associated to a distinguished 2-cocycle

1 → Z2 −→ W̃ −→ W → 1.

Denote Z2 ={1, z}. From now on, let W be one of the classical Weyl groups. In this
paper, we define the algebras Ḧc

W , Ḧ−

W and Ḧ∼

W for every W of type An−1, Dn, Bn

in terms of explicit generators and relations, where the number of parameters in
each of these algebras is the number of conjugacy classes of reflections in W .
The compatibility among the defining relations for Ḧc

W (which would imply the
PBW basis property and similar compatibility for Ḧ−

W and Ḧ∼

W when combined
with other results) requires lengthy but elementary case-by-case verifications. In
a suitable sense, the defining relations are naturally and uniquely dictated by the
compatibility of these relations.

As is well known, the rational Cherednik algebra ḦW has a triangular decompo-
sition with the group algebra CW as its middle term. We show that the algebras Ḧc

W ,
Ḧ−

W and Ḧ∼

W also afford triangular decompositions which contain Cn oCW , CW −

and CW̃ respectively as the middle terms, where Cn denotes the Clifford algebra
of the reflection representation of W with a natural W -action. For instance, the
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rational DaHCa Ḧc
W and sDaHa Ḧ−

W have the triangular decompositions

Ḧc
W

∼= C[x1, . . . , xn] ⊗ (Cn o CW ) ⊗ C[y1, . . . , yn],

Ḧ−

W
∼= C[ξ1, . . . , ξn] ⊗ CW −

⊗ C[y1, . . . , yn],

where C[ξ1, . . . , ξn] is a noncommutative algebra with ξiξ j = −ξ jξi for i 6= j . The
relations between CW − and C[ξ1, . . . , ξn] involve subtle signs similar to those
appearing in the spin affine Hecke algebras defined in [Khongsap and Wang 2008;
Wang 2006].

We further show that the algebras Ḧc
W and Ḧ−

W have large centers which contain
C[y1, . . . , yn]

W and C[x2
1 , . . . , x2

n ]
W (and C[ξ 2

1 , . . . , ξ 2
n ]

W respectively) as subal-
gebras. In particular, the algebras Ḧc

W and Ḧ−

W are module-finite over their centers.
The group algebra CW and the spin Weyl group algebra CW − appear as natural

quotients of CW̃ by the ideals 〈z ∓ 1〉 respectively. We show that these quotient
maps, denoted by ϒ±, extend to the setup of double affine Hecke algebras. All
these statements can be summarized in the following commutative diagram, with
the vertical arrows being natural inclusions:

CW

��

CW̃
ϒ+oo ϒ− //

��

CW −

��

ḦW Ḧ∼

W
ϒ+oo ϒ− // Ḧ−

W .

In [Khongsap and Wang 2008], we established a superalgebra isomorphism

8 : Cn o CW
'

−→ Cn ⊗ CW −

(which actually holds also for exceptional Weyl groups), generalizing the type
A result of Sergeev and Yamaguchi. In this paper, we shall establish a Morita
superequivalence between Ḧc

W and Ḧ−

W , or more explicitly, a superalgebra isomor-
phism between Ḧc

W and the tensor algebra Cn⊗Ḧ−

W that extends the isomorphism 8

(see [Wang 2006] for the type A case). This can be summarized conveniently in the
following commutative diagram, with the vertical arrows being natural inclusions:

Cn o CW
∼=

8
//

��

Cn ⊗ CW −

��
Ḧc

W

∼=

8
// Cn ⊗ Ḧ−

W .

As our constructions in a way rely on a choice of orthonormal basis of h, they
do not seem to be easily extendable to the exceptional Weyl groups. Also, in
contrast to the setup of rational Cherednik algebras in [Etingof and Ginzburg 2002],
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our Hecke algebras do not seem to afford an extra parameter in a natural way to
trivialize their center.

There has been another attempt (see [Chmutova 2005]) to generalize the rational
Cherednik algebras and more generally symplectic reflection algebras by adding a
twist with a 2-cocycle of a finite group. But the approach there does not produce
intrinsically interesting new algebras with nontrivial 2-cocycles of the Weyl groups
as does our approach.

The paper is organized as follows. In Section 2, we recall some facts about
the distinguished double covers of the Weyl groups. For more detailed treatment,
consult [Khongsap and Wang 2008]. We introduce in Section 3 the rational DaHCa
Ḧc

W and establish its PBW basis property. Section 4 obtains the Dunkl operator
representations of Ḧc

W . Sections 5 and 6 are the counterparts for the sDaHa Ḧ−

W of
Section 3 and 4, respectively. In addition, Section 5 establishes the superalgebra
isomorphism 8 relating the sDaHa and DaHCa. Finally, Section 7 introduces the
rational cDaHa Ḧ∼

W , which provides a link between the sDaHa Ḧ−

W and the usual
DaHa ḦW . Finally, in the appendix (Section 8), we present the proofs of several
lemmas in Section 3 and 4.

2. The spin Weyl groups

In this section, we recall from [Khongsap and Wang 2008] some preliminary setups
which lead to Theorem 2.1 below, but here we will restrict ourselves to classical
Weyl groups only, as this is all we need subsequently.

2.1. A double covering of Weyl groups. Let W be an (irreducible) finite Weyl
group of classical type (that is, of type A, B, D) with the presentation

(2-1) 〈s1, . . . , sn | (si s j )
mi j = 1, mi i = 1, mi j = m j i ∈ Z≥2 for i 6= j〉.

The integers mi j are specified by the Coxeter–Dynkin diagrams whose vertices
correspond to the generators of W below. By convention, we only mark the edge
connecting i and j with mi j ≥ 4. We have mi j = 3 for i 6= j connected by an
unmarked edge, and mi j = 2 if i and j are not connected by an edge.

An ◦ ◦ . . . ◦ ◦

1 2 n−1 n

Bn for n ≥ 2 ◦ ◦ . . . ◦ ◦

1 2 n−1 n

4
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Dn for n ≥ 4 ◦ ◦ · · · ◦ ◦
�

��
◦

@
@@

◦

1 2 n − 3
n − 2

n − 1

n

We shall be concerned about a distinguished double covering W̃ of W :

1 → Z2 −→ W̃ −→ W → 1.

We let Z2 = {1, z} and denote by t̃i a fixed preimage of the generators si of W
for each i . The group W̃ is generated by z, t̃1, . . . , t̃n with relations (besides the
obvious relation that z is central of order 2) listed in Table 1, which corresponds
to setting the αi for all i in Karpilovsky [1987, Table 7.1] to be z.

The quotient algebra CW −
:=CW̃/〈z+1〉 of CW̃ by the ideal generated by z+1

will be called the spin Weyl group algebra associated to W . Denote by ti ∈ CW −

the image of t̃i . The spin Weyl group algebra CW − has a natural superalgebra
(that is, Z2-graded algebra) structure by letting each ti be odd. The algebra CW −

is generated by t1, . . . , tn with the labeling as in the Coxeter–Dynkin diagrams and
the explicit relations summarized in Table 2.

By definition, the quotient by the ideal 〈z − 1〉 of the group algebra CW̃ is
isomorphic to CW .

2.2. A superalgebra isomorphism. Denote by h = Cn the natural representation
(respectively the reflection representation) of the Weyl group W of type An−1 (re-
spectively of type Bn and Dn). Note that h carries a W -invariant nondegenerate

W Defining Relations for W̃

t̃ 2
i = 1 for 1 ≤ i ≤ n,

An t̃i t̃i+1 t̃i = t̃i+1 t̃i t̃i+1 for 1 ≤ i ≤ n − 1,

t̃i t̃ j = zt̃ j t̃i if mi j = 2.

t̃ 2
i = 1 for 1 ≤ i ≤ n, t̃i t̃i+1 t̃i = t̃i+1 t̃i t̃i+1 for 1 ≤ i ≤ n − 2,

Bn t̃i t̃ j = zt̃ j t̃i for 1 ≤ i < j ≤ n − 1, mi j = 2,
(n ≥ 2) t̃i t̃n = zt̃n t̃i for 1 ≤ i ≤ n − 2,

(t̃n−1 t̃n)2
= z(t̃n t̃n−1)

2.

t̃ 2
i = 1 for 1 ≤ i ≤ n,

Dn t̃i t̃ j t̃i = t̃ j t̃i t̃ j if mi j = 3,
(n ≥ 4) t̃i t̃ j = zt̃ j t̃i for 1 ≤ i < j ≤ n, mi j = 2.

Table 1. The defining relations of W̃ .
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Type of W Defining Relations for CW −

An t2
i = 1, ti ti+1ti = ti+1ti ti+1,
(ti t j )

2
= −1 if |i − j | > 1.

t1, . . . , tn−1 satisfy these relations for CW −

An−1
:

Bn t2
n = 1, (ti tn)2

= −1 if i 6= n − 1, n,
(tn−1tn)4

= −1.

t1, . . . , tn−1 satisfy these relations for CW −

An−1
:

Dn t2
n = 1, (ti tn)2

= −1 if i 6= n − 2, n,
tn−2tntn−2 = tntn−2tn

Table 2. The defining relations of CW −.

bilinear form ( · , · ), which gives rise to an identification h∗ ∼= h and also a bilinear
form on h∗ which will be again denoted by ( · , · ).

