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We calculate estimates for invariant metrics on a finite type convex domain
in Cn using the Sibony metric. We also discuss a possible modification of the
Sibony metric.

1. Introduction

The Kobayashi metric F(P, ξ) on a domain � ⊂ Cn at a point P ∈ � in the
direction ξ ∈ TP(�) is defined as

(1-1) F(P, ξ) = inf { α > 0 : ∃ φ ∈ �(D), φ(0) = P, φ′(0) = ξ/α },

where �(D) denotes the family of holomorphic mappings from the unit disc D in C

to �. It is known that the Kobayashi metric is greater than any biholomorphically
invariant metric G that satisfies the following properties:

(1) GD
: D × C → R+

∪ {0} coincides with the Poincaré metric on the unit disc
in C;

(2) G is nonincreasing under holomorphic mappings, that is, if 8 : � → �̃ is a
holomorphic mapping and P ∈ �, ξ ∈ TP(�), then

G�(P, ξ) ≥ G�̃
(
8(P), 8∗(P)ξ

)
.

It has been of importance to study the asymptotic behavior of the Kobayashi
metric near the boundary of a holomorphically convex domain. Several authors
have proved results on pseudoconvex domains: Ian Graham [1975] proved a result
on a strongly pseudoconvex domain and David Catlin [1989] studied the behavior
on a weakly pseudoconvex domain in C2.

As we can see from the definition of the Kobayashi metric (1-1), the difficulty in
estimating the Kobayashi metric lies in finding the lower estimate since the upper
estimate can be found rather easily by constructing one analytic disc in � that
satisfies the desired properties.
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Graham [1975] calculated the metric explicitly on ellipsoids and found the esti-
mate on a strongly pseudoconvex domain by approximating it with ellipsoids and
proving results on localization of the metric. Catlin [1989] proved the result by
estimating Carathéodory metric FC(P, ξ), which is defined as

FC(P, ξ) = sup
{
| f∗(P)ξ | =

∣∣∣∣ n∑
i=1

∂ f (P)

∂zi
ξi

∣∣∣∣ : f ∈ D (�), f (P) = 0
}
.

The Carathéodory metric satisfies above two properties and hence is less than
the Kobayashi metric. So one can estimate the Carathéodory metric and find a
lower estimate for the Kobayashi metric.

In this paper, we estimate the Kobayashi metric on a convex domain in Cn us-
ing the Sibony metric, whose definition can be found in Section 2. The Sibony
metric also satisfies the two properties above and hence gives a lower estimate
for the Kobayashi metric. The advantage of using the Sibony metric over using
the Carathéodory metric is that the Sibony metric uses bounded plurisubharmonic
functions whereas the Carathéodory metric uses bounded holomorphic functions,
which are usually more difficult to construct than plurisubharmonic functions. In
Section 2, we give a more detailed explanation of the Sibony metric.

We assume � = {ρ < 0} b Cn is a smoothly bounded convex domain,

P ∈ ∂�, ν =
∇ρ(P)

‖∇ρ(P)‖
and Pδ = P − δν ∈ �.

For

ξ ∈ T C
P (∂�) = Tp(∂�) ∩ J TP(∂�),

where J is the standard complex structure of Cn , we define 1(∂�, P, ξ) as the
tangency of the ∂� at P in the direction ξ , that is,

(1-2) 1(∂�, P, ξ) = v0(ρ(P + ξ z)), for z ∈ C,

where v0( f (z)) denotes the vanishing order of f at z = 0.
Lempert [1981] proved that the Kobayashi metric and the Carathéodory metric

coincide on a convex domain in Cn . Hence the Sibony metric also coincides with
the Carathéodory metric and the Kobayashi metric. Let us denote the (Kobayashi
or Sibony or Carathéodory) metric as F(Q, ξ) for Q ∈ � and ξ ∈ TQ(�). Then
we have the following theorem.

