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A complex hyperbolic triangle group is the group of complex hyperbolic
isometries generated by complex involutions fixing three complex lines in
complex hyperbolic space. Such a group is called equilateral if there is an
isometry of order three that cyclically permutes the three complex lines. We
consider equilateral triangle groups for which the product of each pair of
involutions and the product of all three involutions are all nonloxodromic.
We classify all such groups that are discrete.

1. Introduction

A complex hyperbolic triangle group is a group generated by three complex reflec-
tions that fix complex lines in complex hyperbolic space. Unlike real reflections,
complex reflections can be of arbitrary order. Much of the literature is confined to
the case where the reflections have order two. In this paper we consider that case
and in the subsequent paper [Parker and Paupert 2007] we consider the case where
the generators have higher order.

The study of complex hyperbolic triangle groups was begun in [Goldman and
Parker 1992] where ideal triangle groups were considered. Since then there have
been many developments. There have been two strands to this work. First, follow-
ing [Goldman and Parker 1992], discrete and faithful representations of triangle
groups have been investigated; see [Schwartz 2001] for example. On the other
hand, there has been the study of discrete representations where certain group
elements are required to be elliptic of finite order; see [Deraux 2006; Falbel and
Parker 2006; Parker 2006; Schwartz 2003] for example. These representations are
necessarily unfaithful. Schwartz [2002] has given an excellent survey that outlines
progress and gives a conjectural overview of what we might expect. A more recent
survey is also contained in [Pratoussevitch 2005]. Pratoussevitch also considers the
case where the generators are complex reflections of higher order, which is related
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to earlier work of Mostow; see [Mostow 1980] for example. We will treat groups
with generators of higher order in the sequel to this paper [Parker and Paupert
2007].

Three complex lines L1, L2 and L3 in complex hyperbolic space form an equi-
lateral triangle if each pair intersects and if there is a symmetry map J of order 3
in SU(2, 1) so that J (L j ) = L j+1 (with indices taken cyclically). For j = 1, 2, 3
let I j be the complex reflection of order 2 fixing L j . Then

I2 = J I1 J−1 and I3 = J I2 J−1
= J−1 I1 J.

We call the group 1 = 〈I1, I2, I3〉 an equilateral triangle group. In this case 1 is
a normal subgroup of 0 = 〈I1, J 〉. At first sight, it might appear that there is a full
S3 symmetry group inside SU(2, 1) operating here, but this is only the case when
1 preserves a Lagrangian plane. The symmetry preserving L1 but interchanging
L2 and L3 is antiholomorphic. We shall have more to say about this in Section 2.2.

Our starting point is the following theorem, proved in [Schwartz 2001, Sec-
tion 3.3]:

Theorem 1.1 [Schwartz 2001]. Let 1 = 〈I1, I2, I3〉 be the group of complex hy-
perbolic isometries generated by complex involutions I j each fixing a complex line.
Suppose that there is a symmetry map J of order 3 so that

I2 = J I1 J−1, and I3 = J−1 I1 J.

If I1 I2 is parabolic and I1 I2 I3 is elliptic then 1 is not discrete.

The main theorem of this paper is to consider equilateral triangle groups 1 =

〈I1, I2, I3〉 where I1 I2 and I1 I2 I3 are both elliptic. Clearly I2 I3 I1 and I3 I1 I2 are
conjugate to I1 I2 I3 and so are elliptic; the fact that 1 is equilateral means that
both I2 I3 and I3 I1 are conjugate to I1 I2 and hence are elliptic; the fact that each
I j is an involution means that I2 I1 = (I1 I2)

−1 and I3 I2 I1 = (I1 I2 I3)
−1, and so

both of these maps are elliptic as well. We classify all such 1 that are discrete and
we find that there are remarkably few of them. The point is that I1 I2 and I1 I2 I3

should simultaneously have finite order. We now give a rough statement of our
main theorem. For a more precise statement see Theorem 3.7 and Proposition 4.5.

Theorem 1.2. Let 1 = 〈I1, I2, I3〉 be the group of complex hyperbolic isometries
generated by complex involutions I j each fixing a complex line. Suppose that there
is a symmetry map J of order 3 so that I2 = J I1 J−1 and I3 = J−1 I1 J . Suppose
that I1 I2 and I1 I2 I3 are both elliptic. Then 1 is discrete if and only if one of the
following is true:

(i) 1 is finite;

(ii) 1 is a normal subgroup of one of Livné’s lattices;
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(iii) 1 is Deraux’s lattice, with I1 I2 of order 4 and I1 I2 I3 of order 10;

(iv) 1 is the group described in Section 4.2, with I1 I2 of order 14 and I1 I2 I3 of
order 14.

There are other possible theorems along these lines. According to Schwartz’s
conjectural picture [2002] discreteness of 1 = 〈I1, I2, I3〉 is controlled by whether
I1 I2 I3 and I1 I2 I1 I3 are nonelliptic (for equilateral triangle groups, by symme-
try I1 I2 I1 I3 is elliptic if and only if each of I2 I3 I2 I1 and I3 I1 I3 I2 are elliptic).
We could have considered the case of equilateral triangle groups where I1 I2 and
I1 I2 I1 I3 are elliptic of finite order. Either using the formulae of Pratoussevitch
[2005] or using the formulae of Section 2.3 we find that tr(I1 I2) = |τ |

2
− 1 and

tr(I1 I2 I1 I3)=|τ 2
− τ̄ |

2
−1. Choosing τ so that |τ |= 2 cos π

n and |τ 2
− τ̄ |= 2 cos π

m
yields groups for which I1 I2 has order n and I1 I2 I1 I3 has order m. From this it is
easy to see that if I1 I2 I3 is loxodromic and I1 I2 I1 I3 is elliptic then 1 < |τ |

2 < 11
3 ,

which is equivalent to 4 ≤ n ≤ 10. Conjecturally, for a given n in this range these
groups are discrete for all sufficiently large values of m; compare the remark just
after Theorem 4.7 of [Schwartz 2002]. (See also the second remark on [Schwartz
2007, p. 8].) Schwartz [2003] proves the discreteness of the group of this type with
n = 4 and m = 7. A similar proof should work for n = 4 and m ≥ 8. Note that
when n = 4 and m = 5 we obtain Deraux’s lattice, in which case I1 I2 I3 is elliptic
and has order 10.

After finishing this paper, Julien Paupert and I were discussing complex hyper-
bolic equilateral triangle groups where the generators have higher order. It turns
out that we can use the same equations to discuss discreteness of these groups.
Certain values of τ yield some of Mostow’s groups [1980] and other values of
τ give normal subgroups of Mostow’s groups. This simultaneously generalizes
Theorem 1.2 (ii), since Livné’s lattices are examples of Mostow’s groups, and
work of Sauter [1990] on commensurability between Mostow’s groups. There are
also sporadic groups when the generators have higher order. The details may be
found in [Parker and Paupert 2007].

2. Parameters and traces

In this section we show how to parametrise equilateral complex hyperbolic trian-
gle groups with a single complex parameter τ and we find the values of τ that
correspond to such a group. We then describe how the properties of the group
(for example the type of I1 I2 and I1 I2 I3) vary with τ . We will try to keep this
account as self-contained as possible. However, we shall assume a certain amount
of background knowledge of complex hyperbolic geometry. For such background
material on complex hyperbolic space see [Goldman 1999] and for material on
complex hyperbolic triangle groups see [Schwartz 2002] or [Pratoussevitch 2005].
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2.1. Complex reflections. Let L1 be a complex line in complex hyperbolic 2-space
H2

C and write I1 for the complex reflection of order 2 fixing L1. We may lift I1 to
a matrix in SU(2, 1). If the polar vector of L1 is n1 then I1 is given by

(2-1) I1(z) = −z + 2
〈z, n1〉

〈n1, n1〉
n1.