Denote by Cn the Clifford algebra associated to (h, ( · , · )). We shall denote by
{ci } the generators in Cn corresponding to a standard orthonormal basis {ei } of Cn ,
and denote by {βi } the elements of Cn corresponding to the simple roots {αi },
normalized with β2

i = 1. More explicitly, Cn is generated by c1, . . . , cn subject to
the relations

(2-2) c2
i = 1 and ci c j = −c j ci for i 6= j.

For type An−1, we have βi = (ci − ci+1)/
√

2 for 1 ≤ i ≤ n − 1. For type Bn , we
have an additional βn = cn , and βn = (cn−1 + cn)/

√
2 for type Dn .

The action of W on h and h∗ preserves the bilinear form ( · , · ) and thus it
acts by automorphisms of the algebra Cn . This gives rise to a semidirect product
Cn o CW . Moreover, the algebra Cn o CW naturally inherits the superalgebra
structure by letting elements in W be even and each ci be odd.

Given two superalgebras A and B, we view the tensor product of superalgebras
A ⊗ B as a superalgebra with multiplication defined by

(a ⊗ b)(a′
⊗ b′) = (−1)|b||a′

|(aa′
⊗ bb′) for a, a′

∈ A and b, b′
∈ B,

where |b| denotes the Z2-degree of b, and so on. Also, we shall use shorthand
notation ab for (a ⊗ b) ∈ A ⊗ B with a = a ⊗ 1 and b = 1 ⊗ b.

Theorem 2.1 [Khongsap and Wang 2008]. We have an isomorphism

8 : Cn o CW
'

−→ Cn ⊗ CW −

of superalgebras extending the identity map on Cn and sends si 7→−
√

−1βi ti . The
inverse map 9 is the extension of the identity map on Cn that sends ti 7→

√
−1βi si .
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(In the terminology of [Wang 2007], the superalgebras Cn o CW and CW − are
Morita superequivalent.)

Remark 2.2. Theorem 2.1 was formulated and proved in [Khongsap and Wang
2008] for every finite Weyl group including the exceptional types, and the type A
case was treated by Sergeev and Yamaguchi.

3. Rational double affine Hecke–Clifford algebras (DaHCa)

In this section, we introduce the rational double affine Hecke–Clifford algebras
associated to the Weyl group W of type A, D and B, and then establish the PBW
property. The type A case was treated in [Wang 2006].

The definition of the algebras Ḧc
W .

The algebra Ḧc
W of type An−1. We will make the identifications

C[h∗
] ∼= C[x1, . . . , xn] and C[h] ∼= C[y1, . . . , yn],

where the xi and yi correspond to the standard orthonormal basis {ei } for h∗ and
its dual basis {e∗

i } for h.
The following algebra Ḧc

An−1
was introduced in [Wang 2006] under the notation

Au . We recall it for convenience and usage in the subsequent subsections. For x, y
in an algebra A, we denote as usual that [x, y] = xy − yx ∈ A.

Definition 3.1. Let u ∈ C and W = WAn−1 ≡ Sn . The rational double affine Hecke–
Clifford algebra (DaHCa) of type An−1, denoted by Ḧc

W or Ḧc
An−1

, is the algebra
generated by xi , yi and ci for 1 ≤ i ≤ n and W , subject to the relation (2-2) among
the ci and the following relations (where we identify h∗

= Cx1 + · · · + Cxn and
h = Cy1 + · · · + Cyn):

(3-1)



xi x j = x j xi , yi y j = y j yi , yi c j = c j yi for all i, j,

xi ci = −ci xi , xi c j = c j xi for i 6= j,

wxw−1
= w(x) for all x ∈ h∗ and w ∈ W,

wyw−1
= w(y) for all y ∈ h and w ∈ W,

wcw−1
= w(c) for all c ∈ Cn and w ∈ W,

and

[y j , xi ] = u(1 + c j ci )s j i for i 6= j,(3-2a)

[yi , xi ] = −u
∑

k 6=i (1 + ckci )ski .(3-2b)

Alternatively, we may view u as a formal variable and Ḧc
W as a C(u)-algebra.

Similar remarks apply to all DaHCa, sDaHa, and cDaHa introduced in this paper.
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The algebra Ḧc
W of type Dn . Let W = WDn . Regarding elements in W as even

signed permutations of 1, 2, . . . , n as usual, we identify the generators si ∈ W for
1 ≤ i ≤ n − 1 with transposition (i, i + 1), and sn ∈ W with the transposition of
(n − 1, n) coupled with the sign changes at n − 1 and n. For 1 ≤ i 6= j ≤ n, we
denote by si j ≡ (i, j) ∈ W the transposition of i and j , and by si j ≡ (i, j) ∈ W the
transposition of i and j coupled with the sign changes at i, j . By convention,

sn−1,n ≡ (n − 1, n) = sn and si j ≡ (i, j) = s jnsi,n−1sn si,n−1s jn.

Definition 3.2. Let u ∈C and W = WDn . The rational double affine Hecke–Clifford
algebra of type Dn , denoted by Ḧc

W or Ḧc
Dn

, is the algebra generated by xi , yi and
ci for 1 ≤ i ≤ n and W , subject to the relation (2-2) among the ci , (3-1) with the
current W , and the relations

[y j , xi ] = u((1 + c j ci )si j − (1 − c j ci )si j ) for i 6= j,(3-3a)

[yi , xi ] = −u
∑

k 6=i ((1 + ckci )ski + (1 − ckci )ski ).(3-3b)

The algebra Ḧc
W of type Bn . Let W = WBn . We identify W as usual with the signed

permutations on 1, . . . , n. Regarding WDn as a subgroup of W , we have si j , si j ∈ W
for 1 ≤ i 6= j ≤ n. Further denote by τi ≡ (i) ∈ W the sign change at i for 1 ≤ i ≤ n.
By definition, we have τn ≡ (n) = sn and τi ≡ (i) = sinsnsin.

Definition 3.3. Let u, v ∈ C, and W = WBn . The rational double affine Hecke–
Clifford algebra of type Bn , denoted by Ḧc

W or Ḧc
Bn

, is the algebra generated by xi ,
yi and ci for 1 ≤ i ≤ n and W , subject to the relations (2-2) for the ci , (3-1) with
the current W , and the relations

[y j , xi ] = u((1 + c j ci )si j − (1 − c j ci )si j ) for i 6= j,(3-4a)

[yi , xi ] = −u
∑

k 6=i ((1 + ckci )ski + (1 − ckci )ski ) −
√

2vτi .(3-4b)

When it is necessary to indicate the dependence of the algebra Ḧc
W on u and v, we

will write Ḧc
W (u, v) for Ḧc

W .

Remark 3.4. The factor
√

2 in (3-4b) is inserted to make the definition of Ḧc
Bn

com-
patible with the notion of sDaHa Ḧ−

Bn
below under a Morita superequivalence 8.

See Theorem 5.5.

The PBW basis for Ḧc
W . For any classical Weyl group W , the algebra Ḧc

W is a
superalgebra by letting elements of W and xi and yi for all i be even, and letting
each ci be odd.

Theorem 3.5. Let W be WAn−1 , WDn or WBn . The multiplication of the subalgebras
C[h∗

], C[h], Cn , and CW induces a vector space isomorphism

C[h∗
] ⊗ Cn ⊗ CW ⊗ C[h]

'
−→ Ḧc

W .
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Equivalently, the elements {xαcεwyγ
| α, γ ∈ Zn

+
, ε ∈ Zn

2, w ∈ W } form a linear
basis for Ḧc

W (the PBW basis).

Proof. Recall that W acts diagonally on V = h∗
⊕ h. The proof is similar to the

proof of [Etingof and Ginzburg 2002, Theorem 1.3] with one crucial modification,
as first observed in [Wang 2006].

Clearly K := Cn o CW is a semisimple algebra. Observe that E := V ⊗C K
is a natural K -bimodule (even though V is not) with the right K -module structure
on E given by right multiplication and the left K -module structure on E by letting

w.(v ⊗ a) = vw
⊗ wa,

ci .(x j ⊗ a) = (−1)δi j x j ⊗ (ci a),

ci .(y j ⊗ a) = y j ⊗ (ci a),

where v ∈ V , w ∈ W and a ∈ K .
The rest of the proof can proceed in the same way as in the proof of [Etingof and

Ginzburg 2002, Theorem 1.3]. It boils down to the verifications in Lemmas 3.7, 3.8
and 3.9 below of the conjugation invariance (by ci and W ) of the defining relations
(3-2), (3-3), or (3-4) for type A, D, or B, respectively, and of the Jacobi identities
among the generators xi and yi . �

Remark 3.6. Note that Cn o CW is actually a subalgebra of Ḧc
W and the tensor

product in the above theorem indicates that Ḧc
W has the structure of an algebra with

triangular decomposition:

Ḧc
W

∼= C[h∗
] ⊗ (Cn o CW ) ⊗ C[h].