Theorem 1. If � ⊂ Cn is a smoothly bounded convex domain of finite type, then
we have

(1-3) F(Pδ, ξ) ≈
| ξ |

δ1/m , ξ ∈ T C
P (∂�),
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where m = 1(∂�, P, ξ), and

(1-4) F(Pδ, ν) ≈
1
δ

for all sufficiently small δ > 0.

Remark 1. In (1-3) and (1-4), the notation “≈” means that there exist positive
constants c, C , c′ and C ′ that do not depend on δ such that

c
| ξ |

δ1/m ≤ F(Pδ, ξ) ≤ C
| ξ |

δ1/m and c′
1
δ

≤ F(Pδ, ν) ≤ C ′
1
δ
,

for all δ > 0 sufficiently small.

The boundedness from above can be easily shown using the definition of the
Kobayashi metric. We can express the defining function using the Taylor series
and find an analytic disc that has the proper size in the estimating direction. For
more details, see [Lee 2007]. In Section 2, we prove the boundedness from below.

We also prove the following theorem.

Theorem 2. Suppose � b Cn is a smoothly bounded convex domain. Let

X = aν + bT,

where T ∈ TP(�) and a, b > 0. Then we have

F(Pδ, X) ≥
| a|

6δ
.

In Section 2, we give a brief background of invariant metrics and finite type
and, in Section 3, we prove Theorem 1 and Theorem 2. In Section 4, we discuss a
possible modification of the Sibony metric.

2. Background: invariant metrics and the concept of finite type

We say F : T � → R+
∪ {0}, is an invariant metric if F is invariant under biholo-

morphic mappings, that is, if 8 : �1 → �2 is a biholomorphic mapping between
�1 and �2 and P ∈ �1, ξ ∈ TP(�1), then

F�1(P, ξ) = F�2(8(P), 8∗(P)ξ).

For example, the Poincaré metric P(z, ξ) on the unit disc D in C, which is
defined as

P(z, ξ) =
|ξ |

1 − |z|2
,

is invariant under automorphisms of the unit disc.
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Two possible generalizations of the Poincaré metric to an arbitrary domain � in
Cn are the Kobayashi metric, FK (P, ξ), and the Carathéodory metric, FC(P, ξ),
which are defined as

FK (P, ξ) = inf
{
α : ∃ φ ∈ �(D), φ(0) = P, φ′(0) = ξ/α, α > 0

}
,

FC(P, ξ) = sup
{
| f∗(P)ξ | =

∣∣∣∣ n∑
i=1

∂ f (P)

∂zi
ξi

∣∣∣∣ : f ∈ D (�), f (P) = 0
}
,

where A(B) denotes the family of holomorphic mappings from B to A and D the
unit disc in C.

The Kobayashi metric is the largest pseudometric and the Carathéodory metric
is the smallest in the following sense.

Proposition 1. Suppose that

F̃�
: T � → R+

∪ {0}

is a pseudometric on � such that F̃D coincides with the Poincaré metric and F̃ is
nonincreasing under holomorphic mappings, that is, if 8 : �1 → �2 is a holomor-
phic mapping and P ∈ �1, then we have

F̃�1(P, ξ) ≥ F̃�2(8(P), 8∗(P)ξ), for all ξ ∈ T C
P (�1).

Then we always have

F�
C (P, ξ) ≤ F̃�(P, ξ) ≤ F�

K (P, ξ).

The Sibony metric is defined as follows.

Definition 1 (Sibony metric). Let � ∈ Cn be a domain and P ∈ �. We define a set
of functions, A�(P), such that u ∈ A�(P) if and only if

(1) u is C2 near P;

(2) u(P) = 0;

(3) 0 ≤ u(z) ≤ 1 for all z ∈ �;

(4) log u is plurisubharmonic on �.