In [Goldman 1999, Section 3.3.2], the polar vectors of two complex lines are used
to determine the geometry of their relative position.

Proposition 2.1 [Goldman 1999]. Suppose that L1 and L2 are complex lines in
H2

C
with polar vectors n1 and n2. Let

N(L1, L2) =
〈n1, n2〉〈n2, n1〉

〈n1, n1〉〈n2, n2〉
.

(i) If N(L1, L2) > 1 then L1 and L2 are ultraparallel;

(ii) if N(L1, L2) = 1 then either L1 and L2 are asymptotic or L1 = L2;

(iii) if N(L1, L2) < 1 then L1 and L2 intersect with angle θ where N(L1, L2) =

cos2 θ .

We shall be interested in equilateral triangle groups 1 = 〈I1, I2, I3〉 generated
by complex involutions fixing complex lines L1, L2 and L3. The hypothesis that
the triangle is equilateral means there is a symmetry map J of order 3 in SU(2, 1)

so that J (L j ) = L j+1, where the indices are taken modulo 3. This implies that
J (n j ) = n j+1 and so

N(L j , L j+1) =
〈n j , n j+1〉〈n j+1, n j 〉

〈n j , n j 〉〈n j+1, n j+1〉
=

|〈J (n j ), n j 〉|
2

〈n j , n j 〉
2 .

2.2. The parameter space. Suppose we are given an equilateral triangle of com-
plex lines L1, L2 and L3 with polar vectors n1, n2 and n3 satisfying J (n j ) = n j+1

where j = 1, 2, 3 taken modulo 3. Because J preserves the Hermitian form,
〈n j , n j 〉 is the same positive real number for each j . We normalize n j so that this
number is 2. Likewise 〈n j+1, n j 〉 = 〈J (n j ), n j 〉 is the same complex number for
each j which we define to be τ . That is,

(2-2) 〈n1, n1〉 = 〈n2, n2〉 = 〈n3, n3〉 = 2, 〈n2, n1〉 = 〈n3, n2〉 = 〈n1, n3〉 = τ.

Let H be the matrix of the Hermitian form, that is, 〈z, w〉 = w∗Hz. We define N
to be the matrix whose columns are n1, n2, n3. Then the i j-th entry of N ∗H N is
〈n j , ni 〉 and so

(2-3) N ∗H N =

2 τ τ̄

τ̄ 2 τ

τ τ̄ 2

 .
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Lemma 2.2. Let L1, L2 and L3 be complex lines in H2
C

with polar vectors n1, n2

and n3. Suppose that the Hermitian products of these vectors satisfy (2-2). Then
the vectors n1, n2 and n3 are linearly independent if and only if

8 + 2Re (τ 3) − 6|τ |
2
6= 0.

Proof. We have

8 + 2Re (τ 3) − 6|τ |
2
= det

2 τ τ̄

τ̄ 2 τ

τ τ̄ 2

 = det(N ∗H N ) = det(H)|det(N )|2.

Since det(H) 6=0 we see that 8+2Re (τ 3)−6|τ |
2
6=0 if and only if N is nonsingular.

�

Let us now consider the case where the vectors n1, n2 and n3 are linearly inde-
pendent. We consider the other case at the end of the section. Following [Mostow
1980, p. 214], we choose coordinates so that

n1 =

1
0
0

 , n2 =

0
1
0

 , n3 =

0
0
1

 .

In this case, the matrix N (whose columns are the vectors n j ) is the identity. Hence,
using (2-3), we see that the Hermitian form must be 〈z, w〉 = w∗Hτ z where

(2-4) Hτ =

2 τ τ̄

τ̄ 2 τ

τ τ̄ 2

 .

We can immediately write down J and, using (2-1), the involutions I j . They are

J =

0 0 1
1 0 0
0 1 0

 , I1 =

1 τ τ̄

0 −1 0
0 0 −1

 , I2 =

−1 0 0
τ̄ 1 τ

0 0 −1

 , I3 =

−1 0 0
0 −1 0
τ τ̄ 1

 .

From this it is clear that the groups 0 =〈 I1, J 〉 and 1=〈 I1, I2, I3〉 are completely
determined, up to conjugation, by the parameter τ . However, not all values of τ

correspond to complex hyperbolic triangle groups: it may be that the Hermitian
matrix Hτ does not have signature (2, 1). We now determine this by finding the
eigenvalues of Hτ . In this lemma and throughout the paper we write ω = e2π i/3

=
1
2(−1 + i

√
3).

Lemma 2.3. Let Hτ be given by (2-4) and write τ = t + is. The eigenvalues of Hτ

are

2 + τ + τ̄ = 2 + 2t, 2 + τω + τ̄ω = 2 − t +
√

3s, 2 + τω + τ̄ω = 2 − t −
√

3s.
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Proof. We observe that eigenvectors for Hτ are1
1
1

 ,

1
ω

ω

 ,

1
ω

ω

 .

Their eigenvalues are

2 + τ + τ̄ , 2 + τω + τ̄ω and 2 + τω + τ̄ω,

respectively. �

Corollary 2.4. The matrix Hτ has signature (2, 1) if and only if

(2-5) 6|τ |
2
− τ 3

− τ̄ 3
− 8 > 0.

Proof. It is easy to check (for example by adding them) that all three eigenvalues
cannot be negative. Thus Hτ has signature (2, 1) if and only if its determinant is
negative. That is

0 > (2 + τ + τ̄ )(2 + τω + τ̄ω)(2 + τω + τ̄ω) = 8 + τ 3
+ τ̄ 3

− 6|τ |
2. �

We now describe how the signature of Hτ varies as τ varies in C. There are
three lines each of which is the locus where one of the eigenvalues vanishes. In
Figure 1 we have drawn these three lines. These lines have seven complementary
regions in C, which fall into three types:

• The central triangle where all three eigenvalues are positive and so Hτ has
signature (3, 0), that is it is positive definite.

• Three infinite components each sharing a common edge with the central tri-
angle. In these regions two eigenvalues are positive and one negative and so
Hτ has signature (2, 1). This is our parameter space.

• Three infinite components that each only abuts the central triangle in a point.
Here one eigenvalue is positive and two are negative and so Hτ has signature
(1, 2). These correspond to groups of complex hyperbolic isometries gener-
ated by three complex involutions that each fix a point.

The values of τ satisfying (2-5) make up our parameter space. This space has three
components related by multiplication by powers of ω = e2π i/3. This ambiguity
corresponds to the choice we have made when lifting symmetry in PU(2, 1) to the
corresponding matrix J in SU(2, 1), the triple cover of PU(2, 1). In other words,
the ordered triples {n1, ωn2, ωn3} and {n1, ωn2, ωn3} correspond to the same
group as {n1, n2, n3}. Hence τ is only defined up to a cube root of unity. Factoring
out by this equivalence, our parameter space is in bijection with one of the three
components where Hτ has signature (2, 1), which we described above. There is a
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(2, 1)

(2, 1)

(2, 1)

(3, 0) (1, 2)

(1, 2)

(1, 2)

Figure 1. The parameter space. We have drawn the points corre-
sponding to the groups listed in Theorem 1.2. For more details of
this part of the picture, see Figure 2.

further symmetry of our setup, namely complex conjugating τ . This corresponds
to sending τ = 〈n j+1, n j 〉 to τ̄ = 〈n j , n j+1〉. Up to conjugation, this preserves I1

and sends J to J−1. In particular, it swaps the roles of I2 and I3. Thus all the
symmetries in S3 (acting on L1, L2 and L3) either preserve τ or send it to τ̄ . Our
parameter space also respects this symmetry. Hence we may restrict our attention
to those τ whose argument lies in [0, π

3 ]. In fact, this description of the parameter
space can be shown to be a reformulation in terms of τ of [Pratoussevitch 2005,
Proposition 1], for our special case. We will give details of how to pass from τ to
Pratoussevitch’s parameters in the next section.