We will prove Lemmas 3.7, 3.8 and 3.9 in the appendix.

Lemma 3.7. Let W = WAn−1 , WDn , or WBn . Then the relations (3-2), (3-3), or
(3-4) are invariant under the conjugation by ci for 1 ≤ i ≤ n.

Lemma 3.8. The relations (3-2), (3-3), or (3-4) are invariant under the conjuga-
tion by elements in WAn−1, WDn , or WBn , respectively.

Lemma 3.9. Let W = WAn−1, WDn , or WBn . Then the Jacobi identity holds for any
triple among xi and yi in Ḧc

W for 1 ≤ i ≤ n.

4. The Dunkl operators for DaHCa

The Dunkl representations. The algebra Ḧc
W is a superalgebra by letting elements

of W and xi and yi for all i be even, and letting each ci be odd. Recall that Ḧc
W

admits the triangular decomposition Ḧc
W

∼= C[h∗
] ⊗ K ⊗ C[h], where we have

written K = Cn o CW . In contrast to the usual DaHa ḦW , the DaHCa Ḧc
W has no

automorphism that switches the subalgebras C[h] and C[h∗
]. Denote by Hx and Hy
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the subalgebras of Ḧc
W generated by K and x1, . . . , xn , and generated by K and

y1, . . . , yn , respectively.
A K -module M can be extended to either an Hx -module or an Hy-module by

demanding the action of the xi and the yi to be trivial, respectively. We define the
induced Ḧc

W -modules

Mx := Ḧc
W ⊗Hx M and My := Ḧc

W ⊗Hy M.

Below we will always use the vector space identifications

Mx = C[y1, . . . , yn] ⊗ M and My = C[x1, . . . , xn] ⊗ M.

The action of Ḧc
W on Mx (respectively My) is transferred to C[y1, . . . , yn] ⊗ M

(respectively C[x1, . . . , xn] ⊗ M) as follows. On C[y1, . . . , yn] ⊗ M , K acts
diagonally. More explicitly, K acts on C[x1, . . . , xn] ⊗ M by

w.(x j ⊗ m) = xw
j ⊗ wm and ci .(x j ⊗ m) = (−1)δi j x j ⊗ ci m,

where ci ∈ Cn and w ∈ W . Moreover, yi acts by left multiplication in the first
tensor factor, and the action of xi is given by the so-called Dunkl operators (which
are generalizations of those in [Dunkl 1989]). Similarly, on C[x1, . . . , xn] ⊗ M ,
xi acts by left multiplication, and yi acts by another version of Dunkl operators. In
the remainder of this section we shall describe these Dunkl operators explicitly.

Remark 4.1. A canonical choice for a K -module is Cn , whose K -module structure
is defined by letting Cn act by left multiplication and letting W act as usual; see
Section 2.2.

The Dunkl operators for Ḧc
An−1

. We first prepare a few lemmas. We shall denote
the action of σ ∈ W on C[h] and C[h∗

] by f 7→ f σ .

Lemma 4.2. Let W = WAn−1 . Then the following hold in Ḧc
W for l ∈ Z+ and i 6= j :

[yi , x l
j ] = u

( x l
j −x l

i

x j −xi
+

x l
j −(−xi )

l

x j +xi
ci c j

)
si j ,

[yi , x l
i ] = −u

∑
k 6=i

( x l
i −x l

k
xi −xk

+
x l

i −(−xk)
l

xi +xk
ckci

)
ski .

It is understood here and in similar ratios of operators below that h/g = (1/g) · h.

Proof. This lemma is a type A counterpart of Lemma 4.8 for type B below. A proof
can be simply obtained by modifying the proof of Lemma 4.8 with the removal of
those terms involving si j , ski and τi . We skip the details. �
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Lemma 4.3. Let W = WAn−1 and f ∈ C[x1, . . . , xn]. Then the following identity
holds in Ḧc

W :

[yi , f ] = −u
∑
k 6=i

( f − f ski

xi −xk
+

f ckci −ckci f ski

xi +xk

)
ski .

Proof. It suffices to check the formula for every monomial f of the form x l1
1 · · · x ln

n ,
which follows by Lemma 4.2 and an induction on a based on the identity

[yi , x l1
1 · · · x la

a x la+1
a+1] = [yi , x l1

1 · · · x la
a ]x la+1

a+1 + x l1
1 · · · x la

a [yi , x la+1
a+1]. �

Now we are ready to compute the Dunkl operator for the yi .

Theorem 4.4. Let W = WAn−1 , and let M be a K -module. The action of yi on the
Ḧc

W -module C[x1, . . . , xn]⊗ M is realized as a Dunkl operator as follows. For any
polynomial f ∈ C[x1, . . . , xn] and m ∈ M , we have

yi ◦ ( f ⊗ m) = −u
∑
k 6=i

( f − f ski

xi −xk
+

f ckci −ckci f ski

xi +xk

)
⊗ ski m.

Proof. We calculate that yi ◦ ( f ⊗m) = [yi , f ]⊗m + f ⊗ yi m = [yi , f ]⊗m. Now
the result follows from Lemma 4.3. �

Lemma 4.5. Let W = WAn−1 . Then the following holds in Ḧc
W for l ∈ Z+ and i 6= j :

[yl
j , xi ] = u

yl
j −yl

i

y j −yi
(1 + c j ci )si j and [yl

i , xi ] = −u
∑
k 6=i

yl
i −yl

k
yi −yk

(1 + ckci )ski .

Proof. This lemma is a type A counterpart of Lemma 4.11 for type B below, with
the removal of those terms involving si j , ski and τi . We omit the details. �

Lemma 4.6. Let W = WAn−1 , and let f ∈ C[y1, . . . , yn]. Then the following iden-
tity holds in Ḧc

W :

[ f, xi ] = −u
∑
k 6=i

f − f ski

yi −yk
(1 + ckci )ski .

Proof. It suffices to check the formula for every monomial f , which can be done
as for the formula in Lemma 4.3, now using Lemma 4.5 instead of Lemma 4.2. �

Now we are ready to compute the Dunkl operator for the xi .

Theorem 4.7. Let W = WAn−1 , and let M be a K -module. The action of xi on
C[y1, . . . , yn]⊗ M is realized as a Dunkl operator as follows. For any polynomial
f ∈ C[y1, . . . , yn] and m ∈ M , we have

xi ◦ ( f ⊗ m) = u
∑
k 6=i

f − f ski

yi −yk
⊗ (1 + ckci )ski m.
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Proof. We observe that

xi ◦ ( f ⊗ m) = [xi , f ] ⊗ m + f ⊗ xi m = [xi , f ] ⊗ m.

Now the result follows by Lemma 4.6. �

The Dunkl operators for Ḧc
Bn

. We first prepare a few lemmas. The proofs of
Lemmas 4.8, 4.9, and 4.11 appear in the appendix.

Lemma 4.8. Let W = WBn . Then the following holds in Ḧc
W for l ∈ Z+ and i 6= j :

[yi , x l
j ] = u

( x l
j −x l

i

x j −xi
+

x l
j −(−xi )

l

x j +xi
ci c j

)
si j − u

( x l
j −(−xi )

l

x j +xi
−

x l
j −x l

i

x j −xi
ci c j

)
si j ,

[yi , x l
i ] = −u

∑
k 6=i

( x l
i −x l

k
xi −xk

+
x l

i −(−xk)
l

xi +xk
ckci

)
ski

− u
∑
k 6=i

( x l
i −(−xk)

l

xi +xk
−

x l
i −x l

k
xi −xk

ckci

)
ski −

√
2v

x l
i −(−xi )

l

2xi
τi .

Lemma 4.9. Let W = WBn , and let f ∈ C[x1, . . . , xn]. Then the following holds
in Ḧc

W :

[yi , f ] = −u
∑
k 6=i

( f − f ski

xi −xk
+

f − f ski

xi +xk
ckci

)
ski

− u
∑
k 6=i

( f − f ski

xi +xk
−

f − f ski

xi −xk
ckci

)
ski −

√
2v

f − f τi

2xi
τi .

Now we are ready to compute the Dunkl operator for the yi .

Theorem 4.10. Let W = WBn , and let M be a K -module. The action of yi on
C[x1, . . . , xn] ⊗ M is realized as follows. For any polynomial f ∈ C[x1, . . . , xn]

and m ∈ M , we have

yi ◦ ( f ⊗ m) = −u
∑
k 6=i

( f − f ski

xi −xk
+

f − f ski

xi +xk
ckci

)
⊗ ski m

− u
∑
k 6=i

( f − f ski

xi +xk
−

f − f ski

xi −xk
ckci

)
⊗ ski m −

√
2v

f − f τi

2xi
⊗ τi m.