We define the infinitesimal Sibony metric F S
� at P in the direction ξ ∈ Cn as

FS(P, ξ) ≡ sup
u∈A�(P)

( n∑
i, j=1

∂2u
∂zi∂ z̄ j

(P)ξi ξ̄ j

)1/2

.

The Sibony metric coincides with the Poincaré metric on the unit disc and is
nonincreasing under holomorphic mappings. Hence

F�
C (P, ξ) ≤ F�

S (P, ξ) ≤ F�
K (P, ξ).
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Finite type. We say the boundary of a domain in Cn is of finite type if the maximum
tangency of the boundary with any one dimensional holomorphic variety is finite,
that is,

sup
{v0(ρ ◦ φ)

v0(φ)
: φ ∈ Cn(D), φ(0) = P

}
< ∞.

For more details, see [Krantz 2001; D’Angelo 1993]. McNeal [1992] showed
that the finite type condition of a boundary of a convex domain in Cn is same as
the finite type condition with φ replaced with complex lines through P . So we
introduced the notation 1(∂�, P, ξ) in (1-2), which actually gives you the type in
the direction ξ if � is convex.

3. Estimation on a convex domain

Throughout this section we assume that � = {ρ < 0} b Cn is a smoothly bounded
convex domain, P ∈ ∂�, ξ ∈ T C

P (∂�) and the outward unit normal vector at P is

ν =
∇ρ(P)

‖∇ρ(P)‖
.

Let Pδ = P − δν.

Lemma 1 [Bruna et al. 1988]. Let us define a set of functions on R as

C(m, r) ≡ { f (x) = a2x2
+ · · · + am xm

: ai ∈ R, f ′′(x) ≥ 0 for all x ∈ [0, r ] }.

Then there exists a constant C such that

f (x) ≥ C(| a2| x2
+ · · · + | am | xm),

for all f ∈ C(m, r) and all x ∈ [0, r ].

Proposition 2. Let � = {ρ < 0} b Cn be a smoothly bounded convex domain,
P ∈ ∂� and ν the unit outward real normal vector to ∂� at P with ‖ν‖ = 1. Let
ξ ∈ T C

P (∂�), ‖ ξ‖ = 1, and 1(P, ∂�, ξ) > 2. If we let

Rξ (δ) := sup {|z| : P − δν + ξ z ∈ �, z ∈ C} ,

then

Rξ (δ) ≈ δ1/m

for δ > 0 sufficiently small.

Proof. We may assume

P = 0, ∇ρ (P) = (0, . . . , 1) and ξ = (1, 0, . . . , 0).
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Then near P = 0, ρ can be expressed as ρ = Re zn + O(|z|2) and, if we evaluate ρ

at (0, . . . , 0, −δ) in the z1-direction, we get

ρ((ζ, 0, . . . , 0, −δ)) = −δ +

m−1∑
p+q1+q2=2

p≥1

apq1q2δ
pζ q1 ζ̄ q2 + O

(
(δ2

+ |ζ |
2)m/2).

Let |ζ | = cδ1/m . Then

ρ((ζ, 0, . . . , 0, −δ)) = −δ +

m−1∑
p+q=2

p≥1

bpqδ p(cδ1/m)q
+ O

((
δ2

+
(
cδ1/m)2)m/2

)

≤ −δ +

m−1∑
p+q=2

p≥1

bpqδ p(cδ1/m)q
+ C(δm

+ c′δ) < 0,

for some constants C and c′. Hence, we get

Rξ (δ) & δ1/m .

Next, we will show that, for a fixed ε ∈ (0, 1
m ), there does not exist a constant c

such that, for all sufficiently small δ,

ρ((ζ, 0, . . . , 0, −δ)) < 0, |ζ | = cδ(1/m)−ε .