We conclude this section by considering the case where the vectors n j are lin-
early dependent, that is, when N is singular. Using Lemma 2.2, this implies that

0 = 8 + τ 3
+ τ̄ 3

− 6|τ |
2
= (2 + τ + τ̄ )(2 + τω + τ̄ω)(2 + τω + τ̄ω).

It will be convenient to make a choice of which one of these linear factors is zero.
In Section 4.1 below it will be useful to suppose that τω + τ̄ω = −2 and so we
focus on that case here. We shall also explain how to obtain the formulae in the
other two cases. We begin with a geometrical description of the complex lines L1,
L2 and L3.



152 JOHN R. PARKER

Proposition 2.5. Let L1, L2 and L3 be complex lines in H2
C

with polar vectors n1,
n2 and n3. Suppose that the Hermitian products of these vectors satisfy (2-2). Then

(i) 8 + 2Re (τ 3) − 6|τ |
2

= 0 and |τ | < 2 if and only if L1, L2 and L3 have a
unique point of intersection in H2

C
;

(ii) 8 + 2Re (τ 3) − 6|τ |
2
= 0 and |τ | = 2 if and only if L1, L2 and L3 coincide;

(iii) 8 + 2Re (τ 3)− 6|τ |
2
= 0 and |τ | > 2 if and only if there is a complex line L⊥

in H2
C

that is orthogonal to each of L1, L2 and L3.

Proof. From Lemma 2.2 we see that 8+2Re (τ 3)−6|τ |
2
= 0 if and only the matrix

N defined above is singular. This is true if and only if there exists a nonzero vector
z0 so that

0 = N ∗Hz0 =

〈z0, n1〉

〈z0, n2〉

〈z0, n3〉

 .

Therefore z0 satisfies

(2-6) 〈z0, n1〉 = 〈z0, n2〉 = 〈z0, n3〉 = 0.

Hence z0 either corresponds to a common intersection point of L1, L2 and L3 or to
the polar vector of a common orthogonal complex line. Which of these possibilities
occurs depends on whether N(L1, L2) =

|τ |
2

4 is greater than, equal to or less than
1, using Proposition 2.1. This proves (i) and (iii).

In order to prove the result, all that remains is to consider the case when |τ | = 2
and to decide whether the complex lines are asymptotic or coincide. In this case

0 = 8 + 2Re (τ 3) − 6|τ |
2
= 2Re (τ 3) − 16

and so τ 3
= 8 and so τ

2 is a cube root of unity. In this case the matrix N has
rank 1 and so N ∗H has a two-dimensional kernel. The projection of this kernel is
L1 = L2 = L3, proving (ii). �

We can reinterpret Proposition 2.5 in terms of the group 1 = 〈I1, I2, I3〉. This
group fixes a point of H2

C
, that is it is elementary, if and only if 8+2Re (τ 3)−6|τ |

2

vanishes and |τ | ≤ 2. If such a group is discrete then it must be finite. In particular,
the case |τ | = 2 corresponds to the order 2 group where I1 = I2 = I3. On the other
hand, 1 preserves a complex line if and only if 8 + 2Re (τ 3)− 6|τ |

2 vanishes and
|τ | > 2. If such a group is discrete then it is Fuchsian.

When |τ | 6= 2, that is in the cases given by Proposition 2.5 (i) and (iii), we can
once again choose a basis and use this to write down the Hermitian form and matrix
representatives for I1, I2, I3 and J . Suppose that n1, n2, n3 satisfy (2-2). As in
the proof of Proposition 2.5, there exists z0 satisfying (2-6). As indicated in that
proof, this vector is negative when |τ | < 2 and positive when |τ | > 2 (recall we
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have excluded the case of |τ | = 2). Thus, without loss of generality, we suppose
that

〈z0, z0〉 = |τ | − 2.

Let N ′ be the matrix whose columns are n1, n2, z0. As our Hermitian form is non-
degenerate, it is clear that z0 is not in the span of n1 and n2. Therefore {n1, n2, z0}

is a basis of C3 and so N ′ is nondegenerate. Moreover, if H is the matrix of the
Hermitian form then

N ′∗H N ′
=

2 τ 0
τ̄ 2 0
0 0 |τ | − 2

 .

We choose coordinates so that

n1 =

1
0
0

 , n2 =

0
1
0

 , z0 =

0
0
1

 .

Hence the matrix N ′ is the identity, and our Hermitian form is given by the fol-
lowing matrix H ′

τ , which only depends on τ :

H ′

τ =

2 τ 0
τ̄ 2 0
0 0 |τ | − 2

 .

Notice that H ′
τ has eigenvalues 2 + |τ |, 2 − |τ | and |τ | − 2 and so it has signature

(2, 1) whenever |τ | 6= 2. Once more, we can use (2-1) to find I1 and I2. They are

I1 =

1 τ 0
0 −1 0
0 0 −1

 , I2 =

−1 0 0
τ̄ 1 0
0 0 −1

 .

Using τω + τ̄ω = −2, one may easily find n3 and this allows us to write down I3

and J :

(2-7) n3 =

−ω

−ω

0

 , I3 =

1 + τ̄ ω −τ̄ω 0
−τω 1 + τω 0

0 0 −1

 , J =

0 −ω 0
1 −ω 0
0 0 ω

 .

Once again, it is clear that the groups 0 = 〈I1, J 〉 and 1 = 〈I1, I2, I3〉 are com-
pletely determined up to conjugation by the parameter τ . In the remaining two
cases, namely τω + τ̄ω = −2 and τ + τ̄ = −2, the formulae for n3, I3 and J
are obtained from (2-7) by swapping ω and ω or by replacing both ω and ω by 1,
respectively.
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2.3. Traces. We have seen that if τ satisfies (2-5) then τ corresponds to a group
0 = 〈I1, J 〉, in SU(2, 1), with an equilateral triangle group 1 = 〈I1, I2, I3〉 as an
index three normal subgroup. In this section we write down the traces of certain
elements of 0 in terms of τ . This should be compared to [Pratoussevitch 2005,
Theorem 9] where formulae for the traces of elements in 1 that are integer poly-
nomials in |τ |

2, τ 3 and τ̄ 3 are given (in our language). We could write down the
traces directly from our expressions for J , I1, I2 and I3. We choose to give a more
general argument as this is more illuminating and is independent of our choice of
Hermitian form.

Lemma 2.6. Let A be any element of SU(2, 1). Then

tr (I1 A) = −tr (A) + 2
〈A(n1), n1〉

〈n1, n1〉
.

Proof. Using (2-1) we see that

I1 A(z) = −A(z) + 2
〈A(z), n1〉

〈n1, n1〉
n1.

We must find the trace of the matrix corresponding to the linear map

T : z 7→ 〈A(z), n1〉n1.