Proof. We observe that

yi ◦ ( f ⊗ m) = [yi , f ] ⊗ m + f ⊗ yi m = [yi , f ] ⊗ m.

Now the result follows from Lemma 4.9. �
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Lemma 4.11. Let W = WBn . Then the following hold in Ḧc
W for l ∈ Z+ and i 6= j :

[yl
j , xi ] = u

( yl
j −yl

i

y j −yi
(1 + c j ci )si j −

yl
j −(−yi )

l

y j +yi
(1 − c j ci )si j

)
.

[yl
i , xi ] = −u

∑
k 6=i

yl
i −yl

k
yi −yk

(1 + ckci )ski − u
∑
k 6=i

yl
i −(−yk)

l

yi +yk
(1 − ckci )ski

−
√

2v
yl

i −(−yi )
l

2yi
τi .

In a similar fashion, we can derive the next lemma from Lemma 4.11.

Lemma 4.12. Let W = WBn , and let f ∈C[y1, . . . , yn]. Then the following identity
holds in Ḧc

W :

[ f, xi ] = −u
∑
k 6=i

f − f ski

yi −yk
(1 + ckci )ski − u

∑
k 6=i

f − f ski

yi +yk
(1 − ckci )ski

−
√

2v
f − f τi

2yi
τi .

Now we are ready to compute the Dunkl operator for the xi .

Theorem 4.13. Let W = WBn . The action of xi on C[y1, . . . , yn] ⊗ M is realized
as follows. For any polynomial f ∈ C[y1, . . . , yn] and m ∈ M , we have

xi ◦ ( f ⊗ m) = u
∑
k 6=i

f − f ski

yi −yk
⊗ (1 + ckci )ski m + u

∑
k 6=i

f − f ski

yi +yk
⊗ (1 − ckci )ski m

+
√

2v
f − f τi

2yi
⊗ τi m.

Proof. We observe that xi ◦ ( f ⊗ m) = [xi , f ]⊗ m + f ⊗ xi m = [xi , f ]⊗ m. Now
the result follows from Lemma 4.12. �

The Dunkl operators for Ḧc
Dn

. Below, the actions of the xi and the yi are realized
as Dunkl operators. Due to the similarity of the bracket relations [ · , · ] in Ḧc

Dn

and Ḧc
Bn

(for instance, compare the type D relation (3-3b) with the type B relation
(3-4b)), the formulas below for type Dn are obtained from their type Bn counter-
parts in the previous subsection by dropping the terms involving the parameter v.
The proofs are the same as for the type B, and thus will be skipped.

Lemma 4.14. Let W = WDn , and f ∈ C[x1, . . . , xn]. Then the following holds
in Ḧc

W :

[yi , f ]=−u
∑
k 6=i

( f − f ski

xi −xk
+

f − f ski

xi +xk
ckci

)
ski −u

∑
k 6=i

( f − f ski

xi +xk
−

f − f ski

xi −xk
ckci

)
ski .
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Lemma 4.15. Let W = WDn , and f ∈ C[y1, . . . , yn]. Then the following identity
holds in Ḧc

W :

[ f, xi ] = −u
∑
k 6=i

f − f ski

yi −yk
(1 + ckci )ski − u

∑
k 6=i

f − f ski

yi +yk
(1 − ckci )ski .

Theorem 4.16. Let W = WDn , and let M be a K -module. The action of yi on
C[x1, . . . , xn]⊗ M is realized as a Dunkl operator as follows. For any polynomial
f ∈ C[x1, . . . , xn] and m ∈ M , we have

yi ◦ ( f ⊗ m) = −u
∑
k 6=i

( f − f ski

xi − xk
+

f − f ski

xi + xk
ckci

)
⊗ ski m

− u
∑
k 6=i

( f − f ski

xi + xk
−

f − f ski

xi − xk
ckci

)
⊗ ski m.

Theorem 4.17. Let W = WDn , and let M be a K -module. The action of xi on
C[y1, . . . , yn] ⊗ M is realized as follows. For any f ∈ C[y1, . . . , yn] and m ∈ M ,

xi ◦ ( f ⊗ m) = u
∑
k 6=i

f − f ski

yi −yk
⊗ (1 + ckci )ski m + u

∑
k 6=i

f − f ski

yi +yk
⊗ (1 − ckci )ski m.

The even center for Ḧc
W . Recall that the even center Z(A) of a superalgebra A

consists of the even central elements of A. It turns out that the algebra Ḧc
W has a

large center.

Proposition 4.18. Let W be WAn−1 , WDn or WBn . The even center Z(Ḧc
W ) contains

C[y1, . . . , yn]
W and C[x2

1 , . . . , x2
n ]

W as subalgebras. In particular, Ḧc
W is module-

finite over its even center.

Proof. Let f ∈ C[y1, . . . , yn]
W . Then by the definition of Ḧc

W , f commutes with
Cn , W , and yi for all 1 ≤ i ≤ n. Since f = f w for all w ∈ W , it follows by Lemmas
4.6, 4.12 or 4.15 (for type A, D or B, respectively) that [ f, xi ] = 0 for each i .
Hence f commutes with Cn , W , and C[x1, . . . , xn]. Therefore f is in the even
center Z(Ḧc

W ).
Suppose now that f ∈ C[x2

1 , . . . , x2
n ]

W . Then by the definition of Ḧc
W , f com-

mutes with Cn , W , and xi for all 1 ≤ i ≤ n. By Lemma 4.3, 4.9 or 4.14 (for type
A, D or B respectively), we have [yi , f ] = 0 for each i . Therefore f is in the even
center.

The module-finiteness over the even center now follows from the PBW property
of Ḧc

W (see Theorem 3.5). �
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5. Rational spin double affine Hecke algebras (sDaHa)

In this section, we introduce the rational spin double affine Hecke algebras associ-
ated to the Weyl group W of type An−1, Dn and Bn , and then establish their PBW
property.

Elements in CW− of order 2. Recall that the spin group algebra CW − has a pre-
sentation with generator ti given in Section 2. Introduce the notations

ti↑ j =

{
ti ti+1 · · · t j if i ≤ j,
1 otherwise,

ti↓ j =

{
ti ti−1 · · · t j if i ≥ j,
1 otherwise.

Define the following odd elements in CW − of order 2, which are analogs of re-
flections in W , for 1 ≤ i < j ≤ n:

ti j ≡ [i, j] = (−1) j−i−1t j−1 . . . ti+1ti ti+1 . . . t j−1

t j i ≡ [ j, i] = −[i, j]

t̄i j ≡ [i, j] =

{
(−1) j−i−1t j↑n−1ti↑n−2tntn−2↓i tn−1↓ j for type Dn,

(−1) j−i t j↑n−1ti↑n−2tntn−1tntn−2↓i tn−1↓ j for type Bn

t̄ j i ≡ [ j, i] = [i, j]

t̄i ≡ [i] = (−1)n−i ti · · · tn−1tntn−1 · · · ti for 1 ≤ i ≤ n.

Note the natural inclusions of algebras CW −

An−1
≤ CW −

Dn
≤ CW −

Bn
. In particu-

lar, t1, . . . , tn−1 and tntn−1tn generate a subalgebra of CW −

Bn
that is isomorphic

to CW −

Dn
(where −tntn−1tn corresponds to the n-th generator for CW −

Dn
). Hence,

the notations [i, j] and [i, j] here are consistent with such a subalgebra struc-
ture. Although we will not use it in this paper, we can show for i < j that
[i, j] = [ j, n][i, n − 1]tn[i, n − 1][ j, n].

The algebra Ḧ−
W of type An−1. The following algebra, Ḧ−

An−1
, was introduced in

[Wang 2006]. We recall the definition here for convenience in the subsequent
subsections.

Definition 5.1. Let u ∈ C, and let W = WAn−1 . The rational spin double affine
Hecke algebra of type An−1, denoted by Ḧ−

W or Ḧ−

An−1
, is the algebra generated by

ξi and yi for 1 ≤ i ≤ n and CW −, subject to the relations
yi y j = y j yi , ξiξ j = −ξ jξi for i 6= j,

ti yi = yi+1ti , tiξi = −ξi+1ti
ti y j = y j ti , tiξ j = −ξ j ti for j 6= i, i + 1,

(5-1)

[y j , ξi ] = −u[i, j] for i 6= j,

[yi , ξi ] = u
∑

k 6=i [i, k].
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The algebra Ḧ−
W of type Dn.

Definition 5.2. Let u ∈ C, and let W = WDn . The rational spin double affine Hecke
algebra of type Dn , denoted by Ḧ−

W or Ḧ−

Dn
, is the algebra generated by ξi , yi for

1 ≤ i ≤ n and CW −, subject to (5-1) and the additional relations

tn yn = −yn−1tn, tnξn = −ξn−1tn,

tn y j = y j tn, tnξ j = −ξ j tn, for j 6= n − 1, n,

[y j , ξi ] = −u[i, j] + u[i, j] for i 6= j,

[yi , ξi ] = u
∑

k 6=i

(
[i, k] + [i, k]

)
.