Let |ζ | = cδ(1/m)−ε and look at the Taylor expansion:

ρ((ζ, 0, . . . , 0, −δ)) =

−δ+

m∑
p+q=2

p≥1

bpqδ p(cδ(1/m)−ε)q
+b0m(cδ(1/m)−ε)m

+O
(
(δ2

+(cδ(1/m)−ε)2)(m+1)/2).
By Lemma 1, we get

ρ((ζ,0, . . . ,0,−δ)) ≥ −δ + C
( m∑

p+q=2
p≥1

|bpq |δ p(cδ(1/m)−ε)q
+ |b0m |(cδ(1/m)−ε)m

)
− C ′

(
δm+1

+ c′
(
δ(1/m)−ε

)m+1)
≥ −δ + C |b0m |

(
cδ(1/m)−ε

)m
− C ′

(
δm+1

+ c′
(
δ(1/m)−ε

)m+1)
= C ′′δ1−εm

− δ − C ′
(
δm+1

+ c′
(
δ(1/m)−ε

)m+1)
> 0,

for δ sufficiently small. Hence, we conclude that

Rξ (δ) ≈ δ1/m . �
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To find the lower bound for the Sibony metric, we construct a plurisubharmonic
function that satisfies the conditions of the definition and has a large Hessian in
the ξ -direction. We could find such a plurisubharmonic function by modifying the
construction of a plurisubharmonic function in [McNeal 1992].

Proposition 3. Suppose ξ ∈ T C
P (∂�) and 1(∂�, P, ξ) = m. Then

F(Pδ, ξ) &
| ξ |

δ1/m .

Proof. We may assume ξ is the z1-direction. We let the Re z1-direction be such
that the distance from P −δν to the boundary along Re z1 axis will be the greatest
among all distances between P − δν and the boundary along the z1 axis, that is,

sup { r > 0 : ρ((r, 0, . . . , 0, −δ)) ∈ � }

= sup
{

r > 0 : ρ
((

reiθ , 0, . . . , 0, −δ
))

∈ �, 0 ≤ θ < 2π
}
.

Let R be such a distance

R = sup {r > 0 : ρ((r, 0, . . . , 0, −δ)) ∈ � } .

Then by Proposition 3, we know that

R ≈ δ1/m .

Let Q = (R, 0, . . . , 0, −δ). Now we will show that

∂ρ

∂z1
(Q) ≈ δ1−(1/m).

using the technique in [McNeal 1992].
Consider the real tangent space to ∂� at Q:

Re
( ∂ρ

∂z1
(Q)(z1 − R)+

∂ρ

∂z2
(Q)z2 +· · ·+

∂ρ

∂zn−1
(Q)zn−1 +

∂ρ

∂zn
(Q)(zn + δ)

)
= 0.

Let S be the intersection point between the above tangent space and the Re zn axis,
that is,

S =

{
z : Re

( ∂ρ

∂z1
(Q)(z1 − R) +

∂ρ

∂z2
(Q)z2 + · · ·

+
∂ρ

∂zn−1
(Q)zn−1 +

∂ρ

∂zn
(Q)(zn + δ)

)
= 0

}
∩ {(0, . . . , 0, x), x ∈ R} .

If we let S = (s, 0, . . . , 0), then, by convexity, we have

|S − P| = |(s, 0, . . . , 0) − 0| = s ≥ 0.
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Therefore, if we evaluate the tangent space at S, we get

Re
( ∂ρ

∂z1
(Q)(−R) +

∂ρ

∂zn
(Q)(s + δ)

)
= 0.

Hence we have∣∣∣ ∂ρ

∂z1
(Q)

∣∣∣R ≥

∣∣∣Re
∂ρ

∂z1
(Q)R

∣∣∣ =

∣∣∣ ∂ρ

∂zn
(Q)

∣∣∣(s + δ) ≥

∣∣∣ ∂ρ

∂zn
(Q)

∣∣∣ δ ≈ δ.

Therefore,

(3-1)
∣∣∣ ∂ρ

∂z1
(Q)

∣∣∣ &
δ

R
≈

δ

δ1/m = δ1−(1/m).