Writing 〈z, w〉 = w∗Hz and using the fact that this is a complex scalar, we have

〈A(z), n1〉n1 = n1n∗

1 H Az = (n1(A∗Hn1)
∗)z.

Hence the matrix of T is n1(A∗Hn1)
∗. Now if a matrix can be written in the form

uv∗ for column vectors u and v, then its trace is just v∗u. Thus

tr (n1(A∗Hn1)
∗) = (A∗Hn1)

∗n1 = n∗

1 H An1 = 〈A(n1), n1〉.

Hence

tr (I1 A) = −tr A + 2
tr (n1(A∗Hn1)

∗)

〈n1, n1〉
= −tr A + 2

〈A(n1), n1〉

〈n1, n1〉
. �

Corollary 2.7. Let I1 be a complex involution fixing a complex line L1 with polar
vector n1. Let J ∈ SU(2, 1) be a regular elliptic map of order 3. Then

tr (I1 J ) = 2
〈J (n1), n1〉

〈n1, n1〉
.

Proof. This follows directly from the previous lemmas using the fact that, since J
is regular elliptic of order three, its trace is zero. �

Using (2-2) and the fact that n j+1 = J (n j ), an immediate consequence of Corol-
lary 2.7 is that tr (I j J ) = τ . This fact is our justification for naming our parameter
τ . The following theorem is just a restatement of [Goldman 1999, Theorem 6.2.4].
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Proposition 2.8. Let τ be given by (2-2). Then I1 J is regular elliptic if and only if

|τ |
4
− 4τ 3

− 4τ̄ 3
+ 18|τ |

2
− 27 < 0.

The curve given by the equality in Proposition 2.8 is a deltoid; see Figure 1.
Groups for which I1 J is regular elliptic correspond to points in the interior of this
deltoid. Points on the deltoid correspond to points where I1 J is either a complex
reflection or is parabolic. Since I1 I2 I3 = (I1 J )3 we can determine the type of
I1 I2 I3 from I1 J . (Note that it may be that I1 J is regular elliptic and that I1 I2 I3 is
a complex reflection.)

We now consider I1 I2, and hence by symmetry I2 I3 and I3 I1 as well.

Proposition 2.9. Let L1 and L2 be complex lines in H2
C

with polar vectors n1 and
n2 respectively. Suppose that 〈n1, n1〉 = 〈n2, n2〉 = 2 and 〈n2, n1〉 = τ . Let I1 and
I2 denote the complex involutions fixing L1 and L2. Then

tr (I1 I2) = |τ |
2
− 1.

Proof. Let z2 and z3 be any distinct vectors on L1 (for example, if the fixed point of
J is not on L1, we could choose z2 = L1 ∩L3 and z3 = L1 ∩L2). Then {n1, z2, z3}

is a basis for C2,1. We write n2 in terms of this basis as

n2 = αn1 + βz2 + γ z3.

Since n1 is orthogonal to z2 and z3 then 〈n2, n1〉 = α〈n1, n1〉 and so α =
τ
2 . Since

n1 is a 1-eigenvector for I1 and z2, z3 are both (−1)-eigenvectors we have

n2 =
τ

2
n1 + βz2 + γ z3, I1(n2) =

τ

2
n1 − βz2 − γ z3.

Adding these two expressions we see that I1(n2) = τn1 − n2. Therefore

〈I1(n2), n2〉 = τ 〈n1, n2〉 − 〈n2, n2〉 =
|τ |

2

2
〈n2, n2〉 − 〈n2, n2〉.

Hence using Lemma 2.6 we have

tr (I2 I1) = −tr (I1) + 2
〈I1(n2), n2〉

〈n2, n2〉
= 1 + |τ |

2
− 2 = |τ |

2
− 1. �

If an element of SU(2, 1) with real trace is elliptic then its trace lies in [−1, 3)

and conversely any element of SU(2, 1) whose trace lies in the real interval (−1, 3)

is elliptic. If the trace is −1 it is either elliptic or parabolic. Hence we see that
I1 I2 is elliptic if and only if |τ | < 2. In Figure 1 we show how the circle |τ | = 2
compares to the deltoid of Proposition 2.8. Furthermore, we can now see that
Pratoussevitch’s parameters [2005] may be written in terms of τ as

r1 = r2 = r3 =
|τ |

2
, α = arg(τ 3).
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Using Proposition 2.1 we can, in fact, relate the trace of I1 I2 to the relative position
of I1 and I2.

Corollary 2.10. Let L1 be a complex line in H2
C

with polar vector n1. Let J ∈

SU(2, 1) and write L2 = J (L1). Let I1 and I2 denote the complex involutions
fixing L1 and L2. Then

(i) if L1 and L2 are ultraparallel then tr (I1 I2) > 3;

(ii) if L1 and L2 are asymptotic then tr (I1 I2) = 3;

(iii) if L1 and L2 intersect with angle θ then tr (I1 I2) = 2 cos(2θ) + 1.

3. When I1 I2 I3 is elliptic and I1 I2 is nonloxodromic

This section is the heart of the paper. We restrict our attention to those groups
for which I1 I2 I3 is elliptic of finite order and I1 I2 is either elliptic of finite order
or else parabolic. These are groups for which τ lies inside or on the deltoid and
inside or on the circle in Figure 1. Since they have finite order, the eigenvalues
of I1 I2 I3 and I1 I2 are all roots of unity (in the case where I1 I2 is parabolic then
its eigenvalues are all 1). This fact leads to a linear equation in certain cosines
of rational multiples of π . We find all solutions to this equation using a theorem
of Conway and Jones [1976]. We then go on to find which of these solutions lie
in parameter space, that is, which of the solutions lie outside the central triangle
in Figure 1. As we have already indicated, it suffices to consider those τ whose
argument lies in [0, π

3 ]. Such values of τ lying outside the central triangle and yet
inside both the deltoid and circle are shown in Figure 2.

3.1. The eigenvalue equation. We now investigate when both I1 I2 and I1 I2 I3 are
elliptic of finite order. In fact our proof will be valid when I1 I2 is parabolic and
yields a new proof of Theorem 1.1. We know that, I1 J (and hence I1 I2 I3) is elliptic
of finite order if and only if

(3-1) τ = tr (I1 J ) = eiα
+ eiβ

+ e−iα−iβ,

where α and β are rational multiples of π . Likewise for I1 I2. In fact we know
slightly more. Since the intersection of L1 and L2 is a (−1)-eigenvector for each
of I1 and I2 it must be a (+1)-eigenvector for I1 I2. Hence the eigenvalues of I1 I2

are 1, e2iθ and e−2iθ . That is

(3-2) |τ |
2
− 1 = tr (I1 I2) = 2 cos(2θ) + 1,

where θ is a rational multiple of π . From Corollary 2.10 (iii) we see that, geomet-
rically, θ is just the angle between L1 and L2. If θ = 0 then I1 I2 is parabolic (or
the identity) and we shall include this case in our analysis.
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Figure 2. An enlarged view of part of Figure 1 showing the values
of τ in Theorem 3.7. Of the groups from Theorem 3.7 (ii) we have
only plotted those that are discrete, as enumerated in Proposition
4.5.

We solve (3-1) and (3-2) by eliminating τ . That is, we seek θ , α, β rational
multiples of π so that

2 cos(2θ) + 2 = |τ |
2
= 3 + 2 cos(α − β) + 2 cos(α + 2β) + 2 cos(−2α − β).

Rearranging, this becomes

(3-3) 1
2

= cos(2θ) − cos(α − β) − cos(α + 2β) − cos(−2α − β).

Notice that there is a certain amount of ambiguity in the solutions of this equation.
Given one solution α − β, α + 2β and 2α − β we obtain other solutions by a
sequence of the following operations:

(i) permuting α − β, α + 2β and −2α − β;

(ii) changing the sign of all three of them;

(iii) adding a multiple of 2π to one of them and subtracting the same multiple of
2π from another.