The algebra Ḧ−
W of type Bn.

Definition 5.3. Let u, v ∈ C, and let W = WBn . The rational spin double affine
Hecke algebra of type Bn , denoted by Ḧ−

W or Ḧ−

Bn
, is the algebra generated by ξi

and yi for 1 ≤ i ≤ n and CW −

Bn
, subject to (5-1) and the additional relations

tn yn = −yntn, tnξn = −ξntn

tn y j = y j tn, tnξ j = −ξ j tn for j 6= n,

[y j , ξi ] = −u[i, j] + u[i, j] for i 6= j,

[yi , ξi ] = u
∑

k 6=i

(
[i, k] + [i, k]

)
+ v[i].

If necessary, we write Ḧ−

W (u, v) for Ḧ−

W to indicate the dependence on u and v.

Isomorphism of superalgebras. The algebra Ḧ−

W contains several distinguished
subalgebras: the skew-polynomial algebra C[ξ1, . . . , ξn], the spin Weyl group al-
gebra CW −, and the polynomial algebra C[y1, . . . , yn]. The algebra Ḧ−

W has a
superalgebra structure with yi even and ξi and ti odd for all i .

Lemma 5.4. Let W be one of the Weyl groups WAn−1 , WDn or WBn . The map
8 : Cn o CW → Cn ⊗ CW − (which, by Theorem 2.1, is an isomorphism) sends

(ck − ci )sik 7→ −
√

−2 [k, i],(5-2)

(ck + ci )sik 7→ −
√

−2 [k, i],(5-3)

ciτi 7→ −
√

−1 [i](5-4)

for i 6= k, whenever it is applicable.

Proof. We may assume that i > k without loss of generality.
We prove (5-2) by induction on i . First, (5-2) holds for i = k+1 by Theorem 2.1.

Assuming that (5-2) holds for i , that is, 8((ck − ci )sik) = −
√

−2 [k, i], we have
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by Theorem 2.1 and the definition of [k, i] that

8((ck − ci+1)si+1,k) = 8(si (ck − ci )siksi )

= (−
√

−1βi ti )(−
√

−2 [k, i])(−
√

−1βi ti )

=
√

−2 ti [k, i]ti = −
√

−2 [k, i + 1].

We now prove (5-4) by a similar downward induction on i , whose initial case
i = n is taken care of by Theorem 2.1. Assume that (5-4) holds for i + 1 ≤ n, that
is, 8(ci+1τi+1) = −

√
–1[i + 1]. Then, by Theorem 2.1 and the definition of [i],

8(ciτi ) = 8(si ci+1τi+1si )

= (−
√

−1βi ti )(−
√

−1 [i + 1])(−
√

−1βi ti )

=
√

−1 ti [i + 1] ti = −
√

−1 [i].

Next, we prove (5-3) by downward induction, first on k and then on i , for
W = WDn . The initial case i = n and k = n − 1 holds by Theorem 2.1. Then, it
follows by the induction assumption that 8((ck+1+cn)sn,k+1)=−

√
−2 [k + 1, n];

it follows by Theorem 2.1 and the definition of [k, n] that

8((ck + cn)snk) = 8(sk(ck+1 + cn)sn,k+1sk)

= (−
√

−1βk tk) · (−
√

−2 [k + 1, n]) · (−
√

−1βk tk)

=
√

−2 tk[k + 1, n] tk = −
√

−2 [k, n].

This in turn becomes the initial step when i = n for proving (5-3) by downward
induction on i (with fixed k < n). By the induction assumption, (5-3) holds for
i > k + 1. Then

8((ck + ci−1)si−1,k) = 8(si−1(ck + ci )siksi−1)

= (−
√

−1βi−1ti−1)(−
√

−2 [k, i])(−
√

−1βi−1ti−1)

=
√

−2ti−1[k, i]ti−1 = −
√

−2 [k, i − 1].

This completes the proof of (5-3) for type D.
The formula (5-3) for W = WBn is similarly proved by double downward in-

ductions on k and then on i . The only difference from the type D case is that for
type B we have to check the initial case when k = n − 1 and i = n, which uses
(5-2) and (5-4):

8((cn−1 + cn)sn−1,n) = 8(τn(ck+1 − cn)sn−1,nτn)

= (−
√

−1cntn) · (−
√

−2 tn−1) · (−
√

−1cntn)

=
√

−2 tntn−1tn = −
√

−2 [n − 1, n].

Thus the lemma is proved. �
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Recall the isomorphism 8 : Cn o CW → Cn ⊗ CW − of superalgebras and its
inverse 9 given in Theorem 2.1.

Theorem 5.5. Let W be one of the Weyl groups WAn−1 , WDn or WBn .

(1) There exists an isomorphism

8 : Ḧc
W −→ Cn ⊗ Ḧ−

W

of superalgebras that extends 8 : Cn o CW → Cn ⊗ CW − and sends

yi 7→ yi , xi 7→
√

−2ciξi , si 7→ −
√

−1βi ti , ci 7→ ci for all i.

(2) The inverse
9 : Cn ⊗ Ḧ−

W −→ Ḧc
W

extends 9 : Cn ⊗ CW −
→ Cn o CW and sends

yi 7→ yi , ξi 7→
ci xi
√

−2
, ti 7→

√
−1βi si , ci 7→ ci for all i.

In the terminology of [Wang 2007], Ḧc
W and Ḧ−

W are Morita superequivalent by
Theorem 5.5.

Proof. Recall that 8 extends the isomorphism CnoCW
'

−→Cn⊗CW −. Among all
the relations (3-1)–(3-4) for Ḧc

W , it is easy to check that those in (3-1) are preserved
by 8. So it remains to check that 8 preserves the relations in (3-2), (3-3), (3-4)
for W = WAn−1, WDn , and WBn , respectively.

We shall verify in detail that 8 preserves (3-4) with W = WBn . Indeed, by
Lemma 5.4, we have for i 6= j that

8(left side of (3-4a)) =
√

−2[y j , ciξi ]

=
√

−2ci (−u[i, j] + u[i, j])

= 8
(
u((1 + c j ci )s j i − (1 − c j ci )si j )

)
= 8(right side of (3-4a)).

Also, by Lemma 5.4, we have

8(left side of (3-4b)) =
√

−2[yi , ciξi ]

=
√

−2uci
∑

k 6=i

(
[i, k] + [i, k]

)
+

√
−2vci [i]

= 8
(
−u

∑
k 6=i ((1 + ckci )ski + (1 − ckci )ski ) −

√
2vτi

)
= 8(right side of (3-4b)).

By dropping the terms involving v in the above equations, we verify that the
relations (3-3) with W = WDn are preserved by 8. By further dropping the terms
involving [i j], si j and so on, we can also verify (3-2) with W = WAn−1 .



RATIONAL SPIN DOUBLE AFFINE HECKE ALGEBRAS 91

So, the homomorphism 8 is well defined. Similarly, one shows that 9 is a
well-defined algebra homomorphism. For example, the relation tnξn = −ξn−1tn in
Ḧ−

W for W = WDn is preserved by 9, since

9(tnξn) =

√
−1

√
2

(cn−1 + cn)sn
1

√
−2

cnxn

=
1
2(cn−1 + cn)cn−1xn−1sn

=
1
2 cn−1xn−1(−cn−1 − cn)sn = −9(ξn−1tn).

On the other hand, the relation tnξn = −ξntn in Ḧ−

W for W = WBn is preserved
by 9, since

9(tnξn) =
√

−1cnsn
1

√
−2

cnxn =
1

√
2

xnsn = −
1

√
2
cnxncnsn = −9(ξntn).

Since 8 and 9 are inverses on generators, they are (inverse) algebra isomor-
phisms. �

The PBW property for Ḧ−
W . We have the following PBW type property for the

algebra Ḧ−

W .

Theorem 5.6. Let W be one of the Weyl groups WAn−1 , WDn or WBn . The multipli-
cation of the subalgebras induces an isomorphism of vector spaces

C[ξ1, . . . , ξn] ⊗ CW −
⊗ C[y1, . . . , yn] → Ḧ−

W .

Equivalently, the set {ξασ yγ
} forms a basis for Ḧ−

W , where σ runs over a basis for
CW −, and α, γ ∈ Zn

+
.

Proof. It follows from the defining relations for Ḧ−

W that Ḧ−

W is spanned by the
elements ξασ yγ , where σ runs over a basis for CW −, and α, γ ∈ Zn

+
. By the iso-

morphism 9 : Cn ⊗ Ḧ−

W → Ḧc
W in Theorem 5.5, we see that the images 9(ξασ yγ )

are linearly independent in Ḧc
W by the PBW property for Ḧc

W (see Theorem 3.5).
So the elements ξασ yγ are linearly independent in Ḧ−

W .
Therefore, the set {ξασ yγ

} forms a basis for Ḧ−

W . �

The tensor product in the above theorem gives a triangular decomposition of the
algebra Ḧ−

W .