To show the other direction, we look at the Taylor expansion of ρ at 0 and
evaluate it along the z1-direction:

ρ((z, 0, . . . ,−δ)) = −δ +

m∑
p+q1+q2=2

p≥1

apq1q2δ
pzq1 z̄q2

+

∑
r1+r2=m

ar1r2 zr1 z̄r2 + O
(
(δ2

+ | z|2)(m+1)/2).
Differentiating along the z1-direction, we get

∂ρ

∂z1
(Q) =

m∑
p+q=2

p≥1

bpqδ p Rq−1
+ bm Rm−1

+ O
(
(δ2

+ |z|2)m/2).
Since R ≤ Cδ1/m , we get

(3-2)
∣∣∣ ∂ρ

∂z1
(Q)

∣∣∣ .
m∑

p+q=2
p≥1

| bpq |Cq−1δ p+(q−1)/m

+| bm | Cm−1δ1−(1/m)
+ O(δm

+ Cmδ) . δ1−(1/m).

By (3-1) and (3-2), we get ∣∣∣ ∂ρ

∂z1
(Q)

∣∣∣ ≈ δ1−(1/m).

Now we construct a candidate plurisubharmonic function for the Sibony metric
FS(P − δν, ξ). Let

f =
1
δ

( ∂ρ

∂z1
(Q)z1 + · · · +

∂ρ

∂zn−1
(Q)zn−1 +

∂ρ

∂zn
(Q)(zn + δ)

)
and define

FN = f +
1
2!

f 2
+ · · · +

1
N !

f N ,
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where the number N will be chosen later. If we let

G N = |FN |
2,

then G N satisfies the following properties: G N (P − δν) = 0, log G N is plurisub-
harmonic on �, and

∂2G N

∂z1∂ z̄1
(P − δν) =

1
δ2

∣∣∣ ∂ρ

∂z1
(Q)

∣∣∣2
≈

δ2−(2/m)

δ2 =

( 1
δ1/m

)2
.

Hence, if we can show that G N is bounded on �, then we can conclude that

F�
S (Pδ, ξ) &

| ξ |

δ1/m .

Now we prove that G N is bounded and has an upper bound independent of δ.
Since

1 + f +
1
2!

f 2
+ · · · +

1
k!

f k
+ · · · = exp f,

we may find N such that∣∣ 1 + FN (z) − exp f (z)
∣∣ < 1, for all z ∈ �.

Therefore,
|FN | < 1 + | exp f − 1| ≤ 2 + eRe f .

Since Re f = 0 defines a hyperplane and Re f changes sign at Re f = 0, we may
assume that Re f > 0 near the boundary and negative elsewhere. Then

eRe f
≤ 1

outside a small neighborhood of P . Therefore we have

Re f ≤ Re f (Q) =
1
δ

Re
( ∂ρ

∂z1
(Q)R

)
.

1
δ
δ1−(1/m)δ1/m

= 1.

Hence G N is uniformly bounded for all δ. �

Proposition 4.

F(Pδ, ν) ≥
1

6 δ
.

Proof. Let
ρ(z) = 2Re zn + O(| z|2).

Since � is convex, we see that � ⊂ {Re zn < 0}. Let us look at the function

(3-3) u(z) =
1
9

∣∣∣ zn + δ

zn − δ

∣∣∣2
.
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Since Re zn < 0 for all z ∈ �, the function inside the absolute value sign is holo-
morphic on �. Hence log u is plurisubharmonic on �. And u(P − δν) = 0. We
also have ∣∣∣ zn + δ

zn − δ

∣∣∣ ≤ 1 +

∣∣∣ 2δ

zn − δ

∣∣∣ ≤ 1 +
2δ

δ
= 3, z ∈ �,

since
|zn − δ| ≥ | Re zn − δ | = | Re zn | + δ ≥ δ, for all z ∈ �.

