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An inhomogeneous linear differential equation L y = f over a global differ-
ential field can have a formal solution for each place without having a global
solution. The vector space lgl(L) measures this phenomenon. This space is
interpreted in terms of cohomology of linear algebraic groups and is com-
puted for abelian differential equations and for regular singular equations.
An analogue of Artin reciprocity for abelian differential equations is given.
Malgrange’s work on irregularity is reproved in terms cohomology of linear
algebraic groups.

1. Introduction

The following topics have many common features: elliptic curves E over a number
field K ; Drinfeld modules over a field K like Fq(t); and linear differential equa-
tions over a differential field K , for example, a finite extension of the differential
field C(z).

For every place v of K one considers the completion Kv. An example of a local-
global problem is the following. Consider an elliptic curve E over K and an integer
n > 1. Suppose that n · y = f with f ∈ E(K ) has a solution yv in every E(Kv).
Does there exists a solution y ∈ E(K )? By “folklore” the answer is positive and
the analogous problem for Drinfeld modules, where the integer n is replaced by a
nonzero element of Fq [z], has a negative answer (see [Van der Heiden 2005] for
both statements).

Here we consider a differential operator L = an∂
n
+ · · ·+ a1∂ + a0, where ∂ is

the derivation on K extending d/dz on C(z) and an, . . . , a0 ∈ K , acting upon K .
Suppose that the equation L(y) = f with f ∈ K has a solution yv in every com-
pletion Kv. Then, in general, there is no solution in K . One defines the C-vector
space lgl(L) as the kernel of the obvious C-linear map K/L(K )→

∏
v Kv/L(Kv).

This vector space measures this local-global problem.
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The theme of this paper is the interpretation and the computation of lgl(L). The
main results are

• a formula expressing lgl(L) in terms of the cohomology for differential Galois
groups acting on the solution space of L , and a proof of dim lgl(L) <∞;

• computation of H∗(G, V ) for certain affine group schemes G;

• classification of abelian differential equations and Artin reciprocity;

• explicit computations of lgl(L) for abelian differential operators and for reg-
ular singular operators L;

• a new proof of B. Malgrange’s results on irregularity.

The last item requires a precise knowledge of the universal differential Galois
group for the differential field F = C({z}) of the convergent Laurent series. The
multisummation theory of J.-P. Ramis et al. provides this knowledge.

This kind of problem, local global for differential equations, has been previously
studied by J. Manin [1965].

2. K/L(K ) and M/∂ M as cohomology groups

Let K denote a differential field, and let ∂( f ) or f ′ denote the derivative of f ∈ K .
We suppose that its field of constants C := { f | f ′ = 0} is algebraically closed and
different from K and has characteristic 0. A linear differential equation over K
can be written in an operator form

(an∂
n
+ · · ·+ a1∂ + a0)y = f with ai , f ∈ K .

An equivalent formulation is given by a differential module M = (M, ∂), where M
is a finite dimensional vector space over K and the additive operator ∂ : M→ M
satisfies ∂( f m)= f ′m+ f ∂m. (The meaning of the symbols ∂ and ′ will be clear
from the context.)

We recall (see for details [Van der Put and Singer 2003, Chapters 1 and 2]) that
for every linear differential equation M (or module) over K , there is a differential
ring PVR(M/K ), called the Picard–Vessiot ring of M over K , such that all solu-
tions of ∂m= 0 live in this differential ring and this ring has only trivial differential
ideals. The (differential) Galois group of the module M is the linear algebraic
group over C consisting of all K -linear automorphisms of PVR(M/K ) commuting
with the differentiation on PVR(M/K ). The direct limit of all PVR(M/K ) is the
universal differential extension U (K ) of K . Its Galois group G(K , ∂) is the affine
group scheme, which is the projective limit of the Galois groups of all differential
modules M over K .

For a differential operator L ∈ K [∂], L 6= 0, the solution space of L is the
C-vector space V (L) := ker(L ,U (K )) is the solution space of L . The action
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of G(K , ∂) on U (K ) leaves V (L) invariant, and the restriction of the action to V
is the (differential) Galois group of L . Similarly, for a differential module M over
K , the C-vector space V (M) := ker(∂,U (K )⊗K M) is the solution space of M ,
and the restriction to V (M) of the natural action of G(K , ∂) on U (K )⊗K M is the
(differential) Galois group of M .

Proposition 2.1. We have H 0(G(K , ∂),U (K ))= K and H i (G(K , ∂),U (K ))= 0
for all i ≥ 1.

Proof. Using that U (K ) is a direct limit of Picard–Vessiot rings, one concludes
that it suffices to consider a differential module M over K with Picard–Vessiot ring
L ⊃ K and Galois group G. In this case one has to prove H 0(G, L) = LG

= K
and H i (G, L)= 0 for all i ≥ 1.

The first statement is well known. The affine variety corresponding to L is
known to be a K -torsor for the linear algebraic group G over C . In other words,
there exists a finite Galois extension K+ ⊃ K such that K+⊗K L ∼= K+⊗C C[G].
Further the action of the Galois group Gal(K+/K ) on this object commutes with
the action of G.

We recall that the cohomology groups H i (G, V ), where V is any G-module, are
the cohomology groups of the Hochschild complex C∗(G, V ). Moreover, one has
H i (G,C[G])= 0 for all i ≥ 1, since C[G] = IndG

{1} C is an injective module (see
[Jantzen 2003] for these statements). It follows that also H i (G, K+⊗C C[G])= 0
for i ≥ 1. For such i , let ξ be an element in C i (G, L) with d iξ = 0. Then ξ = d i−1η

for some η ∈ C i−1(G, K+⊗ L). Then

η∗ :=
1

# Gal(K+/K )
·

∑
σ∈Gal(K+/K )

σ(η)

belongs to C i−1(G, L) and satisfies d i−1η∗ = ξ . �

Lemma 2.2. Let L ∈ K [∂] be a nonzero differential operator and U (K ),G(K , ∂)
be as before. The following sequences are exact:

0→ ker(L ,U (K ))−→U (K )
L
−→U (K )→ 0 and

0→ ker(L , K )−→ K
L
−→ K −→ H 1(G(K , ∂), ker(L ,U ))→ 0.

In particular, K/L(K ) is canonically isomorphic to H 1(G(K , ∂), V (L)), and also
H i (G(K , ∂), V (L))= 0 for i ≥ 2.

This lemma could be proved by the arguments of [Bertrand 1990, first paragraph
of p. 126, Remark 1 p. 217, and p. 131]. However, the lemma does not appear
explicitly there.
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Proof. For the exactness of the first sequence we must show that Ly = f with
f ∈ U (K ) has a solution y ∈ U (K ). For any f ∈ U (K ) there exists a nonzero
L̃ ∈ K [∂] such that L̃ f = 0. Indeed, since f lies in some PVR(M), apply now
[Van der Put and Singer 2003, Corollary 1.38]. The equation L̃(L(y))= 0 has all
its solutions in U (K ). Hence for a suitable solution y ∈ U (K ) of this equation,
one has Ly = f .

Taking, in the first exact sequence, invariants under G(K , ∂), one obtains, by
using Proposition 2.1, the exact sequence

0→ ker(L , K )−→ K
L
−→ K −→ H 1(G, ker(L ,U (K )))→ 0. �

For a differential module M over K one has a similar result that there is a
canonical isomorphism M/∂M → H 1(G(K , ∂), V (M)), where again V (M) =
ker(∂,U (K )⊗K M), provided with its G(K , ∂)-module structure.

A direct comparison between modules and differential operators is given by the
theorem of the cyclic element, which states that any differential module M has the
form K [∂]/K [∂]L for some operator L . Let L∗ denote the adjoint of L . Then one
can verify that V (M) can be identified with V (L∗) and M/∂M with K/L∗(K ).

The use of cohomology of groups to study differential operators or modules is
already present in D. Bertrand’s papers [1990; 1992]; see also [Hardouin 2005].

3. On cohomology of linear algebraic groups

The base field k is assumed to be algebraically closed and to have characteris-
tic 0. Let G be a linear algebraic group, or more generally an affine group scheme,
over k. A G-module V is a finite-dimensional vector space over k provided with an
algebraic action of G, that is, a morphism of affine group schemes ρ :G→GL(V ).
The cohomology groups H∗(G, V ) are defined as the derived functors of V 7→V G .
The k-vector space H i (G, V ) can, as in the case of ordinary group cohomology,
be described as the space of all i-cocycles f : G × · · · ×G→ V , divided out by
the subspace of the trivial i-cocycles. The only difference is that the i-cocycles f
are supposed to be morphisms of algebraic varieties (or more generally, of affine
schemes). We will also allow G-modules V of infinite dimension, namely direct
limits of finite-dimensional G-modules. Now we collect here (with some com-
ments) the facts and results that we will need in the sequel and refer to [Jantzen
2003] for the general theory.

Fact 3.1. Let G be a reductive affine group scheme (not necessarily connected).
Then for every G-module V , one has H i (G, V )= 0 for all i ≥ 1.

Indeed, since the characteristic of k is 0, the functor V 7→ V G is exact.
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Fact 3.2. Let N be a closed, normal subgroup of the affine group scheme G. Sup-
pose that G/N is reductive. Let V be a G-module. Then H∗(G, V ) is canonically
isomorphic to H∗(N , V )G/N .

Indeed, the functor V 7→ V G factors as H 0(G/N , V N ); the functor H 0(G/N , · )
is exact and maps injective objects to acyclic objects. The special case of Fact 3.2
in which N is the unipotent radical Ru(G) reduces the computations to the case of
(connected) unipotent groups.

Fact 3.3 (the five term exact sequence). Let N be a closed normal subgroup of the
affine group G, and let V be a G-module. Then the exact sequence of five terms
reads

0→ H 1(G/N , V N )−→ H 1(G, V )

−→ H 1(N , V )G/N
−→ H 2(G/N , V N )−→ H 2(G, V ).