6. The Dunkl operators for sDaHa

Denote by hξ the subalgebra of Ḧ−

W generated by the ξi for 1 ≤ i ≤ n and CW −.
For a CW −-module V , it can be extended to a hξ - modules by letting the actions
of the ξi on V be trivial. We define the induced Ḧ−

W -module

Vξ := Ḧ−

W ⊗hξ
V ∼= C[y1, . . . , yn] ⊗ V .
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We will always identify Vξ =C[y1, . . . , yn]⊗V . On C[y1, . . . , yn]⊗V , the element
ti ∈ CW − acts as si ⊗ ti , the element yi acts by left multiplication, and ξi acts as a
Dunkl operator, which we will describe in this section.

Under Lemma 5.4 and the superalgebra isomorphism 8 : Ḧc
W → Cn ⊗ Ḧ−

W in
Theorem 5.5, the results in this section are fairly straightforward counterparts of
those in Section 4, and we omit the proofs.

The Dunkl operator for Ḧ−
An−1

. The next lemma is the counterpart of Lemma 4.6.

Lemma 6.1. Let W = WAn−1 , and f ∈ C[y1, . . . , yn]. Then the following identity
holds in Ḧ−

W :

[ f, ξi ] = −u
∑
k 6=i

f − f ski

yi −yk
[k, i].

The following is the counterpart of Theorem 4.7.

Proposition 6.2. Let W = WAn−1 , and let V be a CW −-module. The action of ξi on
C[y1, . . . , yn] ⊗ V is realized as a Dunkl operator as follows. For any polynomial
f ∈ C[y1, . . . , yn] and v ∈ V , we have

ξi ◦ ( f ⊗ v) = u
∑
k 6=i

f − f ski

yi −yk
⊗ [k, i]v.

The Dunkl operator for Ḧ−
Bn

. This lemma is the counterpart of Lemma 4.11:

Lemma 6.3. Let W = WBn and l ∈ Z+. Then

[yl
j , ξi ] = u

yl
j −yl

i

y j −yi
[ j, i] + u

yl
j −(−yi )

l

y j +yi
[ j, i].

[yl
i , ξi ] = − u

∑
k 6=i

yl
i −yl

k
yi −yk

[k, i] + u
∑
k 6=i

yl
i −(−yk)

l

yi +yk
[k, i] + v

yl
i −(−yi )

l

2yi
[i].

This lemma is the counterpart of Lemma 4.12:

Lemma 6.4. Let W = WBn . The following identity holds in Ḧ−

W :

[ f, ξ ] = −u
∑
k 6=i

f − f ski

yi −yk
[k, i] + u

∑
k 6=i

f − f ski

yi +yk
[k, i] + v

f − f τi

2yi
[i].

This proposition is the counterpart of Theorem 4.13:

Proposition 6.5. Let W = WBn , and let V be a CW −-module. The action of ξi on
C[y1, . . . , yn] ⊗ V is realized as a Dunkl operator as follows. For any polynomial
f ∈ C[y1, . . . , yn] and m ∈ V , we have

ξi ◦( f ⊗m)= u
∑
k 6=i

f − f ski

yi −yk
⊗[k, i]m−u

∑
k 6=i

f − f ski

yi +yk
⊗[k, i]m−v

f − f τi

2yi
⊗[i]m.
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The Dunkl operator for Ḧ−
Dn

.

Proposition 6.6. Let W = WDn , and let V be a CW −-module. The action of ξi on
C[y1, . . . , yn] ⊗ V is realized as a Dunkl operator as follows. For any polynomial
f ∈ C[y1, . . . , yn] and v ∈ V ,

ξi ◦ ( f ⊗ v) = u
∑
k 6=i

f − f ski

yi −yk
⊗ [k, i]v − u

∑
k 6=i

f − f ski

yi +yk
⊗ [k, i]v.

The even center for Ḧ−
W .

Proposition 6.7. Let W be one of the Weyl groups WAn−1 , WDn or WBn . The even
center for Ḧ−

W contains C[y1, . . . , yn]
W and C[ξ 2

1 , . . . , ξ 2
n ]

W . In particular, Ḧ−

W is
module-finite over its even center.

Proof.
By the isomorphism 8 : Ḧc

W → Cn ⊗ Ḧ−

W (see Theorem 5.5) and Proposition
4.18, we have

C[y1, . . . , yn]
W

⊆ 8(Z(Ḧc
W )) = Z(Cn ⊗ Ḧ−

W ),

C[ξ 2
1 , . . . , ξ 2

n ]
W

⊆ 8(Z(Ḧc
W )) = Z(Cn ⊗ Ḧ−

W ).

The first statement follows by noting that C[y1, . . . , yn]
W and C[ξ 2

1 , . . . , ξ 2
n ]

W ac-
tually lie in Ḧ−

W . The second statement now follows from the PBW property of Ḧ−

W
(see Theorem 5.6). �

7. Rational covering double affine Hecke algebras (cDaHa)

This section introduces the rational covering double affine Hecke algebras (cDaHa)
Ḧ∼

W associated to classical Weyl groups W . It has as its natural quotients the usual
rational DaHa ḦW [Etingof and Ginzburg 2002] (which will be recalled below)
and the rational sDaHa Ḧ−

W introduced in Section 5.

“Reflections” in W̃ . Recall from Section 2.1 the distinguished double cover W̃ of
a Weyl group W with generators t̃i .

Introduce the notations

t̃i↑ j =

{
t̃i t̃i+1 · · · t̃ j if i ≤ j,
1 otherwise,

t̃i↓ j =

{
t̃i t̃i−1 · · · t̃ j if i ≥ j,
1 otherwise.
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Define the following elements in W̃ , which are distinguished preimages of re-
flections in W under the canonical map W̃ → W for 1 ≤ i < j ≤ n:

{i, j} = z j−i−1 t̃ j−1 . . . t̃i+1 t̃i t̃i+1 . . . t̃ j−1,

{ j, i} = z{i, j},

{i, j} =

{
z j−i−1 t̃ j↑n−1 t̃i↑n−2 t̃n t̃n−2↓i t̃n−1↓ j for type Dn,

z j−i t̃ j↑n−1 t̃i↑n−2 t̃n t̃n−1 t̃n t̃n−2↓i t̃n−1↓ j for type Bn,

{ j, i} = {i, j},

{i} = zn−i t̃i · · · t̃n−1 t̃n t̃n−1 · · · t̃i for 1 ≤ i ≤ n.

We have {i, j} ∈ W̃An−1 and {i, j} ∈ W̃Dn for 1 ≤ i < j ≤ n, and {i} ∈ W̃Bn

for 1 ≤ i ≤ n. We have a sequence of subgroups W̃An−1 ≤ W̃Dn ≤ W̃Bn . The next
lemma is straightforward from the definitions, and it helps to explain our choices
of notations (recall si j = (i, j) and si j = (i, j)).

Lemma 7.1. Let W be W̃An−1, W̃Dn , or W̃Bn . For i 6= j , the canonical quotient
map ϒ+ : CW̃ → CW sends

{i, j} 7→ (i, j), {i, j} 7→ (i, j), {i} 7→ τi ,

and, again for i 6= j , the canonical quotient map ϒ− : CW̃ → CW − sends

{i, j} 7→ [i, j], {i, j} 7→ [i, j], {i} 7−→ [i]

whenever it makes sense for the given W .

The rational Cherednik algebras. Recall that h = Cn , and we have identified
C[h] = C[x1, . . . , xn] and C[h∗

] = C[y1, . . . , yn]. Below we shall recall, in a
more concrete form, the definition from [Etingof and Ginzburg 2002] of rational
double affine Hecke algebras (also called rational Cherednik algebras) associated
to the classical Weyl groups.

Let t, u ∈ C. Let W be one of the Weyl groups WAn−1, WDn , or WBn respectively.
The rational Cherednik algebra ḦW is the algebra generated by xi and yi for 1 ≤

i ≤ n and W , subject to the common relations

xi x j = x j xi , yi y j = y j yi for all i, j,

σ x = xσσ, σ y = yσσ for σ ∈ W, x ∈ h∗, y ∈ h

and the additional relations

[y j , xi ] = usi j for i 6= j,

[yi , xi ] = t · 1 − u
∑

k 6=i ski ,

}
for type A,
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[y j , xi ] = u(si j − si j ) for i 6= j,

[yi , xi ] = t · 1 − u
∑

k 6=i (ski + ski ),

}
for type D,

[y j , xi ] = u(si j − si j ) for i 6= j,

[yi , xi ] = t · 1 − u
∑

k 6=i (ski + ski ) − vτi ,

}
for type B.

The algebra ḦW has the following well-known PBW property: the multiplication
of the subalgebras induces a vector space isomorphism

C[h∗
] ⊗ CW ⊗ C[h]

'
−→ ḦW .