Hence 0 ≤ u(z) ≤ 1 on �. Finally,(∂2u(Pδ)

∂zn∂ z̄n

)1/2
=

(1
9

1
4δ2

)1/2
=

1
6 δ

. �

Hence Theorem 1 is proved by Proposition 3 and Proposition 4.

Proof of Theorem 2. We use the same function u(z)

u(z) =
1
9

∣∣∣ zn + δ

zn − δ

∣∣∣2

as in (3-3). Then we have that

FS(Pδ, X) ≥
(
∂∂̄u(X, X)

)1/2
=

| a|

6 δ
. �

4. A modification of the Sibony metric

In this section, we discuss a possible modification of the Sibony metric.

Definition 2 (Plurisubharmonic metric). Let � ⊂ Cn be a domain and P ∈ �,
ξ ∈ Cn . We define a set of functions B�(P, ξ) by the condition that u ∈ B�(P, ξ)

if and only if

(1) u is C2 near P;

(2) u(P) = 0;

(3) there exists a holomorphic disc f : D → � such that

f (0) = P, f ′(0) =
ξ

F�
K (P, ξ)

,

and u satisfies

(a) 0 ≤ u ◦ f (z) ≤ 1, for all z ∈ D and (b)
u ◦ f (z)

|z|2
is subharmonic on D.

We define the plurisubharmonic metric F P
� at P ∈ � in the direction ξ ∈ Cn as

F�
P (P, ξ) ≡ sup

u∈B�(P,ξ)

( n∑
i, j=1

∂2u
∂zi∂ z̄ j

(P)ξi ξ̄ j

)1/2

.



ASYMPTOTIC BEHAVIOR OF THE KOBAYASHI METRIC ON CONVEX DOMAINS 115

Proposition 5. If � b Cn is a pseudoconvex domain and P ∈ � and ξ ∈ Cn , then

F�
S (P, ξ) ≤ F�

P (P, ξ).

Proof. It is enough to show that the collection of candidate functions for the Sibony
metric is a subset of collection of candidate functions for the plurisubharmonic
metric, that is, A�(P) ⊂ B�(P, ξ).

If u ∈ A�(P), then, as stated in Definition 1, u is C2 near P , u(P) = 0, 0 ≤

u(z) ≤ 1 for all z ∈ � and log u is plurisubharmonic on �. We need to show that
u satisfies the conditions of Definition 2.

Since � is pseudoconvex, we can find an extremal disc f ∈ �(D) such that

f (0) = P and f ′(0) =
ξ

F�
K (P, ξ)

.

Hence, since 0 ≤ u ≤ 1 on �, we get 0 ≤ u ◦ f (z) ≤ 1 for all z ∈ D. We know
that log u is plurisubharmonic on �. Therefore, log u ◦ f is subharmonic on D.
Since log | z| is harmonic, log u ◦ f − log | z|2 is subharmonic on D. Taking the
exponential, we see that

u ◦ f (z)
|z|2

is subharmonic on D. �

Next we will show that the metric F�
P is invariant under biholomorphic map-

pings. This is connected to the fact that the Kobayashi metric is invariant under
biholomorphic mappings.

Proposition 6. The plurisubharmonic metric is invariant under biholomorphic
mappings.

Proof. Let �1, �2 ⊂ Cn , P ∈ �1 and ξ ∈ Cn . Suppose that 8 : �1 → �2 is a
biholomorphic mapping. We will show that

u ◦ 8−1
∈ B�2(8(P), 8∗(P)ξ), for all u ∈ B�1(P, ξ),

where B�(P, ξ) is the set of functions that satisfy the conditions of Definition 2.
Since 8 is a biholomorphic mapping, u ◦ 8−1 is C2 near 8(P) and

u ◦ 8−1(8(P)) = u(P) = 0.