Using the fact that all three angles sum to zero, the net result of these ambiguities
is to possibly complex conjugate τ and/or to multiply τ by a power of ω = e2π i/3.
These are precisely the ambiguities in τ we already know about. For example,
adding 2π to α+2β and subtracting 2π from −2α−β sends α to α+

2π
3 and β to

β +
2π
3 . Hence it sends τ to τω. Likewise, swapping α + 2β and −2α − β sends

α to −β and β to −α. This has the effect of sending τ to τ̄ .
The theorem that we use to find all solutions to (3-3) is the wonderful [Conway

and Jones 1976, Theorem 7]:
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Theorem 3.1 [Conway and Jones 1976]. Suppose that we are given at most four
distinct rational multiples of π lying strictly between 0 and π

2 for which some
rational linear combination of their cosines is rational, but no proper subsum has
this property. Then this linear combination is proportional to one of the following:

(a) 1
2 = cos π

3 ,

(b) 0 = − cos φ + cos(φ −
π
3 ) + cos(φ +

π
3 ) where 0 < φ < π

6 ,

(c) 1
2 = cos π

5 − cos 2π
5 ,

(d) 1
2 = cos π

7 − cos 2π
7 + cos 3π

7 ,

(e) 1
2 = cos π

5 − cos π
15 + cos 4π

15 ,

(f) 1
2 = − cos 2π

5 + cos 2π
15 − cos 7π

15 ,

(g) 1
2 = cos π

7 + cos 3π
7 − cos π

21 + cos 8π
21 ,

(h) 1
2 = cos π

7 − cos 2π
7 + cos 2π

21 − cos 5π
21 ,

(i) 1
2 = − cos 2π

7 + cos 3π
7 + cos 4π

21 + cos 10π
21 ,

(j) 1
2 = − cos π

15 + cos 2π
15 + cos 4π

15 − cos 7π
15 .

We claim that we may find all solutions to (3-3) by inspection from this theorem.
In order to see this, observe that by sending φ to π − φ we send cos φ to − cos φ.
Thus, by allowing the angles to lie in (0, π), for each equation in Theorem 3.1 we
arrange for all the signs in front of the cosines to be the same. We then look for
three of the angles that (after possibly changing their signs) add up to a multiple
of 2π . Once again, working modulo 2π , we adjust the angles so that they sum to
zero. The resulting angles are α −β, α + 2β and −2α −β. The trickiest cases are
those where there are fewer than four angles listed in Theorem 3.1. One then has
to use one of the following identities to reconstruct (3-3):

(k) 1 = cos 0,

(l) 0 = cos π
2 ,

(m) 0 = cos φ + cos(π − φ) for some angle φ.

Note the identity given in Theorem 3.1 (b) holds for all angles φ ∈ [0, 2π). The
condition 0 < φ < π

6 was only there to ensure that the three angles are in (0, π
2 ).

Since we are adding multiples of π to our angles and changing their signs where
necessary, when using Theorem 3.1 (b) we allow φ to be any angle.

Hence, by inspection, we find the only candidates for α − β, α + 2β, −2α − β

solving (3-3) and we list them in the following table along with θ (we have ordered
them so that α −β < α + 2β < 2α +β). From this we find α, β and α +β. In the
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last column we indicate which of the identities (a) to (m) we have used.

2θ α − β α + 2β 2α + β α β α + β

(i) 2π
3 π −

φ
2 π 2π −

φ
2 π −

φ
3

φ
6 π −

φ
6 (a), (k), (m)

(ii) φ π
3 − φ π

3 + φ 2π
3

π
3 −

φ
3

2φ
3

π
3 +

φ
3 (a), (b)

(iii) π
3

π
4

π
2

3π
4

π
3

π
12

5π
12 (a), (l), (m)

(iv) π
5

3π
10

2π
5

7π
10

π
3

π
30

11π
30 (c), (m)

(v) 3π
5

π
10

4π
5

9π
10

π
3

7π
30

17π
30 (c), (m)

(vi) π
2

2π
7

4π
7

6π
7

8π
21

2π
21

10π
21 (d), (l)

(vii) π
2

π
15

11π
15

4π
5

13π
45

2π
9

23π
45 (e), (l)

(viii) π
2

7π
15

17π
15

8π
5

31π
45

2π
9

41π
45 (f), (l)

(ix) π
7

π
21

4π
7

13π
21

2π
9

11π
63

25π
63 (g)

(x) 5π
7

5π
21

19π
21

8π
7

29π
63

2π
9

43π
63 (h)

(xi) 3π
7

11π
21

25π
21

12π
7

47π
63

2π
9

61π
63 (i)

We reiterate that each line in this table is a representative of several equivalent
solutions. These are obtained by permutation, changing sign and adding a multiple
of 2π

3 to both α and β. For example, the solution (iii) also corresponds to the
following pair of solutions (reordered so that β < α):

α =
π
3 +

2π
3 = π, β =

π
12 +

2π
3 =

3π
4 , α + β =

5π
12 +

4π
3 =

7π
4 ;

α =
2π
3 −

π
12 =

7π
12 , β =

2π
3 −

π
3 =

π
3 , α + β =

4π
3 −

5π
12 =

11π
12 .

We then write down

τ = tr (I1 J ) = eiα
+ eiβ

+ e−iα−iβ, and tr (I1 I2 I3) = e3iα
+ e3iβ

+ e−3iα−3iβ

using this table. As indicated earlier, the parameters τω j and τ̄ω j correspond to
the same group as τ . So in the case of (iii) where τ = eiπ/3

+ e−iπ/6 2 cos π
4 the

two equivalent solutions listed above yield, respectively,

τ = −1 + i2 cos π
4 = e2π i/3

(
eiπ/3

+ e−iπ/6 2 cos π
4

)
,

τ = eiπ/3
− e−iπ/6 2 cos π

4 = e2π i/3
(
e−iπ/3

+ eiπ/6 2 cos π
4

)
.

Evaluating τ from each line in the table gives the following result. We have kept
the same labelling (i) to (xi) as in the table.

Proposition 3.2. Suppose that I1 I2 and I1 I2 I3 are both elliptic of finite order (or
possibly I1 I2 is parabolic). Up to complex conjugating τ and multiplying by a
power of ω, then one of the following is true:

(i) τ = −e−iφ/3 for some angle φ that is a rational multiple of π ;
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(ii) τ = e2iφ/3
+e−iφ/3

= eiφ/6 2 cos φ
2 for some angle φ that is a rational multiple

of π ;

(iii) τ = eiπ/3
+ e−iπ/6 2 cos π

4 ;

(iv) τ = eiπ/3
+ e−iπ/6 2 cos π

5 ;

(v) τ = eiπ/3
+ e−iπ/6 2 cos 2π

5 ;

(vi) τ = e2π i/7
+ e4π i/7

+ e8π i/7;

(vii) τ = e2π i/9
+ e−iπ/9 2 cos 2π

5 ;

(viii) τ = e2π i/9
+ e−π i/9 2 cos 4π

5 ;

(ix) τ = e2π i/9
+ e−iπ/9 2 cos 2π

7 ;

(x) τ = e2π i/9
+ e−iπ/9 2 cos 4π

7 ;

(xi) τ = e2π i/9
+ e−iπ/9 2 cos 6π

7 .

Observe that the first two cases of the above theorem include various elementary
groups:

• Putting φ = 0 in (i) we obtain τ = −1 which yields the elementary group
of order 6 where J = I1 I2. Multiplying by ω, we see that this value of τ is
equivalent to τ = eiπ/3.

• Putting φ = 0 in (ii) we obtain τ = 2 which yields the elementary group of
order 2 where I1 = I2 = I3.

• Putting φ =
π
2 in (ii) gives τ = eπ i/3(1 − i).