Equivalently, the set {xαwyγ
| α, γ ∈ Zn

+
, w ∈ W } forms a PBW basis for ḦW .

The rational covering double affine Hecke algebra Ḧ∼
W . Recall that the group W̃

from Section 2 has the defining relations given in Table 1, and W̃ contains a central
element z of order 2.

Definition 7.2. Let W = WAn−1 , and let t, u ∈ C. The rational covering double
affine Hecke algebra of type An−1, denoted by Ḧ∼

W or Ḧ∼

An−1
, is the algebra gener-

ated by x̃i and ỹi for 1 ≤ i ≤ n and z, t̃1, . . . , t̃n−1 subject to the relations for W̃ ,
and the following relations: z is central and

(7-1)


x̃i x̃ j = zx̃ j x̃i , ỹi ỹ j = ỹ j ỹi for i 6= j,

t̃i x̃ j = zx̃ j t̃i , t̃i ỹ j = ỹ j t̃i for j 6= i, i + 1,

t̃i x̃i+1 = zx̃i t̃i , t̃i ỹi+1 = ỹi t̃i ,

[ỹ j , x̃i ] = uz{i, j} for j 6= i,

[ỹi , x̃i ] = −uz
∑

k 6=i {i, k}.

Definition 7.3. Let W = WDn , and let u ∈ C. The rational covering double affine
Hecke algebra of type Dn , denoted by Ḧ∼

W or Ḧ∼

Dn
, is the algebra generated by x̃i

and ỹi for 1 ≤ i ≤ n and z, t̃1, . . . , t̃n , subject to the relations for W̃ , relations (7-1),
and the additional relations that z is central and

t̃n x̃ j = zx̃ j t̃n, t̃n ỹ j = ỹ j t̃n for i 6= n − 1, n,

t̃n x̃n = −x̃n−1 t̃n, t̃n ỹn = −ỹn−1 t̃n,

[ỹ j , x̃i ] = uz({i, j} − {i, j}) for j 6= i,

[ỹi , x̃i ] = −uz
∑

k 6=i ({i, k} + {i, k}).

Definition 7.4. Let W = WBn , and let u, v ∈ C. The rational covering double affine
Hecke algebra of type Bn , denoted by Ḧ∼

W or Ḧ∼

Bn
, is the algebra generated by x̃i
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and ỹi for 1 ≤ i ≤ n and z, t̃1, . . . , t̃n , subject to the relations for W̃ , relations (7-1),
and the additional relations that z is central and

t̃n x̃i = zx̃i t̃n, t̃n ỹi = ỹi t̃n for i 6= n,

t̃n x̃n = −x̃n t̃n, t̃n ỹn = −ỹn t̃n,

[ỹ j , x̃i ] = uz({i, j} − {i, j}) for j 6= i,

[ỹi , x̃i ] = −uz
∑

k 6=i ({i, k} + {i, k}) − vz{i}.

PBW basis for Ḧ∼
W . The next result uses the notion of rational cDaHa to provide

a link between the rational Cherednik algebra Ḧt=0
W with the specialization t = 0

and the rational sDaHa .

Proposition 7.5. Let W = WAn−1, WDn , or WBn . Then the quotient of the rational
cDaHa Ḧ∼

W by the ideal 〈z −1〉 (respectively, by the ideal 〈z +1〉) is isomorphic to
the rational Cherednik algebra Ḧt=0

W (respectively, the rational sDaHa Ḧ−

W ).

Proof. We will merely construct the isomorphisms of superalgebras explicitly,
while noting that the verification follows directly from the definitions of the various
algebras involved.

The canonical isomorphism map ϒ+ : CW̃/〈z −1〉 → CW (see Lemma 7.1) can
be extended to the isomorphism of superalgebras

ϒ+ : Ḧ∼

W /〈z − 1〉 → Ḧt=0
W , t̃i 7→ si , x̃i 7→ xi , ỹi 7→ yi .

Also, the canonical isomorphism map ϒ− : CW̃/〈z +1〉 → CW − (see Lemma 7.1)
can be extended to the isomorphism of superalgebras ϒ+ : Ḧ∼

W /〈z + 1〉 → Ḧ−

W by
sending t̃i 7→ ti , x̃i 7→ ξi and ỹi 7→ yi . �

The next theorem follows from Proposition 7.5, the PBW basis theorem (Theo-
rem 5.6) for Ḧ−

W , and the PBW property for ḦW (see [Etingof and Ginzburg 2002]),
by the same type of argument for [Wang 2007, Proposition 3.10] or [Khongsap and
Wang 2008, Theorem 5.5].

Theorem 7.6. Let W = WAn−1, WDn , or WBn . Then the elements x̃αw̃ ỹγ , where
α, γ ∈ Zn

+
and w̃ ∈ W̃ , form a basis for Ḧ∼

W .

8. Appendix: Proofs of several lemmas

Proof of Lemma 3.7. We will show that the relations (3-4) are invariant under the
conjugation by elements cl for 1 ≤ l ≤ n. The verifications for the invariants of
other relations under the conjugation by cl are similar and will be omitted.
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Consider the relation (3-4a) first. Clearly, (3-4a) is invariant under the conjuga-
tion by cl for l 6= i, j . Moreover, we calculate that

ci (right side of (3-4a))ci = u((ci c j − 1)s j i − (−ci c j − 1)si j )

= −[y j , xi ] = ci (left side of (3-4a))ci ,

c j (right side of (3-4a))c j = u((c j ci + 1)s j i − (−c j ci + 1)si j )

= [y j , xi ] = c j (left side of (3-4a))c j .

Thus (3-4a) is invariant under conjugation by any cl .
Next, we will show that the relation (3-4b) is invariant under the conjugation by

each cl . Indeed, we have

ci (right side of (3-4b))ci

= −
√

2vciτi ci − u
∑

k 6=i ci ((1 + ckci )ski + (1 − ckci )ski )ci

=
√

2vτi − u
∑

k 6=i ((ci ck − 1)ski + (−ci ck − 1)ski )

=
√

2vτi + u
∑

k 6=i ((1 + ckci )ski + (1 − ckci )ski )

= −[yi , xi ] = ci (left side of (3-4b))ci .

For j 6= i , we have

c j (right side of (3-4b))c j = −
√

2vτi − uc j ((1 + c j ci )s j i + (1 − c j ci )s j i )c j

− u
∑

k 6=i, j c j ((1 + ckci )ski + (1 − ckci )ski )c j

= −
√

2vτi − u((c j ci + 1)s j i + (−c j ci + 1)s j i )c j

− u
∑

k 6=i, j ((1 + ckci )ski + (1 − ckci )ski )

= c j (left side of (3-4b))c j . �

Proof of Lemma 3.8. We will show below that the relations (3-4) are invariant
under the conjugation by elements in WBn . The proof can be readily modified to
yield the Weyl group invariance of the relations (3-2) and (3-3) in type A and D
cases respectively, and we leave the details to the interested reader.

Case (i): We check the invariance of (3-4a) under WBn . Consider first the conju-
gation invariance by the transposition slk . If {l, k} ∩ {i, j} = ∅, then

slk(right side of (3-4a))slk = u((1 + c j ci )s j i − (1 − c j ci )si j )

= [y j , xi ] = slk(left side of (3-4a))slk .

If {l, k} ∩ {i, j} = { j}, then we may assume l = j and we have

s jk(right side of (3-4a))s jk = u
(
(1 + ckci )sik − (1 − ckci )sik

)
= [yk, xi ] = s jk(left side of (3-4a))s jk .
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We leave an entirely analogous computation when {l, k}∩{i, j} = {i} to the reader.
Now, if {l, k} = {i, j}, then

s j i (right side of (3-4a))s j i = u((1 + ci c j )si j − (1 − ci c j )si j )

= [yi , x j ] = s j i (left side of (3-4a))s j i .

So (3-4a) is invariant under the conjugation by each transposition slk .
It remains to show that (3-4a) is invariant under the conjugation by the simple

reflection sn = τn . Observe that (3-4a) is clearly invariant under conjugation by sn

for n 6= j, i . Moreover, if j = n, then

sn(right side of (3-4a))sn = u((1 − c j ci )s j i − (1 + c j ci )si j )

= −[y j , xi ] = sn(left side of (3-4a))sn.

If i = n, then

sn(right side of (3-4a))sn = u((1 − c j ci )s j i − (1 + c j ci )si j )

= −[y j , xi ] = sn(left side of (3-4a))sn.

This completes Case (i).

Case (ii): We check the invariance of (3-4b) under WBn . Consider first the conju-
gation invariance by a transposition s jl . If { j, l} ∩ {i} = ∅, then

s jl(right side of (3-4b))s jl

= −us jl((1 + c j ci )s j i + (1 − c j ci )s j i )s jl

− us jl((1 + clci )sli + (1 − clci )sli )s jl

− u
∑

k 6=i, j,l s jl((1 + ckci )ski + (1 − ckci )ski )s jl −
√

2vτi

= [yi , xi ] = s jl(left side of (3-4b))s jl .