This exact sequence is derived from the spectral sequence Ha(G/N , H b(N , V ))
converging to Ha+b(G, V ).

Remark 3.4 (explicit action of G/N on H 1(N , V )). Let V be a G-module and N
a normal closed subgroup of G. The action of G/N on H 1(N , V ) can be made
explicit on the level of 1-cocycles. Let f : N → V be a 1-cocycle and g ∈ G.
Then (g f ) is the 1-cocycle defined by (g f )(n)= g f (g−1ng). The trivial 1-cocycle
f (n)=nv−v for a fixed v∈V is mapped to the trivial 1-cocycle n 7→n(gv)−(gv).
Thus G acts on H 1(N , V ). For m ∈ N and a 1-cocycle f : N → V , one observes
that (m f )− f is the trivial 1-cocycle n 7→ n f (m)− f (m). Thus N acts trivially
on H 1(N , V ).

Fact 3.5. Let g be the Lie algebra of a connected affine group scheme G. Any
G-module V has the structure of a g-module. The cohomology groups H∗(G, V )
are canonically isomorphic to the cohomology groups H∗(g, V ).

Sketch of the proof. Using Fact 3.2, we may suppose that G is a connected unipotent
linear algebraic group over C. In particular, G is simply connected. Therefore the
category of the finite-dimensional representations of G and that of its Lie algebra g

are equivalent. This equivalence extends to an equivalence between the represen-
tations of G that are direct limits of finite-dimensional representations and those
of g. The latter categories contain enough injective objects, and the cohomology
groups can be obtained from injective resolutions. �

We note that the group H i (g, V ) can also be described by i-cocycles modulo
trivial i-cocycles; see [Jacobson 1962] and [Varadarajan 1984, Section 3.12]. In
some cases the computations of the H∗(g, V ) are easier than those for H∗(G, V ).
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Lemma 3.6. Let t be a generator of the Lie algebra of Ga . The Ga-module V ,
given by ρ : Ga→ GL(V ), induces a nilpotent map ρ(t) ∈ End(V ). Then

H 0(Ga, V )= ker(ρ(t), V )= ker(exp(ρ(t))− 1, V ),
H 1(Ga, V )= coker(ρ(t), V )= coker(exp(ρ(t))− 1, V ),
H i (Ga, V )= 0 for i ≥ 2.

Proof. By Fact 3.5, it suffices to compute the cohomology of V as a module over
the Lie algebra of Ga . An obvious calculation of these cohomology groups in terms
of cocycles gives the required answer. The same computation can be done in terms
of cocycles for the group Ga . �

Corollary 3.7. Let the group scheme G be topologically generated by one ele-
ment A. Suppose the unipotent factor Au of the Jordan decomposition A= Ass · Au

is nontrivial. Then G = G1×Ga , where the first factor is topologically generated
by Ass and the second by Au .

Let the G-module V be given by ρ :G→GL(V ). Then H i (G, V )= 0 for i ≥ 2,
and H 1(G, V )= coker(ρ(Au)− 1, V G1)= coker(ρ(A)− 1, V ).

Proof. H∗(G, V ) = H∗(Ga, V )G1 , and this equals H∗(Ga, V G1) since G1 com-
mutes with Ga . Apply now Lemma 3.6. The final statement follows from the
decomposition of V into eigenspaces for ρ(Ass). �

3.8. Group schemes with free unipotent generators. Let S be some nonempty
set. One considers tuples (V, α), where V is a finite-dimensional k-vector space
and α : S→GL(V ) maps every s ∈ S to a unipotent α(s). This defines an abelian
category Unipotent(S) which is in an obvious way a Tannakian category. The fiber
functor is given by (V, α) 7→ V . Thus Unipotent(S) is isomorphic to the category
of the finite-dimensional representations of a certain affine group scheme N over k.

Consider an object (V, α) and the Tannakian subcategory {{(V, α)}} generated
by it. The affine group scheme corresponding to this subcategory can be seen to
be the smallest algebraic subgroup H(V, α) of GL(V ) containing all α(s). The
representation ρ : N → GL(V ), corresponding to (V, α), has the property that
ρ(N ) = H(V, α). In particular, if ρ(N ) is a finite group, then ρ(N ) = {1}. Thus
N is a connected affine group scheme. Moreover, N is the projective limit of the
H(V, α), taken over all objects (V, α). For a fixed s ∈ S, each H(V, α) contains
an element α(s). The projective limit of the elements α(s) ∈ H(V, α) can be
considered as an element, again called s, in N . Thus ρ(s)= α(s) for every object
(V, α) and corresponding representation ρ : N → GL(V ). Therefore, we will
call N the group with free unipotent generators S. Indeed, the elements of S,
seen as elements of N , are topological generators; they are unipotent and have no
relations.
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We want to show that for any N -module V , the H∗(N , V ) are the cohomology
groups of the complex 0→ V → V S

→ 0, where the nontrivial map is given by
v 7→ (ρ(s)v − v)s∈S . Though a direct proof is perhaps, we will prove this using
the (pro-)Lie algebra of N .

3.9. Lie algebras with free nilpotent generators. Let S be again a nonempty set.
The free Lie algebra F over k with generators S ⊂ F has the universal property
that the representations τ : F→End(V ) on vector spaces V over k are in bijection
with the maps S → End(V ). One considers now a representation τ such that V
is finite-dimensional and every τ(s) is nilpotent. The image F(τ )⊂ End(V ) is an
algebraic Lie algebra, because it is generated by nilpotent maps. The corresponding
(connected) algebraic subgroup of GL(V ) is the smallest algebraic subgroup con-
taining all exp(τ (s)). Define ρ : S→ GL(V ) by ρ(s) = exp(τ (s)). Then (V, ρ)
is an object of Unipotent(S), the Tannakian group of this object is the smallest
algebraic group containing all exp(τ (s)), and its Lie algebra is F(τ ).

The projective limit lim← F/ ker ρ taken over all these ρ will be called the
(pro-)Lie algebra with free nilpotent generators S. It is clear from the above that
this pro-Lie algebra is the Lie algebra of the affine group scheme N of Section 3.8.
The bijection between the representations of N and those of its (pro)-Lie algebra
can be interpreted as N being simply connected.

Proposition 3.10. Let N be the affine group scheme with free unipotent generators
S, and let V be a N-module. The H∗(N , V ) are the cohomology groups of the
complex 0 → V → V S

→ 0, where the nontrivial map V → V S is given by
v 7→ (ρ(s)v− v)s∈S .

Proof. Let Lie(N ) denote the pro-Lie algebra of N . According to Fact 3.5 and the
constructions in Sections 3.8 and 3.9, the proposition is equivalent to the statement
that the H∗(Lie(N ), V ) are the cohomology groups of the complex 0 → V →
V S
→ 0, where the nontrivial map is given by v 7→ (log(ρ(s))v)s∈S .

For H 0(Lie(N ), V ), this is obvious. For H 1(Lie(N ), V ) we use the explicit
definition of a 1-cocycle f (see [Jacobson 1962] and [Varadarajan 1984, Section
3.12]) and conclude that the elements f (s)∈V are arbitrary and that they determine
f completely. The trivial 1-cocycles are of the form f (z)= τ(z)v for a fixed v∈V ,
where τ : Lie(N )→ End(V ) is induced by ρ : N→GL(V ). This proves the claim
for H 1(Lie(N ), V ). The verification of H i (Lie(N ), V )= 0 for i ≥ 2 is easy. �

3.11. Finiteness conditions. Let the set S be a disjoint union of (nonempty) sub-
sets Si with i ∈ I (and I an infinite set). Let Unipotent({Si }i∈I ) denote the category
for which the objects are the pairs (V, α)with V a finite-dimensional k-vector space
and α : S→GL(V ) such that α(s) is unipotent for every s ∈ S and there is a finite
subset J of I such that α(s) = 1 for s 6∈

⋃
i∈J Si . As in Sections 3.8 and 3.9, this
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defines an affine group scheme N and a pro-Lie algebra Lie(N ). The analogue of
Proposition 3.10 is as follows:

Proposition. Let V be an N-module. The H∗(N , V ) are the cohomology groups
of the complex 0→ V → V (S)

→ 0, where V (S) denotes the k-vector space of the
maps f : S → V such that there exists a finite subset J of I with f (s) = 0 for
s 6∈

⋃
i∈J Si . The nontrivial map is again v 7→ (ρ(s)v− v)s∈S .

The above situation occurs in connection with the Stokes phenomenon [Van der
Put and Singer 2003, Chapter 8], where S = {1q,d | q ∈ Q, d is singular for q}
is the set of alien derivations. The set S is the disjoint union, over q ∈ Q, of the
sets Sq := {d ∈ R | d is singular for q}. The corresponding affine group scheme
N is the kernel of the surjective morphism of affine schemes Ganalytic→ Gformal.
We will return to this in Section 5. We note that the finiteness condition stated in
[Van der Put and Singer 2003, Chapter 10, p. 268] is slightly wrong.

4. Formal differential equations

Let F̂ be the differential field C((z)) with derivation δ := z d
dz . A differential equa-

tion or module over F̂ will be called formal. We recall the explicit descriptions
of U (F̂) and Gformal := G(F̂, ∂), slightly extending the one given in [Van der
Put and Singer 2003, Chapter 3, Section 3.2]. The aim of this section is to make
explicit both H∗(Gformal, V (M)) (where V (M) is the solution space of M) and the
canonical isomorphism M/∂M→ H 1(Gformal, V (M)).