These three groups will be important for our discussion of Theorem 3.7 (i) below.
We shall discuss elementary groups in more detail in Section 4.1. Moreover, it is
clear that the only solution with θ = 0 involves setting φ = 0 in part (ii). This gives
a new proof of Schwartz’s theorem, Theorem 1.1.

3.2. Solutions in parameter space. We now consider the values of τ found in
Proposition 3.2 and we check which of them satisfy the conditions of Corollary
2.4. In other words, we find which of them lies in one of the regions in Figure 1
where the signature is (2, 1). Note that since |τ | ≤ 2 the only possibilities are that
Hτ has signature (2, 1) or (3, 0). We state our results in terms of the signature of
Hτ . First, for τ given in part (i) Hτ has signature (3, 0) unless τ = −1 (or −ω or
−ω), when Hτ is degenerate. We now consider the other cases one by one.

Lemma 3.3. If τ = e2iφ/3
+ e−iφ/3 then Hτ has signature (2, 1) if and only if

0 < cos φ < 1 and signature (3, 0) if and only if −1 ≤ cos φ < 0. When cos φ = 0
or 1 then Hτ is degenerate.
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Proof. We have |τ |
2
= 2 + 2 cos φ and τ 3

= e2iφ
+ 3eiφ

+ 3 + e−iφ . Therefore

6|τ |
2
−τ 3

−τ̄ 3
−8=6(2+2 cos φ)−2(2 cos2 φ+4 cos φ+2)−8=4 cos φ−4 cos2 φ.

This is positive when 0 < cos φ < 1 and negative when −1 ≤ cos φ < 0. �

Lemma 3.4. If τ = e2π i/7
+ e4π i/7

+ e8π i/7 then Hτ has signature (3, 0).

Proof. We can rewrite τ as 1
2(−1 + i

√
7). Thus from Lemma 2.3, the eigenvalues

of Hτ are

2 + τ + τ̄ = 1, 2 + τω + ωτ =
5 +

√
21

2
, 2 + τω + τ̄ω =

5 −
√

21
2

.

These are all positive. �

Lemma 3.5. Suppose that τ = eπ i/3
+ e−π i/6 2 cos φ for some φ. Then Hτ is

degenerate, that is it has determinant zero.

Proof. We have

τω + τ̄ω = (−1 + 2i cos φ) + (−1 − 2i cos φ) = −2.

Therefore, using Lemma 2.3 we see that Hτ has an eigenvalue of 0, and hence is
degenerate. �

Lemma 3.6. If τ = e2π i/9
+e−π i/9 2 cos φ for some φ then Hτ has signature (2, 1)

if and only if cos 3φ < −
1
2 and signature (3, 0) if and only if cos 3φ > −

1
2 . If

cos 3φ = −
1
2 then Hτ is degenerate.

Proof. We have

|τ |
2
= 1 + 2 cos φ + 4 cos2 φ,

τ 3
= e2π i/3

+ eπ i/3 6 cos φ + 12 cos2 φ + e−π i/3 8 cos3 φ.

Thus

6|τ |
2
− τ 3

− τ̄ 3
− 8

= 6(1 + 2 cos φ + 4 cos2 φ) − (−1 + 6 cos φ + 24 cos2 φ + 8 cos3 φ) − 8

= −1 + 6 cos φ − 8 cos3 φ = −1 − 2 cos 3φ.

This is positive if and only if cos 3φ <−
1
2 and negative if and only if cos 3φ >−

1
2 .
�

We have shown that the values of τ given in parts (vi), (viii), (x) and (xi) of
Proposition 3.2 correspond to values of τ for which Hτ has signature (3, 0). Thus
they do not correspond to groups in SU(2, 1). There are six values of τ where Hτ

is degenerate, each of which has the form τ = eπ i/3
+e−π i/6 2 cos φ. First, the three

values with φ =
π
4 , π

5 , 2π
5 come from parts (iii), (iv) and (v) of Proposition 3.2.

Secondly, there are the three values τ = eiπ/3, 2, eiπ/3(1 − i) listed at the end of
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Section 3.1 and which correspond to elementary groups. These values correspond
to φ =

π
2 , π

6 , π
3 .

We now summarize the results of this section.

Theorem 3.7. Let I1, I2 = J I1 J−1 and I3 = J−1 I1 J be involutions in SU(2, 1)

each fixing a complex line, where J ∈ SU(2, 1) has order three. Suppose that I1 I2

and I1 I2 I3 = (I1 J )3 both have finite order. If 1 = 〈I1, I2, I3〉 is discrete then, up
to complex conjugating or multiplying by ω or ω, one of the following is true:

(i) τ = eπ i/3
+ e−π i/6 2 cos 2π

n = eiπ/3(1 − 2i cos 2π
n ) where n = 4, 5, 6, 8, 10 or

12;

(ii) τ = e2iφ/3
+ e−iφ/3 where φ is a rational multiple of π in (0, π

2 );

(iii) τ = e2π i/9
+ e−π i/9 2 cos 2π

5 ;

(iv) τ = e2π i/9
+ e−π i/9 2 cos 2π

7 .

Note that the cases n = 6 and n = 12 in (i) correspond to the endpoints of the
open interval given in (ii).

4. The discrete groups

In this section we analyze all the groups from Theorem 3.7. We show that those
groups listed in parts (i), (iii) and (iv) are all discrete and that finitely many of those
given in (ii) are discrete. The parameter values corresponding to discrete groups
are all plotted in Figure 2.

4.1. The elementary groups. In this section we consider what happens when τ =

eπ i/3
+ e−π i/6 2 cos φ = eiπ/3(1 − 2i cos φ) where φ =

2π
n for n = 4, 5, 6, 8, 10

or 12. These are the groups from Proposition 3.2 (iii), (iv), (v) together with the
cases where τ = eiπ/3, τ = 2 and τ = eπ i/3(1 − i). These are the six parameter
values listed in Theorem 3.7 (i).

When τ = 2 all three complex lines coincide and so J maps L1 to itself, fixing
a single point of L1. Moreover, I1 and J commute and 〈I1, J 〉 is a cyclic group of
order six, generated by I1 J .

In each case τ satisfies τω + τ̄ω = −2 which is one of the three linear factors
of the equation 6|τ |

2
− τ 3

− τ̄ 3
− 8 = 0. Thus, by Lemma 2.2 the polar vectors

n1, n2 and n3 are linearly dependent. In all cases, except for τ = 2, we can write
down matrix representatives for I1, I2, I3 and J as was done at the very end of
Section 2.2. These matrices are block diagonal, the upper left hand block lying in
a copy of U(2) (preserving the Hermitian form given by the upper left hand 2 × 2
block of H ′

τ ). We can multiply them by scalars so that the upper left hand block
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has determinant 1. This yields

i I1 =

i iτ 0
0 −i 0
0 0 −i

 , ωJ =

0 −ω 0
ω −1 0
0 0 1

 , iωI1 J =

−2 cos φ − i 2ω cos φ 0
−iω i 0

0 0 −i


where we have used τ = eπ i/3(1 − 2i cos φ) = −ω + 2iω cos φ. By examining the
traces of the upper left hand blocks of i I1, ωJ and iωI1 J we see that they form a
dihedral (n = 4), tetrahedral (n = 6), octahedral (n = 8) or icosahedral (n = 5, 10)
group. Therefore 〈I1, J 〉 is a finite central extension of such a group and hence, in
each case, is finite.