If { j, l} ∩ {i} = {i}, we may assume that j = i , and then

sil(right side of (3-4b))sil

= −usil((1 + clci )s j i + (1 − clci )sli )sil

− u
∑

k 6=i,l sil((1 + ckcl)skl + (1 − ckcl)skl)sil −
√

2vτl

= [yl, xl] = sil(left side of (3-4b))sil .
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It remains to show that (3-4b) is invariant under the conjugation by the simple
reflection sn ≡ τn ∈ WBn . If i 6= n, we have

sn(right side of (3-4b))sn

= −
√

2vτi − usn((1 + cnci )sni + (1 − cnci )sni )sn

− u
∑

k 6=i,n sn((1 + ckci )ski + (1 − ckci )ski )sn

= −
√

2vτi − u((1 − cnci )sni + (1 + cnci )sni )

− u
∑

k 6=i,n((1 + ckci )ski + (1 − ckci )ski )

= [yi , xi ] = sn(left side of (3-4b))sn.

If i = n, then

sn(right side of (3-4b))sn

= −
√

2vτn − u
∑

k 6=n((1 − ckcn)skn + (1 + ckcn)skn)

= [yn, xn] = sn(left side of (3-4b))sn.

This completes the proof of (ii). Hence the lemma is proved. �

Proof of Lemma 3.9. We will establish the Jacobi identity for W = WBn . The proof
can be easily modified for the cases of type A and D, and we leave the details to
the reader.

The Jacobi identity holds trivially among triple the xi or triple the yi .
Now, we consider the triple with two y’s and one x . The case with two identical

yi is trivial. So we first consider xi , y j , and yl where i, j, l are all distinct. The
Jacobi identity holds in this case since

[xi , [y j , yl]] + [yl, [xi , y j ]] + [y j , [yl, xi ]]

= 0 + [yl, −u((1 + c j ci )s j i − (1 − c j ci )si j )]

+ [y j , u((1 + clci )sli − (1 − clci )sil)] = 0.

Now for i 6= j , we have

[xi , [yi , y j ]] + [y j , [xi , yi ]] + [yi , [y j , xi ]]

= 0 +
[
y j , u

∑
k 6=i ((1 + ckci )ski + (1 − ckci )ski ) +

√
2vτi

]
+ [yi , u((1 + c j ci )s j i − (1 − c j ci )si j )]

=
[
y j , u

∑
k 6=i, j ((1 + ckci )ski + (1 − ckci )ski )

]
+ [y j , u

(
(1 + c j ci )s j i + (1 − c j ci )s j i

)
]

+ [yi , u((1 + c j ci )s j i − (1 − c j ci )si j )]

= 0 + u((1 + c j ci )y j s j i + (1 − c j ci )y j s j i )
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− u((1 + c j ci )s j i y j + (1 − c j ci )s j i y j )

+ u((1 + c j ci )yi s j i − (1 − c j ci )yi si j )

− u((1 + c j ci )s j i yi − (1 − c j ci )si j yi ) = 0.

Now we consider the Jacobi identity with one y and two x’s. The case with all
distinct indices can be easily verified as above. Moreover, for i 6= j , we have

[xi , [yi , x j ]] + [x j , [xi , yi ]] + [yi , [x j , xi ]]

= [xi , u((1 + ci c j )si j − (1 − ci c j )si j )]

+
[
x j , u

∑
k 6=i ((1 + ckci )ski + (1 − ckci )ski ) +

√
2vτi

]
+ 0

= [xi , u((1 + ci c j )si j − (1 − ci c j )si j )]

+ [x j , u((1 + c j ci )si j + (1 − c j ci )si j )]

= u((1 − ci c j )xi si j − (1 + ci c j )xi si j ) − u((1 + ci c j )si j xi − (1 − ci c j )si j xi )

+ u((1 − c j ci )x j si j + (1 + c j ci )x j si j )

− u((1 + c j ci )si j x j + (1 − c j ci )si j x j ) = 0.

This completes the verification of the Jacobi identity for any triples. �

Proof of Lemma 4.8. We will proceed by induction. For l = 1, then the equations
hold by (3-4). Now assume that the statement is true for l. Then, for i 6= j

[yi , x l+1
j ] = [yi , x l

j ]x j + x l
j [yi , x j ]

= u
( x l

j −x l
i

x j −xi
+

x l
j −(−xi )

l

x j +xi
ci c j

)
si j x j − u

( x l
j −(−xi )

l

x j +xi
−

x l
j −x l

i

x j −xi
ci c j

)
si j x j

+ x l
j u((1 + ci c j )si j − (1 − ci c j )si j )

= u
( x l+1

j −x l+1
i

x j −xi
+

x l+1
j −(−xi )

l+1

x j +xi
ci c j

)
si j

− u
( x l+1

j −(−xi )
l+1

x j +xi
−

x l+1
j −x l+1

i

x j −xi
ci c j

)
si j ,

and

[yi , x l+1
i ] = [yi , x l

i ]xi + x l
i [yi , xi ]

= −u
∑
k 6=i

( x l
i −x l

k
xi −xk

+
x l

i −(−xk)
l

xi +xk
ckci

)
ski xi

− u
∑
k 6=i

( x l
i −(−xk)

l

xi +xk
−

x l
i −x l

k
xi −xk

ckci

)
ski xi −

√
2v

x l
i τi −τi x l

i
2xi

xi
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− ux l
i

∑
k 6=i

((1 + ckci )ski + (1 − ckci )ski ) −
√

2vx l
i τi

= −u
∑
k 6=i

( x l+1
i −x l+1

k
xi −xk

+
x l+1

i −(−xk)
l+1

xi +xk
ckci

)
ski

− u
∑
k 6=i

( x l+1
i −(−xk)

l+1

xi +xk
−

x l+1
i −x l+1

k
xi −xk

ckci

)
ski

−
√

2v
x l+1

i τi −τi x l+1
i

2xi
. �

Proof of Lemma 4.9. It suffices to check the formula for every monomial f . First,
we consider the monomial g =

∏
j 6=i xa j

j . By induction and Lemma 4.8, we can
show that the formula holds for the monomial of the form g =

∏
j 6=i xa j

j (the detail
of the induction step does not differ much from the following calculation). Now
consider the monomial f = x l

i g. By Lemma 4.8, we have

[yi , f ] = [yi , x l
i ]g + x l

i [yi , g]

= −u
∑
k 6=i

( x l
i −x l

k
xi −xk

+
x l

i −(−xk)
l

xi +xk
ckci

)
ski g

− u
∑
k 6=i

( x l
i −(−xk)

l

xi +xk
−

x l
i −x l

k
xi −xk

ckci

)
ski g −

√
2v

x l
i −(−xi )

l

2xi
τi g

−u
∑
k 6=i

x l
i

(g−gski

xi −xk
+

g−gski

xi +xk
ckci

)
ski −u

∑
k 6=i

x l
i

(g−gski

xi +xk
−

g−gski

xi −xk
ckci

)
ski

= −u
∑
k 6=i

( f − f ski

xi −xk
+

f − f ski

xi +xk
ckci

)
ski − u

∑
k 6=i

( f − f ski

xi +xk
−

f − f ski

xi −xk
ckci

)
ski

−
√

2v
f − f τi

2xi
τi . �

Proof of Lemma 4.11. We will proceed by induction. For l = 1, the equations hold
by (3-4). Now assume that the statement is true for l. Then, for i 6= j ,

[yl+1
j , xi ] = y j [yl

j , xi ] + [y j , xi ]yl
j

= uy j

( yl
j −yl

i

y j −yi
(1 + c j ci )si j −

yl
j −(−yi )

l

y j +yi
(1 − c j ci )si j

)
+ u((1 + c j ci )s j i − (1 − c j ci )si j )yl

j

= u
( yl+1

j −yl+1
i

y j −yi
(1 + c j ci )si j −

yl+1
j −(−yi )

l+1

y j +yi
(1 − c j ci )si j

)
.
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On the other hand, we have

[yl+1
i , xi ] = yi [yl

i , xi ] + [yi , xi ]yl
i

= −u
∑
k 6=i

yi
yl

i − yl
k

yi − yk
(1 + ckci )ski − u

∑
k 6=i

yi
yl

i − (−yk)
l

yi + yk
(1 − ckci )ski

−
√

2vyi
yl

i − (−yi )
l

2yi
τi

−u
∑
k 6=i

((1 + ckci )ski + (1 − ckci )ski )yl
i −

√
2vτi yl

i

= −u
∑
k 6=i

yl+1
i − yl+1

k

yi − yk
(1 + ckci )ski − u

∑
k 6=i

yl+1
i − (−yk)

l+1

yi + yk
(1 − ckci )ski

−
√

2v
yl+1

i − (−yi )
l+1

2yi
τi . �
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