Description of U(F̂). Write C = A ⊕ Q with A a Q-vector space. First one
introduces the universal Picard–Vessiot ring Urs for the regular singular differ-
ential modules over F̂ . This ring is Urs := F̂cl[{e(c)}c∈A, `], where F̂cl is the
algebraic closure of F̂ and where the symbols e(c) and ` satisfy only the identities
e(c1+c2)= e(c1)·e(c2). The differentiation is given by δe(c)= c ·e(c) and δ`= 1.
Then one introduces the set Q=

⋃
m≥1 z−1/mC[z−1/m

] and symbols e(q) for q ∈Q

satisfying only the identities e(q1 + q2) = e(q1) · e(q2). Further δe(q) = q · e(q).
Now U (F̂) :=

⊕
q∈Q U (F̂, q), where U (F̂, q) := Urse(q). This is the universal

Picard–Vessiot ring for F̂ . Put Q+ := Q⊕ A and write e(q + c) := e(q) · e(c) for
q + c ∈ Q+. Then U (F̂)= F̂cl[{e(q)}q∈Q+, `].

Description of Gformal. For convenience, we will identify the affine group scheme
Gformal with its set of C-valued points, which is the group of the differential auto-
morphisms of U (F̂)/F̂ . A special (and very natural) element in this group is the
formal monodromy γ defined by the properties

(i) γ acts on F̂cl by γ (zλ)= e2π iλzλ for all λ ∈Q,

(ii) γ e(c)= e2π ice(c) for all c ∈ A,
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(iii) γ (e(q))= e(γ q) for all q ∈ Q, and

(iv) γ (`)= `+ 2π i .

In J.-P. Ramis’s terminology, the exponential torus T is the group Hom(Q,C∗).
An element h ∈ T that acts on U (F̂) by h is the identity on F̂cl, on `, and on the
elements e(c). Further h(e(q)) = h(q) · e(q) for all q ∈ Q. The group T together
with the element γ topologically generate Gformal (for the Zariski topology). So
far we have followed [Van der Put and Singer 2003, Chapter 10]. The Zariski
closure 〈γ〉 of the group 〈γ〉 generated by γ is rather big, and we prefer to split this
group into smaller pieces. For this purpose we introduce more special elements
in Gformal.

One decomposes γ as a product of commuting automorphisms γssγu , where
γss has the same definition as γ except for (iv), which is replaced by γss` = `.
Further γu is the identity for the elements in F̂cl, the elements e(c), e(q) and γu`=

`+ 2π i . We note that γssγu is the Jordan decomposition of γ as a product of a
semisimple element and a unipotent element.

We still want to decompose the semisimple γss as a product of commuting ele-
ments γ0 and γ1. The direct sum C=Q⊕A yields, using c 7→e2π ic, a direct product
decomposition C∗ = (µ∞) × e2π i A. Now γ0 and γ1 are the unique semisimple
elements in Gformal with eigenvalues in µ∞ and e2π i A such that γ0γ1 = γss . One
verifies that γ0 and γ1 can also be defined by

(i) γ0(zλ)= e2π iλzλ and γ1(zλ)= zλ for all λ ∈Q,

(ii) γ0(e(q))= e(γ0q) and γ1e(q)= e(q) for all q ∈ Q,

(iii) γ0(e(c))= e(c) and γ1e(c)= e2π ice(c) for all c ∈ A, and

(iv) γ0(`)= γ1(`)= `.

For every element a ∈ U (F̂), there is an integer n ≥ 1 such that γ n
0 (a) = a.

It follows that the algebraic subgroup of Gformal generated (topologically) by γ0

is Ẑ, the projective limit of the groups Z/nZ. The algebraic subgroup generated
(topologically) by γ1 can be identified with the torus Hom(A,C∗). The algebraic
subgroup generated by γu can be identified with Ga .

Thus 〈γ〉, the Zariski closure of the group generated by γ , can be identified
with Ga ×Hom(A,C∗)× Ẑ. Moreover, γ is the topological generator of Grs, the
group of the differential automorphisms of Urs/F̂ or, in other words, the universal
differential Galois group for the regular singular equations over F̂ .

We extend the exponential torus T to a larger torus T+ = Hom(Q+,C∗). An
element h ∈ T+ that acts on U (F̂) by h is the identity on F̂cl and `. Further
h(e(q)) := h(q) · e(q) for q ∈ Q+.
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We conclude that Gformal has the form Ga × (T+ o Ẑ). The latter subgroup
T+o Ẑ is reductive, and the subgroup Ga is the unipotent radical of Gformal. Also
Gformal/Go

formal = Ẑ with topological generator γ0.

Description of differential modules over F̂. One associates to a differential mod-
ule M over F̂ its solution space, defined as V = V (M) := ker(∂,U (F̂)⊗F̂ M) with
the data of (i) a decomposition V =

⊕
q∈Q Vq , where Vq = ker(∂,U (F̂, q)⊗F M),

(ii) an element γV ∈GL(V ), the restriction of γ on U (F̂)⊗F̂ M to the subspace V ,
and relations (iii) γV (Vq)= Vγq for all q ∈ Q.

The functor M 7→ V (M) := (V, {Vq}, γV ) defines an equivalence of categories.
We note that γV has a decomposition as a product γV,0γV,1γV,u of commuting ele-
ments induced by γ = γ0γ1γu .

Computation of H1(Gformal, V (M)). By Section 3, H i (Gformal, V )=H i (Ga,W )

with W := V T+oẐ. From the above one sees that W = V γss
0 . Now F̂[`] is the

subspace of U (F̂) consisting of the elements invariant under T+o Ẑ. Hence W =
ker(∂, F̂[`]⊗F̂ M). The action of γu on W is induced by its action on F̂[`], given
by ` 7→ `+ 2π i . The group Ga , generated for the Zariski topology by γu , acts on
W by t 7→ γ t

u,V . Hence H i (Gformal, V (M)) can be identified with ker(log γu,V ,W )

for i = 0 and with coker(log γu,V ,W ) for i = 1. In particular, the two cohomology
groups have the same dimension. This proves the following corollary.

Corollary 4.1 [Malgrange 1974]. For any differential module M over F̂ , one has
dimC ker(∂,M)= dimC M/∂M.

The explicit canonical isomorphism can : M/∂ M → H1(Gformal, V (M)). Any
module M is, after a finite extension of F̂ , a direct sum of isotypical submodules
modules M(q) with q ∈ Q. This is just a translation of the decomposition V =⊕

Vq . Now ∂ is bijective on M(q) for q 6= 0. Thus for q 6= 0, the summand M(q)
gives no contribution for the above map can. The direct summand M(0), which is
the regular singular part of M , can be represented by a matrix differential operator
z d

dz + B with B a constant matrix whose eigenvalues λ satisfy 0 ≤ Re(λ) < 1.
Only the generalized eigenspace for the eigenvalue 0 of B can give a contribution
to M(0)/∂M(0). This generalized eigenspace is the submodule of M(0) ≈ F̂d

corresponding to W = V γss
0 . After restricting to this submodule, B is nilpotent.

The kernel and cokernel of z d
dz + B on F̂d coincide with the kernel and cokernel

of B on Cd . The fundamental matrix for the equation is e−B log z . The columns
of this matrix form a basis for ker(∂, F̂[`] ⊗F̂ M). The differential Galois group
is generated by the action of γu that multiplies the fundamental matrix by e−2π i B .
Thus log γu on W can be identified with −B/(2π i) on Cd .
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5. Analytic differential equations

F denotes the differential field C({z}) consisting of the convergent Laurent series,
with derivation δ := z d

dz . A differential equation or module over this field will
be called analytic. We recall and extend results of [Van der Put and Singer 2003,
Chapters 8, 9 and 10].

Description of U(F) and Ganalytic := G(F, ∂). As in Section 4, F̂⊃ F denotes the
field of the formal Laurent series. Let D⊂ F̂cl denote the F-subalgebra consisting
of the elements h that satisfy a linear differential equation with coefficients in F .
Then

F[{e(q)}q∈Q+, `] ⊂U (F)= D[{e(q)}q∈Q+, `] ⊂U (F̂)= F̂cl[{e(q)}q∈Q+ .`].

The precise structure of the differential algebra D is unknown. However the mul-
tisummations {multd}d∈R in the directions d lead to “locally unipotent” elements
of Ganalytic, the Stokes maps (multipliers) for every direction d. One considers
the “locally nilpotent” logarithms 1d of the Stokes maps. These are elements
of the pro-Lie algebra of Ganalytic. The element 1d is an F-linear derivation
of U (F), commuting with δ, and trivial on F[{e(q)}q∈Q+, `]. Thus 1d is de-
termined by its restriction 1d : D → U (F) =

⊕
q∈Q U (F, q). The resulting

maps 1q,d : D→ U (F, q) are important ingredients for the structure of Ganalytic.
Put {xi }i∈I = {1q,d | d singular for q}, and let Lie(N ) and N denote the pro-
Lie algebra and the affine group scheme corresponding to {xi } defined in Sec-
tion 3. Then Ganalytic = N o Gformal. We recall that Gformal is topologically
generated by T = Hom(Q,C∗) and the formal monodromy γ . The action, by
conjugation, of Gformal on N induces an action on Lie(N ). One can verify that
γ (1q,d)=1γ (q),d−2π and that, for any h ∈ T , one has h(1q,d)= h(q)1q,d .

The group Ganalytic/(N oGa)= T+oẐ is reductive, and therefore N oGa is the
unipotent radical of Ganalytic. The affine group scheme N oGa is topologically gen-
erated by {exp(1q,d) |d singular direction for q}∪{γu}. The relations between these
generators are unknown. The same holds for their logarithms {1q,d}∪{log γu}. For
the group N o〈γ〉 with topological generators {exp(1q,d)}∪{γ}, one observes that
the only relations are γ exp(1q,d)γ

−1
= exp(1q,d−2π ). A good translation in terms

of generators of Lie algebras does not seem to exist.