We remark that in each case tr (I j I j+1)=4 cos2 φ =1+2 cos(2θ). We could read
off the values of θ from the table given earlier or we can calculate them directly:

φ 4 cos2 φ 2 cos(2θ) 2θ

π
2 0 −1 2π

3
2π
5

1
2(3 −

√
5) 1

2(1 −
√

5) 3π
5

π
3 1 0 π

2
π
4 2 1 π

3
π
5

1
2(3 +

√
5) 1

2(1 +
√

5) π
5

π
6 3 2 0

4.2. The groups with τ = e2π i/9 + e−π i/9 2 cos φ. In this section we consider
the equilateral triangle groups corresponding to τ = e2π i/9(1 − 2ω cos φ) where
ω = e2π i/3 is a cube root of unity and φ =

2π
5 or 2π

7 . We remark that when
φ =

2π
6 we obtain τ = e2π i/9

(
1 − 2ω cos φ

)
= e2π i/9

+ e−π i/3 which is one of
the groups from Theorem 3.7 (ii) and is treated in Section 4.3. We want to elim-
inate the factor of e2π i/9 from our matrix entries. Therefore we apply the matrix
C = diag(e−2π i/9, 1, e2π i/9) to the n j , and hence to the whole set-up. The images
of the polar vectors under C are

n1 =

e−2π i/9

0
0

 , n2 =

0
1
0

 , n3 =

 0
0

e2π i/9

 .

The matrix N whose columns are n1, n2 and n3 is simply C . Therefore, the new
Hermitian form, which we call Hφ , satisfies C∗HφC = Hτ . Clearly C∗

= C−1 and
so

Hφ = C Hτ C−1
=

 2 1 − 2ω cos φ ω − 2ω cos φ

1 − 2ω cos φ 2 1 − 2ω cos φ

ω − 2ω cos φ 1 − 2ω cos φ 2

 .
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Obviously, since Hτ and Hφ are conjugate, they have the same eigenvalues. Using
Lemma 3.6 we immediately have

Lemma 4.1. When φ =
2π
5 or φ =

2π
7 the matrix Hφ has signature (2, 1). When

φ =
4π
5 , 4π

7 or 6π
7 the matrix Hφ has signature (3, 0).

After conjugating by C , the complex involutions are given by

I1 =

1 1 − 2ω cos φ ω − 2ω cos φ

0 −1 0
0 0 −1

 ,(4-1)

I2 =

 −1 0 0
1 − 2ω cos φ 1 1 − 2ω cos φ

0 0 −1

 ,(4-2)

I3 =

 −1 0 0
0 −1 0

ω − 2ω cos φ 1 − 2ω cos φ 1

 .(4-3)

The entries of I1, I2 and I3 all have determinant one and lie in the ring Z[ω, 2 cos φ].
It is standard to write SU(H ; O) for the group of unimodular matrices preserving
the Hermitian form H whose entries lie in the ring O. Thus

Lemma 4.2. The group 1 = 〈I1, I2, I3〉 generated by the matrices given in (4-1),
(4-2) and (4-3) is a subgroup of SU(Hφ; Z[ω, 2 cos φ]).

Since ω and 2 cos 2π
n are both algebraic integers, we see that every element

of the ring Z[ω, 2 cos 2π
n ] is an algebraic integer in Q(ω, 2 cos 2π

n ). The field
Q(ω, 2 cos 2π

n ) is a totally imaginary quadratic extension of the totally real number
field Q(2 cos 2π

n ). The following result (in the case φ =
2π
5 ) is essentially identical

to that given in [Deraux 2006, Corollary 2.6] and is similar to the proof of [Schwartz
2003, Corollary 1.4].

Proposition 4.3. For φ =
2π
5 or φ =

2π
7 the group SU(Hφ; Z[ω, 2 cos φ]) is arith-

metic and hence discrete. In particular, 1 is discrete.

Proof. We give the proof in the case of n = 7. The proof for n = 5 is almost the
same; see also [Deraux 2006, Corollary 2.6].

The field Q(ω, 2 cos 2π
7 ) is a totally imaginary quadratic extension of the totally

real number field Q(2 cos 2π
7 ). Let Q(c′) be the totally real number field obtained

from any nontrivial Galois conjugate of c′ of 2 cos 2π
7 and let Q(ω, c′) be a com-

patible quadratic extension corresponding to Q(ω, c). The only Galois conjugates
of 2 cos 2π

7 are 2 cos 4π
7 and 2 cos 6π

7 .
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Let H4π/7 and H6π/7 be the Hermitian forms obtained by applying these Galois
automorphisms to H2π/7. From Lemma 4.1 we see that H4π/7 and H6π/7 are pos-
itive definite. Therefore the corresponding groups SU(H4π/7) and SU(H6π/7) are
compact.

Let x ∈ Z[ω, 2 cos 2π
7 ]. Then x is an algebraic integer in Q(ω, 2 cos 2π

7 ). Let
x ′ and x ′′ be its Galois conjugates in Q(ω, 2 cos 4π

7 ) and Q(ω, 2 cos 6π
7 ). The map

x 7→ (x, x ′, x ′′) maps Z[ω, 2 cos 2π
7 ] to a discrete subset of C3. Hence

SU
(

H2π/7; Z
[
ω, 2 cos 2π

7

])
×SU

(
H4π/7; Z

[
ω, 2 cos 4π

7

])
×SU

(
H6π/7; Z

[
ω, 2 cos 6π

7

])
is discrete. Since SU(H4π/7) and SU(H6π/7) are compact, the image of projection
onto the first factor, namely SU(H2π/7; Z[ω, 2 cos 2π

7 ]) is also discrete. �

Note that the groups we eliminated from Proposition 3.2 (viii), (x) and (xi) using
Lemma 3.6 are just the Galois conjugates of the two groups we are considering.

Proposition 4.4. The group with τ = e2π i/9
+ e−π i/9 2 cos 2π

5 is Deraux’s lattice.

Proof. We calculate that |τ |
2
= 1+2 cos 2π

5 +4 cos2 2π
5 = 2. Hence I1 I2 has order

4. The eigenvalues of I1 I2 I3 are (e2π i/9)3
= ω, (e−π i/9±2π i/5)3

= ωe±iπ/5. These
are the same as the eigenvalues of I1 I2 I3 found in [Deraux 2006, Eq. (2.15)]. Thus
the groups are the same. �

We now briefly discuss the group with τ = e2π i/9
+ e−π i/9 2 cos 2π

7 . This does
not seem to have previously appeared in the literature. It is easy to show that
tr (I1 I2) = 1 + 2 cos π

7 and so I1 I2 has order 14. Furthermore, tr (I1 I2 I1 I3) =

2 cos π
7 + 2 > 3 and so I1 I2 I1 I3 is loxodromic. Since I1 I2 I3 is elliptic, this means

that, in the language of [Schwartz 2002], 1 is of Type B; see also [Parker 2006,
Proposition 7.5] for other discrete, unfaithful groups of Type B. It is not clear
whether or not 1 is the whole of the lattice SU(H7; Z[ω, 2 cos 2π

7 ]). The fact that
I1 I2 I1 I3 is loxodromic would indicate that, in fact, 1 may not be a lattice. This
group merits further investigation.

4.3. Subgroups of Livné’s lattices. We consider the groups for which

τ = e2iφ/3
+ e−iφ/3

= eiφ/6 2 cos
φ

2

for some angle φ ∈ (0, π
2 ). Note that we have already treated the cases of φ = 0

and φ =
π
2 in Section 4.1. The main result of this section is the following:
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Proposition 4.5. Let τ = e2iφ/3
+e−iφ/3 for some angle φ ∈ (0, π

2 ). Then the group
〈I1, I1, I3〉 is discrete if and only if φ = 2π/p where p = 5, 6, 7, 8, 9, 10, 12 or
18.