Thus the first two conditions are satisfied. Now suppose that f : D → �1 is a
holomorphic curve that satisfies the conditions of Definition 2 for F�1

P (P, ξ). If
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we let g(z) = 8 ◦ f (z), then g(0) = 8( f (0)) = 8(P) and

g′(0) = Jac 8(P) f ′(0) = Jac 8(P)
ξ

F K
�1

(P, ξ)
=

8∗(P) ξ

F K
�1

(P, ξ)

=
8∗(P) ξ

F K
�2

(8(P), 8∗(P) ξ)
.

The last equality holds since the Kobayashi metric is invariant under 8.
Now we want to show that u ◦ 8−1 satisfies the conditions on the holomor-

phic curve 8 ◦ f . But this is rather straightforward since f was chosen to be the
holomorphic curve on which the function u satisfies the conditions of Definition 2
and

u ◦ 8−1
◦ 8 ◦ f (z) = u ◦ f (z). �

Now we want to prove that the plurisubharmonic metric coincides with the
Poincaré metric on the unit disc in C.

Proposition 7. The plurisubharmonic metric coincides with the Poincaré metric
on the unit disc in C, that is,

FP(0, ξ) = PD(0, ξ) = | ξ |.

Proof. By the following lemma, we know that FP(0, ξ) ≤ | ξ |. Also, since u(z) =

|z|2 satisfies the conditions of being a candidate function, we get

FP(0, ξ) = | ξ |. �

Lemma 2. If u : D → R satisfies

(1) u(0) = 0, u is C2 near 0;

(2) 0 ≤ u ≤ 1 on D;

(3) u(z)/|z|2 is subharmonic on D,

then
∂2u(0)

∂z ∂ z̄
≤ 1.

Proof. Since u is C2 near 0 and has a minimum at 0, the first order derivatives of
u at 0 is 0. Hence the Taylor expansion near 0 becomes

u(z) = a|z|2 + Re bz2
+ O(|z|3), a ∈ R, b ∈ C.

Let z = |z|eiθ . Then
u(z)
|z|2

= a + Re (beiθ ) + O(|z|).



ASYMPTOTIC BEHAVIOR OF THE KOBAYASHI METRIC ON CONVEX DOMAINS 117

Since u(z)
|z|2 is subharmonic on D, by the maximum principle we get

u(z)
|z|2

∣∣∣∣
z=0

≤
u(z)
|z|2

∣∣∣∣
|z|=1

= u(z)||z|=1 ≤ 1.

Therefore,
u(z)
|z|2

∣∣∣∣
z=0

= a + Re (be2iθ ) ≤ 1.

Choose θ0 such that Re (be2iθ0) ≥ 0. We get

a ≤ 1 − Re (be2iθ0) ≤ 1. �

Proposition 8. The plurisubharmonic metric is less than or equal to the Kobayashi
metric, that is,

F�
P (P, ξ) ≤ F�

K (P, ξ).

Proof. Let u be the candidate function and f be the curve that has the derivative
at the base point of the same size as the inverse of the Kobayashi metric in the ξ

direction such that 0 ≤ u ◦ f ≤ 1 on D and u◦ f (z)
|z|2 is subharmonic on D. Then by

Lemma 2, we get
∂2u ◦ f (0)

∂z ∂ z̄
≤ 1.

Rewriting the left hand side of the above inequality, we get

∂2u ◦ f (0)

∂z ∂ z̄
=

∑
j,k

∂2u(P)

∂ξ j∂ξ̄k

(
f ′(0)

)
j

(
f̄ ′(0)

)
k =

1
(FK (P, ξ))2

∑
j,k

∂2u(P)

∂ξ j∂ξ̄k
ξ j ξ̄k .

Hence (∑
j,k

∂2u(P)

∂ξ j∂ξ̄k
ξ j ξ̄k

)1/2

≤ FK (P, ξ).

Therefore,
FP(P, ξ) ≤ FK (P, ξ). �
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