Description of the analytic differential modules. As in [Van der Put and Singer
2003, Section 9.2], one can describe a differential module M over F by a structure
on its solution space V := V (M), that is, V (M) = (V, {Vq}, γ, {Std}). The maps
Std can be replaced by std = log Std , and std can be replaced by its components
stq,d (with d a singular direction for q). These elements in End(V ) map each Vq ′

to Vq+q ′ and so on. Thus M is represented by a tuple (V, {Vq}, γ, {stq,d}).
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Computation of H∗(Ganalytic, V (M)). The computation uses the formula

H∗(Ganalytic, V (M))= H∗(N o Ga, V (M))T
+oẐ.

First an example.

Example 5.1. Let M = Fe, where ∂(e)=−pe and p = akz−k
+· · ·+a1z−1 with

k ≥ 1 and ak 6= 0. Then M/∂M ≈ H 1(Ganalytic, V (M)) has dimension irr(M); see
below for the definition of the irregularity of M .

Proof. Let ρ denote the action of Ganalytic on V = V (M) = Vp = Ce(p)e. Then
ρ is trivial for N and γ. Further, for h ∈ T = Hom(Q,C∗), the map ρ(h) is
multiplication by h(p).

Now H 1(Ganalytic, V ) = H 1(N o 〈γu〉, V )T o〈γss〉. We may identify the coho-
mology group H 1(N o 〈γu〉, V ) with the complex vector space of the algebraic
homomorphism f : N o 〈γu〉→ V in such a way that there are only finitely many
q ∈ Q for which there is a d with f (exp(1q,d)) 6= 0.

Let f be such a map, and suppose that f is invariant under T o 〈γss〉. For
g ∈ T o 〈γss〉 and m ∈ N o 〈γu〉, one has f (m) = (g f )(m). Since the latter is
ρ(g−1) f (gmg−1), one has ρ(g) f (m)= f (gmg−1). This applied with g ∈ T and
m=γu or m= exp(1q,d)with q 6= p yields f (γu)=0 and f (exp(1q,d))= 0. Now
apply this with m=γu exp(1p,d)γ

−1
u and g=γss . Then f (m)= f (exp(1p,d−2π )).

Using that f (γu)= 0 and ρ(γu)= 1, one has f (m)= f (exp(1p,d)).
We then conclude that the invariant algebraic homomorphisms are described

by f (γu) = f (exp(1q,d)) = 0 for q 6= p, and f (exp(1p,d)) = f (exp(1p,d−2π ))

for all d . The dimension of the H 1 under consideration is therefore equal to the
number of the singular directions d modulo 2π of p. This number is easily seen
to be k. We note that this result coincides with the explicit calculations in [Van der
Put and Singer 2003, Section 7.3]. �

B. Malgrange has introduced the irregularity of a differential module M over F
as follows. Put M̂ := F̂⊗F M . The action of the operator ∂ on the exact sequence
0→ M→ M̂→ M̂/M→ 0 induces the long exact sequence

0→ ker(∂,M)−→ ker(∂, M̂)−→ ker(∂, M̂/M)

−→ M/∂M −→ M̂/∂ M̂ −→ coker(∂, M̂/M)→ 0.

His results are that coker(∂, M̂/M) = 0, each term in this sequence has finite
dimension, and dim ker(∂, M̂)= dim M̂/∂ M̂ (see Corollary 4.1). The irregularity
of M , irr(M), is defined as the dimension of ker(∂, M̂/M). Using cohomology,
we will reprove Malgrange’s results and compute irr(M).
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Proposition 5.2 [Malgrange 1974]. Let M be a differential module over F with
solution space V (M) = (V, {Vq}, γ, {stq,d}). Then ∂ is surjective on M̂/M , and
irr(M)=

∑
q degz−1 q · dim Vq .

Proof. First, we may identify the map M/∂M→ M̂/∂ M̂ with the restriction map
R : H 1(N o Gformal, V )→ H 1(Gformal, V ), where V is the solution space of M .
The five term exact sequence (with G = Ganalytic = N o Gformal) reads

0→ H 1(Gformal, V N )−→ H 1(Ganalytic, V )

−→ H 1(N , V )Gformal −→ H 2(Gformal, V N )−→ · · · .

The term H 2(Gformal, V N ) is zero. The description of H 1(N , V ) by 1-cocycles
modulo trivial 1-cocycles and the description of the pro-Lie algebra Lie(N ) yield
the exact sequence 0→ V/V N

→ V ({1q,d })→ H 1(N , V )→ 0. Taking invariants
for the action of Gformal, one finds the exact sequence

0→ H 0(Gformal, V/V N )−→ H 0(Gformal, V ({1q,d }))−→

H 0(Gformal, H 1(N , V ))
α1
−→ H 1(Gformal, V/V N )−→ H 1(Gformal, V ({1q,d })).

We will compute the terms of this exact sequence.

Claim. Irr := H 0(Gformal, V ({1q,d })) has dimension
∑

degz−1 q · dim Vq . Further
H 1(Gformal, V ({1q,d }))= 0, and so α1 is surjective.

Proof. V ({1q,d }) consists of the maps f : {1q,d} → V (with the property that only
finitely many q’s have a d with f (1q,d) 6= 0). The action of γ on V ({1q,d }) is
given by (γ f )(1q,d) = ρ(γ

−1) f (1γ(q),d−2π )). The map f 7→ (γ f )− f is seen
to be surjective. It follows that H 1(〈γ〉, V ({1q,d })) = 0 and that H 0(〈γ〉, V ({1q,d }))

consists of those maps satisfying f (1q,d)= f (1γ(q),d−2π ). Taking now the invari-
ants under T , one finds that H 1(Gformal, V ({1q,d })) = 0 and H 0(Gformal, V ({1q,d }))

consists of the maps satisfying f (1q,d) ∈ Vq and f (1q,d)= f (1γ(q),d−2π ).
Write V = V0⊕ Vq1 ⊕ · · ·⊕ Vqr , where 0, q1, . . . , qr are distinct elements of Q

and the Vqi 6= 0. We allow the possibility V0 = 0. From the above it follows that
Irr := H 0(Gformal, V ({1q,d })) has dimension

∑
i degz−1 qi · dim Vqi . �

Claim. The map R : H 1(N o Gformal, V )→ H 1(Gformal, V ) is surjective.

Proof. First we consider the long exact sequence

0→ H 0(Gformal, V N )−→ H 0(Gformal, V )−→ H 0(Gformal, V/V N )
α2
−→ H 1(Gformal, V N )−→ H 1(Gformal, V )−→ H 1(Gformal, V/V N )→ 0.

We observe that H 0(Gformal, V N )= ker(∂,M) and that H 0(Gformal, V ) is equal to
ker(∂, M̂).
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The morphism from the exact sequence

0→ H 1(Gformal, V N )−→ H 1(Ganalytic, V )−→ H 0(Gformal, H 1(N , V ))→ 0

to the exact sequence

0→ H 1(Gformal, V N )/im(α2)−→ H 1(Gformal, V )−→ H 1(Gformal, V/V N )→ 0

is defined by the three maps α3, R and α1, where α3 is induced by the identity
map H 1(Gformal, V N )→ H 1(Gformal, V N ). The surjectivity of α1 implies that R
is surjective. �

By the second claim, one has an exact sequence 0 → im(α2) → ker(R) →
ker(α1)→ 0. Combining this with the results, observations and identifications of
both claims, one finds Malgrange’s exact sequence

0→ ker(∂,M)−→ ker(∂, M̂)−→ Irr−→ M/∂M −→ M̂/∂ M̂→ 0. �

6. Global differential equations

Now K is a finite extension of the differential field C(z). The universal U (K ) and
G(K , ∂) are far from known. For every place v, one has a canonical embedding
K ⊂ Kv. We note that Kv is isomorphic to C((t)), where t is a local parameter
for v. The differentiation has the form a · d

dt for some nonzero element a (which
will not be of importance for our problems).

The embedding K ⊂ Kv can be extended to an injection U (K )→ U (Kv) of
differential rings. This injection is not unique, but its image is. Thus the above
arrow is unique up to a differential automorphism of U (K )/K , that is, an element
of G(K , ∂). For every place v, we make a choice for U (K ) → U (Kv). This
arrow induces an injective morphism G(Kv, ∂)→G(K , ∂) (which is unique up to
conjugation by an element of G(K , ∂)).

Suppose L ∈ K [∂] is nonzero and f ∈ K . The equation L(y)= f has a solution
yv ∈ Kv at a place v if L is regular at v and f has no pole at v. Thus there
exists a solution yv for all but finitely many places. Hence there is a well-defined
map K/L(K )→

⊕
v Kv/L(Kv) of C-vector spaces. The kernel of this map will

be denoted by lgl(L). This vector space measures the failure of the local-global
principle for differential equations.

For a differential module M over K , one defines in a similar way the C-vector
space lgl(M) := ker M/∂M→

⊕
v(Kv ⊗M)/∂(Kv ⊗M).

Using the above and Section 2 one concludes that

lgl(M)= ker(H 1(G(K , ∂), V (M))→
⊕

v H 1(G(Kv, ∂), V (M))),

and similarly for a differential operator L .
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Theorem 6.1. The C-vector spaces lgl(L) and lgl(M) have finite dimension.

Proof. The statements for L and M are equivalent. We start with a differential
module M over K . As K is a finite extension of F := C(z), we may view M as a
differential module over F . The term M/∂M does not change. Consider a place w
of F and the places v1, . . . , vr of K above w. Then Fw ⊗F M can be identified
with

⊕r
i=1 Kvi ⊗K M . This implies that lgl(M) does not change if one considers

M as differential module over F . Thus we may suppose that K = C(z).
Now we consider L = an∂

n
+ · · · + a1∂ + a0 with all ai ∈ K = C[z] and

gcd(an, . . . , a0) = 1. Consider an equation L(y) = f with f ∈ K that has a
solution yv ∈ Kv for every place v. For each place v 6=∞, we write this solution as
[yv] + rv, where [yv] =

∑
i≥1 ci/(z− v)i is the principal part of yv. Only finitely

many [yv] are nonzero, and g := f −
∑

v 6=∞ L([yv]) lies in C[z]. Therefore it
suffices to consider equations L(y)= g with g ∈ C[z].