We remark that if p = 6 then I1 I2 I3 is parabolic and so we are not in the case
considered in Theorem 3.7. In this case it is particularly easy to prove discreteness
and we include it for completeness. As we remarked in Section 4.2, when p = 6
we can write τ = e2π i/9(1 − 2ω cos φ) = e2π i/9(1 − ω). We can then conjugate
I1, I2 and I3 into the forms (4-1), (4-2) and (4-3) respectively. These matrices
all have entries in the ring of Eisenstein integers Z[ω], as does every matrix in
1 = 〈I1, I2, I3〉. Since Z[ω] is a discrete subring of C we see that 1 is discrete;
see [Falbel and Parker 2006] for a more detailed discussion of this group.

We begin by showing that if φ does not take one of the values listed in Propo-
sition 4.5 then 1 = 〈I1, I2, I3〉 cannot be discrete. We do this by showing that the
subgroup 〈I1, I1 I2 I3〉 of 1 is not discrete for these values of τ . In this discussion
we exclude the case of φ =

π
3 (that is p = 6) which we have already discussed.

We can see from line (ii) of the table given in Section 3.1 that the eigenvalues
of I1 J are

eiα
= ei(π−φ)/3, eiβ

= e2iφ/3 and e−i(α+β)
= ei(−π−φ)/3.

Hence the eigenvalues of I1 I2 I3 = (I1 J )3 are

e3iα
= −e−iφ, e3iβ

= e2iφ and e−3i(α+β)
= −e−iφ.

Therefore in this case I1 I2 I3 has a repeated eigenvalue and so is a complex re-
flection with rotation angle π − 3φ; it cannot be parabolic as it is the cube of an
elliptic map. (Note that when φ =

2π
6 then I1 J has a repeated eigenvalue and is

parabolic, as is I1 I2 I3.) By examining the eigenvectors, one can show that when
φ < 2π

6 then I1 I2 I3 is complex reflection in a complex line and when φ > 2π
6 then

I1 I2 I3 is complex reflection in a point. We will give the details in the former case.
The latter case is almost identical.

Lemma 4.6. Let τ = e2iφ/3
+ e−iφ/3 with 0 < φ < π

3 . Let L1 and L123 be the
complex lines fixed by I1 and I1 I2 I3 respectively. These complex lines are ultra-
parallel and their common orthogonal L⊥ is preserved by the group 〈I1, I1 I2 I3〉.
This group acts on L⊥ as the index 2 holomorphic subgroup of the group generated
by reflections in the sides of a hyperbolic triangle with angles π

2 , φ
2 , 1

2(π − 3φ).

Proof. Since I1 and I1 I2 I3 are complex reflections, they preserve all complex
lines orthogonal to L1 and L123, respectively. Suppose that L1 and L123 are not
ultraparallel. Let their intersection be z. Then z is fixed by I1 and by I1 I2 I3. Hence
it is also fixed by I2 I3 and so must be L2 ∩ L3. In other words, z is fixed by I1, I2
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and I3 and hence the group must be elementary. This is a contradiction to Lemmas
2.2 and 3.3.

Hence L1 and L123 are ultraparallel. Their common orthogonal is preserved by
I1 and I1 I2 I3 which act as rotations through angles π and π − 3φ respectively.
Moreover L⊥ is preserved by I2 I3 and so its polar vector must be an eigenvector
of I2 I3. The eigenvalues of I2 I3 corresponding to positive vectors are eiφ and e−iφ .
Hence I2 I3 acts on L⊥ as a rotation through φ. �

In the case where π
3 < φ < π

2 then I1 I2 I3 is complex reflection in a point. The
complex line L⊥ is now the complex line through this point orthogonal to L1. A
similar argument shows that 〈I1, I1 I2 I3〉 acts on L⊥ as the index 2 holomorphic
subgroup of the group generated by reflections in the sides of a hyperbolic triangle
with angles π

2 , φ
2 , 1

2(3φ − π). We can now use plane hyperbolic geometry to
complete the proof of Proposition 4.5.

Proposition 4.7. Let τ = e2iφ/3
+ e−iφ/3 with 0 < φ < π

2 and φ 6=
π
3 . The group

〈I1, I1 I2 I3〉 is discrete if and only if φ =
2π
p for p = 5, 7, 8, 9, 10, 12 or 18.

Proof. We consider the subgroup 〈I1, I1 I2 I3〉 and its action on L⊥. This group
is generated by two elliptic maps whose product is also elliptic. [Knapp 1968,
Theorem 2.3] has characterized when such a group is discrete. Our case is par-
ticularly easy because I1 has order 2 and so one of the angles in our triangle is a
right angle. Hence if 〈I1, I1 I2 I3〉 is discrete then we are in Case I or Case IV of
Knapp’s theorem. In other words either φ

2 =
π
p and 1

2 |π −3φ| =
π
d or else one of φ

2

and 1
2 |π − 3φ| equals π

m and the other equals 2π
m for some odd integer m. In fact,

if we solve for m in the last case we see that either m = 10 or m = 14, neither of
which is odd. Therefore we must have φ =

2π
p and |π −3φ| =

π
p |p − 6| =

2π
d . The

values of p in the proposition are precisely those ( 2π
p < π

2 ) for which 2p
|p−6|

is an
integer d . �

This shows that when φ is not one of the given values then the group 1 is not
discrete. It remains to show that the values of φ listed in Proposition 4.5 do indeed
correspond to discrete groups. This follows immediately from the following result
and will complete the proof of Proposition 4.5.

Proposition 4.8 [Parker 2006, Corollary 7.4]. Let τ =e2iφ/3
+e−iφ/3. When φ =

2π
p

for p = 5, 6, 7, 8, 9, 10, 12 or 18 the group 1 = 〈I1, I2, I3〉 is discrete. Moreover,
when p = 5 this group is a cocompact lattice in SU(2, 1), when p = 6, 7, 8, 9, 10,
12 or 18 it is geometrically infinite.

We now give a brief discussion of how one might prove Proposition 4.8. In
[Parker 2006], this result is proved by demonstrating that, for such φ, the group 1

is a normal subgroup of one of the lattices first described by Livné [1981]. There are
several ways to show that Livné’s groups are discrete. For example, fundamental



168 JOHN R. PARKER

domains for these groups were constructed in [Parker 2006], and presentations were
given using Poincaré’s polyhedron theorem. Alternatively, one could relate such
a group to one of Mostow’s ball 5-tuples and then use his discreteness criterion
6INT [Mostow 1986]; see also [Deligne and Mostow 1993, Theorem 16.1]. The
fact that this criterion precisely characterizes discreteness is due to Sauter [1990],
who analyzed the few remaining cases not treated by Mostow.

Alternatively, for p = 5, 6, 7, 8, 10, 12, 18 we could show that 1 is arithmetic
and hence discrete using a similar argument to Proposition 4.3. In doing this we
use Lemma 3.3 to show that Hτ has signature (2, 1) if and only if 0 < cos φ < 1.
This argument does not work when p = 9. The Galois conjugates of 2 cos 2π

9 are
2 cos 4π

9 and 2 cos 6π
9 . Because cos 4π

9 > 0, Lemma 3.3 implies that the corre-
sponding Hermitian form has signature (2, 1). In fact when p = 9 the group 1 is
nonarithmetic and, in this case, one must use a geometrical argument.

Furthermore, there are other ways of showing that values of τ listed in Propo-
sition 4.5 are the only ones of this form that correspond to discrete groups. We
could again use Mostow’s 6INT condition. A more direct approach would be to
use the complex hyperbolic Jørgensen’s inequality [Jiang et al. 2003] to show that
when φ is not one of the angles listed above then 1 is not discrete.
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