One observes that the operator L :C[z]→C[z] has a finite-dimensional cokernel.
This implies that lgl(L) has finite dimension. More precisely, lgl(L) is the kernel
of the obvious map C[z]/L(C[z])→

⊕
all v C(z)v/L(C(z)v). �

7. Abelian differential equations

As in Section 2, let K be a differential field with an algebraically closed field of
constants C 6= K of characteristic 0. A differential module M (or an operator in
K [∂]) is called abelian if the differential Galois group Gal(M) is abelian. The cor-
responding Picard–Vessiot extension L ⊃ K is also called abelian, and Gal(L/K )
denotes its (differential) Galois group.

Any abelian linear algebraic group G is a product of copies of Ga , Gm , and finite
cyclic groups. By definition, the additive part G+ of G is a product of copies of
Ga , and the multiplicative part G? of G is a product of copies of Gm and finite
cyclic groups.

A linear algebraic group G of additive type is described as G = Spec(C[W ]),
where W is a finite-dimensional C-vector space, C[W ] :=

⊕
n≥0 symn W , and

the comultiplication m is given by m(w) = (w ⊗ 1) + (1 ⊗ w) for all w ∈ W .
A group scheme of additive type G is by definition the projective limit of linear
algebraic groups of additive type. It follows that it has also a description as G =
Spec(C[W ]) but now with W any C-vector space. Clearly, the set G(C) of the
C-valued points of G is identified with HomC(W,C). The set Hom(G,Ga) of the
morphisms can be identified with W as follows. Fix a presentation Ga =C[t] with
m(t) = (t ⊗ 1)+ (1⊗ t). Giving a morphism G → Ga is equivalent to giving a
w ∈W that is the image of t for the map C[t]→C[W ]. By abuse of language, we
will write HomC(W,C) for the group scheme Spec(C[W ]) of additive type.
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A linear algebraic group G of multiplicative type can be described as G =
Spec(C[A]), with A a finitely generated abelian group, C[A] the group ring of
A over C , and m(a)= a⊗a the comultiplication for all a ∈ A. A group scheme of
multiplicative type is again defined as G = Spec(C[A]), but now A is an arbitrary
abelian group. Now G(C) = HomZ(A,C∗), and Hom(G,Gm) = A. By abuse
of language, we will write HomZ(A,C∗) for the group scheme Spec(C[A]) of
multiplicative type. Note that Hom(G1,G2) = 0 if G1 is of additive type and G2

is of multiplicative type or vice versa.
For any differential field L one defines the C-vector subspace

d(L) := { f ′ | f ∈ L} ⊂ L

and the subgroup dLog(L) := { f ′/ f | f ∈ L∗} ⊂ L .

Theorem 7.1. Let L be an abelian Picard–Vessiot extension of K . Then we have
natural maps

αL/K :
K

dLog(K )
→

L
dLog(L)

and βL/K :
K

d(K )
→

L
d(L)

.

induced by the inclusion K ⊆ L.

(i) ker(αL/K ) is a Z-module of finite type. HomZ(ker(αL/K ),C∗) is considered
as a linear algebraic group (of multiplicative type).

(ii) ker(βL/K ) is a finite-dimensional C-vector space. HomC(ker(βL/K ),C) is
considered as a linear algebraic group (of additive type).

(iii) There are canonical isomorphisms

ψ?L/K :Gal(L/K )?→ HomZ(ker(αL/K ),C∗) and

ψ+L/K :Gal(L/K )+→ HomC(ker(βL/K ),C)

of linear algebraic groups.

The definitions of ψ?L/K and ψ+L/K are as follows. Let σ ∈ Gal(L/K ). Take
f ∈ ker(αL/K ) and g ∈ ker(βL/K ) and images of f ∈ K and g ∈ K . There are
elements F ∈ L∗ and G ∈ L such that F ′/F = f and G ′ = g. Then σ(F) = cF
for some c ∈ C∗, and σ(G)= G+ d for some d ∈ C . Then

ψ?L/K (σ )( f )= c ∈ C∗ and ψ+L/K (σ )(g)= d ∈ C.

It is easily verified that the above definitions do not depend on the choices of f , F , g
and G and that the maps ψ?L/K and ψ+L/K are homomorphisms of algebraic groups.
“Canonical” means that for abelian Picard–Vessiot extensions K ⊂ L1 ⊂ L2, one
has the obvious rules for composing the various ψ? and ψ+.
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Proof. The direct elementary proof that ψ? and ψ+ are isomorphisms is somewhat
long. We prefer to use [Van der Put and Reversat 2004, Lemma 1.1], which reduces
the general case to the cases Gal(L/K ) ∈ {Gm,Cn,Ga}, where Cn denotes the
cyclic group of order n > 1. For these cases we provide elementary proofs.

(i) Gal(L/K )=Gm . Then L is the Picard–Vessiot extension of an equation y′= f y
with f ∈ K such that y′ = m f y has, for every integer m ≥ 1, only the trivial
solution y = 0 in K . Then L is the transcendental extension K (t) with t ′ = f t ,
and c ∈ Gal(L/K )= C∗ maps t to ct .

The kernel of ψ?L/K : K/dLog(K )→ L/dLog(L) consists of the elements h+
dLog(K ) such that there exists y ∈ L∗ with y′/y= h. The obvious elements y ∈ L∗

with y′/y ∈ K are atn with a ∈ K ∗ and n ∈ Z. They produce Z f in the kernel of
ψ?L/K . We want to show that there are no other elements y ∈ L∗ with y′/y ∈ K . We
may write y= p(t)/q(t) with p(t), q(t)∈ K [t], where p(t) and q(t) are relatively
prime, monic, and not divisible by t . Then

y′

y
=

p(t)′

p(t)
−

q(t)′

q(t)
∈ K

implies that p(t)′/p(t) and q(t)′/q(t) both belong to K . Now p(t) = tn
+ · · · +

p1t+ p0 for p0 6= 0. Then p(t)′= p′n−1tn−1
+· · ·+ p′1t+ p′0+ f (ntn

+· · ·+ p1t)=
a · p(t) for some a ∈ K . This identity generates the equalities a= n f and p′0= ap0,
and then p′0 = n f p0 contradicts the assumption on the equation y′ = f y if n > 0.
Hence p(t) = 1, and similarly q(t) = 1. Thus we find that the kernel of ψ?L/K is
Z f . The map Gal(L/K )= C∗→ Hom(Z f ,C∗) is obviously an isomorphism.

(ii) Gal(L/K )=Cn . Then L is the Picard–Vessiot extension of an equation y′= f y
with f ∈ K and n minimal such that y′= n f y has a nonzero solution y0 ∈ K . Then
L = K (t) with tn

= y0, and Gal(L/K ) acts by multiplying t by n-th roots of unity.
The proof that the kernel of ψ?L/K is the cyclic group Z f of order n is similar to
the one of case (i).

(iii) Gal(L/K )=Ga . Then L = K (t) 6= K , where t satisfies a differential equation
of the form t ′ = g with g ∈ K . An element d ∈ Gal(L/K ) = Ga = C maps t
to t+d . An element h+d(K ) lies in the kernel ofψ+L/K if and only if there exists an
element H ∈ L with H ′= h. The kernel clearly contains the C-subspace generated
by g+ d(K ). It suffices to show that the kernel contains no more elements. Now
write H = p(t)/q(t)+ r(t) with relatively prime p(t), q(t) ∈ K [t], q(t) monic,
deg p(t) < deg q(t), and r(t) ∈ K [t]. Suppose that

H ′ = r(t)′+ p(t)′q(t)− p(t)q(t)′

q(t)2
= h ∈ K .

Then p(t)′q(t)− p(t)q(t)′ = (h − r(t)′)q(t)2. If q(t) 6= 1, then, by comparing
the degrees, one finds r(t)′ = h. The same holds if q(t) = 1. We may write
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r(t)= rd td
+· · ·+r1t , since the constant term of r(t) is of no importance. Further

rd 6= 0. Then r(t)′ = r ′d td
+ · · · + r ′1t + g(rddtd−1

+ · · · + r1) = h. This implies
r ′d = 0, and thus rd = c∈C∗. For d > 1, one finds the contradiction r ′d−1+gdc= 0.
Hence r(t)= ct , and h = cg. This finishes the computation. �

Theorem 7.1 admits the following corollary, which can be interpreted as an Artin
correspondence for abelian Picard–Vessiot extensions.

Corollary 7.2. Let K ab
diff be the maximal abelian Picard–Vessiot extension of K .

Then its Galois group Gal(K ab
diff/K ) satisfies the isomorphisms of affine group

schemes over C given by

ψ?K :Gal(K ab
diff/K )?→ HomZ(K/dLog(K ),C∗) and

ψ+K :Gal(K ab
diff/K )+→ HomC(K/d(K ),C).

For ψ?K ×ψ
+

K , write

ψK : Gal(K ab
diff/K )→ HomZ(K/dLog(K ),C∗)×HomC(K/d(K ),C).

Then ψK induces a bijection between the Picard–Vessiot extensions of finite type
K ⊂ L ⊂ K ab

diff and the pairs (Z , V )⊂ (K/dLog(K ), K/d(K )), with Z a subgroup
of finite type and V a C-vector subspace of finite dimension.

We note that ψ?K is the projective limit of the ψ?L/K that is taken over all Picard–
Vessiot extensions of finite type L ⊃ K contained in K ab

diff (and similarly for ψ+K ).
The correspondence can be described as follows.

One associates to (Z , V ) the Picard–Vessiot field L = (K ab
diff)

H , where H is the
kernel of the restriction map Gal(K ab

diff/K )→HomZ(Z ,C∗)×HomC(V,C). This
can be made even more explicit by giving Z generators a1, . . . , ar over Z and by
giving V generators b1, . . . , bs over C . Then L is the Picard–Vessiot extension for
the set of equations

y′i = ai yi for i = 1, . . . , r and z′j = b j for j = 1, . . . , s.

Conversely, (ker(K/dLog(K )→ L/dLog(L)), ker(K/d(K )→ L/d(L))) is the
pair associated to L .

We remark that the explicit presentation of the universal Picard–Vessiot ring and
its automorphism group for the category of the abelian differential modules over
K , as given in [Van der Put and Singer 2003, Chapter 10], also provides a proof
for Theorem 7.1 and Corollary 7.2.
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8. Computation of lgl(L) for abelian L

We consider an abelian differential module M over a finite extension K of C(z)
and compute the space lgl(M). It suffices to do this for an indecomposable M .
This reduces the general case to the cases in which

(1) M is of dimension 1 and trivial;

(2) M has dimension 1 and differential Galois group Gm ;

(3) M has dimension 1 and differential Galois group Cm with m > 1; and

(4) M is of dimension n and has differential Galois group Ga .

8.1. The case of a trivial L. We consider a differential field K that is a finite
extension of C(z), and let L = d/dz. The solution space V = C1, and lgl(L)
is the kernel of the map H 1(G(K , ∂), V ) →

⊕
v H 1(G(Kv, ∂), V ). Since the

groups G∗ act trivially on V , the term H 1 coincides with the morphism G∗→Ga .
A morphism factorizes over the additive factor of the abelianized group (G∗)+ab.
For the group G(K , ∂), the additive factor (see Corollary 7.2) can be written as
HomC(�(K )/d K ,C), where �(K ) is the differential module for K/C. Further
Hom((G(K , ∂))+ab,Ga) identifies with �(K )/d K . Similar statements hold for the
groups G(Kv, ∂).

Let X be the curve associated to K . The points x of X correspond to the v’s.
Further�(K ) identifies with the space of all meromorphic differential forms on X .
From [Van der Put and Reversat 2004, Section 1.3], we recall the exact sequence

0→ H 1
DR(X,C)−→�(K )/d K −→

⊕
x∈X �(x)/d(Kx)−→ C→ 0.

This implies the following result.

Proposition 8.2. For the finite field extension K ⊃ C(z) associated to a curve X
over C of genus g, lgl(d/dz) is canonically isomorphic to the 2g-dimensional
vector space H 1

DR(X,C).

8.3. The Gm case. K is again a finite extension of C(z), which corresponds to a
curve X over C. Let the point p∈ X have local analytic parameter t . As before, one
writes K p for the completion of K at the valuation induced by p. Thus K p=C((t)).
The subfield of the convergent Laurent series C({t}) is denoted by K an

p . Further
�(K p) := C((t))dt and �(K an

p ) := C({t})dt .
The operator L has the form d

dz− f with f ∈ K ∗ such that dy=m ·y f dz has, for
any integer m≥1, only the trivial solution y=0 in K . One considers the map, again
called L , given by y ∈ K 7→ dy− y f dz ∈�(K ). Let H ⊂�(K ) be the subspace
consisting of the elements ω such that there exists for every point p a formal local
solution y ∈ K p of L(y)= ω. Then lgl(L) is the cokernel of L : K → H .
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A point p is regular for L if there exists a nonzero g ∈ K p with L(g) = 0. In
fact, this g lies in K an

p . Further p is regular if and only if f dz has at most a pole of
order 1 at p and Resp( f dz)∈Z. For a regular point p of the map L :K p→�(K p),
the kernel and cokernel have dimension 1. The same holds for L : K an

p →�(K an
p ).

This is seen be writing y= gh with h ∈ K p. Then L(y)= L(gh)= gdh.The kernel
of L is Cg, and ω lies in the image of L if and only if Resp(g−1ω)= 0.

Further, a point p is regular singular if f dz has a pole of order 1 at p and if
Resp( f dz) 6∈ Z. In this case the map L : K p→ �(K p) is bijective and the same
holds for L : K an

p →�(K an
p ).

A point p is irregular singular if f dz has a pole of order d + 1 with d > 0.
The integer d is the irregularity irrp of p. In this case, the map L : K p→�(K p)

is bijective. Further L : K an
p → �(K an

p ) is injective and its cokernel Irr(p, L) has
dimension d = irrp.

Let Sol(L) denote the subsheaf of the sheaf of meromorphic functions M on X ,
defined by Sol(L)(U )= {y ∈ M(U ) | L(y)= 0} for any open U ⊂ X . It is a sheaf
of C-vector spaces. By assumption H 0(X,Sol(L))= 0.

Lemma 8.4. dim H 1(X,Sol(L))= 2g− 2+ #S and H 2(X,Sol(L))= 0.

Proof. Let S ⊂ X denote the set of singular points of L .
First we suppose S 6=∅. The restriction of the sheaf L= Sol(L) to X∗ := X \ S

is locally isomorphic to the constant sheaf C. It is given by a nontrivial ho-
momorphism of the fundamental group π1 := π1(X∗) → GL(V ), where V is
a 1-dimensional vector space. Then H i (X∗,L) equals the cohomology group
H i (π1, V ) for all i . The group π1 is free on r := 2g − 1+ #S generators. Let
t1, . . . , tr denote these free generators. The action of ti on V is multiplication by
some αi ∈ C∗. The cohomology groups H∗(π1, V ) are the cohomology groups
of the complex 0 → V → V r

→ 0, where the nontrivial arrow is defined by
v 7→ (tiv− v)i=1,...,r . Since some αi is not equal to 1, one has H i (π1, V ) = 0 for
i = 0, 2, and dim H 1(π1, V )= r − 1.

We claim that H 1(X,L)→ H 1(X∗,L) is an isomorphism. Let U be the disjoint
union of small disks around the points of S, and let U∗=U\S. The Mayer–Vietoris
sequence for the covering {X∗,U } yields the exact sequence

0→ H 1(X,L)−→ H 1(X∗,L)⊕ H 1(U,L)−→ H 1(U∗,L)−→ · · · .

Consider a small disk Dp around a point p ∈ S, and let D∗p = Dp \ {p}. We can
identify Dp with D := {z ∈ C | |z|< 1} and D∗p with D∗ := {z ∈ C | 0< |z|< 1};
we identify restriction of L with the kernel of the morphism M : OD→ OD (here
OD denotes the sheaf of the holomorphic functions on D), given by y 7→ zy′−ay
with any a ∈ C \ Z. The sequence 0→ ker M → OD → OD → 0 is exact. One
verifies that M : H 0(E, OD)→ H 0(E, OD) is bijective for E = D and E = D∗.
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Further H i (E, OD) = 0 for E = D, E = D∗ and i = 1, 2. This implies that
H i (E, ker M)=0 for E=D, E=D∗ and i=1, 2. In this way we have verified that
H 1(U,L)= H 1(U∗,L)= 0 and this proves the claim. Moreover H 2(X,L)= 0.

Now we consider the case S=∅. The sheaf L=Sol(L) is locally isomorphic to
the constant sheaf C. However, L is not equal to the constant sheaf since we have
supposed that the equation L(y)= 0 has only the solution y= 0 in K . In particular,
the genus g of X is ≥ 1. Take any point p ∈ X . Then H 1(X \{p},L) is isomorphic
to H 1(π, V ), where π is the fundamental group of X∗ := X \ {p}, free on 2g
generators and V is the 1-dimensional vector space such that the restriction of L to
X \{p} corresponds to a nontrivial action of π on V . Thus dim H 1(π, V )= 2g−1.
Let D be a small disk around p, and put D∗ = D \ {p}. The Mayor–Vietoris
sequence for the covering {X∗, D} of X yields an exact sequence

0→ H 1(X,L)−→ H 1(X∗,L)⊕H 1(D,L)−→ H 1(D∗,L)−→ H 2(X,L)→ 0.

Now H 1(D,L) = 0, and H 1(D∗,L) has dimension 1. According to Lemma
8.5, the space H 2(X,L) is dual to H 0(X,L∗) and therefore 0. It follows that
dim H 1(X,L)= 2g− 2. �

The following result is cited in [Katz 1990, Section 2.9.8.2, p. 68]. Though a
proof can be deduced from [Deligne 1970, Proposition II.6.20],1 we give here a
direct proof.

Lemma 8.5. Let M be a sheaf of C-vector spaces on X locally isomorphic to the
constant sheaf Ck . Then

∑2
i=0(−1)i dim H i (X,M) = k(2− 2g). Moreover, there

is a canonical isomorphism H 2(X,M)→ H 0(X,M∗)∗.

Proof. The definition of the dual M∗ is rather obvious. Consider the exact sequence
0→M→M⊗C OX→M⊗C�(X)→ 0 obtained by tensoring the exact sequence
0→ C→ OX →�(X)→ 0 with M over C.

This induces an exact sequence

0→ H 0(M) · · · H 1(M⊗ OX )
A
−→ H 1(M⊗�(X))−→ H 2(M)→ 0

of cohomology groups above X . The vector bundle M⊗OX has rank k. Its degree
is zero since the line bundle3k(M⊗OX ) admits a connection without singularities.
This implies the formula. By Serre duality, A is the dual of

H 0(M∗⊗ OX )
B
−→ H 0(M∗⊗�(X)).

Now (ker B)∗ ∼= cokerA yields the required duality H 2(M)∗ ∼= H 0(M∗). �

1We thank the referee for pointing out these two references.
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One defines the skyscraper sheaf Q on X by the exact sequence of sheaves

0→ Sol(L)−→ M
L
−→�mer −→ Q→ 0,

where �mer denote the sheaf of the meromorphic differential forms on X . The
sheaf Q is the sheaf

⊕
p∈X E p. Each term E p denotes a sheaf whose stalk is zero

at the points q 6= p and whose stalk at p is the finite-dimensional vector space
�(K an

p )/L(K an
p ). By definition, a section of Q above an open set U is an element

of
∏

p∈U �(K
an
p )/L(K an

p ) that has discrete support.
Let the sheaf H denote the image of L . The exact sequences

0→ Sol(L)−→ M −→H→ 0 and 0→H−→�mer −→ Q→ 0

induce long exact sequences for their cohomology on X . In combination with
Lemma 8.4, the first one yields H i (X,H) = 0 for i = 1, 2 and also the exact
sequence 0→ K → H 0(X,H)→ H 1(X,Sol(L))→ 0.

The second one yields the exact sequence

0→ H 0(X,H)−→�(K )−→
⊕

p∈X �(K
an
p )/L(K an

p )→ 0.

The space H0 := H 0(X,H) consists of the differential forms ω ∈ �(K ) such
that at every point p there exists an element y ∈ K an

p with L(y)=ω. Let H ⊂�(K )
denote the subspace of the ω such that for every point p there exists a y ∈ K p with
L(y)= ω. We recall that lgl(L) is the cokernel of L : K → H .

The last exact sequence implies that R :�(K )→
⊕

p∈Irr Irr(p, L) is surjective.
Here Irr denotes the set of the irregular singular points and we recall that Irr(p, L)=
�(K an

p )/L(K an
p ). It follows that the dimension of lgl(L) is the sum

∑
p∈Irr irrp,

and the dimension of the cokernel of L : K→ H0. The latter can be identified with
H 1(X,Sol(L)). Thus we have proved the following.

Theorem 8.6. dim lgl(L)= 2g− 2+ #S+
∑

p∈Irr irrp.

Example 8.7. Consider the regular singular, first order operator on P1 given by

L = d
dz
+

r∑
j=1

λ j

z− p j
with λ j 6∈ Z for all j.

S = {p1, . . . , pr } if
∑
λ j ∈ Z, and otherwise S = {p1, . . . , pr ,∞}. According to

Theorem 8.6, dim lgl(L) is r − 2 in the first case and r − 1 in the second one.
An explicit calculation of lgl(L) using the proof of Theorem 6.1: L is replaced

by the operator

L+ =
r∏

j=1

(z− p j )L =
r∏

j=1

(z− p j )
d
dz
+ q(z).
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Then lgl(L)= lgl(L+), and the latter is equal to the kernel of

C[z]/L+(C[z])→
⊕
p∈P1

C(z)p/L+(C(z)p).

The map C[z]/L+(C[z])→C(z)p/L(C(z)p) is the zero map except when p=∞
and

∑
λ j ∈ Z. In verifying that dim coker(L+,C[z])= r − 1, one has to consider

separately three cases:
∑
λ j =−n with n > 0 an integer,

∑
λ j = 0, and

∑
λ j is

not an integer ≤ 0.

Example 8.8. The irregular singular operator L = d/dz − z5 on P1 satisfies
dim lgl(L) = 5. Indeed, g = 0, S = {∞} and irr∞ = 5. The latter is verified
by writing a multiple of L in terms of the parameter t = z−1 as d/dt + t6.

The explicit method of Theorem 6.1 and the observation that L is bijective on
C(z)∞ yield that lgl(L) is equal to the cokernel of L on C[z]. The latter has as
basis (the images of) 1, z, z2, z3, z4.

Example 8.9. L = z5 d
dz + 1+ az4 with a 6∈ Z acting on P1 has dim lgl(L) = 4.

Indeed, g = 0, S = {0,∞}, and irr0 = 4. Now the method of Theorem 6.1: The
cokernel of L on C[z] has a basis of representatives {1, z, z2, z3

}. The equation
Ly = f with f a polynomial of degree ≤ 3 has a local solution at ∞. Hence
dim lgl(L)= 4.

Example 8.10. Consider K = C(z)[y] with y2
= (z − a1) · · · (z − a2g+2). The

trivial differential module K with ∂1 = 0 satisfies dim lgl(K ) = 2g. This follows
at once from Proposition 8.2. Another way to calculate lgl(K ) is to view K as
the two-dimensional differential module C(z)1 ⊕ C(z)y with ∂1 = 0 and ∂y =
(
∑2g+2

j=1 (1/2)/(z − a j ))y. The first factor has lgl = 0, and for the second factor,
Theorem 8.6 yields dim lgl= 2g.

Remark 8.11. The referee has noted that the formulas obtained in this section
(and the next one) resemble known results like [Katz 1990, Theorem 2.9.9 and its
corollaries]. At present we have not found any relation.

8.12. The Cm case with m > 1. This case is rather similar to the case Gm . The
only new point is that there are only regular singularities, since the differential
Galois group is finite. With the same notations as above, the result is this:

Proposition 8.13. dim lgl(L)= 2g− 2+ #S.

8.14. The Ga case. The action of Ga on the solution space is given by t 7→ et N ,
where N is a nilpotent n× n matrix consisting of one Jordan block. Using that K
is a C1-field and that the differential Galois group is connected, one finds a matrix
differential equation for M of the form d/dz − f N for some nonzero f ∈ K ;
see [Van der Put and Singer 2003, Corollary 1.32]. We note that this differential
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equation is regular singular. The singular points p ∈ X , where X denotes the curve
associated to K , are precisely the points where the residue of f dz is not zero. Let
S ⊂ X denote the set of the singular points. If S is not empty, then S contains at
least 2 points since the sum of the residues of f dz is zero. If S = ∅, then f dz
could be exact. In that case we are in the situation of Section 8.1, and therefore we
assume that f dz is not exact.

We want to compare the cokernel of d/dz− f N acting upon K n with the cok-
ernels of the same operator acting upon all K n

p for p ∈ X .

Computation for n = 2. We consider the operator

L
(( y1

y2

))
:=

( d
dz
− f N

)( y1
y2

)
=

( y′1− f y2

y′2

)
: K 2
→ K 2, or equivalently

L((y1, y2) = (dy1− f y2dz, dy2) : K 2
→�(K )2.

Let H ⊂�(K )2 be the complex subspace consisting of the elements (ω1, ω2) such
that there is a formal local solution at each point v of P1. Then lgl(d/dz− f N ) is
the cokernel of the map L : K 2

→ H .
We recall that X is the curve associated to K . Consider the C-linear map

R : H → H 1
DR(X,C) given by (ω1, ω2) 7→ ω2, where ω2 is the image of ω2

in H 1
DR(X,C). This is well defined since all the residues of ω2 are 0. Now we

investigate the image of R.
Suppose that S is not empty. Take an ω2 (with all residues 0) representing a

given element in H 1
DR(X,C). We have to produce an ω1 such that (ω1, ω2) ∈ H .

We will use the existence of a meromorphic differential form ω for any prescription
of its residues Resp(ω)= ap such that almost all ap are 0 and

∑
ap = 0.

For any point p 6∈ S such that neither ω1 nor f dz have a pole at p, we take
ap = 0. For a point p 6∈ S such that ω1 has a pole at p or f dz has a pole at p, we
define ap by ap +Resp(y2 f dz)= 0 (where dy2 = ω1locally at p). For a singular
point p ∈ S, we take a local solution y2 of dy2 = ω2. Then, since we may change
y2 into y2+c for any c ∈C, we have that for any choice of ap, there is a constant c
such that the residue of ap+Resp(y2 f dz+ c f dz) equals 0. Since S is not empty,
we can choose the last values of ap such that

∑
ap=0. Any ω1 with these residues

satisfies (ω1, ω2) ∈ H . Thus R is surjective.
Consider the map L : K 2

→ H0 := {(ω1, ω2) ∈ H | ω2 = 0}. Dividing H0 by
L({(0, y2) | y2 ∈ K }), we have to compute the cokernel of L : K ⊕C→ H00 with
H00 := {(ω1, ω2) ∈ H | ω2 = 0}. Any (ω1, 0) ∈ H00 is mapped to the image of
(Resv(ω1))v∈S in the space

{(av)v∈S ∈ CS
|
∑

av = 0}/C(Resv( f dz))v∈S.
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This map is surjective. The kernel of this map consists of the ω1 for which there
exists a constant c such that every residue of ω1+ c f dz is zero (we note that c is
unique). This leads to the statement that the cokernel of L : K ⊕ C→ H00 has
dimension (−2 + #S) + dim H 1

DR(X,C), and the cokernel of L : K 2
→ H has

dimension 2g+ (−2+ #S)+ 2g.
Suppose that S = ∅. Let M and �mer be the sheaves on X (for the ordinary

complex topology) of the meromorphic functions and the meromorphic differential
forms. Both sheaves have H i

= 0 for i ≥ 1. Consider the morphism L :M2
→�2

mer
defined by (y1, y2) 7→ (dy1 − y2 f dz, dy2). Let H ⊂ �2

mer be the image of L .
Then H 0(X,H) consists of the pairs (ω1, ω2) ∈ �(K )2 such that the equation
(dy1 − y2 f dz, dy2) = (ω1, ω2) has a local solution everywhere. The sheaf L is
defined by the exact sequence 0→ L→ M2

→ H→ 0. The sheaf L is locally
isomorphic to the constant sheaf C2. Taking the cohomology above X one finds
the exact sequence 0→ H 0(X,L)→ K 2

→ H 0(X,H)→ H 1(L)→ 0. Thus
H 1(L) identifies with lgl(d/dz − f N ). It is easily seen that H 0(L) and H 0(L∗)

have both dimension 1. Lemma 8.5 implies that dim H 1(L)= 4g− 2.

Proposition 8.15. Suppose that f dz is not exact and that n = 2. Then the dimen-
sion of lgl(d/dz− f N ) is 4g− 2+ #S, where S consists of the singular points of
d/dz− f N , that is, the points p with Resp( f dz) 6= 0.

Theorem 8.16. Suppose that f dz is not exact. Consider L = (d/dz− f N ), where
N ∈ End(Cn) is a nilpotent matrix with one Jordan block. Let S be the set of
singular points of L , that is, the points p with Resp( f dz) 6= 0. Then lgl(L) has
dimension 2g+ (n− 1) · (2g− 2+ #S).

Proof. For S = ∅ one easily verifies that the above method, explained for n = 2,
holds for any n ≥ 2. For S 6= ∅ the proof uses induction with respect to n. For
notational convenience we only consider n = 3.

lgl(L) is the cokernel of the map L : K 3
→ H ⊂�(K )3 given by

L(y1, y2, y3)= (dy1− y2 f dz, dy2− y3 f dz, dy3).

As before H is the subspace of �(K )3 consisting of the tuples (ω1, ω2, ω3) for
which there are formal local solutions at every point p ∈ P1. As before we con-
sider the map R : H → H 1

DR(X,C) that sends a tuple to ω3, the image of ω3 in
H 1

DR(X,C). We claim that R is surjective.
Let ω3 with Resp(ω3) = 0 be given. As in the proof of Proposition 8.15, there

exists an ω2 such that the two equations dy2 = y3 f dz +ω2 and dy3 = ω3 have a
formal local solution at each point of P1. The reason is that the residues of ω2 at
the points of S can be arbitrarily chosen, with the only restriction being that the
sum of all residues is 0. Now that ω2 is chosen, we want to produce an ω1 such
that two equations dy1 = y2 f dz+ω1 and dy2 = y3 f dz+ω2 have a formal local
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solution at each point of P1. By construction, the last equation has a solution y2,
which is unique up to a constant. Using this constant one can prescribe the residues
of ω1 at the points of S, with the only restriction being that the sum of all residues
is 0. This shows that R is surjective.

Now lgl(L) is the direct sum of H 1
DR(X,C) and the cokernel of L0 : K 3

→ H0,
where H0 ⊂ H consists of the tuples in which ω3 is exact. After dividing by the
subspace {L0(0, 0, y3) | y3 ∈ K }, we have to calculate the cokernel of the map
L00 : K ⊕ K ⊕C→ H00 given by (y1, y2, y3) 7→ (dy1− y2 f dz, dy2− y3 f dz, 0),
where H00 ⊂ H consists of the tuples with ω3 = 0.

Consider (ω1, ω2, 0)∈ H00. The equation dy2= y3 f dz+ω2 is formally solvable
at each point p for a suitable y3 ∈C (depending on p) if and only if Resp(ω2)= 0
for every p 6∈ S. As in the proof of Lemma 8.4, this induces a linear map

R00 : H00→ {(ap)p∈S ∈ CS
|
∑

ap = 0}

(ω1, ω2, 0) 7→ (Resp(ω2))p∈S.

The image of f dz in the space is nonzero. We conclude that the dimension of
the cokernel of L00 is equal to −2 + #S plus the dimension of the cokernel of
L000 : K ⊕ K ⊕ {0} → H000, where H000 ⊂ H00 consists of the tuples such that
Resp(ω2)= 0 for all p. By the case n= 2, the cokernel has dimension 4g−2+#S.
Thus the cokernel of L has dimension (2g− 2+ #S)+ (4g− 2+ #S). �

9. Regular singular differential equations

Now we consider a differential operator L on P1 which has only regular singular-
ities. The aim is to calculate lgl(L). One can represent L as a global connection
∇ :C(z)m→�(C(z)/C)m . Let Mer denote the sheaf of the meromorphic functions,
and let �mer denote the sheaf of the meromorphic differential forms on P1. One
defines the sheaves L and Q on P1 by the exact sequence of sheaves

0→ L→Merm ∇
−→�m

mer
R
−→ Q→ 0.

An element of lgl(L) is represented by an ω ∈�(C(z)/C)m having the property
that the equation ∇(y) = ω has of P1 a formal solution at every point P . The
assumption that L has only regular singular points implies that this formal solution
is in fact meromorphic at the given point and therefore lies in the stalk Merm

P , or
equivalently R(ω)= 0.

First we analyze the sheaf Q. Let t be a local parameter at P (that is, t =
z − c or t = z−1). Locally at an open disk D around P , the map ∇ has the form
∇(y)= dy+ AP(y/t)dt , where AP is a constant matrix such that the real part of
each eigenvalue of AP lies in [0, 1). We note that AP = 0 if P is not a singular
point of L . For a singular point P of L , we write t0(P) for the dimension of the
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kernel of AP . We write ResP : �mer,P → Cm
P for the residue map, and we write

Res(ω)=
∑

P ResP(ω)[P]. The latter is a section of the skyscraper sheaf
⊕

P Cm
P

on P1.
An element y ∈Merm

P can be written as y =
∑

n�−∞ yntn with all yn ∈Cm , and
an element ω ∈�m

mer,P can be written as
∑

n�−∞ ωntndt with all ωn ∈ Cm .
Now ∇(y)=

∑
n�−∞(n+AP)yntn−1dt =

∑
n�−∞ ωntndt has a solution if and

only if ω−1 = ResP(ω) lies in the image of AP . It follows that Q is the skyscraper
sheaf

⊕
P(C

m
P/AP Cm

P) and QP has dimension t0(P). Also t0(P) is the dimension
of the space of solutions of ∇(y)= 0 locally at the point P .

The above exact sequence of sheaves is an acyclic resolution of L since the
sheaves Mer and �mer have trivial cohomology on every open subset of P1. Thus
we can identify the cohomology groups of the complex

0→ C(z)m
∇
−→ C(z)mdz

R
−→

⊕
P QP → 0

with H∗(P1,L). The definition of lgl(L) gives lgl(L)∼= H 1(P1,L).
We will need a formula for the dimension of H 2(P1,L) (that is, the dimension

of the cokernel of R in the above complex). The image of Res :C(z)mdz→
⊕

P Cm
P

consists of the elements v= (vP)P with
∑
vP=0. Let p1, . . . , pr denote the singu-

lar points of L , and let A1, . . . , Ar be the corresponding constant matrices as above.
Then one can verify that the cokernel of R is isomorphic to Cm/(

∑r
i=1 Ai (C

m)).
Here we have identified all Cm

P with a single vector space Cm . These identifications
are not explicit, and we can only conclude that dim H 2(P1,L) < m if r > 0 and
that H 2(P1,L) = 0 if some Ai is invertible. The latter is equivalent to t0(pi ) = 0
and is again equivalent to the statement that the equation ∇(y) = 0 has no local
solution y 6= 0 in a neighborhood of pi .

Next, we will compute, for a singular point pi and a small disk X i around pi ,
the dimensions of H∗(X i ,L) and H∗(X∗i ,L), where X∗i = X i \ {pi }. Let Ohol

and �hol([pi ]) denote the sheaves on X i of the holomorphic functions and the
differential forms having at most a pole of order 1 at pi . As before, the connection
∇ : Om

hol→ �hol([pi ]) has the form ∇(y) = dy + Ai (y/t)dt . Define the sheaf P

by the exact sequence (above X i )

0→ L−→ Om
hol

∇
−→�hol([pi ])

m
−→ P→ 0.

Then P is a skyscraper sheaf with at most one nonzero stalk, namely, Ppi =

Cm/Ai (C
m). The above sequence is an acyclic resolution of the restriction of

L to X i . Taking global sections on X i and X∗i one easily finds that the spaces
H 0(X i ,L), H 0(X∗i ,L) and H 1(X∗i ,L) have dimension t0(pi ) and that the other
cohomology groups are 0.
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Now we start a computation of χ(P1) :=
∑
(−1)i dim H i (P1,L). First write

X0 = P1
\ {p1, . . . , pr }, and let X i denote, as before, a small disk around pi for

i = 1, . . . , r . Further X∗i := X i \ {pi }, Y :=
⋃r

i=1 X i and Y ∗ :=
⋃r

i=1 X∗i . The
Mayer–Vietoris exact sequence for the covering X0 ∪ Y of P1 reads

0−→ H 0(P1,L)−→ H 0(X0,L)⊕ H 0(Y,L)−→ H 0(Y ∗,L)

−→ H 1(P1,L)−→ H 1(X0,L)⊕ H 1(Y,L)−→ H 1(Y ∗,L)

−→ H 2(P1,L)−→ H 2(X0,L)⊕ H 2(Y,L)−→ H 2(Y ∗,L)−→ 0.

Let χ denote the Euler characteristic for the cohomology groups of L on the
various open subsets. Then χ(P1)= χ(X0)+χ(Y )−χ(Y ∗).

The restriction of L to X0 is a locally constant sheaf of C-vector spaces of di-
mension m. This corresponds to a representation of the fundamental group π1(X0)

on a vector space Cm . The group π1(X0) is free on r − 1 generators γ1, . . . , γr−1.
The cohomology groups that we want to calculate coincide with the group co-
homology of the above representation. The latter are the cohomology groups of
the complex 0 → Cm

→ (Cm)r−1
→ 0, where the nontrivial map is given by

v 7→ (γ1v− v, . . . , γr−1v− v). It follows that χ(X0)= m− (r − 1)m = m(2− r)
and H 2(X0,L)= 0. Using the local calculations we find the formula

χ(P1)= m(2− r)+
r∑

i=1

t0(pi ).

Suppose that t0(pi ) = 0 for some i . Then H i (P1,L) = 0 for i = 0, 2. Thus we
proved the following result.

Proposition 9.1. Let L be a connection on P1 of rank m having r > 0 regular
singular points p1, . . . , pr (and no other singularities). Let t0(pi ) denote the di-
mension of the local solution space at the point pi . Suppose that at least one t0(pi )

is zero. Then lgl(L)= (r − 2)m−
∑r

i=1 t0(pi ).
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